x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / arm / kvm / mmu.c
blobb97bc12812ab8530794e5c949e62e40a8bb14077
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
33 #include "trace.h"
35 static pgd_t *boot_hyp_pgd;
36 static pgd_t *hyp_pgd;
37 static pgd_t *merged_hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40 static unsigned long hyp_idmap_start;
41 static unsigned long hyp_idmap_end;
42 static phys_addr_t hyp_idmap_vector;
44 #define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
48 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
50 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
52 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 /**
56 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57 * @kvm: pointer to kvm structure.
59 * Interface to HYP function to flush all VM TLB entries
61 void kvm_flush_remote_tlbs(struct kvm *kvm)
63 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
68 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
72 * D-Cache management functions. They take the page table entries by
73 * value, as they are flushing the cache using the kernel mapping (or
74 * kmap on 32bit).
76 static void kvm_flush_dcache_pte(pte_t pte)
78 __kvm_flush_dcache_pte(pte);
81 static void kvm_flush_dcache_pmd(pmd_t pmd)
83 __kvm_flush_dcache_pmd(pmd);
86 static void kvm_flush_dcache_pud(pud_t pud)
88 __kvm_flush_dcache_pud(pud);
91 static bool kvm_is_device_pfn(unsigned long pfn)
93 return !pfn_valid(pfn);
96 /**
97 * stage2_dissolve_pmd() - clear and flush huge PMD entry
98 * @kvm: pointer to kvm structure.
99 * @addr: IPA
100 * @pmd: pmd pointer for IPA
102 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103 * pages in the range dirty.
105 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
107 if (!pmd_thp_or_huge(*pmd))
108 return;
110 pmd_clear(pmd);
111 kvm_tlb_flush_vmid_ipa(kvm, addr);
112 put_page(virt_to_page(pmd));
115 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
116 int min, int max)
118 void *page;
120 BUG_ON(max > KVM_NR_MEM_OBJS);
121 if (cache->nobjs >= min)
122 return 0;
123 while (cache->nobjs < max) {
124 page = (void *)__get_free_page(PGALLOC_GFP);
125 if (!page)
126 return -ENOMEM;
127 cache->objects[cache->nobjs++] = page;
129 return 0;
132 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
134 while (mc->nobjs)
135 free_page((unsigned long)mc->objects[--mc->nobjs]);
138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
140 void *p;
142 BUG_ON(!mc || !mc->nobjs);
143 p = mc->objects[--mc->nobjs];
144 return p;
147 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
149 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
150 stage2_pgd_clear(pgd);
151 kvm_tlb_flush_vmid_ipa(kvm, addr);
152 stage2_pud_free(pud_table);
153 put_page(virt_to_page(pgd));
156 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
158 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
159 VM_BUG_ON(stage2_pud_huge(*pud));
160 stage2_pud_clear(pud);
161 kvm_tlb_flush_vmid_ipa(kvm, addr);
162 stage2_pmd_free(pmd_table);
163 put_page(virt_to_page(pud));
166 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
168 pte_t *pte_table = pte_offset_kernel(pmd, 0);
169 VM_BUG_ON(pmd_thp_or_huge(*pmd));
170 pmd_clear(pmd);
171 kvm_tlb_flush_vmid_ipa(kvm, addr);
172 pte_free_kernel(NULL, pte_table);
173 put_page(virt_to_page(pmd));
177 * Unmapping vs dcache management:
179 * If a guest maps certain memory pages as uncached, all writes will
180 * bypass the data cache and go directly to RAM. However, the CPUs
181 * can still speculate reads (not writes) and fill cache lines with
182 * data.
184 * Those cache lines will be *clean* cache lines though, so a
185 * clean+invalidate operation is equivalent to an invalidate
186 * operation, because no cache lines are marked dirty.
188 * Those clean cache lines could be filled prior to an uncached write
189 * by the guest, and the cache coherent IO subsystem would therefore
190 * end up writing old data to disk.
192 * This is why right after unmapping a page/section and invalidating
193 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194 * the IO subsystem will never hit in the cache.
196 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
197 phys_addr_t addr, phys_addr_t end)
199 phys_addr_t start_addr = addr;
200 pte_t *pte, *start_pte;
202 start_pte = pte = pte_offset_kernel(pmd, addr);
203 do {
204 if (!pte_none(*pte)) {
205 pte_t old_pte = *pte;
207 kvm_set_pte(pte, __pte(0));
208 kvm_tlb_flush_vmid_ipa(kvm, addr);
210 /* No need to invalidate the cache for device mappings */
211 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
212 kvm_flush_dcache_pte(old_pte);
214 put_page(virt_to_page(pte));
216 } while (pte++, addr += PAGE_SIZE, addr != end);
218 if (stage2_pte_table_empty(start_pte))
219 clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
223 phys_addr_t addr, phys_addr_t end)
225 phys_addr_t next, start_addr = addr;
226 pmd_t *pmd, *start_pmd;
228 start_pmd = pmd = stage2_pmd_offset(pud, addr);
229 do {
230 next = stage2_pmd_addr_end(addr, end);
231 if (!pmd_none(*pmd)) {
232 if (pmd_thp_or_huge(*pmd)) {
233 pmd_t old_pmd = *pmd;
235 pmd_clear(pmd);
236 kvm_tlb_flush_vmid_ipa(kvm, addr);
238 kvm_flush_dcache_pmd(old_pmd);
240 put_page(virt_to_page(pmd));
241 } else {
242 unmap_stage2_ptes(kvm, pmd, addr, next);
245 } while (pmd++, addr = next, addr != end);
247 if (stage2_pmd_table_empty(start_pmd))
248 clear_stage2_pud_entry(kvm, pud, start_addr);
251 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
252 phys_addr_t addr, phys_addr_t end)
254 phys_addr_t next, start_addr = addr;
255 pud_t *pud, *start_pud;
257 start_pud = pud = stage2_pud_offset(pgd, addr);
258 do {
259 next = stage2_pud_addr_end(addr, end);
260 if (!stage2_pud_none(*pud)) {
261 if (stage2_pud_huge(*pud)) {
262 pud_t old_pud = *pud;
264 stage2_pud_clear(pud);
265 kvm_tlb_flush_vmid_ipa(kvm, addr);
266 kvm_flush_dcache_pud(old_pud);
267 put_page(virt_to_page(pud));
268 } else {
269 unmap_stage2_pmds(kvm, pud, addr, next);
272 } while (pud++, addr = next, addr != end);
274 if (stage2_pud_table_empty(start_pud))
275 clear_stage2_pgd_entry(kvm, pgd, start_addr);
279 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280 * @kvm: The VM pointer
281 * @start: The intermediate physical base address of the range to unmap
282 * @size: The size of the area to unmap
284 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
285 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286 * destroying the VM), otherwise another faulting VCPU may come in and mess
287 * with things behind our backs.
289 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
291 pgd_t *pgd;
292 phys_addr_t addr = start, end = start + size;
293 phys_addr_t next;
295 assert_spin_locked(&kvm->mmu_lock);
296 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
297 do {
299 * Make sure the page table is still active, as another thread
300 * could have possibly freed the page table, while we released
301 * the lock.
303 if (!READ_ONCE(kvm->arch.pgd))
304 break;
305 next = stage2_pgd_addr_end(addr, end);
306 if (!stage2_pgd_none(*pgd))
307 unmap_stage2_puds(kvm, pgd, addr, next);
309 * If the range is too large, release the kvm->mmu_lock
310 * to prevent starvation and lockup detector warnings.
312 if (next != end)
313 cond_resched_lock(&kvm->mmu_lock);
314 } while (pgd++, addr = next, addr != end);
317 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
318 phys_addr_t addr, phys_addr_t end)
320 pte_t *pte;
322 pte = pte_offset_kernel(pmd, addr);
323 do {
324 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
325 kvm_flush_dcache_pte(*pte);
326 } while (pte++, addr += PAGE_SIZE, addr != end);
329 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
330 phys_addr_t addr, phys_addr_t end)
332 pmd_t *pmd;
333 phys_addr_t next;
335 pmd = stage2_pmd_offset(pud, addr);
336 do {
337 next = stage2_pmd_addr_end(addr, end);
338 if (!pmd_none(*pmd)) {
339 if (pmd_thp_or_huge(*pmd))
340 kvm_flush_dcache_pmd(*pmd);
341 else
342 stage2_flush_ptes(kvm, pmd, addr, next);
344 } while (pmd++, addr = next, addr != end);
347 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
348 phys_addr_t addr, phys_addr_t end)
350 pud_t *pud;
351 phys_addr_t next;
353 pud = stage2_pud_offset(pgd, addr);
354 do {
355 next = stage2_pud_addr_end(addr, end);
356 if (!stage2_pud_none(*pud)) {
357 if (stage2_pud_huge(*pud))
358 kvm_flush_dcache_pud(*pud);
359 else
360 stage2_flush_pmds(kvm, pud, addr, next);
362 } while (pud++, addr = next, addr != end);
365 static void stage2_flush_memslot(struct kvm *kvm,
366 struct kvm_memory_slot *memslot)
368 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
369 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
370 phys_addr_t next;
371 pgd_t *pgd;
373 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
374 do {
375 next = stage2_pgd_addr_end(addr, end);
376 stage2_flush_puds(kvm, pgd, addr, next);
377 } while (pgd++, addr = next, addr != end);
381 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
382 * @kvm: The struct kvm pointer
384 * Go through the stage 2 page tables and invalidate any cache lines
385 * backing memory already mapped to the VM.
387 static void stage2_flush_vm(struct kvm *kvm)
389 struct kvm_memslots *slots;
390 struct kvm_memory_slot *memslot;
391 int idx;
393 idx = srcu_read_lock(&kvm->srcu);
394 spin_lock(&kvm->mmu_lock);
396 slots = kvm_memslots(kvm);
397 kvm_for_each_memslot(memslot, slots)
398 stage2_flush_memslot(kvm, memslot);
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
404 static void clear_hyp_pgd_entry(pgd_t *pgd)
406 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
407 pgd_clear(pgd);
408 pud_free(NULL, pud_table);
409 put_page(virt_to_page(pgd));
412 static void clear_hyp_pud_entry(pud_t *pud)
414 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
415 VM_BUG_ON(pud_huge(*pud));
416 pud_clear(pud);
417 pmd_free(NULL, pmd_table);
418 put_page(virt_to_page(pud));
421 static void clear_hyp_pmd_entry(pmd_t *pmd)
423 pte_t *pte_table = pte_offset_kernel(pmd, 0);
424 VM_BUG_ON(pmd_thp_or_huge(*pmd));
425 pmd_clear(pmd);
426 pte_free_kernel(NULL, pte_table);
427 put_page(virt_to_page(pmd));
430 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
432 pte_t *pte, *start_pte;
434 start_pte = pte = pte_offset_kernel(pmd, addr);
435 do {
436 if (!pte_none(*pte)) {
437 kvm_set_pte(pte, __pte(0));
438 put_page(virt_to_page(pte));
440 } while (pte++, addr += PAGE_SIZE, addr != end);
442 if (hyp_pte_table_empty(start_pte))
443 clear_hyp_pmd_entry(pmd);
446 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
448 phys_addr_t next;
449 pmd_t *pmd, *start_pmd;
451 start_pmd = pmd = pmd_offset(pud, addr);
452 do {
453 next = pmd_addr_end(addr, end);
454 /* Hyp doesn't use huge pmds */
455 if (!pmd_none(*pmd))
456 unmap_hyp_ptes(pmd, addr, next);
457 } while (pmd++, addr = next, addr != end);
459 if (hyp_pmd_table_empty(start_pmd))
460 clear_hyp_pud_entry(pud);
463 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
465 phys_addr_t next;
466 pud_t *pud, *start_pud;
468 start_pud = pud = pud_offset(pgd, addr);
469 do {
470 next = pud_addr_end(addr, end);
471 /* Hyp doesn't use huge puds */
472 if (!pud_none(*pud))
473 unmap_hyp_pmds(pud, addr, next);
474 } while (pud++, addr = next, addr != end);
476 if (hyp_pud_table_empty(start_pud))
477 clear_hyp_pgd_entry(pgd);
480 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
482 pgd_t *pgd;
483 phys_addr_t addr = start, end = start + size;
484 phys_addr_t next;
487 * We don't unmap anything from HYP, except at the hyp tear down.
488 * Hence, we don't have to invalidate the TLBs here.
490 pgd = pgdp + pgd_index(addr);
491 do {
492 next = pgd_addr_end(addr, end);
493 if (!pgd_none(*pgd))
494 unmap_hyp_puds(pgd, addr, next);
495 } while (pgd++, addr = next, addr != end);
499 * free_hyp_pgds - free Hyp-mode page tables
501 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
502 * therefore contains either mappings in the kernel memory area (above
503 * PAGE_OFFSET), or device mappings in the vmalloc range (from
504 * VMALLOC_START to VMALLOC_END).
506 * boot_hyp_pgd should only map two pages for the init code.
508 void free_hyp_pgds(void)
510 unsigned long addr;
512 mutex_lock(&kvm_hyp_pgd_mutex);
514 if (boot_hyp_pgd) {
515 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
516 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
517 boot_hyp_pgd = NULL;
520 if (hyp_pgd) {
521 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
522 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
523 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
524 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
525 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
527 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
528 hyp_pgd = NULL;
530 if (merged_hyp_pgd) {
531 clear_page(merged_hyp_pgd);
532 free_page((unsigned long)merged_hyp_pgd);
533 merged_hyp_pgd = NULL;
536 mutex_unlock(&kvm_hyp_pgd_mutex);
539 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
540 unsigned long end, unsigned long pfn,
541 pgprot_t prot)
543 pte_t *pte;
544 unsigned long addr;
546 addr = start;
547 do {
548 pte = pte_offset_kernel(pmd, addr);
549 kvm_set_pte(pte, pfn_pte(pfn, prot));
550 get_page(virt_to_page(pte));
551 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
552 pfn++;
553 } while (addr += PAGE_SIZE, addr != end);
556 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
557 unsigned long end, unsigned long pfn,
558 pgprot_t prot)
560 pmd_t *pmd;
561 pte_t *pte;
562 unsigned long addr, next;
564 addr = start;
565 do {
566 pmd = pmd_offset(pud, addr);
568 BUG_ON(pmd_sect(*pmd));
570 if (pmd_none(*pmd)) {
571 pte = pte_alloc_one_kernel(NULL, addr);
572 if (!pte) {
573 kvm_err("Cannot allocate Hyp pte\n");
574 return -ENOMEM;
576 pmd_populate_kernel(NULL, pmd, pte);
577 get_page(virt_to_page(pmd));
578 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
581 next = pmd_addr_end(addr, end);
583 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
584 pfn += (next - addr) >> PAGE_SHIFT;
585 } while (addr = next, addr != end);
587 return 0;
590 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
591 unsigned long end, unsigned long pfn,
592 pgprot_t prot)
594 pud_t *pud;
595 pmd_t *pmd;
596 unsigned long addr, next;
597 int ret;
599 addr = start;
600 do {
601 pud = pud_offset(pgd, addr);
603 if (pud_none_or_clear_bad(pud)) {
604 pmd = pmd_alloc_one(NULL, addr);
605 if (!pmd) {
606 kvm_err("Cannot allocate Hyp pmd\n");
607 return -ENOMEM;
609 pud_populate(NULL, pud, pmd);
610 get_page(virt_to_page(pud));
611 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
614 next = pud_addr_end(addr, end);
615 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
616 if (ret)
617 return ret;
618 pfn += (next - addr) >> PAGE_SHIFT;
619 } while (addr = next, addr != end);
621 return 0;
624 static int __create_hyp_mappings(pgd_t *pgdp,
625 unsigned long start, unsigned long end,
626 unsigned long pfn, pgprot_t prot)
628 pgd_t *pgd;
629 pud_t *pud;
630 unsigned long addr, next;
631 int err = 0;
633 mutex_lock(&kvm_hyp_pgd_mutex);
634 addr = start & PAGE_MASK;
635 end = PAGE_ALIGN(end);
636 do {
637 pgd = pgdp + pgd_index(addr);
639 if (pgd_none(*pgd)) {
640 pud = pud_alloc_one(NULL, addr);
641 if (!pud) {
642 kvm_err("Cannot allocate Hyp pud\n");
643 err = -ENOMEM;
644 goto out;
646 pgd_populate(NULL, pgd, pud);
647 get_page(virt_to_page(pgd));
648 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
651 next = pgd_addr_end(addr, end);
652 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
653 if (err)
654 goto out;
655 pfn += (next - addr) >> PAGE_SHIFT;
656 } while (addr = next, addr != end);
657 out:
658 mutex_unlock(&kvm_hyp_pgd_mutex);
659 return err;
662 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
664 if (!is_vmalloc_addr(kaddr)) {
665 BUG_ON(!virt_addr_valid(kaddr));
666 return __pa(kaddr);
667 } else {
668 return page_to_phys(vmalloc_to_page(kaddr)) +
669 offset_in_page(kaddr);
674 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
675 * @from: The virtual kernel start address of the range
676 * @to: The virtual kernel end address of the range (exclusive)
677 * @prot: The protection to be applied to this range
679 * The same virtual address as the kernel virtual address is also used
680 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
681 * physical pages.
683 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
685 phys_addr_t phys_addr;
686 unsigned long virt_addr;
687 unsigned long start = kern_hyp_va((unsigned long)from);
688 unsigned long end = kern_hyp_va((unsigned long)to);
690 if (is_kernel_in_hyp_mode())
691 return 0;
693 start = start & PAGE_MASK;
694 end = PAGE_ALIGN(end);
696 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
697 int err;
699 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
700 err = __create_hyp_mappings(hyp_pgd, virt_addr,
701 virt_addr + PAGE_SIZE,
702 __phys_to_pfn(phys_addr),
703 prot);
704 if (err)
705 return err;
708 return 0;
712 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
713 * @from: The kernel start VA of the range
714 * @to: The kernel end VA of the range (exclusive)
715 * @phys_addr: The physical start address which gets mapped
717 * The resulting HYP VA is the same as the kernel VA, modulo
718 * HYP_PAGE_OFFSET.
720 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
722 unsigned long start = kern_hyp_va((unsigned long)from);
723 unsigned long end = kern_hyp_va((unsigned long)to);
725 if (is_kernel_in_hyp_mode())
726 return 0;
728 /* Check for a valid kernel IO mapping */
729 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
730 return -EINVAL;
732 return __create_hyp_mappings(hyp_pgd, start, end,
733 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
737 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
738 * @kvm: The KVM struct pointer for the VM.
740 * Allocates only the stage-2 HW PGD level table(s) (can support either full
741 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
742 * allocated pages.
744 * Note we don't need locking here as this is only called when the VM is
745 * created, which can only be done once.
747 int kvm_alloc_stage2_pgd(struct kvm *kvm)
749 pgd_t *pgd;
751 if (kvm->arch.pgd != NULL) {
752 kvm_err("kvm_arch already initialized?\n");
753 return -EINVAL;
756 /* Allocate the HW PGD, making sure that each page gets its own refcount */
757 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
758 if (!pgd)
759 return -ENOMEM;
761 kvm->arch.pgd = pgd;
762 return 0;
765 static void stage2_unmap_memslot(struct kvm *kvm,
766 struct kvm_memory_slot *memslot)
768 hva_t hva = memslot->userspace_addr;
769 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
770 phys_addr_t size = PAGE_SIZE * memslot->npages;
771 hva_t reg_end = hva + size;
774 * A memory region could potentially cover multiple VMAs, and any holes
775 * between them, so iterate over all of them to find out if we should
776 * unmap any of them.
778 * +--------------------------------------------+
779 * +---------------+----------------+ +----------------+
780 * | : VMA 1 | VMA 2 | | VMA 3 : |
781 * +---------------+----------------+ +----------------+
782 * | memory region |
783 * +--------------------------------------------+
785 do {
786 struct vm_area_struct *vma = find_vma(current->mm, hva);
787 hva_t vm_start, vm_end;
789 if (!vma || vma->vm_start >= reg_end)
790 break;
793 * Take the intersection of this VMA with the memory region
795 vm_start = max(hva, vma->vm_start);
796 vm_end = min(reg_end, vma->vm_end);
798 if (!(vma->vm_flags & VM_PFNMAP)) {
799 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
800 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
802 hva = vm_end;
803 } while (hva < reg_end);
807 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
808 * @kvm: The struct kvm pointer
810 * Go through the memregions and unmap any reguler RAM
811 * backing memory already mapped to the VM.
813 void stage2_unmap_vm(struct kvm *kvm)
815 struct kvm_memslots *slots;
816 struct kvm_memory_slot *memslot;
817 int idx;
819 idx = srcu_read_lock(&kvm->srcu);
820 down_read(&current->mm->mmap_sem);
821 spin_lock(&kvm->mmu_lock);
823 slots = kvm_memslots(kvm);
824 kvm_for_each_memslot(memslot, slots)
825 stage2_unmap_memslot(kvm, memslot);
827 spin_unlock(&kvm->mmu_lock);
828 up_read(&current->mm->mmap_sem);
829 srcu_read_unlock(&kvm->srcu, idx);
833 * kvm_free_stage2_pgd - free all stage-2 tables
834 * @kvm: The KVM struct pointer for the VM.
836 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
837 * underlying level-2 and level-3 tables before freeing the actual level-1 table
838 * and setting the struct pointer to NULL.
840 void kvm_free_stage2_pgd(struct kvm *kvm)
842 void *pgd = NULL;
844 spin_lock(&kvm->mmu_lock);
845 if (kvm->arch.pgd) {
846 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
847 pgd = READ_ONCE(kvm->arch.pgd);
848 kvm->arch.pgd = NULL;
850 spin_unlock(&kvm->mmu_lock);
852 /* Free the HW pgd, one page at a time */
853 if (pgd)
854 free_pages_exact(pgd, S2_PGD_SIZE);
857 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
858 phys_addr_t addr)
860 pgd_t *pgd;
861 pud_t *pud;
863 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
864 if (WARN_ON(stage2_pgd_none(*pgd))) {
865 if (!cache)
866 return NULL;
867 pud = mmu_memory_cache_alloc(cache);
868 stage2_pgd_populate(pgd, pud);
869 get_page(virt_to_page(pgd));
872 return stage2_pud_offset(pgd, addr);
875 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
876 phys_addr_t addr)
878 pud_t *pud;
879 pmd_t *pmd;
881 pud = stage2_get_pud(kvm, cache, addr);
882 if (!pud)
883 return NULL;
885 if (stage2_pud_none(*pud)) {
886 if (!cache)
887 return NULL;
888 pmd = mmu_memory_cache_alloc(cache);
889 stage2_pud_populate(pud, pmd);
890 get_page(virt_to_page(pud));
893 return stage2_pmd_offset(pud, addr);
896 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
897 *cache, phys_addr_t addr, const pmd_t *new_pmd)
899 pmd_t *pmd, old_pmd;
901 pmd = stage2_get_pmd(kvm, cache, addr);
902 VM_BUG_ON(!pmd);
905 * Mapping in huge pages should only happen through a fault. If a
906 * page is merged into a transparent huge page, the individual
907 * subpages of that huge page should be unmapped through MMU
908 * notifiers before we get here.
910 * Merging of CompoundPages is not supported; they should become
911 * splitting first, unmapped, merged, and mapped back in on-demand.
913 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
915 old_pmd = *pmd;
916 if (pmd_present(old_pmd)) {
917 pmd_clear(pmd);
918 kvm_tlb_flush_vmid_ipa(kvm, addr);
919 } else {
920 get_page(virt_to_page(pmd));
923 kvm_set_pmd(pmd, *new_pmd);
924 return 0;
927 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
928 phys_addr_t addr, const pte_t *new_pte,
929 unsigned long flags)
931 pmd_t *pmd;
932 pte_t *pte, old_pte;
933 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
934 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
936 VM_BUG_ON(logging_active && !cache);
938 /* Create stage-2 page table mapping - Levels 0 and 1 */
939 pmd = stage2_get_pmd(kvm, cache, addr);
940 if (!pmd) {
942 * Ignore calls from kvm_set_spte_hva for unallocated
943 * address ranges.
945 return 0;
949 * While dirty page logging - dissolve huge PMD, then continue on to
950 * allocate page.
952 if (logging_active)
953 stage2_dissolve_pmd(kvm, addr, pmd);
955 /* Create stage-2 page mappings - Level 2 */
956 if (pmd_none(*pmd)) {
957 if (!cache)
958 return 0; /* ignore calls from kvm_set_spte_hva */
959 pte = mmu_memory_cache_alloc(cache);
960 pmd_populate_kernel(NULL, pmd, pte);
961 get_page(virt_to_page(pmd));
964 pte = pte_offset_kernel(pmd, addr);
966 if (iomap && pte_present(*pte))
967 return -EFAULT;
969 /* Create 2nd stage page table mapping - Level 3 */
970 old_pte = *pte;
971 if (pte_present(old_pte)) {
972 kvm_set_pte(pte, __pte(0));
973 kvm_tlb_flush_vmid_ipa(kvm, addr);
974 } else {
975 get_page(virt_to_page(pte));
978 kvm_set_pte(pte, *new_pte);
979 return 0;
982 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
983 static int stage2_ptep_test_and_clear_young(pte_t *pte)
985 if (pte_young(*pte)) {
986 *pte = pte_mkold(*pte);
987 return 1;
989 return 0;
991 #else
992 static int stage2_ptep_test_and_clear_young(pte_t *pte)
994 return __ptep_test_and_clear_young(pte);
996 #endif
998 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1000 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1004 * kvm_phys_addr_ioremap - map a device range to guest IPA
1006 * @kvm: The KVM pointer
1007 * @guest_ipa: The IPA at which to insert the mapping
1008 * @pa: The physical address of the device
1009 * @size: The size of the mapping
1011 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1012 phys_addr_t pa, unsigned long size, bool writable)
1014 phys_addr_t addr, end;
1015 int ret = 0;
1016 unsigned long pfn;
1017 struct kvm_mmu_memory_cache cache = { 0, };
1019 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1020 pfn = __phys_to_pfn(pa);
1022 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1023 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1025 if (writable)
1026 pte = kvm_s2pte_mkwrite(pte);
1028 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1029 KVM_NR_MEM_OBJS);
1030 if (ret)
1031 goto out;
1032 spin_lock(&kvm->mmu_lock);
1033 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1034 KVM_S2PTE_FLAG_IS_IOMAP);
1035 spin_unlock(&kvm->mmu_lock);
1036 if (ret)
1037 goto out;
1039 pfn++;
1042 out:
1043 mmu_free_memory_cache(&cache);
1044 return ret;
1047 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1049 kvm_pfn_t pfn = *pfnp;
1050 gfn_t gfn = *ipap >> PAGE_SHIFT;
1052 if (PageTransCompoundMap(pfn_to_page(pfn))) {
1053 unsigned long mask;
1055 * The address we faulted on is backed by a transparent huge
1056 * page. However, because we map the compound huge page and
1057 * not the individual tail page, we need to transfer the
1058 * refcount to the head page. We have to be careful that the
1059 * THP doesn't start to split while we are adjusting the
1060 * refcounts.
1062 * We are sure this doesn't happen, because mmu_notifier_retry
1063 * was successful and we are holding the mmu_lock, so if this
1064 * THP is trying to split, it will be blocked in the mmu
1065 * notifier before touching any of the pages, specifically
1066 * before being able to call __split_huge_page_refcount().
1068 * We can therefore safely transfer the refcount from PG_tail
1069 * to PG_head and switch the pfn from a tail page to the head
1070 * page accordingly.
1072 mask = PTRS_PER_PMD - 1;
1073 VM_BUG_ON((gfn & mask) != (pfn & mask));
1074 if (pfn & mask) {
1075 *ipap &= PMD_MASK;
1076 kvm_release_pfn_clean(pfn);
1077 pfn &= ~mask;
1078 kvm_get_pfn(pfn);
1079 *pfnp = pfn;
1082 return true;
1085 return false;
1088 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1090 if (kvm_vcpu_trap_is_iabt(vcpu))
1091 return false;
1093 return kvm_vcpu_dabt_iswrite(vcpu);
1097 * stage2_wp_ptes - write protect PMD range
1098 * @pmd: pointer to pmd entry
1099 * @addr: range start address
1100 * @end: range end address
1102 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1104 pte_t *pte;
1106 pte = pte_offset_kernel(pmd, addr);
1107 do {
1108 if (!pte_none(*pte)) {
1109 if (!kvm_s2pte_readonly(pte))
1110 kvm_set_s2pte_readonly(pte);
1112 } while (pte++, addr += PAGE_SIZE, addr != end);
1116 * stage2_wp_pmds - write protect PUD range
1117 * @pud: pointer to pud entry
1118 * @addr: range start address
1119 * @end: range end address
1121 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1123 pmd_t *pmd;
1124 phys_addr_t next;
1126 pmd = stage2_pmd_offset(pud, addr);
1128 do {
1129 next = stage2_pmd_addr_end(addr, end);
1130 if (!pmd_none(*pmd)) {
1131 if (pmd_thp_or_huge(*pmd)) {
1132 if (!kvm_s2pmd_readonly(pmd))
1133 kvm_set_s2pmd_readonly(pmd);
1134 } else {
1135 stage2_wp_ptes(pmd, addr, next);
1138 } while (pmd++, addr = next, addr != end);
1142 * stage2_wp_puds - write protect PGD range
1143 * @pgd: pointer to pgd entry
1144 * @addr: range start address
1145 * @end: range end address
1147 * Process PUD entries, for a huge PUD we cause a panic.
1149 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1151 pud_t *pud;
1152 phys_addr_t next;
1154 pud = stage2_pud_offset(pgd, addr);
1155 do {
1156 next = stage2_pud_addr_end(addr, end);
1157 if (!stage2_pud_none(*pud)) {
1158 /* TODO:PUD not supported, revisit later if supported */
1159 BUG_ON(stage2_pud_huge(*pud));
1160 stage2_wp_pmds(pud, addr, next);
1162 } while (pud++, addr = next, addr != end);
1166 * stage2_wp_range() - write protect stage2 memory region range
1167 * @kvm: The KVM pointer
1168 * @addr: Start address of range
1169 * @end: End address of range
1171 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1173 pgd_t *pgd;
1174 phys_addr_t next;
1176 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1177 do {
1179 * Release kvm_mmu_lock periodically if the memory region is
1180 * large. Otherwise, we may see kernel panics with
1181 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1182 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1183 * will also starve other vCPUs. We have to also make sure
1184 * that the page tables are not freed while we released
1185 * the lock.
1187 cond_resched_lock(&kvm->mmu_lock);
1188 if (!READ_ONCE(kvm->arch.pgd))
1189 break;
1190 next = stage2_pgd_addr_end(addr, end);
1191 if (stage2_pgd_present(*pgd))
1192 stage2_wp_puds(pgd, addr, next);
1193 } while (pgd++, addr = next, addr != end);
1197 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1198 * @kvm: The KVM pointer
1199 * @slot: The memory slot to write protect
1201 * Called to start logging dirty pages after memory region
1202 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1203 * all present PMD and PTEs are write protected in the memory region.
1204 * Afterwards read of dirty page log can be called.
1206 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1207 * serializing operations for VM memory regions.
1209 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1211 struct kvm_memslots *slots = kvm_memslots(kvm);
1212 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1213 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1214 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1216 spin_lock(&kvm->mmu_lock);
1217 stage2_wp_range(kvm, start, end);
1218 spin_unlock(&kvm->mmu_lock);
1219 kvm_flush_remote_tlbs(kvm);
1223 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1224 * @kvm: The KVM pointer
1225 * @slot: The memory slot associated with mask
1226 * @gfn_offset: The gfn offset in memory slot
1227 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1228 * slot to be write protected
1230 * Walks bits set in mask write protects the associated pte's. Caller must
1231 * acquire kvm_mmu_lock.
1233 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1234 struct kvm_memory_slot *slot,
1235 gfn_t gfn_offset, unsigned long mask)
1237 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1238 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1239 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1241 stage2_wp_range(kvm, start, end);
1245 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1246 * dirty pages.
1248 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1249 * enable dirty logging for them.
1251 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1252 struct kvm_memory_slot *slot,
1253 gfn_t gfn_offset, unsigned long mask)
1255 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1258 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1259 unsigned long size)
1261 __coherent_cache_guest_page(vcpu, pfn, size);
1264 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1265 struct kvm_memory_slot *memslot, unsigned long hva,
1266 unsigned long fault_status)
1268 int ret;
1269 bool write_fault, writable, hugetlb = false, force_pte = false;
1270 unsigned long mmu_seq;
1271 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1272 struct kvm *kvm = vcpu->kvm;
1273 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1274 struct vm_area_struct *vma;
1275 kvm_pfn_t pfn;
1276 pgprot_t mem_type = PAGE_S2;
1277 bool logging_active = memslot_is_logging(memslot);
1278 unsigned long flags = 0;
1280 write_fault = kvm_is_write_fault(vcpu);
1281 if (fault_status == FSC_PERM && !write_fault) {
1282 kvm_err("Unexpected L2 read permission error\n");
1283 return -EFAULT;
1286 /* Let's check if we will get back a huge page backed by hugetlbfs */
1287 down_read(&current->mm->mmap_sem);
1288 vma = find_vma_intersection(current->mm, hva, hva + 1);
1289 if (unlikely(!vma)) {
1290 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1291 up_read(&current->mm->mmap_sem);
1292 return -EFAULT;
1295 if (is_vm_hugetlb_page(vma) && !logging_active) {
1296 hugetlb = true;
1297 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1298 } else {
1300 * Pages belonging to memslots that don't have the same
1301 * alignment for userspace and IPA cannot be mapped using
1302 * block descriptors even if the pages belong to a THP for
1303 * the process, because the stage-2 block descriptor will
1304 * cover more than a single THP and we loose atomicity for
1305 * unmapping, updates, and splits of the THP or other pages
1306 * in the stage-2 block range.
1308 if ((memslot->userspace_addr & ~PMD_MASK) !=
1309 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1310 force_pte = true;
1312 up_read(&current->mm->mmap_sem);
1314 /* We need minimum second+third level pages */
1315 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1316 KVM_NR_MEM_OBJS);
1317 if (ret)
1318 return ret;
1320 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1322 * Ensure the read of mmu_notifier_seq happens before we call
1323 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1324 * the page we just got a reference to gets unmapped before we have a
1325 * chance to grab the mmu_lock, which ensure that if the page gets
1326 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1327 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1328 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1330 smp_rmb();
1332 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1333 if (is_error_noslot_pfn(pfn))
1334 return -EFAULT;
1336 if (kvm_is_device_pfn(pfn)) {
1337 mem_type = PAGE_S2_DEVICE;
1338 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1339 } else if (logging_active) {
1341 * Faults on pages in a memslot with logging enabled
1342 * should not be mapped with huge pages (it introduces churn
1343 * and performance degradation), so force a pte mapping.
1345 force_pte = true;
1346 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1349 * Only actually map the page as writable if this was a write
1350 * fault.
1352 if (!write_fault)
1353 writable = false;
1356 spin_lock(&kvm->mmu_lock);
1357 if (mmu_notifier_retry(kvm, mmu_seq))
1358 goto out_unlock;
1360 if (!hugetlb && !force_pte)
1361 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1363 if (hugetlb) {
1364 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1365 new_pmd = pmd_mkhuge(new_pmd);
1366 if (writable) {
1367 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1368 kvm_set_pfn_dirty(pfn);
1370 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1371 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1372 } else {
1373 pte_t new_pte = pfn_pte(pfn, mem_type);
1375 if (writable) {
1376 new_pte = kvm_s2pte_mkwrite(new_pte);
1377 kvm_set_pfn_dirty(pfn);
1378 mark_page_dirty(kvm, gfn);
1380 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1381 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1384 out_unlock:
1385 spin_unlock(&kvm->mmu_lock);
1386 kvm_set_pfn_accessed(pfn);
1387 kvm_release_pfn_clean(pfn);
1388 return ret;
1392 * Resolve the access fault by making the page young again.
1393 * Note that because the faulting entry is guaranteed not to be
1394 * cached in the TLB, we don't need to invalidate anything.
1395 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1396 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1398 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1400 pmd_t *pmd;
1401 pte_t *pte;
1402 kvm_pfn_t pfn;
1403 bool pfn_valid = false;
1405 trace_kvm_access_fault(fault_ipa);
1407 spin_lock(&vcpu->kvm->mmu_lock);
1409 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1410 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1411 goto out;
1413 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
1414 *pmd = pmd_mkyoung(*pmd);
1415 pfn = pmd_pfn(*pmd);
1416 pfn_valid = true;
1417 goto out;
1420 pte = pte_offset_kernel(pmd, fault_ipa);
1421 if (pte_none(*pte)) /* Nothing there either */
1422 goto out;
1424 *pte = pte_mkyoung(*pte); /* Just a page... */
1425 pfn = pte_pfn(*pte);
1426 pfn_valid = true;
1427 out:
1428 spin_unlock(&vcpu->kvm->mmu_lock);
1429 if (pfn_valid)
1430 kvm_set_pfn_accessed(pfn);
1434 * kvm_handle_guest_abort - handles all 2nd stage aborts
1435 * @vcpu: the VCPU pointer
1436 * @run: the kvm_run structure
1438 * Any abort that gets to the host is almost guaranteed to be caused by a
1439 * missing second stage translation table entry, which can mean that either the
1440 * guest simply needs more memory and we must allocate an appropriate page or it
1441 * can mean that the guest tried to access I/O memory, which is emulated by user
1442 * space. The distinction is based on the IPA causing the fault and whether this
1443 * memory region has been registered as standard RAM by user space.
1445 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1447 unsigned long fault_status;
1448 phys_addr_t fault_ipa;
1449 struct kvm_memory_slot *memslot;
1450 unsigned long hva;
1451 bool is_iabt, write_fault, writable;
1452 gfn_t gfn;
1453 int ret, idx;
1455 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1456 if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
1457 kvm_inject_vabt(vcpu);
1458 return 1;
1461 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1463 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1464 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1466 /* Check the stage-2 fault is trans. fault or write fault */
1467 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1468 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1469 fault_status != FSC_ACCESS) {
1470 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1471 kvm_vcpu_trap_get_class(vcpu),
1472 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1473 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1474 return -EFAULT;
1477 idx = srcu_read_lock(&vcpu->kvm->srcu);
1479 gfn = fault_ipa >> PAGE_SHIFT;
1480 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1481 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1482 write_fault = kvm_is_write_fault(vcpu);
1483 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1484 if (is_iabt) {
1485 /* Prefetch Abort on I/O address */
1486 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1487 ret = 1;
1488 goto out_unlock;
1492 * Check for a cache maintenance operation. Since we
1493 * ended-up here, we know it is outside of any memory
1494 * slot. But we can't find out if that is for a device,
1495 * or if the guest is just being stupid. The only thing
1496 * we know for sure is that this range cannot be cached.
1498 * So let's assume that the guest is just being
1499 * cautious, and skip the instruction.
1501 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1502 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1503 ret = 1;
1504 goto out_unlock;
1508 * The IPA is reported as [MAX:12], so we need to
1509 * complement it with the bottom 12 bits from the
1510 * faulting VA. This is always 12 bits, irrespective
1511 * of the page size.
1513 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1514 ret = io_mem_abort(vcpu, run, fault_ipa);
1515 goto out_unlock;
1518 /* Userspace should not be able to register out-of-bounds IPAs */
1519 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1521 if (fault_status == FSC_ACCESS) {
1522 handle_access_fault(vcpu, fault_ipa);
1523 ret = 1;
1524 goto out_unlock;
1527 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1528 if (ret == 0)
1529 ret = 1;
1530 out_unlock:
1531 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1532 return ret;
1535 static int handle_hva_to_gpa(struct kvm *kvm,
1536 unsigned long start,
1537 unsigned long end,
1538 int (*handler)(struct kvm *kvm,
1539 gpa_t gpa, void *data),
1540 void *data)
1542 struct kvm_memslots *slots;
1543 struct kvm_memory_slot *memslot;
1544 int ret = 0;
1546 slots = kvm_memslots(kvm);
1548 /* we only care about the pages that the guest sees */
1549 kvm_for_each_memslot(memslot, slots) {
1550 unsigned long hva_start, hva_end;
1551 gfn_t gfn, gfn_end;
1553 hva_start = max(start, memslot->userspace_addr);
1554 hva_end = min(end, memslot->userspace_addr +
1555 (memslot->npages << PAGE_SHIFT));
1556 if (hva_start >= hva_end)
1557 continue;
1560 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1561 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1563 gfn = hva_to_gfn_memslot(hva_start, memslot);
1564 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1566 for (; gfn < gfn_end; ++gfn) {
1567 gpa_t gpa = gfn << PAGE_SHIFT;
1568 ret |= handler(kvm, gpa, data);
1572 return ret;
1575 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1577 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1578 return 0;
1581 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1583 unsigned long end = hva + PAGE_SIZE;
1585 if (!kvm->arch.pgd)
1586 return 0;
1588 trace_kvm_unmap_hva(hva);
1589 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1590 return 0;
1593 int kvm_unmap_hva_range(struct kvm *kvm,
1594 unsigned long start, unsigned long end)
1596 if (!kvm->arch.pgd)
1597 return 0;
1599 trace_kvm_unmap_hva_range(start, end);
1600 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1601 return 0;
1604 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1606 pte_t *pte = (pte_t *)data;
1609 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1610 * flag clear because MMU notifiers will have unmapped a huge PMD before
1611 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1612 * therefore stage2_set_pte() never needs to clear out a huge PMD
1613 * through this calling path.
1615 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1616 return 0;
1620 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1622 unsigned long end = hva + PAGE_SIZE;
1623 pte_t stage2_pte;
1625 if (!kvm->arch.pgd)
1626 return;
1628 trace_kvm_set_spte_hva(hva);
1629 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1630 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1633 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1635 pmd_t *pmd;
1636 pte_t *pte;
1638 pmd = stage2_get_pmd(kvm, NULL, gpa);
1639 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1640 return 0;
1642 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1643 return stage2_pmdp_test_and_clear_young(pmd);
1645 pte = pte_offset_kernel(pmd, gpa);
1646 if (pte_none(*pte))
1647 return 0;
1649 return stage2_ptep_test_and_clear_young(pte);
1652 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1654 pmd_t *pmd;
1655 pte_t *pte;
1657 pmd = stage2_get_pmd(kvm, NULL, gpa);
1658 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1659 return 0;
1661 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1662 return pmd_young(*pmd);
1664 pte = pte_offset_kernel(pmd, gpa);
1665 if (!pte_none(*pte)) /* Just a page... */
1666 return pte_young(*pte);
1668 return 0;
1671 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1673 trace_kvm_age_hva(start, end);
1674 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1677 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1679 trace_kvm_test_age_hva(hva);
1680 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1683 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1685 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1688 phys_addr_t kvm_mmu_get_httbr(void)
1690 if (__kvm_cpu_uses_extended_idmap())
1691 return virt_to_phys(merged_hyp_pgd);
1692 else
1693 return virt_to_phys(hyp_pgd);
1696 phys_addr_t kvm_get_idmap_vector(void)
1698 return hyp_idmap_vector;
1701 phys_addr_t kvm_get_idmap_start(void)
1703 return hyp_idmap_start;
1706 static int kvm_map_idmap_text(pgd_t *pgd)
1708 int err;
1710 /* Create the idmap in the boot page tables */
1711 err = __create_hyp_mappings(pgd,
1712 hyp_idmap_start, hyp_idmap_end,
1713 __phys_to_pfn(hyp_idmap_start),
1714 PAGE_HYP_EXEC);
1715 if (err)
1716 kvm_err("Failed to idmap %lx-%lx\n",
1717 hyp_idmap_start, hyp_idmap_end);
1719 return err;
1722 int kvm_mmu_init(void)
1724 int err;
1726 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1727 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1728 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1731 * We rely on the linker script to ensure at build time that the HYP
1732 * init code does not cross a page boundary.
1734 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1736 kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1737 kvm_info("HYP VA range: %lx:%lx\n",
1738 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1740 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1741 hyp_idmap_start < kern_hyp_va(~0UL) &&
1742 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1744 * The idmap page is intersecting with the VA space,
1745 * it is not safe to continue further.
1747 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1748 err = -EINVAL;
1749 goto out;
1752 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1753 if (!hyp_pgd) {
1754 kvm_err("Hyp mode PGD not allocated\n");
1755 err = -ENOMEM;
1756 goto out;
1759 if (__kvm_cpu_uses_extended_idmap()) {
1760 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1761 hyp_pgd_order);
1762 if (!boot_hyp_pgd) {
1763 kvm_err("Hyp boot PGD not allocated\n");
1764 err = -ENOMEM;
1765 goto out;
1768 err = kvm_map_idmap_text(boot_hyp_pgd);
1769 if (err)
1770 goto out;
1772 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1773 if (!merged_hyp_pgd) {
1774 kvm_err("Failed to allocate extra HYP pgd\n");
1775 goto out;
1777 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1778 hyp_idmap_start);
1779 } else {
1780 err = kvm_map_idmap_text(hyp_pgd);
1781 if (err)
1782 goto out;
1785 return 0;
1786 out:
1787 free_hyp_pgds();
1788 return err;
1791 void kvm_arch_commit_memory_region(struct kvm *kvm,
1792 const struct kvm_userspace_memory_region *mem,
1793 const struct kvm_memory_slot *old,
1794 const struct kvm_memory_slot *new,
1795 enum kvm_mr_change change)
1798 * At this point memslot has been committed and there is an
1799 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1800 * memory slot is write protected.
1802 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1803 kvm_mmu_wp_memory_region(kvm, mem->slot);
1806 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1807 struct kvm_memory_slot *memslot,
1808 const struct kvm_userspace_memory_region *mem,
1809 enum kvm_mr_change change)
1811 hva_t hva = mem->userspace_addr;
1812 hva_t reg_end = hva + mem->memory_size;
1813 bool writable = !(mem->flags & KVM_MEM_READONLY);
1814 int ret = 0;
1816 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1817 change != KVM_MR_FLAGS_ONLY)
1818 return 0;
1821 * Prevent userspace from creating a memory region outside of the IPA
1822 * space addressable by the KVM guest IPA space.
1824 if (memslot->base_gfn + memslot->npages >=
1825 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1826 return -EFAULT;
1828 down_read(&current->mm->mmap_sem);
1830 * A memory region could potentially cover multiple VMAs, and any holes
1831 * between them, so iterate over all of them to find out if we can map
1832 * any of them right now.
1834 * +--------------------------------------------+
1835 * +---------------+----------------+ +----------------+
1836 * | : VMA 1 | VMA 2 | | VMA 3 : |
1837 * +---------------+----------------+ +----------------+
1838 * | memory region |
1839 * +--------------------------------------------+
1841 do {
1842 struct vm_area_struct *vma = find_vma(current->mm, hva);
1843 hva_t vm_start, vm_end;
1845 if (!vma || vma->vm_start >= reg_end)
1846 break;
1849 * Mapping a read-only VMA is only allowed if the
1850 * memory region is configured as read-only.
1852 if (writable && !(vma->vm_flags & VM_WRITE)) {
1853 ret = -EPERM;
1854 break;
1858 * Take the intersection of this VMA with the memory region
1860 vm_start = max(hva, vma->vm_start);
1861 vm_end = min(reg_end, vma->vm_end);
1863 if (vma->vm_flags & VM_PFNMAP) {
1864 gpa_t gpa = mem->guest_phys_addr +
1865 (vm_start - mem->userspace_addr);
1866 phys_addr_t pa;
1868 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1869 pa += vm_start - vma->vm_start;
1871 /* IO region dirty page logging not allowed */
1872 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1873 ret = -EINVAL;
1874 goto out;
1877 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1878 vm_end - vm_start,
1879 writable);
1880 if (ret)
1881 break;
1883 hva = vm_end;
1884 } while (hva < reg_end);
1886 if (change == KVM_MR_FLAGS_ONLY)
1887 goto out;
1889 spin_lock(&kvm->mmu_lock);
1890 if (ret)
1891 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1892 else
1893 stage2_flush_memslot(kvm, memslot);
1894 spin_unlock(&kvm->mmu_lock);
1895 out:
1896 up_read(&current->mm->mmap_sem);
1897 return ret;
1900 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1901 struct kvm_memory_slot *dont)
1905 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1906 unsigned long npages)
1908 return 0;
1911 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1915 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1917 kvm_free_stage2_pgd(kvm);
1920 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1921 struct kvm_memory_slot *slot)
1923 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1924 phys_addr_t size = slot->npages << PAGE_SHIFT;
1926 spin_lock(&kvm->mmu_lock);
1927 unmap_stage2_range(kvm, gpa, size);
1928 spin_unlock(&kvm->mmu_lock);
1932 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1934 * Main problems:
1935 * - S/W ops are local to a CPU (not broadcast)
1936 * - We have line migration behind our back (speculation)
1937 * - System caches don't support S/W at all (damn!)
1939 * In the face of the above, the best we can do is to try and convert
1940 * S/W ops to VA ops. Because the guest is not allowed to infer the
1941 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1942 * which is a rather good thing for us.
1944 * Also, it is only used when turning caches on/off ("The expected
1945 * usage of the cache maintenance instructions that operate by set/way
1946 * is associated with the cache maintenance instructions associated
1947 * with the powerdown and powerup of caches, if this is required by
1948 * the implementation.").
1950 * We use the following policy:
1952 * - If we trap a S/W operation, we enable VM trapping to detect
1953 * caches being turned on/off, and do a full clean.
1955 * - We flush the caches on both caches being turned on and off.
1957 * - Once the caches are enabled, we stop trapping VM ops.
1959 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1961 unsigned long hcr = vcpu_get_hcr(vcpu);
1964 * If this is the first time we do a S/W operation
1965 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1966 * VM trapping.
1968 * Otherwise, rely on the VM trapping to wait for the MMU +
1969 * Caches to be turned off. At that point, we'll be able to
1970 * clean the caches again.
1972 if (!(hcr & HCR_TVM)) {
1973 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1974 vcpu_has_cache_enabled(vcpu));
1975 stage2_flush_vm(vcpu->kvm);
1976 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1980 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1982 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1985 * If switching the MMU+caches on, need to invalidate the caches.
1986 * If switching it off, need to clean the caches.
1987 * Clean + invalidate does the trick always.
1989 if (now_enabled != was_enabled)
1990 stage2_flush_vm(vcpu->kvm);
1992 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1993 if (now_enabled)
1994 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1996 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);