2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
35 static pgd_t
*boot_hyp_pgd
;
36 static pgd_t
*hyp_pgd
;
37 static pgd_t
*merged_hyp_pgd
;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex
);
40 static unsigned long hyp_idmap_start
;
41 static unsigned long hyp_idmap_end
;
42 static phys_addr_t hyp_idmap_vector
;
44 #define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
48 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
50 static bool memslot_is_logging(struct kvm_memory_slot
*memslot
)
52 return memslot
->dirty_bitmap
&& !(memslot
->flags
& KVM_MEM_READONLY
);
56 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57 * @kvm: pointer to kvm structure.
59 * Interface to HYP function to flush all VM TLB entries
61 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
63 kvm_call_hyp(__kvm_tlb_flush_vmid
, kvm
);
66 static void kvm_tlb_flush_vmid_ipa(struct kvm
*kvm
, phys_addr_t ipa
)
68 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, kvm
, ipa
);
72 * D-Cache management functions. They take the page table entries by
73 * value, as they are flushing the cache using the kernel mapping (or
76 static void kvm_flush_dcache_pte(pte_t pte
)
78 __kvm_flush_dcache_pte(pte
);
81 static void kvm_flush_dcache_pmd(pmd_t pmd
)
83 __kvm_flush_dcache_pmd(pmd
);
86 static void kvm_flush_dcache_pud(pud_t pud
)
88 __kvm_flush_dcache_pud(pud
);
91 static bool kvm_is_device_pfn(unsigned long pfn
)
93 return !pfn_valid(pfn
);
97 * stage2_dissolve_pmd() - clear and flush huge PMD entry
98 * @kvm: pointer to kvm structure.
100 * @pmd: pmd pointer for IPA
102 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103 * pages in the range dirty.
105 static void stage2_dissolve_pmd(struct kvm
*kvm
, phys_addr_t addr
, pmd_t
*pmd
)
107 if (!pmd_thp_or_huge(*pmd
))
111 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
112 put_page(virt_to_page(pmd
));
115 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
120 BUG_ON(max
> KVM_NR_MEM_OBJS
);
121 if (cache
->nobjs
>= min
)
123 while (cache
->nobjs
< max
) {
124 page
= (void *)__get_free_page(PGALLOC_GFP
);
127 cache
->objects
[cache
->nobjs
++] = page
;
132 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
135 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
142 BUG_ON(!mc
|| !mc
->nobjs
);
143 p
= mc
->objects
[--mc
->nobjs
];
147 static void clear_stage2_pgd_entry(struct kvm
*kvm
, pgd_t
*pgd
, phys_addr_t addr
)
149 pud_t
*pud_table __maybe_unused
= stage2_pud_offset(pgd
, 0UL);
150 stage2_pgd_clear(pgd
);
151 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
152 stage2_pud_free(pud_table
);
153 put_page(virt_to_page(pgd
));
156 static void clear_stage2_pud_entry(struct kvm
*kvm
, pud_t
*pud
, phys_addr_t addr
)
158 pmd_t
*pmd_table __maybe_unused
= stage2_pmd_offset(pud
, 0);
159 VM_BUG_ON(stage2_pud_huge(*pud
));
160 stage2_pud_clear(pud
);
161 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
162 stage2_pmd_free(pmd_table
);
163 put_page(virt_to_page(pud
));
166 static void clear_stage2_pmd_entry(struct kvm
*kvm
, pmd_t
*pmd
, phys_addr_t addr
)
168 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
169 VM_BUG_ON(pmd_thp_or_huge(*pmd
));
171 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
172 pte_free_kernel(NULL
, pte_table
);
173 put_page(virt_to_page(pmd
));
177 * Unmapping vs dcache management:
179 * If a guest maps certain memory pages as uncached, all writes will
180 * bypass the data cache and go directly to RAM. However, the CPUs
181 * can still speculate reads (not writes) and fill cache lines with
184 * Those cache lines will be *clean* cache lines though, so a
185 * clean+invalidate operation is equivalent to an invalidate
186 * operation, because no cache lines are marked dirty.
188 * Those clean cache lines could be filled prior to an uncached write
189 * by the guest, and the cache coherent IO subsystem would therefore
190 * end up writing old data to disk.
192 * This is why right after unmapping a page/section and invalidating
193 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194 * the IO subsystem will never hit in the cache.
196 static void unmap_stage2_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
197 phys_addr_t addr
, phys_addr_t end
)
199 phys_addr_t start_addr
= addr
;
200 pte_t
*pte
, *start_pte
;
202 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
204 if (!pte_none(*pte
)) {
205 pte_t old_pte
= *pte
;
207 kvm_set_pte(pte
, __pte(0));
208 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
210 /* No need to invalidate the cache for device mappings */
211 if (!kvm_is_device_pfn(pte_pfn(old_pte
)))
212 kvm_flush_dcache_pte(old_pte
);
214 put_page(virt_to_page(pte
));
216 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
218 if (stage2_pte_table_empty(start_pte
))
219 clear_stage2_pmd_entry(kvm
, pmd
, start_addr
);
222 static void unmap_stage2_pmds(struct kvm
*kvm
, pud_t
*pud
,
223 phys_addr_t addr
, phys_addr_t end
)
225 phys_addr_t next
, start_addr
= addr
;
226 pmd_t
*pmd
, *start_pmd
;
228 start_pmd
= pmd
= stage2_pmd_offset(pud
, addr
);
230 next
= stage2_pmd_addr_end(addr
, end
);
231 if (!pmd_none(*pmd
)) {
232 if (pmd_thp_or_huge(*pmd
)) {
233 pmd_t old_pmd
= *pmd
;
236 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
238 kvm_flush_dcache_pmd(old_pmd
);
240 put_page(virt_to_page(pmd
));
242 unmap_stage2_ptes(kvm
, pmd
, addr
, next
);
245 } while (pmd
++, addr
= next
, addr
!= end
);
247 if (stage2_pmd_table_empty(start_pmd
))
248 clear_stage2_pud_entry(kvm
, pud
, start_addr
);
251 static void unmap_stage2_puds(struct kvm
*kvm
, pgd_t
*pgd
,
252 phys_addr_t addr
, phys_addr_t end
)
254 phys_addr_t next
, start_addr
= addr
;
255 pud_t
*pud
, *start_pud
;
257 start_pud
= pud
= stage2_pud_offset(pgd
, addr
);
259 next
= stage2_pud_addr_end(addr
, end
);
260 if (!stage2_pud_none(*pud
)) {
261 if (stage2_pud_huge(*pud
)) {
262 pud_t old_pud
= *pud
;
264 stage2_pud_clear(pud
);
265 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
266 kvm_flush_dcache_pud(old_pud
);
267 put_page(virt_to_page(pud
));
269 unmap_stage2_pmds(kvm
, pud
, addr
, next
);
272 } while (pud
++, addr
= next
, addr
!= end
);
274 if (stage2_pud_table_empty(start_pud
))
275 clear_stage2_pgd_entry(kvm
, pgd
, start_addr
);
279 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280 * @kvm: The VM pointer
281 * @start: The intermediate physical base address of the range to unmap
282 * @size: The size of the area to unmap
284 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
285 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286 * destroying the VM), otherwise another faulting VCPU may come in and mess
287 * with things behind our backs.
289 static void unmap_stage2_range(struct kvm
*kvm
, phys_addr_t start
, u64 size
)
292 phys_addr_t addr
= start
, end
= start
+ size
;
295 assert_spin_locked(&kvm
->mmu_lock
);
296 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
299 * Make sure the page table is still active, as another thread
300 * could have possibly freed the page table, while we released
303 if (!READ_ONCE(kvm
->arch
.pgd
))
305 next
= stage2_pgd_addr_end(addr
, end
);
306 if (!stage2_pgd_none(*pgd
))
307 unmap_stage2_puds(kvm
, pgd
, addr
, next
);
309 * If the range is too large, release the kvm->mmu_lock
310 * to prevent starvation and lockup detector warnings.
313 cond_resched_lock(&kvm
->mmu_lock
);
314 } while (pgd
++, addr
= next
, addr
!= end
);
317 static void stage2_flush_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
318 phys_addr_t addr
, phys_addr_t end
)
322 pte
= pte_offset_kernel(pmd
, addr
);
324 if (!pte_none(*pte
) && !kvm_is_device_pfn(pte_pfn(*pte
)))
325 kvm_flush_dcache_pte(*pte
);
326 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
329 static void stage2_flush_pmds(struct kvm
*kvm
, pud_t
*pud
,
330 phys_addr_t addr
, phys_addr_t end
)
335 pmd
= stage2_pmd_offset(pud
, addr
);
337 next
= stage2_pmd_addr_end(addr
, end
);
338 if (!pmd_none(*pmd
)) {
339 if (pmd_thp_or_huge(*pmd
))
340 kvm_flush_dcache_pmd(*pmd
);
342 stage2_flush_ptes(kvm
, pmd
, addr
, next
);
344 } while (pmd
++, addr
= next
, addr
!= end
);
347 static void stage2_flush_puds(struct kvm
*kvm
, pgd_t
*pgd
,
348 phys_addr_t addr
, phys_addr_t end
)
353 pud
= stage2_pud_offset(pgd
, addr
);
355 next
= stage2_pud_addr_end(addr
, end
);
356 if (!stage2_pud_none(*pud
)) {
357 if (stage2_pud_huge(*pud
))
358 kvm_flush_dcache_pud(*pud
);
360 stage2_flush_pmds(kvm
, pud
, addr
, next
);
362 } while (pud
++, addr
= next
, addr
!= end
);
365 static void stage2_flush_memslot(struct kvm
*kvm
,
366 struct kvm_memory_slot
*memslot
)
368 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
369 phys_addr_t end
= addr
+ PAGE_SIZE
* memslot
->npages
;
373 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
375 next
= stage2_pgd_addr_end(addr
, end
);
376 stage2_flush_puds(kvm
, pgd
, addr
, next
);
377 } while (pgd
++, addr
= next
, addr
!= end
);
381 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
382 * @kvm: The struct kvm pointer
384 * Go through the stage 2 page tables and invalidate any cache lines
385 * backing memory already mapped to the VM.
387 static void stage2_flush_vm(struct kvm
*kvm
)
389 struct kvm_memslots
*slots
;
390 struct kvm_memory_slot
*memslot
;
393 idx
= srcu_read_lock(&kvm
->srcu
);
394 spin_lock(&kvm
->mmu_lock
);
396 slots
= kvm_memslots(kvm
);
397 kvm_for_each_memslot(memslot
, slots
)
398 stage2_flush_memslot(kvm
, memslot
);
400 spin_unlock(&kvm
->mmu_lock
);
401 srcu_read_unlock(&kvm
->srcu
, idx
);
404 static void clear_hyp_pgd_entry(pgd_t
*pgd
)
406 pud_t
*pud_table __maybe_unused
= pud_offset(pgd
, 0UL);
408 pud_free(NULL
, pud_table
);
409 put_page(virt_to_page(pgd
));
412 static void clear_hyp_pud_entry(pud_t
*pud
)
414 pmd_t
*pmd_table __maybe_unused
= pmd_offset(pud
, 0);
415 VM_BUG_ON(pud_huge(*pud
));
417 pmd_free(NULL
, pmd_table
);
418 put_page(virt_to_page(pud
));
421 static void clear_hyp_pmd_entry(pmd_t
*pmd
)
423 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
424 VM_BUG_ON(pmd_thp_or_huge(*pmd
));
426 pte_free_kernel(NULL
, pte_table
);
427 put_page(virt_to_page(pmd
));
430 static void unmap_hyp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
432 pte_t
*pte
, *start_pte
;
434 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
436 if (!pte_none(*pte
)) {
437 kvm_set_pte(pte
, __pte(0));
438 put_page(virt_to_page(pte
));
440 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
442 if (hyp_pte_table_empty(start_pte
))
443 clear_hyp_pmd_entry(pmd
);
446 static void unmap_hyp_pmds(pud_t
*pud
, phys_addr_t addr
, phys_addr_t end
)
449 pmd_t
*pmd
, *start_pmd
;
451 start_pmd
= pmd
= pmd_offset(pud
, addr
);
453 next
= pmd_addr_end(addr
, end
);
454 /* Hyp doesn't use huge pmds */
456 unmap_hyp_ptes(pmd
, addr
, next
);
457 } while (pmd
++, addr
= next
, addr
!= end
);
459 if (hyp_pmd_table_empty(start_pmd
))
460 clear_hyp_pud_entry(pud
);
463 static void unmap_hyp_puds(pgd_t
*pgd
, phys_addr_t addr
, phys_addr_t end
)
466 pud_t
*pud
, *start_pud
;
468 start_pud
= pud
= pud_offset(pgd
, addr
);
470 next
= pud_addr_end(addr
, end
);
471 /* Hyp doesn't use huge puds */
473 unmap_hyp_pmds(pud
, addr
, next
);
474 } while (pud
++, addr
= next
, addr
!= end
);
476 if (hyp_pud_table_empty(start_pud
))
477 clear_hyp_pgd_entry(pgd
);
480 static void unmap_hyp_range(pgd_t
*pgdp
, phys_addr_t start
, u64 size
)
483 phys_addr_t addr
= start
, end
= start
+ size
;
487 * We don't unmap anything from HYP, except at the hyp tear down.
488 * Hence, we don't have to invalidate the TLBs here.
490 pgd
= pgdp
+ pgd_index(addr
);
492 next
= pgd_addr_end(addr
, end
);
494 unmap_hyp_puds(pgd
, addr
, next
);
495 } while (pgd
++, addr
= next
, addr
!= end
);
499 * free_hyp_pgds - free Hyp-mode page tables
501 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
502 * therefore contains either mappings in the kernel memory area (above
503 * PAGE_OFFSET), or device mappings in the vmalloc range (from
504 * VMALLOC_START to VMALLOC_END).
506 * boot_hyp_pgd should only map two pages for the init code.
508 void free_hyp_pgds(void)
512 mutex_lock(&kvm_hyp_pgd_mutex
);
515 unmap_hyp_range(boot_hyp_pgd
, hyp_idmap_start
, PAGE_SIZE
);
516 free_pages((unsigned long)boot_hyp_pgd
, hyp_pgd_order
);
521 unmap_hyp_range(hyp_pgd
, hyp_idmap_start
, PAGE_SIZE
);
522 for (addr
= PAGE_OFFSET
; virt_addr_valid(addr
); addr
+= PGDIR_SIZE
)
523 unmap_hyp_range(hyp_pgd
, kern_hyp_va(addr
), PGDIR_SIZE
);
524 for (addr
= VMALLOC_START
; is_vmalloc_addr((void*)addr
); addr
+= PGDIR_SIZE
)
525 unmap_hyp_range(hyp_pgd
, kern_hyp_va(addr
), PGDIR_SIZE
);
527 free_pages((unsigned long)hyp_pgd
, hyp_pgd_order
);
530 if (merged_hyp_pgd
) {
531 clear_page(merged_hyp_pgd
);
532 free_page((unsigned long)merged_hyp_pgd
);
533 merged_hyp_pgd
= NULL
;
536 mutex_unlock(&kvm_hyp_pgd_mutex
);
539 static void create_hyp_pte_mappings(pmd_t
*pmd
, unsigned long start
,
540 unsigned long end
, unsigned long pfn
,
548 pte
= pte_offset_kernel(pmd
, addr
);
549 kvm_set_pte(pte
, pfn_pte(pfn
, prot
));
550 get_page(virt_to_page(pte
));
551 kvm_flush_dcache_to_poc(pte
, sizeof(*pte
));
553 } while (addr
+= PAGE_SIZE
, addr
!= end
);
556 static int create_hyp_pmd_mappings(pud_t
*pud
, unsigned long start
,
557 unsigned long end
, unsigned long pfn
,
562 unsigned long addr
, next
;
566 pmd
= pmd_offset(pud
, addr
);
568 BUG_ON(pmd_sect(*pmd
));
570 if (pmd_none(*pmd
)) {
571 pte
= pte_alloc_one_kernel(NULL
, addr
);
573 kvm_err("Cannot allocate Hyp pte\n");
576 pmd_populate_kernel(NULL
, pmd
, pte
);
577 get_page(virt_to_page(pmd
));
578 kvm_flush_dcache_to_poc(pmd
, sizeof(*pmd
));
581 next
= pmd_addr_end(addr
, end
);
583 create_hyp_pte_mappings(pmd
, addr
, next
, pfn
, prot
);
584 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
585 } while (addr
= next
, addr
!= end
);
590 static int create_hyp_pud_mappings(pgd_t
*pgd
, unsigned long start
,
591 unsigned long end
, unsigned long pfn
,
596 unsigned long addr
, next
;
601 pud
= pud_offset(pgd
, addr
);
603 if (pud_none_or_clear_bad(pud
)) {
604 pmd
= pmd_alloc_one(NULL
, addr
);
606 kvm_err("Cannot allocate Hyp pmd\n");
609 pud_populate(NULL
, pud
, pmd
);
610 get_page(virt_to_page(pud
));
611 kvm_flush_dcache_to_poc(pud
, sizeof(*pud
));
614 next
= pud_addr_end(addr
, end
);
615 ret
= create_hyp_pmd_mappings(pud
, addr
, next
, pfn
, prot
);
618 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
619 } while (addr
= next
, addr
!= end
);
624 static int __create_hyp_mappings(pgd_t
*pgdp
,
625 unsigned long start
, unsigned long end
,
626 unsigned long pfn
, pgprot_t prot
)
630 unsigned long addr
, next
;
633 mutex_lock(&kvm_hyp_pgd_mutex
);
634 addr
= start
& PAGE_MASK
;
635 end
= PAGE_ALIGN(end
);
637 pgd
= pgdp
+ pgd_index(addr
);
639 if (pgd_none(*pgd
)) {
640 pud
= pud_alloc_one(NULL
, addr
);
642 kvm_err("Cannot allocate Hyp pud\n");
646 pgd_populate(NULL
, pgd
, pud
);
647 get_page(virt_to_page(pgd
));
648 kvm_flush_dcache_to_poc(pgd
, sizeof(*pgd
));
651 next
= pgd_addr_end(addr
, end
);
652 err
= create_hyp_pud_mappings(pgd
, addr
, next
, pfn
, prot
);
655 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
656 } while (addr
= next
, addr
!= end
);
658 mutex_unlock(&kvm_hyp_pgd_mutex
);
662 static phys_addr_t
kvm_kaddr_to_phys(void *kaddr
)
664 if (!is_vmalloc_addr(kaddr
)) {
665 BUG_ON(!virt_addr_valid(kaddr
));
668 return page_to_phys(vmalloc_to_page(kaddr
)) +
669 offset_in_page(kaddr
);
674 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
675 * @from: The virtual kernel start address of the range
676 * @to: The virtual kernel end address of the range (exclusive)
677 * @prot: The protection to be applied to this range
679 * The same virtual address as the kernel virtual address is also used
680 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
683 int create_hyp_mappings(void *from
, void *to
, pgprot_t prot
)
685 phys_addr_t phys_addr
;
686 unsigned long virt_addr
;
687 unsigned long start
= kern_hyp_va((unsigned long)from
);
688 unsigned long end
= kern_hyp_va((unsigned long)to
);
690 if (is_kernel_in_hyp_mode())
693 start
= start
& PAGE_MASK
;
694 end
= PAGE_ALIGN(end
);
696 for (virt_addr
= start
; virt_addr
< end
; virt_addr
+= PAGE_SIZE
) {
699 phys_addr
= kvm_kaddr_to_phys(from
+ virt_addr
- start
);
700 err
= __create_hyp_mappings(hyp_pgd
, virt_addr
,
701 virt_addr
+ PAGE_SIZE
,
702 __phys_to_pfn(phys_addr
),
712 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
713 * @from: The kernel start VA of the range
714 * @to: The kernel end VA of the range (exclusive)
715 * @phys_addr: The physical start address which gets mapped
717 * The resulting HYP VA is the same as the kernel VA, modulo
720 int create_hyp_io_mappings(void *from
, void *to
, phys_addr_t phys_addr
)
722 unsigned long start
= kern_hyp_va((unsigned long)from
);
723 unsigned long end
= kern_hyp_va((unsigned long)to
);
725 if (is_kernel_in_hyp_mode())
728 /* Check for a valid kernel IO mapping */
729 if (!is_vmalloc_addr(from
) || !is_vmalloc_addr(to
- 1))
732 return __create_hyp_mappings(hyp_pgd
, start
, end
,
733 __phys_to_pfn(phys_addr
), PAGE_HYP_DEVICE
);
737 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
738 * @kvm: The KVM struct pointer for the VM.
740 * Allocates only the stage-2 HW PGD level table(s) (can support either full
741 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
744 * Note we don't need locking here as this is only called when the VM is
745 * created, which can only be done once.
747 int kvm_alloc_stage2_pgd(struct kvm
*kvm
)
751 if (kvm
->arch
.pgd
!= NULL
) {
752 kvm_err("kvm_arch already initialized?\n");
756 /* Allocate the HW PGD, making sure that each page gets its own refcount */
757 pgd
= alloc_pages_exact(S2_PGD_SIZE
, GFP_KERNEL
| __GFP_ZERO
);
765 static void stage2_unmap_memslot(struct kvm
*kvm
,
766 struct kvm_memory_slot
*memslot
)
768 hva_t hva
= memslot
->userspace_addr
;
769 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
770 phys_addr_t size
= PAGE_SIZE
* memslot
->npages
;
771 hva_t reg_end
= hva
+ size
;
774 * A memory region could potentially cover multiple VMAs, and any holes
775 * between them, so iterate over all of them to find out if we should
778 * +--------------------------------------------+
779 * +---------------+----------------+ +----------------+
780 * | : VMA 1 | VMA 2 | | VMA 3 : |
781 * +---------------+----------------+ +----------------+
783 * +--------------------------------------------+
786 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
787 hva_t vm_start
, vm_end
;
789 if (!vma
|| vma
->vm_start
>= reg_end
)
793 * Take the intersection of this VMA with the memory region
795 vm_start
= max(hva
, vma
->vm_start
);
796 vm_end
= min(reg_end
, vma
->vm_end
);
798 if (!(vma
->vm_flags
& VM_PFNMAP
)) {
799 gpa_t gpa
= addr
+ (vm_start
- memslot
->userspace_addr
);
800 unmap_stage2_range(kvm
, gpa
, vm_end
- vm_start
);
803 } while (hva
< reg_end
);
807 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
808 * @kvm: The struct kvm pointer
810 * Go through the memregions and unmap any reguler RAM
811 * backing memory already mapped to the VM.
813 void stage2_unmap_vm(struct kvm
*kvm
)
815 struct kvm_memslots
*slots
;
816 struct kvm_memory_slot
*memslot
;
819 idx
= srcu_read_lock(&kvm
->srcu
);
820 down_read(¤t
->mm
->mmap_sem
);
821 spin_lock(&kvm
->mmu_lock
);
823 slots
= kvm_memslots(kvm
);
824 kvm_for_each_memslot(memslot
, slots
)
825 stage2_unmap_memslot(kvm
, memslot
);
827 spin_unlock(&kvm
->mmu_lock
);
828 up_read(¤t
->mm
->mmap_sem
);
829 srcu_read_unlock(&kvm
->srcu
, idx
);
833 * kvm_free_stage2_pgd - free all stage-2 tables
834 * @kvm: The KVM struct pointer for the VM.
836 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
837 * underlying level-2 and level-3 tables before freeing the actual level-1 table
838 * and setting the struct pointer to NULL.
840 void kvm_free_stage2_pgd(struct kvm
*kvm
)
844 spin_lock(&kvm
->mmu_lock
);
846 unmap_stage2_range(kvm
, 0, KVM_PHYS_SIZE
);
847 pgd
= READ_ONCE(kvm
->arch
.pgd
);
848 kvm
->arch
.pgd
= NULL
;
850 spin_unlock(&kvm
->mmu_lock
);
852 /* Free the HW pgd, one page at a time */
854 free_pages_exact(pgd
, S2_PGD_SIZE
);
857 static pud_t
*stage2_get_pud(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
863 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
864 if (WARN_ON(stage2_pgd_none(*pgd
))) {
867 pud
= mmu_memory_cache_alloc(cache
);
868 stage2_pgd_populate(pgd
, pud
);
869 get_page(virt_to_page(pgd
));
872 return stage2_pud_offset(pgd
, addr
);
875 static pmd_t
*stage2_get_pmd(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
881 pud
= stage2_get_pud(kvm
, cache
, addr
);
885 if (stage2_pud_none(*pud
)) {
888 pmd
= mmu_memory_cache_alloc(cache
);
889 stage2_pud_populate(pud
, pmd
);
890 get_page(virt_to_page(pud
));
893 return stage2_pmd_offset(pud
, addr
);
896 static int stage2_set_pmd_huge(struct kvm
*kvm
, struct kvm_mmu_memory_cache
897 *cache
, phys_addr_t addr
, const pmd_t
*new_pmd
)
901 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
905 * Mapping in huge pages should only happen through a fault. If a
906 * page is merged into a transparent huge page, the individual
907 * subpages of that huge page should be unmapped through MMU
908 * notifiers before we get here.
910 * Merging of CompoundPages is not supported; they should become
911 * splitting first, unmapped, merged, and mapped back in on-demand.
913 VM_BUG_ON(pmd_present(*pmd
) && pmd_pfn(*pmd
) != pmd_pfn(*new_pmd
));
916 if (pmd_present(old_pmd
)) {
918 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
920 get_page(virt_to_page(pmd
));
923 kvm_set_pmd(pmd
, *new_pmd
);
927 static int stage2_set_pte(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
928 phys_addr_t addr
, const pte_t
*new_pte
,
933 bool iomap
= flags
& KVM_S2PTE_FLAG_IS_IOMAP
;
934 bool logging_active
= flags
& KVM_S2_FLAG_LOGGING_ACTIVE
;
936 VM_BUG_ON(logging_active
&& !cache
);
938 /* Create stage-2 page table mapping - Levels 0 and 1 */
939 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
942 * Ignore calls from kvm_set_spte_hva for unallocated
949 * While dirty page logging - dissolve huge PMD, then continue on to
953 stage2_dissolve_pmd(kvm
, addr
, pmd
);
955 /* Create stage-2 page mappings - Level 2 */
956 if (pmd_none(*pmd
)) {
958 return 0; /* ignore calls from kvm_set_spte_hva */
959 pte
= mmu_memory_cache_alloc(cache
);
960 pmd_populate_kernel(NULL
, pmd
, pte
);
961 get_page(virt_to_page(pmd
));
964 pte
= pte_offset_kernel(pmd
, addr
);
966 if (iomap
&& pte_present(*pte
))
969 /* Create 2nd stage page table mapping - Level 3 */
971 if (pte_present(old_pte
)) {
972 kvm_set_pte(pte
, __pte(0));
973 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
975 get_page(virt_to_page(pte
));
978 kvm_set_pte(pte
, *new_pte
);
982 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
983 static int stage2_ptep_test_and_clear_young(pte_t
*pte
)
985 if (pte_young(*pte
)) {
986 *pte
= pte_mkold(*pte
);
992 static int stage2_ptep_test_and_clear_young(pte_t
*pte
)
994 return __ptep_test_and_clear_young(pte
);
998 static int stage2_pmdp_test_and_clear_young(pmd_t
*pmd
)
1000 return stage2_ptep_test_and_clear_young((pte_t
*)pmd
);
1004 * kvm_phys_addr_ioremap - map a device range to guest IPA
1006 * @kvm: The KVM pointer
1007 * @guest_ipa: The IPA at which to insert the mapping
1008 * @pa: The physical address of the device
1009 * @size: The size of the mapping
1011 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
1012 phys_addr_t pa
, unsigned long size
, bool writable
)
1014 phys_addr_t addr
, end
;
1017 struct kvm_mmu_memory_cache cache
= { 0, };
1019 end
= (guest_ipa
+ size
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1020 pfn
= __phys_to_pfn(pa
);
1022 for (addr
= guest_ipa
; addr
< end
; addr
+= PAGE_SIZE
) {
1023 pte_t pte
= pfn_pte(pfn
, PAGE_S2_DEVICE
);
1026 pte
= kvm_s2pte_mkwrite(pte
);
1028 ret
= mmu_topup_memory_cache(&cache
, KVM_MMU_CACHE_MIN_PAGES
,
1032 spin_lock(&kvm
->mmu_lock
);
1033 ret
= stage2_set_pte(kvm
, &cache
, addr
, &pte
,
1034 KVM_S2PTE_FLAG_IS_IOMAP
);
1035 spin_unlock(&kvm
->mmu_lock
);
1043 mmu_free_memory_cache(&cache
);
1047 static bool transparent_hugepage_adjust(kvm_pfn_t
*pfnp
, phys_addr_t
*ipap
)
1049 kvm_pfn_t pfn
= *pfnp
;
1050 gfn_t gfn
= *ipap
>> PAGE_SHIFT
;
1052 if (PageTransCompoundMap(pfn_to_page(pfn
))) {
1055 * The address we faulted on is backed by a transparent huge
1056 * page. However, because we map the compound huge page and
1057 * not the individual tail page, we need to transfer the
1058 * refcount to the head page. We have to be careful that the
1059 * THP doesn't start to split while we are adjusting the
1062 * We are sure this doesn't happen, because mmu_notifier_retry
1063 * was successful and we are holding the mmu_lock, so if this
1064 * THP is trying to split, it will be blocked in the mmu
1065 * notifier before touching any of the pages, specifically
1066 * before being able to call __split_huge_page_refcount().
1068 * We can therefore safely transfer the refcount from PG_tail
1069 * to PG_head and switch the pfn from a tail page to the head
1072 mask
= PTRS_PER_PMD
- 1;
1073 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
1076 kvm_release_pfn_clean(pfn
);
1088 static bool kvm_is_write_fault(struct kvm_vcpu
*vcpu
)
1090 if (kvm_vcpu_trap_is_iabt(vcpu
))
1093 return kvm_vcpu_dabt_iswrite(vcpu
);
1097 * stage2_wp_ptes - write protect PMD range
1098 * @pmd: pointer to pmd entry
1099 * @addr: range start address
1100 * @end: range end address
1102 static void stage2_wp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
1106 pte
= pte_offset_kernel(pmd
, addr
);
1108 if (!pte_none(*pte
)) {
1109 if (!kvm_s2pte_readonly(pte
))
1110 kvm_set_s2pte_readonly(pte
);
1112 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1116 * stage2_wp_pmds - write protect PUD range
1117 * @pud: pointer to pud entry
1118 * @addr: range start address
1119 * @end: range end address
1121 static void stage2_wp_pmds(pud_t
*pud
, phys_addr_t addr
, phys_addr_t end
)
1126 pmd
= stage2_pmd_offset(pud
, addr
);
1129 next
= stage2_pmd_addr_end(addr
, end
);
1130 if (!pmd_none(*pmd
)) {
1131 if (pmd_thp_or_huge(*pmd
)) {
1132 if (!kvm_s2pmd_readonly(pmd
))
1133 kvm_set_s2pmd_readonly(pmd
);
1135 stage2_wp_ptes(pmd
, addr
, next
);
1138 } while (pmd
++, addr
= next
, addr
!= end
);
1142 * stage2_wp_puds - write protect PGD range
1143 * @pgd: pointer to pgd entry
1144 * @addr: range start address
1145 * @end: range end address
1147 * Process PUD entries, for a huge PUD we cause a panic.
1149 static void stage2_wp_puds(pgd_t
*pgd
, phys_addr_t addr
, phys_addr_t end
)
1154 pud
= stage2_pud_offset(pgd
, addr
);
1156 next
= stage2_pud_addr_end(addr
, end
);
1157 if (!stage2_pud_none(*pud
)) {
1158 /* TODO:PUD not supported, revisit later if supported */
1159 BUG_ON(stage2_pud_huge(*pud
));
1160 stage2_wp_pmds(pud
, addr
, next
);
1162 } while (pud
++, addr
= next
, addr
!= end
);
1166 * stage2_wp_range() - write protect stage2 memory region range
1167 * @kvm: The KVM pointer
1168 * @addr: Start address of range
1169 * @end: End address of range
1171 static void stage2_wp_range(struct kvm
*kvm
, phys_addr_t addr
, phys_addr_t end
)
1176 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
1179 * Release kvm_mmu_lock periodically if the memory region is
1180 * large. Otherwise, we may see kernel panics with
1181 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1182 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1183 * will also starve other vCPUs. We have to also make sure
1184 * that the page tables are not freed while we released
1187 cond_resched_lock(&kvm
->mmu_lock
);
1188 if (!READ_ONCE(kvm
->arch
.pgd
))
1190 next
= stage2_pgd_addr_end(addr
, end
);
1191 if (stage2_pgd_present(*pgd
))
1192 stage2_wp_puds(pgd
, addr
, next
);
1193 } while (pgd
++, addr
= next
, addr
!= end
);
1197 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1198 * @kvm: The KVM pointer
1199 * @slot: The memory slot to write protect
1201 * Called to start logging dirty pages after memory region
1202 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1203 * all present PMD and PTEs are write protected in the memory region.
1204 * Afterwards read of dirty page log can be called.
1206 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1207 * serializing operations for VM memory regions.
1209 void kvm_mmu_wp_memory_region(struct kvm
*kvm
, int slot
)
1211 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1212 struct kvm_memory_slot
*memslot
= id_to_memslot(slots
, slot
);
1213 phys_addr_t start
= memslot
->base_gfn
<< PAGE_SHIFT
;
1214 phys_addr_t end
= (memslot
->base_gfn
+ memslot
->npages
) << PAGE_SHIFT
;
1216 spin_lock(&kvm
->mmu_lock
);
1217 stage2_wp_range(kvm
, start
, end
);
1218 spin_unlock(&kvm
->mmu_lock
);
1219 kvm_flush_remote_tlbs(kvm
);
1223 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1224 * @kvm: The KVM pointer
1225 * @slot: The memory slot associated with mask
1226 * @gfn_offset: The gfn offset in memory slot
1227 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1228 * slot to be write protected
1230 * Walks bits set in mask write protects the associated pte's. Caller must
1231 * acquire kvm_mmu_lock.
1233 static void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1234 struct kvm_memory_slot
*slot
,
1235 gfn_t gfn_offset
, unsigned long mask
)
1237 phys_addr_t base_gfn
= slot
->base_gfn
+ gfn_offset
;
1238 phys_addr_t start
= (base_gfn
+ __ffs(mask
)) << PAGE_SHIFT
;
1239 phys_addr_t end
= (base_gfn
+ __fls(mask
) + 1) << PAGE_SHIFT
;
1241 stage2_wp_range(kvm
, start
, end
);
1245 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1248 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1249 * enable dirty logging for them.
1251 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1252 struct kvm_memory_slot
*slot
,
1253 gfn_t gfn_offset
, unsigned long mask
)
1255 kvm_mmu_write_protect_pt_masked(kvm
, slot
, gfn_offset
, mask
);
1258 static void coherent_cache_guest_page(struct kvm_vcpu
*vcpu
, kvm_pfn_t pfn
,
1261 __coherent_cache_guest_page(vcpu
, pfn
, size
);
1264 static int user_mem_abort(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
,
1265 struct kvm_memory_slot
*memslot
, unsigned long hva
,
1266 unsigned long fault_status
)
1269 bool write_fault
, writable
, hugetlb
= false, force_pte
= false;
1270 unsigned long mmu_seq
;
1271 gfn_t gfn
= fault_ipa
>> PAGE_SHIFT
;
1272 struct kvm
*kvm
= vcpu
->kvm
;
1273 struct kvm_mmu_memory_cache
*memcache
= &vcpu
->arch
.mmu_page_cache
;
1274 struct vm_area_struct
*vma
;
1276 pgprot_t mem_type
= PAGE_S2
;
1277 bool logging_active
= memslot_is_logging(memslot
);
1278 unsigned long flags
= 0;
1280 write_fault
= kvm_is_write_fault(vcpu
);
1281 if (fault_status
== FSC_PERM
&& !write_fault
) {
1282 kvm_err("Unexpected L2 read permission error\n");
1286 /* Let's check if we will get back a huge page backed by hugetlbfs */
1287 down_read(¤t
->mm
->mmap_sem
);
1288 vma
= find_vma_intersection(current
->mm
, hva
, hva
+ 1);
1289 if (unlikely(!vma
)) {
1290 kvm_err("Failed to find VMA for hva 0x%lx\n", hva
);
1291 up_read(¤t
->mm
->mmap_sem
);
1295 if (is_vm_hugetlb_page(vma
) && !logging_active
) {
1297 gfn
= (fault_ipa
& PMD_MASK
) >> PAGE_SHIFT
;
1300 * Pages belonging to memslots that don't have the same
1301 * alignment for userspace and IPA cannot be mapped using
1302 * block descriptors even if the pages belong to a THP for
1303 * the process, because the stage-2 block descriptor will
1304 * cover more than a single THP and we loose atomicity for
1305 * unmapping, updates, and splits of the THP or other pages
1306 * in the stage-2 block range.
1308 if ((memslot
->userspace_addr
& ~PMD_MASK
) !=
1309 ((memslot
->base_gfn
<< PAGE_SHIFT
) & ~PMD_MASK
))
1312 up_read(¤t
->mm
->mmap_sem
);
1314 /* We need minimum second+third level pages */
1315 ret
= mmu_topup_memory_cache(memcache
, KVM_MMU_CACHE_MIN_PAGES
,
1320 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
1322 * Ensure the read of mmu_notifier_seq happens before we call
1323 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1324 * the page we just got a reference to gets unmapped before we have a
1325 * chance to grab the mmu_lock, which ensure that if the page gets
1326 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1327 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1328 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1332 pfn
= gfn_to_pfn_prot(kvm
, gfn
, write_fault
, &writable
);
1333 if (is_error_noslot_pfn(pfn
))
1336 if (kvm_is_device_pfn(pfn
)) {
1337 mem_type
= PAGE_S2_DEVICE
;
1338 flags
|= KVM_S2PTE_FLAG_IS_IOMAP
;
1339 } else if (logging_active
) {
1341 * Faults on pages in a memslot with logging enabled
1342 * should not be mapped with huge pages (it introduces churn
1343 * and performance degradation), so force a pte mapping.
1346 flags
|= KVM_S2_FLAG_LOGGING_ACTIVE
;
1349 * Only actually map the page as writable if this was a write
1356 spin_lock(&kvm
->mmu_lock
);
1357 if (mmu_notifier_retry(kvm
, mmu_seq
))
1360 if (!hugetlb
&& !force_pte
)
1361 hugetlb
= transparent_hugepage_adjust(&pfn
, &fault_ipa
);
1364 pmd_t new_pmd
= pfn_pmd(pfn
, mem_type
);
1365 new_pmd
= pmd_mkhuge(new_pmd
);
1367 new_pmd
= kvm_s2pmd_mkwrite(new_pmd
);
1368 kvm_set_pfn_dirty(pfn
);
1370 coherent_cache_guest_page(vcpu
, pfn
, PMD_SIZE
);
1371 ret
= stage2_set_pmd_huge(kvm
, memcache
, fault_ipa
, &new_pmd
);
1373 pte_t new_pte
= pfn_pte(pfn
, mem_type
);
1376 new_pte
= kvm_s2pte_mkwrite(new_pte
);
1377 kvm_set_pfn_dirty(pfn
);
1378 mark_page_dirty(kvm
, gfn
);
1380 coherent_cache_guest_page(vcpu
, pfn
, PAGE_SIZE
);
1381 ret
= stage2_set_pte(kvm
, memcache
, fault_ipa
, &new_pte
, flags
);
1385 spin_unlock(&kvm
->mmu_lock
);
1386 kvm_set_pfn_accessed(pfn
);
1387 kvm_release_pfn_clean(pfn
);
1392 * Resolve the access fault by making the page young again.
1393 * Note that because the faulting entry is guaranteed not to be
1394 * cached in the TLB, we don't need to invalidate anything.
1395 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1396 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1398 static void handle_access_fault(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
)
1403 bool pfn_valid
= false;
1405 trace_kvm_access_fault(fault_ipa
);
1407 spin_lock(&vcpu
->kvm
->mmu_lock
);
1409 pmd
= stage2_get_pmd(vcpu
->kvm
, NULL
, fault_ipa
);
1410 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1413 if (pmd_thp_or_huge(*pmd
)) { /* THP, HugeTLB */
1414 *pmd
= pmd_mkyoung(*pmd
);
1415 pfn
= pmd_pfn(*pmd
);
1420 pte
= pte_offset_kernel(pmd
, fault_ipa
);
1421 if (pte_none(*pte
)) /* Nothing there either */
1424 *pte
= pte_mkyoung(*pte
); /* Just a page... */
1425 pfn
= pte_pfn(*pte
);
1428 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1430 kvm_set_pfn_accessed(pfn
);
1434 * kvm_handle_guest_abort - handles all 2nd stage aborts
1435 * @vcpu: the VCPU pointer
1436 * @run: the kvm_run structure
1438 * Any abort that gets to the host is almost guaranteed to be caused by a
1439 * missing second stage translation table entry, which can mean that either the
1440 * guest simply needs more memory and we must allocate an appropriate page or it
1441 * can mean that the guest tried to access I/O memory, which is emulated by user
1442 * space. The distinction is based on the IPA causing the fault and whether this
1443 * memory region has been registered as standard RAM by user space.
1445 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1447 unsigned long fault_status
;
1448 phys_addr_t fault_ipa
;
1449 struct kvm_memory_slot
*memslot
;
1451 bool is_iabt
, write_fault
, writable
;
1455 is_iabt
= kvm_vcpu_trap_is_iabt(vcpu
);
1456 if (unlikely(!is_iabt
&& kvm_vcpu_dabt_isextabt(vcpu
))) {
1457 kvm_inject_vabt(vcpu
);
1461 fault_ipa
= kvm_vcpu_get_fault_ipa(vcpu
);
1463 trace_kvm_guest_fault(*vcpu_pc(vcpu
), kvm_vcpu_get_hsr(vcpu
),
1464 kvm_vcpu_get_hfar(vcpu
), fault_ipa
);
1466 /* Check the stage-2 fault is trans. fault or write fault */
1467 fault_status
= kvm_vcpu_trap_get_fault_type(vcpu
);
1468 if (fault_status
!= FSC_FAULT
&& fault_status
!= FSC_PERM
&&
1469 fault_status
!= FSC_ACCESS
) {
1470 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1471 kvm_vcpu_trap_get_class(vcpu
),
1472 (unsigned long)kvm_vcpu_trap_get_fault(vcpu
),
1473 (unsigned long)kvm_vcpu_get_hsr(vcpu
));
1477 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1479 gfn
= fault_ipa
>> PAGE_SHIFT
;
1480 memslot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
1481 hva
= gfn_to_hva_memslot_prot(memslot
, gfn
, &writable
);
1482 write_fault
= kvm_is_write_fault(vcpu
);
1483 if (kvm_is_error_hva(hva
) || (write_fault
&& !writable
)) {
1485 /* Prefetch Abort on I/O address */
1486 kvm_inject_pabt(vcpu
, kvm_vcpu_get_hfar(vcpu
));
1492 * Check for a cache maintenance operation. Since we
1493 * ended-up here, we know it is outside of any memory
1494 * slot. But we can't find out if that is for a device,
1495 * or if the guest is just being stupid. The only thing
1496 * we know for sure is that this range cannot be cached.
1498 * So let's assume that the guest is just being
1499 * cautious, and skip the instruction.
1501 if (kvm_vcpu_dabt_is_cm(vcpu
)) {
1502 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
1508 * The IPA is reported as [MAX:12], so we need to
1509 * complement it with the bottom 12 bits from the
1510 * faulting VA. This is always 12 bits, irrespective
1513 fault_ipa
|= kvm_vcpu_get_hfar(vcpu
) & ((1 << 12) - 1);
1514 ret
= io_mem_abort(vcpu
, run
, fault_ipa
);
1518 /* Userspace should not be able to register out-of-bounds IPAs */
1519 VM_BUG_ON(fault_ipa
>= KVM_PHYS_SIZE
);
1521 if (fault_status
== FSC_ACCESS
) {
1522 handle_access_fault(vcpu
, fault_ipa
);
1527 ret
= user_mem_abort(vcpu
, fault_ipa
, memslot
, hva
, fault_status
);
1531 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1535 static int handle_hva_to_gpa(struct kvm
*kvm
,
1536 unsigned long start
,
1538 int (*handler
)(struct kvm
*kvm
,
1539 gpa_t gpa
, void *data
),
1542 struct kvm_memslots
*slots
;
1543 struct kvm_memory_slot
*memslot
;
1546 slots
= kvm_memslots(kvm
);
1548 /* we only care about the pages that the guest sees */
1549 kvm_for_each_memslot(memslot
, slots
) {
1550 unsigned long hva_start
, hva_end
;
1553 hva_start
= max(start
, memslot
->userspace_addr
);
1554 hva_end
= min(end
, memslot
->userspace_addr
+
1555 (memslot
->npages
<< PAGE_SHIFT
));
1556 if (hva_start
>= hva_end
)
1560 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1561 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1563 gfn
= hva_to_gfn_memslot(hva_start
, memslot
);
1564 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1566 for (; gfn
< gfn_end
; ++gfn
) {
1567 gpa_t gpa
= gfn
<< PAGE_SHIFT
;
1568 ret
|= handler(kvm
, gpa
, data
);
1575 static int kvm_unmap_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1577 unmap_stage2_range(kvm
, gpa
, PAGE_SIZE
);
1581 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1583 unsigned long end
= hva
+ PAGE_SIZE
;
1588 trace_kvm_unmap_hva(hva
);
1589 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_unmap_hva_handler
, NULL
);
1593 int kvm_unmap_hva_range(struct kvm
*kvm
,
1594 unsigned long start
, unsigned long end
)
1599 trace_kvm_unmap_hva_range(start
, end
);
1600 handle_hva_to_gpa(kvm
, start
, end
, &kvm_unmap_hva_handler
, NULL
);
1604 static int kvm_set_spte_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1606 pte_t
*pte
= (pte_t
*)data
;
1609 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1610 * flag clear because MMU notifiers will have unmapped a huge PMD before
1611 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1612 * therefore stage2_set_pte() never needs to clear out a huge PMD
1613 * through this calling path.
1615 stage2_set_pte(kvm
, NULL
, gpa
, pte
, 0);
1620 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1622 unsigned long end
= hva
+ PAGE_SIZE
;
1628 trace_kvm_set_spte_hva(hva
);
1629 stage2_pte
= pfn_pte(pte_pfn(pte
), PAGE_S2
);
1630 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_set_spte_handler
, &stage2_pte
);
1633 static int kvm_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1638 pmd
= stage2_get_pmd(kvm
, NULL
, gpa
);
1639 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1642 if (pmd_thp_or_huge(*pmd
)) /* THP, HugeTLB */
1643 return stage2_pmdp_test_and_clear_young(pmd
);
1645 pte
= pte_offset_kernel(pmd
, gpa
);
1649 return stage2_ptep_test_and_clear_young(pte
);
1652 static int kvm_test_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1657 pmd
= stage2_get_pmd(kvm
, NULL
, gpa
);
1658 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1661 if (pmd_thp_or_huge(*pmd
)) /* THP, HugeTLB */
1662 return pmd_young(*pmd
);
1664 pte
= pte_offset_kernel(pmd
, gpa
);
1665 if (!pte_none(*pte
)) /* Just a page... */
1666 return pte_young(*pte
);
1671 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1673 trace_kvm_age_hva(start
, end
);
1674 return handle_hva_to_gpa(kvm
, start
, end
, kvm_age_hva_handler
, NULL
);
1677 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1679 trace_kvm_test_age_hva(hva
);
1680 return handle_hva_to_gpa(kvm
, hva
, hva
, kvm_test_age_hva_handler
, NULL
);
1683 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
1685 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_cache
);
1688 phys_addr_t
kvm_mmu_get_httbr(void)
1690 if (__kvm_cpu_uses_extended_idmap())
1691 return virt_to_phys(merged_hyp_pgd
);
1693 return virt_to_phys(hyp_pgd
);
1696 phys_addr_t
kvm_get_idmap_vector(void)
1698 return hyp_idmap_vector
;
1701 phys_addr_t
kvm_get_idmap_start(void)
1703 return hyp_idmap_start
;
1706 static int kvm_map_idmap_text(pgd_t
*pgd
)
1710 /* Create the idmap in the boot page tables */
1711 err
= __create_hyp_mappings(pgd
,
1712 hyp_idmap_start
, hyp_idmap_end
,
1713 __phys_to_pfn(hyp_idmap_start
),
1716 kvm_err("Failed to idmap %lx-%lx\n",
1717 hyp_idmap_start
, hyp_idmap_end
);
1722 int kvm_mmu_init(void)
1726 hyp_idmap_start
= kvm_virt_to_phys(__hyp_idmap_text_start
);
1727 hyp_idmap_end
= kvm_virt_to_phys(__hyp_idmap_text_end
);
1728 hyp_idmap_vector
= kvm_virt_to_phys(__kvm_hyp_init
);
1731 * We rely on the linker script to ensure at build time that the HYP
1732 * init code does not cross a page boundary.
1734 BUG_ON((hyp_idmap_start
^ (hyp_idmap_end
- 1)) & PAGE_MASK
);
1736 kvm_info("IDMAP page: %lx\n", hyp_idmap_start
);
1737 kvm_info("HYP VA range: %lx:%lx\n",
1738 kern_hyp_va(PAGE_OFFSET
), kern_hyp_va(~0UL));
1740 if (hyp_idmap_start
>= kern_hyp_va(PAGE_OFFSET
) &&
1741 hyp_idmap_start
< kern_hyp_va(~0UL) &&
1742 hyp_idmap_start
!= (unsigned long)__hyp_idmap_text_start
) {
1744 * The idmap page is intersecting with the VA space,
1745 * it is not safe to continue further.
1747 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1752 hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, hyp_pgd_order
);
1754 kvm_err("Hyp mode PGD not allocated\n");
1759 if (__kvm_cpu_uses_extended_idmap()) {
1760 boot_hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
,
1762 if (!boot_hyp_pgd
) {
1763 kvm_err("Hyp boot PGD not allocated\n");
1768 err
= kvm_map_idmap_text(boot_hyp_pgd
);
1772 merged_hyp_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1773 if (!merged_hyp_pgd
) {
1774 kvm_err("Failed to allocate extra HYP pgd\n");
1777 __kvm_extend_hypmap(boot_hyp_pgd
, hyp_pgd
, merged_hyp_pgd
,
1780 err
= kvm_map_idmap_text(hyp_pgd
);
1791 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
1792 const struct kvm_userspace_memory_region
*mem
,
1793 const struct kvm_memory_slot
*old
,
1794 const struct kvm_memory_slot
*new,
1795 enum kvm_mr_change change
)
1798 * At this point memslot has been committed and there is an
1799 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1800 * memory slot is write protected.
1802 if (change
!= KVM_MR_DELETE
&& mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)
1803 kvm_mmu_wp_memory_region(kvm
, mem
->slot
);
1806 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
1807 struct kvm_memory_slot
*memslot
,
1808 const struct kvm_userspace_memory_region
*mem
,
1809 enum kvm_mr_change change
)
1811 hva_t hva
= mem
->userspace_addr
;
1812 hva_t reg_end
= hva
+ mem
->memory_size
;
1813 bool writable
= !(mem
->flags
& KVM_MEM_READONLY
);
1816 if (change
!= KVM_MR_CREATE
&& change
!= KVM_MR_MOVE
&&
1817 change
!= KVM_MR_FLAGS_ONLY
)
1821 * Prevent userspace from creating a memory region outside of the IPA
1822 * space addressable by the KVM guest IPA space.
1824 if (memslot
->base_gfn
+ memslot
->npages
>=
1825 (KVM_PHYS_SIZE
>> PAGE_SHIFT
))
1828 down_read(¤t
->mm
->mmap_sem
);
1830 * A memory region could potentially cover multiple VMAs, and any holes
1831 * between them, so iterate over all of them to find out if we can map
1832 * any of them right now.
1834 * +--------------------------------------------+
1835 * +---------------+----------------+ +----------------+
1836 * | : VMA 1 | VMA 2 | | VMA 3 : |
1837 * +---------------+----------------+ +----------------+
1839 * +--------------------------------------------+
1842 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
1843 hva_t vm_start
, vm_end
;
1845 if (!vma
|| vma
->vm_start
>= reg_end
)
1849 * Mapping a read-only VMA is only allowed if the
1850 * memory region is configured as read-only.
1852 if (writable
&& !(vma
->vm_flags
& VM_WRITE
)) {
1858 * Take the intersection of this VMA with the memory region
1860 vm_start
= max(hva
, vma
->vm_start
);
1861 vm_end
= min(reg_end
, vma
->vm_end
);
1863 if (vma
->vm_flags
& VM_PFNMAP
) {
1864 gpa_t gpa
= mem
->guest_phys_addr
+
1865 (vm_start
- mem
->userspace_addr
);
1868 pa
= (phys_addr_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
1869 pa
+= vm_start
- vma
->vm_start
;
1871 /* IO region dirty page logging not allowed */
1872 if (memslot
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1877 ret
= kvm_phys_addr_ioremap(kvm
, gpa
, pa
,
1884 } while (hva
< reg_end
);
1886 if (change
== KVM_MR_FLAGS_ONLY
)
1889 spin_lock(&kvm
->mmu_lock
);
1891 unmap_stage2_range(kvm
, mem
->guest_phys_addr
, mem
->memory_size
);
1893 stage2_flush_memslot(kvm
, memslot
);
1894 spin_unlock(&kvm
->mmu_lock
);
1896 up_read(¤t
->mm
->mmap_sem
);
1900 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
1901 struct kvm_memory_slot
*dont
)
1905 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
1906 unsigned long npages
)
1911 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
1915 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
1917 kvm_free_stage2_pgd(kvm
);
1920 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
1921 struct kvm_memory_slot
*slot
)
1923 gpa_t gpa
= slot
->base_gfn
<< PAGE_SHIFT
;
1924 phys_addr_t size
= slot
->npages
<< PAGE_SHIFT
;
1926 spin_lock(&kvm
->mmu_lock
);
1927 unmap_stage2_range(kvm
, gpa
, size
);
1928 spin_unlock(&kvm
->mmu_lock
);
1932 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1935 * - S/W ops are local to a CPU (not broadcast)
1936 * - We have line migration behind our back (speculation)
1937 * - System caches don't support S/W at all (damn!)
1939 * In the face of the above, the best we can do is to try and convert
1940 * S/W ops to VA ops. Because the guest is not allowed to infer the
1941 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1942 * which is a rather good thing for us.
1944 * Also, it is only used when turning caches on/off ("The expected
1945 * usage of the cache maintenance instructions that operate by set/way
1946 * is associated with the cache maintenance instructions associated
1947 * with the powerdown and powerup of caches, if this is required by
1948 * the implementation.").
1950 * We use the following policy:
1952 * - If we trap a S/W operation, we enable VM trapping to detect
1953 * caches being turned on/off, and do a full clean.
1955 * - We flush the caches on both caches being turned on and off.
1957 * - Once the caches are enabled, we stop trapping VM ops.
1959 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
)
1961 unsigned long hcr
= vcpu_get_hcr(vcpu
);
1964 * If this is the first time we do a S/W operation
1965 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1968 * Otherwise, rely on the VM trapping to wait for the MMU +
1969 * Caches to be turned off. At that point, we'll be able to
1970 * clean the caches again.
1972 if (!(hcr
& HCR_TVM
)) {
1973 trace_kvm_set_way_flush(*vcpu_pc(vcpu
),
1974 vcpu_has_cache_enabled(vcpu
));
1975 stage2_flush_vm(vcpu
->kvm
);
1976 vcpu_set_hcr(vcpu
, hcr
| HCR_TVM
);
1980 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
)
1982 bool now_enabled
= vcpu_has_cache_enabled(vcpu
);
1985 * If switching the MMU+caches on, need to invalidate the caches.
1986 * If switching it off, need to clean the caches.
1987 * Clean + invalidate does the trick always.
1989 if (now_enabled
!= was_enabled
)
1990 stage2_flush_vm(vcpu
->kvm
);
1992 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1994 vcpu_set_hcr(vcpu
, vcpu_get_hcr(vcpu
) & ~HCR_TVM
);
1996 trace_kvm_toggle_cache(*vcpu_pc(vcpu
), was_enabled
, now_enabled
);