2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
45 struct arm_dma_alloc_args
{
55 struct arm_dma_free_args
{
66 struct arm_dma_allocator
{
67 void *(*alloc
)(struct arm_dma_alloc_args
*args
,
68 struct page
**ret_page
);
69 void (*free
)(struct arm_dma_free_args
*args
);
72 struct arm_dma_buffer
{
73 struct list_head list
;
75 struct arm_dma_allocator
*allocator
;
78 static LIST_HEAD(arm_dma_bufs
);
79 static DEFINE_SPINLOCK(arm_dma_bufs_lock
);
81 static struct arm_dma_buffer
*arm_dma_buffer_find(void *virt
)
83 struct arm_dma_buffer
*buf
, *found
= NULL
;
86 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
87 list_for_each_entry(buf
, &arm_dma_bufs
, list
) {
88 if (buf
->virt
== virt
) {
94 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
110 static void __dma_page_cpu_to_dev(struct page
*, unsigned long,
111 size_t, enum dma_data_direction
);
112 static void __dma_page_dev_to_cpu(struct page
*, unsigned long,
113 size_t, enum dma_data_direction
);
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
123 * Ensure that any data held in the cache is appropriately discarded
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
129 static dma_addr_t
arm_dma_map_page(struct device
*dev
, struct page
*page
,
130 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
133 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
134 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
135 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
138 static dma_addr_t
arm_coherent_dma_map_page(struct device
*dev
, struct page
*page
,
139 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
142 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
159 static void arm_dma_unmap_page(struct device
*dev
, dma_addr_t handle
,
160 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
162 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev
, handle
)),
164 handle
& ~PAGE_MASK
, size
, dir
);
167 static void arm_dma_sync_single_for_cpu(struct device
*dev
,
168 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
170 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
171 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
172 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
175 static void arm_dma_sync_single_for_device(struct device
*dev
,
176 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
178 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
179 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
180 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
183 const struct dma_map_ops arm_dma_ops
= {
184 .alloc
= arm_dma_alloc
,
185 .free
= arm_dma_free
,
186 .mmap
= arm_dma_mmap
,
187 .get_sgtable
= arm_dma_get_sgtable
,
188 .map_page
= arm_dma_map_page
,
189 .unmap_page
= arm_dma_unmap_page
,
190 .map_sg
= arm_dma_map_sg
,
191 .unmap_sg
= arm_dma_unmap_sg
,
192 .sync_single_for_cpu
= arm_dma_sync_single_for_cpu
,
193 .sync_single_for_device
= arm_dma_sync_single_for_device
,
194 .sync_sg_for_cpu
= arm_dma_sync_sg_for_cpu
,
195 .sync_sg_for_device
= arm_dma_sync_sg_for_device
,
197 EXPORT_SYMBOL(arm_dma_ops
);
199 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
200 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
);
201 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
202 dma_addr_t handle
, unsigned long attrs
);
203 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
204 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
205 unsigned long attrs
);
207 const struct dma_map_ops arm_coherent_dma_ops
= {
208 .alloc
= arm_coherent_dma_alloc
,
209 .free
= arm_coherent_dma_free
,
210 .mmap
= arm_coherent_dma_mmap
,
211 .get_sgtable
= arm_dma_get_sgtable
,
212 .map_page
= arm_coherent_dma_map_page
,
213 .map_sg
= arm_dma_map_sg
,
215 EXPORT_SYMBOL(arm_coherent_dma_ops
);
217 static int __dma_supported(struct device
*dev
, u64 mask
, bool warn
)
219 unsigned long max_dma_pfn
;
222 * If the mask allows for more memory than we can address,
223 * and we actually have that much memory, then we must
224 * indicate that DMA to this device is not supported.
226 if (sizeof(mask
) != sizeof(dma_addr_t
) &&
227 mask
> (dma_addr_t
)~0 &&
228 dma_to_pfn(dev
, ~0) < max_pfn
- 1) {
230 dev_warn(dev
, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
232 dev_warn(dev
, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
237 max_dma_pfn
= min(max_pfn
, arm_dma_pfn_limit
);
240 * Translate the device's DMA mask to a PFN limit. This
241 * PFN number includes the page which we can DMA to.
243 if (dma_to_pfn(dev
, mask
) < max_dma_pfn
) {
245 dev_warn(dev
, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
247 dma_to_pfn(dev
, 0), dma_to_pfn(dev
, mask
) + 1,
255 static u64
get_coherent_dma_mask(struct device
*dev
)
257 u64 mask
= (u64
)DMA_BIT_MASK(32);
260 mask
= dev
->coherent_dma_mask
;
263 * Sanity check the DMA mask - it must be non-zero, and
264 * must be able to be satisfied by a DMA allocation.
267 dev_warn(dev
, "coherent DMA mask is unset\n");
271 if (!__dma_supported(dev
, mask
, true))
278 static void __dma_clear_buffer(struct page
*page
, size_t size
, int coherent_flag
)
281 * Ensure that the allocated pages are zeroed, and that any data
282 * lurking in the kernel direct-mapped region is invalidated.
284 if (PageHighMem(page
)) {
285 phys_addr_t base
= __pfn_to_phys(page_to_pfn(page
));
286 phys_addr_t end
= base
+ size
;
288 void *ptr
= kmap_atomic(page
);
289 memset(ptr
, 0, PAGE_SIZE
);
290 if (coherent_flag
!= COHERENT
)
291 dmac_flush_range(ptr
, ptr
+ PAGE_SIZE
);
296 if (coherent_flag
!= COHERENT
)
297 outer_flush_range(base
, end
);
299 void *ptr
= page_address(page
);
300 memset(ptr
, 0, size
);
301 if (coherent_flag
!= COHERENT
) {
302 dmac_flush_range(ptr
, ptr
+ size
);
303 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
309 * Allocate a DMA buffer for 'dev' of size 'size' using the
310 * specified gfp mask. Note that 'size' must be page aligned.
312 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
,
313 gfp_t gfp
, int coherent_flag
)
315 unsigned long order
= get_order(size
);
316 struct page
*page
, *p
, *e
;
318 page
= alloc_pages(gfp
, order
);
323 * Now split the huge page and free the excess pages
325 split_page(page
, order
);
326 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
329 __dma_clear_buffer(page
, size
, coherent_flag
);
335 * Free a DMA buffer. 'size' must be page aligned.
337 static void __dma_free_buffer(struct page
*page
, size_t size
)
339 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
349 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
350 pgprot_t prot
, struct page
**ret_page
,
351 const void *caller
, bool want_vaddr
,
352 int coherent_flag
, gfp_t gfp
);
354 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
355 pgprot_t prot
, struct page
**ret_page
,
356 const void *caller
, bool want_vaddr
);
359 __dma_alloc_remap(struct page
*page
, size_t size
, gfp_t gfp
, pgprot_t prot
,
363 * DMA allocation can be mapped to user space, so lets
364 * set VM_USERMAP flags too.
366 return dma_common_contiguous_remap(page
, size
,
367 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
,
371 static void __dma_free_remap(void *cpu_addr
, size_t size
)
373 dma_common_free_remap(cpu_addr
, size
,
374 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
);
377 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
378 static struct gen_pool
*atomic_pool
;
380 static size_t atomic_pool_size
= DEFAULT_DMA_COHERENT_POOL_SIZE
;
382 static int __init
early_coherent_pool(char *p
)
384 atomic_pool_size
= memparse(p
, &p
);
387 early_param("coherent_pool", early_coherent_pool
);
389 void __init
init_dma_coherent_pool_size(unsigned long size
)
392 * Catch any attempt to set the pool size too late.
397 * Set architecture specific coherent pool size only if
398 * it has not been changed by kernel command line parameter.
400 if (atomic_pool_size
== DEFAULT_DMA_COHERENT_POOL_SIZE
)
401 atomic_pool_size
= size
;
405 * Initialise the coherent pool for atomic allocations.
407 static int __init
atomic_pool_init(void)
409 pgprot_t prot
= pgprot_dmacoherent(PAGE_KERNEL
);
410 gfp_t gfp
= GFP_KERNEL
| GFP_DMA
;
414 atomic_pool
= gen_pool_create(PAGE_SHIFT
, -1);
418 * The atomic pool is only used for non-coherent allocations
419 * so we must pass NORMAL for coherent_flag.
421 if (dev_get_cma_area(NULL
))
422 ptr
= __alloc_from_contiguous(NULL
, atomic_pool_size
, prot
,
423 &page
, atomic_pool_init
, true, NORMAL
,
426 ptr
= __alloc_remap_buffer(NULL
, atomic_pool_size
, gfp
, prot
,
427 &page
, atomic_pool_init
, true);
431 ret
= gen_pool_add_virt(atomic_pool
, (unsigned long)ptr
,
433 atomic_pool_size
, -1);
435 goto destroy_genpool
;
437 gen_pool_set_algo(atomic_pool
,
438 gen_pool_first_fit_order_align
,
440 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
441 atomic_pool_size
/ 1024);
446 gen_pool_destroy(atomic_pool
);
449 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
450 atomic_pool_size
/ 1024);
454 * CMA is activated by core_initcall, so we must be called after it.
456 postcore_initcall(atomic_pool_init
);
458 struct dma_contig_early_reserve
{
463 static struct dma_contig_early_reserve dma_mmu_remap
[MAX_CMA_AREAS
] __initdata
;
465 static int dma_mmu_remap_num __initdata
;
467 void __init
dma_contiguous_early_fixup(phys_addr_t base
, unsigned long size
)
469 dma_mmu_remap
[dma_mmu_remap_num
].base
= base
;
470 dma_mmu_remap
[dma_mmu_remap_num
].size
= size
;
474 void __init
dma_contiguous_remap(void)
477 for (i
= 0; i
< dma_mmu_remap_num
; i
++) {
478 phys_addr_t start
= dma_mmu_remap
[i
].base
;
479 phys_addr_t end
= start
+ dma_mmu_remap
[i
].size
;
483 if (end
> arm_lowmem_limit
)
484 end
= arm_lowmem_limit
;
488 map
.pfn
= __phys_to_pfn(start
);
489 map
.virtual = __phys_to_virt(start
);
490 map
.length
= end
- start
;
491 map
.type
= MT_MEMORY_DMA_READY
;
494 * Clear previous low-memory mapping to ensure that the
495 * TLB does not see any conflicting entries, then flush
496 * the TLB of the old entries before creating new mappings.
498 * This ensures that any speculatively loaded TLB entries
499 * (even though they may be rare) can not cause any problems,
500 * and ensures that this code is architecturally compliant.
502 for (addr
= __phys_to_virt(start
); addr
< __phys_to_virt(end
);
504 pmd_clear(pmd_off_k(addr
));
506 flush_tlb_kernel_range(__phys_to_virt(start
),
507 __phys_to_virt(end
));
509 iotable_init(&map
, 1);
513 static int __dma_update_pte(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
516 struct page
*page
= virt_to_page(addr
);
517 pgprot_t prot
= *(pgprot_t
*)data
;
519 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
523 static void __dma_remap(struct page
*page
, size_t size
, pgprot_t prot
)
525 unsigned long start
= (unsigned long) page_address(page
);
526 unsigned end
= start
+ size
;
528 apply_to_page_range(&init_mm
, start
, size
, __dma_update_pte
, &prot
);
529 flush_tlb_kernel_range(start
, end
);
532 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
533 pgprot_t prot
, struct page
**ret_page
,
534 const void *caller
, bool want_vaddr
)
539 * __alloc_remap_buffer is only called when the device is
542 page
= __dma_alloc_buffer(dev
, size
, gfp
, NORMAL
);
548 ptr
= __dma_alloc_remap(page
, size
, gfp
, prot
, caller
);
550 __dma_free_buffer(page
, size
);
559 static void *__alloc_from_pool(size_t size
, struct page
**ret_page
)
565 WARN(1, "coherent pool not initialised!\n");
569 val
= gen_pool_alloc(atomic_pool
, size
);
571 phys_addr_t phys
= gen_pool_virt_to_phys(atomic_pool
, val
);
573 *ret_page
= phys_to_page(phys
);
580 static bool __in_atomic_pool(void *start
, size_t size
)
582 return addr_in_gen_pool(atomic_pool
, (unsigned long)start
, size
);
585 static int __free_from_pool(void *start
, size_t size
)
587 if (!__in_atomic_pool(start
, size
))
590 gen_pool_free(atomic_pool
, (unsigned long)start
, size
);
595 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
596 pgprot_t prot
, struct page
**ret_page
,
597 const void *caller
, bool want_vaddr
,
598 int coherent_flag
, gfp_t gfp
)
600 unsigned long order
= get_order(size
);
601 size_t count
= size
>> PAGE_SHIFT
;
605 page
= dma_alloc_from_contiguous(dev
, count
, order
, gfp
);
609 __dma_clear_buffer(page
, size
, coherent_flag
);
614 if (PageHighMem(page
)) {
615 ptr
= __dma_alloc_remap(page
, size
, GFP_KERNEL
, prot
, caller
);
617 dma_release_from_contiguous(dev
, page
, count
);
621 __dma_remap(page
, size
, prot
);
622 ptr
= page_address(page
);
630 static void __free_from_contiguous(struct device
*dev
, struct page
*page
,
631 void *cpu_addr
, size_t size
, bool want_vaddr
)
634 if (PageHighMem(page
))
635 __dma_free_remap(cpu_addr
, size
);
637 __dma_remap(page
, size
, PAGE_KERNEL
);
639 dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
);
642 static inline pgprot_t
__get_dma_pgprot(unsigned long attrs
, pgprot_t prot
)
644 prot
= (attrs
& DMA_ATTR_WRITE_COMBINE
) ?
645 pgprot_writecombine(prot
) :
646 pgprot_dmacoherent(prot
);
652 #else /* !CONFIG_MMU */
656 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
657 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
658 #define __alloc_from_pool(size, ret_page) NULL
659 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag, gfp) NULL
660 #define __free_from_pool(cpu_addr, size) do { } while (0)
661 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
662 #define __dma_free_remap(cpu_addr, size) do { } while (0)
664 #endif /* CONFIG_MMU */
666 static void *__alloc_simple_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
667 struct page
**ret_page
)
670 /* __alloc_simple_buffer is only called when the device is coherent */
671 page
= __dma_alloc_buffer(dev
, size
, gfp
, COHERENT
);
676 return page_address(page
);
679 static void *simple_allocator_alloc(struct arm_dma_alloc_args
*args
,
680 struct page
**ret_page
)
682 return __alloc_simple_buffer(args
->dev
, args
->size
, args
->gfp
,
686 static void simple_allocator_free(struct arm_dma_free_args
*args
)
688 __dma_free_buffer(args
->page
, args
->size
);
691 static struct arm_dma_allocator simple_allocator
= {
692 .alloc
= simple_allocator_alloc
,
693 .free
= simple_allocator_free
,
696 static void *cma_allocator_alloc(struct arm_dma_alloc_args
*args
,
697 struct page
**ret_page
)
699 return __alloc_from_contiguous(args
->dev
, args
->size
, args
->prot
,
700 ret_page
, args
->caller
,
701 args
->want_vaddr
, args
->coherent_flag
,
705 static void cma_allocator_free(struct arm_dma_free_args
*args
)
707 __free_from_contiguous(args
->dev
, args
->page
, args
->cpu_addr
,
708 args
->size
, args
->want_vaddr
);
711 static struct arm_dma_allocator cma_allocator
= {
712 .alloc
= cma_allocator_alloc
,
713 .free
= cma_allocator_free
,
716 static void *pool_allocator_alloc(struct arm_dma_alloc_args
*args
,
717 struct page
**ret_page
)
719 return __alloc_from_pool(args
->size
, ret_page
);
722 static void pool_allocator_free(struct arm_dma_free_args
*args
)
724 __free_from_pool(args
->cpu_addr
, args
->size
);
727 static struct arm_dma_allocator pool_allocator
= {
728 .alloc
= pool_allocator_alloc
,
729 .free
= pool_allocator_free
,
732 static void *remap_allocator_alloc(struct arm_dma_alloc_args
*args
,
733 struct page
**ret_page
)
735 return __alloc_remap_buffer(args
->dev
, args
->size
, args
->gfp
,
736 args
->prot
, ret_page
, args
->caller
,
740 static void remap_allocator_free(struct arm_dma_free_args
*args
)
742 if (args
->want_vaddr
)
743 __dma_free_remap(args
->cpu_addr
, args
->size
);
745 __dma_free_buffer(args
->page
, args
->size
);
748 static struct arm_dma_allocator remap_allocator
= {
749 .alloc
= remap_allocator_alloc
,
750 .free
= remap_allocator_free
,
753 static void *__dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
754 gfp_t gfp
, pgprot_t prot
, bool is_coherent
,
755 unsigned long attrs
, const void *caller
)
757 u64 mask
= get_coherent_dma_mask(dev
);
758 struct page
*page
= NULL
;
760 bool allowblock
, cma
;
761 struct arm_dma_buffer
*buf
;
762 struct arm_dma_alloc_args args
= {
764 .size
= PAGE_ALIGN(size
),
768 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
769 .coherent_flag
= is_coherent
? COHERENT
: NORMAL
,
772 #ifdef CONFIG_DMA_API_DEBUG
773 u64 limit
= (mask
+ 1) & ~mask
;
774 if (limit
&& size
>= limit
) {
775 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
784 buf
= kzalloc(sizeof(*buf
),
785 gfp
& ~(__GFP_DMA
| __GFP_DMA32
| __GFP_HIGHMEM
));
789 if (mask
< 0xffffffffULL
)
793 * Following is a work-around (a.k.a. hack) to prevent pages
794 * with __GFP_COMP being passed to split_page() which cannot
795 * handle them. The real problem is that this flag probably
796 * should be 0 on ARM as it is not supported on this
797 * platform; see CONFIG_HUGETLBFS.
799 gfp
&= ~(__GFP_COMP
);
802 *handle
= DMA_ERROR_CODE
;
803 allowblock
= gfpflags_allow_blocking(gfp
);
804 cma
= allowblock
? dev_get_cma_area(dev
) : false;
807 buf
->allocator
= &cma_allocator
;
808 else if (nommu() || is_coherent
)
809 buf
->allocator
= &simple_allocator
;
811 buf
->allocator
= &remap_allocator
;
813 buf
->allocator
= &pool_allocator
;
815 addr
= buf
->allocator
->alloc(&args
, &page
);
820 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
821 buf
->virt
= args
.want_vaddr
? addr
: page
;
823 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
824 list_add(&buf
->list
, &arm_dma_bufs
);
825 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
830 return args
.want_vaddr
? addr
: page
;
834 * Allocate DMA-coherent memory space and return both the kernel remapped
835 * virtual and bus address for that space.
837 void *arm_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
838 gfp_t gfp
, unsigned long attrs
)
840 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
842 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, false,
843 attrs
, __builtin_return_address(0));
846 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
847 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
849 return __dma_alloc(dev
, size
, handle
, gfp
, PAGE_KERNEL
, true,
850 attrs
, __builtin_return_address(0));
853 static int __arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
854 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
859 unsigned long nr_vma_pages
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
860 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
861 unsigned long pfn
= dma_to_pfn(dev
, dma_addr
);
862 unsigned long off
= vma
->vm_pgoff
;
864 if (dma_mmap_from_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
867 if (off
< nr_pages
&& nr_vma_pages
<= (nr_pages
- off
)) {
868 ret
= remap_pfn_range(vma
, vma
->vm_start
,
870 vma
->vm_end
- vma
->vm_start
,
874 ret
= vm_iomap_memory(vma
, vma
->vm_start
,
875 (vma
->vm_end
- vma
->vm_start
));
876 #endif /* CONFIG_MMU */
882 * Create userspace mapping for the DMA-coherent memory.
884 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
885 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
888 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
891 int arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
892 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
896 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
897 #endif /* CONFIG_MMU */
898 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
902 * Free a buffer as defined by the above mapping.
904 static void __arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
905 dma_addr_t handle
, unsigned long attrs
,
908 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
909 struct arm_dma_buffer
*buf
;
910 struct arm_dma_free_args args
= {
912 .size
= PAGE_ALIGN(size
),
913 .cpu_addr
= cpu_addr
,
915 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
918 buf
= arm_dma_buffer_find(cpu_addr
);
919 if (WARN(!buf
, "Freeing invalid buffer %p\n", cpu_addr
))
922 buf
->allocator
->free(&args
);
926 void arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
927 dma_addr_t handle
, unsigned long attrs
)
929 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, false);
932 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
933 dma_addr_t handle
, unsigned long attrs
)
935 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, true);
939 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
940 * that the intention is to allow exporting memory allocated via the
941 * coherent DMA APIs through the dma_buf API, which only accepts a
942 * scattertable. This presents a couple of problems:
943 * 1. Not all memory allocated via the coherent DMA APIs is backed by
945 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
946 * as we will try to flush the memory through a different alias to that
947 * actually being used (and the flushes are redundant.)
949 int arm_dma_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
950 void *cpu_addr
, dma_addr_t handle
, size_t size
,
953 unsigned long pfn
= dma_to_pfn(dev
, handle
);
957 /* If the PFN is not valid, we do not have a struct page */
961 page
= pfn_to_page(pfn
);
963 ret
= sg_alloc_table(sgt
, 1, GFP_KERNEL
);
967 sg_set_page(sgt
->sgl
, page
, PAGE_ALIGN(size
), 0);
971 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
972 size_t size
, enum dma_data_direction dir
,
973 void (*op
)(const void *, size_t, int))
978 pfn
= page_to_pfn(page
) + offset
/ PAGE_SIZE
;
982 * A single sg entry may refer to multiple physically contiguous
983 * pages. But we still need to process highmem pages individually.
984 * If highmem is not configured then the bulk of this loop gets
991 page
= pfn_to_page(pfn
);
993 if (PageHighMem(page
)) {
994 if (len
+ offset
> PAGE_SIZE
)
995 len
= PAGE_SIZE
- offset
;
997 if (cache_is_vipt_nonaliasing()) {
998 vaddr
= kmap_atomic(page
);
999 op(vaddr
+ offset
, len
, dir
);
1000 kunmap_atomic(vaddr
);
1002 vaddr
= kmap_high_get(page
);
1004 op(vaddr
+ offset
, len
, dir
);
1009 vaddr
= page_address(page
) + offset
;
1010 op(vaddr
, len
, dir
);
1019 * Make an area consistent for devices.
1020 * Note: Drivers should NOT use this function directly, as it will break
1021 * platforms with CONFIG_DMABOUNCE.
1022 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1024 static void __dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
1025 size_t size
, enum dma_data_direction dir
)
1029 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
1031 paddr
= page_to_phys(page
) + off
;
1032 if (dir
== DMA_FROM_DEVICE
) {
1033 outer_inv_range(paddr
, paddr
+ size
);
1035 outer_clean_range(paddr
, paddr
+ size
);
1037 /* FIXME: non-speculating: flush on bidirectional mappings? */
1040 static void __dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
1041 size_t size
, enum dma_data_direction dir
)
1043 phys_addr_t paddr
= page_to_phys(page
) + off
;
1045 /* FIXME: non-speculating: not required */
1046 /* in any case, don't bother invalidating if DMA to device */
1047 if (dir
!= DMA_TO_DEVICE
) {
1048 outer_inv_range(paddr
, paddr
+ size
);
1050 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
1054 * Mark the D-cache clean for these pages to avoid extra flushing.
1056 if (dir
!= DMA_TO_DEVICE
&& size
>= PAGE_SIZE
) {
1060 pfn
= page_to_pfn(page
) + off
/ PAGE_SIZE
;
1064 left
-= PAGE_SIZE
- off
;
1066 while (left
>= PAGE_SIZE
) {
1067 page
= pfn_to_page(pfn
++);
1068 set_bit(PG_dcache_clean
, &page
->flags
);
1075 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1076 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1077 * @sg: list of buffers
1078 * @nents: number of buffers to map
1079 * @dir: DMA transfer direction
1081 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1082 * This is the scatter-gather version of the dma_map_single interface.
1083 * Here the scatter gather list elements are each tagged with the
1084 * appropriate dma address and length. They are obtained via
1085 * sg_dma_{address,length}.
1087 * Device ownership issues as mentioned for dma_map_single are the same
1090 int arm_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1091 enum dma_data_direction dir
, unsigned long attrs
)
1093 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1094 struct scatterlist
*s
;
1097 for_each_sg(sg
, s
, nents
, i
) {
1098 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1099 s
->dma_length
= s
->length
;
1101 s
->dma_address
= ops
->map_page(dev
, sg_page(s
), s
->offset
,
1102 s
->length
, dir
, attrs
);
1103 if (dma_mapping_error(dev
, s
->dma_address
))
1109 for_each_sg(sg
, s
, i
, j
)
1110 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1115 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1117 * @sg: list of buffers
1118 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1119 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1121 * Unmap a set of streaming mode DMA translations. Again, CPU access
1122 * rules concerning calls here are the same as for dma_unmap_single().
1124 void arm_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1125 enum dma_data_direction dir
, unsigned long attrs
)
1127 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1128 struct scatterlist
*s
;
1132 for_each_sg(sg
, s
, nents
, i
)
1133 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1137 * arm_dma_sync_sg_for_cpu
1138 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1139 * @sg: list of buffers
1140 * @nents: number of buffers to map (returned from dma_map_sg)
1141 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1143 void arm_dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1144 int nents
, enum dma_data_direction dir
)
1146 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1147 struct scatterlist
*s
;
1150 for_each_sg(sg
, s
, nents
, i
)
1151 ops
->sync_single_for_cpu(dev
, sg_dma_address(s
), s
->length
,
1156 * arm_dma_sync_sg_for_device
1157 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1158 * @sg: list of buffers
1159 * @nents: number of buffers to map (returned from dma_map_sg)
1160 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1162 void arm_dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1163 int nents
, enum dma_data_direction dir
)
1165 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1166 struct scatterlist
*s
;
1169 for_each_sg(sg
, s
, nents
, i
)
1170 ops
->sync_single_for_device(dev
, sg_dma_address(s
), s
->length
,
1175 * Return whether the given device DMA address mask can be supported
1176 * properly. For example, if your device can only drive the low 24-bits
1177 * during bus mastering, then you would pass 0x00ffffff as the mask
1180 int dma_supported(struct device
*dev
, u64 mask
)
1182 return __dma_supported(dev
, mask
, false);
1184 EXPORT_SYMBOL(dma_supported
);
1186 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1188 static int __init
dma_debug_do_init(void)
1190 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
1193 core_initcall(dma_debug_do_init
);
1195 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1197 static int __dma_info_to_prot(enum dma_data_direction dir
, unsigned long attrs
)
1201 if (attrs
& DMA_ATTR_PRIVILEGED
)
1205 case DMA_BIDIRECTIONAL
:
1206 return prot
| IOMMU_READ
| IOMMU_WRITE
;
1208 return prot
| IOMMU_READ
;
1209 case DMA_FROM_DEVICE
:
1210 return prot
| IOMMU_WRITE
;
1218 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
);
1220 static inline dma_addr_t
__alloc_iova(struct dma_iommu_mapping
*mapping
,
1223 unsigned int order
= get_order(size
);
1224 unsigned int align
= 0;
1225 unsigned int count
, start
;
1226 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1227 unsigned long flags
;
1231 if (order
> CONFIG_ARM_DMA_IOMMU_ALIGNMENT
)
1232 order
= CONFIG_ARM_DMA_IOMMU_ALIGNMENT
;
1234 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1235 align
= (1 << order
) - 1;
1237 spin_lock_irqsave(&mapping
->lock
, flags
);
1238 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++) {
1239 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1240 mapping
->bits
, 0, count
, align
);
1242 if (start
> mapping
->bits
)
1245 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1250 * No unused range found. Try to extend the existing mapping
1251 * and perform a second attempt to reserve an IO virtual
1252 * address range of size bytes.
1254 if (i
== mapping
->nr_bitmaps
) {
1255 if (extend_iommu_mapping(mapping
)) {
1256 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1257 return DMA_ERROR_CODE
;
1260 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1261 mapping
->bits
, 0, count
, align
);
1263 if (start
> mapping
->bits
) {
1264 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1265 return DMA_ERROR_CODE
;
1268 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1270 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1272 iova
= mapping
->base
+ (mapping_size
* i
);
1273 iova
+= start
<< PAGE_SHIFT
;
1278 static inline void __free_iova(struct dma_iommu_mapping
*mapping
,
1279 dma_addr_t addr
, size_t size
)
1281 unsigned int start
, count
;
1282 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1283 unsigned long flags
;
1284 dma_addr_t bitmap_base
;
1290 bitmap_index
= (u32
) (addr
- mapping
->base
) / (u32
) mapping_size
;
1291 BUG_ON(addr
< mapping
->base
|| bitmap_index
> mapping
->extensions
);
1293 bitmap_base
= mapping
->base
+ mapping_size
* bitmap_index
;
1295 start
= (addr
- bitmap_base
) >> PAGE_SHIFT
;
1297 if (addr
+ size
> bitmap_base
+ mapping_size
) {
1299 * The address range to be freed reaches into the iova
1300 * range of the next bitmap. This should not happen as
1301 * we don't allow this in __alloc_iova (at the
1306 count
= size
>> PAGE_SHIFT
;
1308 spin_lock_irqsave(&mapping
->lock
, flags
);
1309 bitmap_clear(mapping
->bitmaps
[bitmap_index
], start
, count
);
1310 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1313 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1314 static const int iommu_order_array
[] = { 9, 8, 4, 0 };
1316 static struct page
**__iommu_alloc_buffer(struct device
*dev
, size_t size
,
1317 gfp_t gfp
, unsigned long attrs
,
1320 struct page
**pages
;
1321 int count
= size
>> PAGE_SHIFT
;
1322 int array_size
= count
* sizeof(struct page
*);
1326 if (array_size
<= PAGE_SIZE
)
1327 pages
= kzalloc(array_size
, GFP_KERNEL
);
1329 pages
= vzalloc(array_size
);
1333 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
)
1335 unsigned long order
= get_order(size
);
1338 page
= dma_alloc_from_contiguous(dev
, count
, order
, gfp
);
1342 __dma_clear_buffer(page
, size
, coherent_flag
);
1344 for (i
= 0; i
< count
; i
++)
1345 pages
[i
] = page
+ i
;
1350 /* Go straight to 4K chunks if caller says it's OK. */
1351 if (attrs
& DMA_ATTR_ALLOC_SINGLE_PAGES
)
1352 order_idx
= ARRAY_SIZE(iommu_order_array
) - 1;
1355 * IOMMU can map any pages, so himem can also be used here
1357 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
1362 order
= iommu_order_array
[order_idx
];
1364 /* Drop down when we get small */
1365 if (__fls(count
) < order
) {
1371 /* See if it's easy to allocate a high-order chunk */
1372 pages
[i
] = alloc_pages(gfp
| __GFP_NORETRY
, order
);
1374 /* Go down a notch at first sign of pressure */
1380 pages
[i
] = alloc_pages(gfp
, 0);
1386 split_page(pages
[i
], order
);
1389 pages
[i
+ j
] = pages
[i
] + j
;
1392 __dma_clear_buffer(pages
[i
], PAGE_SIZE
<< order
, coherent_flag
);
1394 count
-= 1 << order
;
1401 __free_pages(pages
[i
], 0);
1406 static int __iommu_free_buffer(struct device
*dev
, struct page
**pages
,
1407 size_t size
, unsigned long attrs
)
1409 int count
= size
>> PAGE_SHIFT
;
1412 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
) {
1413 dma_release_from_contiguous(dev
, pages
[0], count
);
1415 for (i
= 0; i
< count
; i
++)
1417 __free_pages(pages
[i
], 0);
1425 * Create a CPU mapping for a specified pages
1428 __iommu_alloc_remap(struct page
**pages
, size_t size
, gfp_t gfp
, pgprot_t prot
,
1431 return dma_common_pages_remap(pages
, size
,
1432 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
, prot
, caller
);
1436 * Create a mapping in device IO address space for specified pages
1439 __iommu_create_mapping(struct device
*dev
, struct page
**pages
, size_t size
,
1440 unsigned long attrs
)
1442 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1443 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1444 dma_addr_t dma_addr
, iova
;
1447 dma_addr
= __alloc_iova(mapping
, size
);
1448 if (dma_addr
== DMA_ERROR_CODE
)
1452 for (i
= 0; i
< count
; ) {
1455 unsigned int next_pfn
= page_to_pfn(pages
[i
]) + 1;
1456 phys_addr_t phys
= page_to_phys(pages
[i
]);
1457 unsigned int len
, j
;
1459 for (j
= i
+ 1; j
< count
; j
++, next_pfn
++)
1460 if (page_to_pfn(pages
[j
]) != next_pfn
)
1463 len
= (j
- i
) << PAGE_SHIFT
;
1464 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
,
1465 __dma_info_to_prot(DMA_BIDIRECTIONAL
, attrs
));
1473 iommu_unmap(mapping
->domain
, dma_addr
, iova
-dma_addr
);
1474 __free_iova(mapping
, dma_addr
, size
);
1475 return DMA_ERROR_CODE
;
1478 static int __iommu_remove_mapping(struct device
*dev
, dma_addr_t iova
, size_t size
)
1480 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1483 * add optional in-page offset from iova to size and align
1484 * result to page size
1486 size
= PAGE_ALIGN((iova
& ~PAGE_MASK
) + size
);
1489 iommu_unmap(mapping
->domain
, iova
, size
);
1490 __free_iova(mapping
, iova
, size
);
1494 static struct page
**__atomic_get_pages(void *addr
)
1499 phys
= gen_pool_virt_to_phys(atomic_pool
, (unsigned long)addr
);
1500 page
= phys_to_page(phys
);
1502 return (struct page
**)page
;
1505 static struct page
**__iommu_get_pages(void *cpu_addr
, unsigned long attrs
)
1507 struct vm_struct
*area
;
1509 if (__in_atomic_pool(cpu_addr
, PAGE_SIZE
))
1510 return __atomic_get_pages(cpu_addr
);
1512 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1515 area
= find_vm_area(cpu_addr
);
1516 if (area
&& (area
->flags
& VM_ARM_DMA_CONSISTENT
))
1521 static void *__iommu_alloc_simple(struct device
*dev
, size_t size
, gfp_t gfp
,
1522 dma_addr_t
*handle
, int coherent_flag
,
1523 unsigned long attrs
)
1528 if (coherent_flag
== COHERENT
)
1529 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
1531 addr
= __alloc_from_pool(size
, &page
);
1535 *handle
= __iommu_create_mapping(dev
, &page
, size
, attrs
);
1536 if (*handle
== DMA_ERROR_CODE
)
1542 __free_from_pool(addr
, size
);
1546 static void __iommu_free_atomic(struct device
*dev
, void *cpu_addr
,
1547 dma_addr_t handle
, size_t size
, int coherent_flag
)
1549 __iommu_remove_mapping(dev
, handle
, size
);
1550 if (coherent_flag
== COHERENT
)
1551 __dma_free_buffer(virt_to_page(cpu_addr
), size
);
1553 __free_from_pool(cpu_addr
, size
);
1556 static void *__arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1557 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
,
1560 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
1561 struct page
**pages
;
1564 *handle
= DMA_ERROR_CODE
;
1565 size
= PAGE_ALIGN(size
);
1567 if (coherent_flag
== COHERENT
|| !gfpflags_allow_blocking(gfp
))
1568 return __iommu_alloc_simple(dev
, size
, gfp
, handle
,
1569 coherent_flag
, attrs
);
1572 * Following is a work-around (a.k.a. hack) to prevent pages
1573 * with __GFP_COMP being passed to split_page() which cannot
1574 * handle them. The real problem is that this flag probably
1575 * should be 0 on ARM as it is not supported on this
1576 * platform; see CONFIG_HUGETLBFS.
1578 gfp
&= ~(__GFP_COMP
);
1580 pages
= __iommu_alloc_buffer(dev
, size
, gfp
, attrs
, coherent_flag
);
1584 *handle
= __iommu_create_mapping(dev
, pages
, size
, attrs
);
1585 if (*handle
== DMA_ERROR_CODE
)
1588 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1591 addr
= __iommu_alloc_remap(pages
, size
, gfp
, prot
,
1592 __builtin_return_address(0));
1599 __iommu_remove_mapping(dev
, *handle
, size
);
1601 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1605 static void *arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1606 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1608 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, NORMAL
);
1611 static void *arm_coherent_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1612 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1614 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, COHERENT
);
1617 static int __arm_iommu_mmap_attrs(struct device
*dev
, struct vm_area_struct
*vma
,
1618 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
1619 unsigned long attrs
)
1621 unsigned long uaddr
= vma
->vm_start
;
1622 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1623 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1624 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1625 unsigned long off
= vma
->vm_pgoff
;
1630 if (off
>= nr_pages
|| (usize
>> PAGE_SHIFT
) > nr_pages
- off
)
1636 int ret
= vm_insert_page(vma
, uaddr
, *pages
++);
1638 pr_err("Remapping memory failed: %d\n", ret
);
1643 } while (usize
> 0);
1647 static int arm_iommu_mmap_attrs(struct device
*dev
,
1648 struct vm_area_struct
*vma
, void *cpu_addr
,
1649 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1651 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
1653 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1656 static int arm_coherent_iommu_mmap_attrs(struct device
*dev
,
1657 struct vm_area_struct
*vma
, void *cpu_addr
,
1658 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1660 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1664 * free a page as defined by the above mapping.
1665 * Must not be called with IRQs disabled.
1667 void __arm_iommu_free_attrs(struct device
*dev
, size_t size
, void *cpu_addr
,
1668 dma_addr_t handle
, unsigned long attrs
, int coherent_flag
)
1670 struct page
**pages
;
1671 size
= PAGE_ALIGN(size
);
1673 if (coherent_flag
== COHERENT
|| __in_atomic_pool(cpu_addr
, size
)) {
1674 __iommu_free_atomic(dev
, cpu_addr
, handle
, size
, coherent_flag
);
1678 pages
= __iommu_get_pages(cpu_addr
, attrs
);
1680 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
1684 if ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0) {
1685 dma_common_free_remap(cpu_addr
, size
,
1686 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
);
1689 __iommu_remove_mapping(dev
, handle
, size
);
1690 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1693 void arm_iommu_free_attrs(struct device
*dev
, size_t size
,
1694 void *cpu_addr
, dma_addr_t handle
, unsigned long attrs
)
1696 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, NORMAL
);
1699 void arm_coherent_iommu_free_attrs(struct device
*dev
, size_t size
,
1700 void *cpu_addr
, dma_addr_t handle
, unsigned long attrs
)
1702 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, COHERENT
);
1705 static int arm_iommu_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
1706 void *cpu_addr
, dma_addr_t dma_addr
,
1707 size_t size
, unsigned long attrs
)
1709 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1710 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1715 return sg_alloc_table_from_pages(sgt
, pages
, count
, 0, size
,
1720 * Map a part of the scatter-gather list into contiguous io address space
1722 static int __map_sg_chunk(struct device
*dev
, struct scatterlist
*sg
,
1723 size_t size
, dma_addr_t
*handle
,
1724 enum dma_data_direction dir
, unsigned long attrs
,
1727 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1728 dma_addr_t iova
, iova_base
;
1731 struct scatterlist
*s
;
1734 size
= PAGE_ALIGN(size
);
1735 *handle
= DMA_ERROR_CODE
;
1737 iova_base
= iova
= __alloc_iova(mapping
, size
);
1738 if (iova
== DMA_ERROR_CODE
)
1741 for (count
= 0, s
= sg
; count
< (size
>> PAGE_SHIFT
); s
= sg_next(s
)) {
1742 phys_addr_t phys
= page_to_phys(sg_page(s
));
1743 unsigned int len
= PAGE_ALIGN(s
->offset
+ s
->length
);
1745 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1746 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1748 prot
= __dma_info_to_prot(dir
, attrs
);
1750 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
, prot
);
1753 count
+= len
>> PAGE_SHIFT
;
1756 *handle
= iova_base
;
1760 iommu_unmap(mapping
->domain
, iova_base
, count
* PAGE_SIZE
);
1761 __free_iova(mapping
, iova_base
, size
);
1765 static int __iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1766 enum dma_data_direction dir
, unsigned long attrs
,
1769 struct scatterlist
*s
= sg
, *dma
= sg
, *start
= sg
;
1771 unsigned int offset
= s
->offset
;
1772 unsigned int size
= s
->offset
+ s
->length
;
1773 unsigned int max
= dma_get_max_seg_size(dev
);
1775 for (i
= 1; i
< nents
; i
++) {
1778 s
->dma_address
= DMA_ERROR_CODE
;
1781 if (s
->offset
|| (size
& ~PAGE_MASK
) || size
+ s
->length
> max
) {
1782 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
,
1783 dir
, attrs
, is_coherent
) < 0)
1786 dma
->dma_address
+= offset
;
1787 dma
->dma_length
= size
- offset
;
1789 size
= offset
= s
->offset
;
1796 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
, dir
, attrs
,
1800 dma
->dma_address
+= offset
;
1801 dma
->dma_length
= size
- offset
;
1806 for_each_sg(sg
, s
, count
, i
)
1807 __iommu_remove_mapping(dev
, sg_dma_address(s
), sg_dma_len(s
));
1812 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1813 * @dev: valid struct device pointer
1814 * @sg: list of buffers
1815 * @nents: number of buffers to map
1816 * @dir: DMA transfer direction
1818 * Map a set of i/o coherent buffers described by scatterlist in streaming
1819 * mode for DMA. The scatter gather list elements are merged together (if
1820 * possible) and tagged with the appropriate dma address and length. They are
1821 * obtained via sg_dma_{address,length}.
1823 int arm_coherent_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1824 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1826 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, true);
1830 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1831 * @dev: valid struct device pointer
1832 * @sg: list of buffers
1833 * @nents: number of buffers to map
1834 * @dir: DMA transfer direction
1836 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1837 * The scatter gather list elements are merged together (if possible) and
1838 * tagged with the appropriate dma address and length. They are obtained via
1839 * sg_dma_{address,length}.
1841 int arm_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1842 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1844 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, false);
1847 static void __iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1848 int nents
, enum dma_data_direction dir
,
1849 unsigned long attrs
, bool is_coherent
)
1851 struct scatterlist
*s
;
1854 for_each_sg(sg
, s
, nents
, i
) {
1856 __iommu_remove_mapping(dev
, sg_dma_address(s
),
1858 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1859 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
1865 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1866 * @dev: valid struct device pointer
1867 * @sg: list of buffers
1868 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1869 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1871 * Unmap a set of streaming mode DMA translations. Again, CPU access
1872 * rules concerning calls here are the same as for dma_unmap_single().
1874 void arm_coherent_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1875 int nents
, enum dma_data_direction dir
,
1876 unsigned long attrs
)
1878 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, true);
1882 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1883 * @dev: valid struct device pointer
1884 * @sg: list of buffers
1885 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1886 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1888 * Unmap a set of streaming mode DMA translations. Again, CPU access
1889 * rules concerning calls here are the same as for dma_unmap_single().
1891 void arm_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1892 enum dma_data_direction dir
,
1893 unsigned long attrs
)
1895 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, false);
1899 * arm_iommu_sync_sg_for_cpu
1900 * @dev: valid struct device pointer
1901 * @sg: list of buffers
1902 * @nents: number of buffers to map (returned from dma_map_sg)
1903 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1905 void arm_iommu_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1906 int nents
, enum dma_data_direction dir
)
1908 struct scatterlist
*s
;
1911 for_each_sg(sg
, s
, nents
, i
)
1912 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
, s
->length
, dir
);
1917 * arm_iommu_sync_sg_for_device
1918 * @dev: valid struct device pointer
1919 * @sg: list of buffers
1920 * @nents: number of buffers to map (returned from dma_map_sg)
1921 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1923 void arm_iommu_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1924 int nents
, enum dma_data_direction dir
)
1926 struct scatterlist
*s
;
1929 for_each_sg(sg
, s
, nents
, i
)
1930 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1935 * arm_coherent_iommu_map_page
1936 * @dev: valid struct device pointer
1937 * @page: page that buffer resides in
1938 * @offset: offset into page for start of buffer
1939 * @size: size of buffer to map
1940 * @dir: DMA transfer direction
1942 * Coherent IOMMU aware version of arm_dma_map_page()
1944 static dma_addr_t
arm_coherent_iommu_map_page(struct device
*dev
, struct page
*page
,
1945 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1946 unsigned long attrs
)
1948 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1949 dma_addr_t dma_addr
;
1950 int ret
, prot
, len
= PAGE_ALIGN(size
+ offset
);
1952 dma_addr
= __alloc_iova(mapping
, len
);
1953 if (dma_addr
== DMA_ERROR_CODE
)
1956 prot
= __dma_info_to_prot(dir
, attrs
);
1958 ret
= iommu_map(mapping
->domain
, dma_addr
, page_to_phys(page
), len
, prot
);
1962 return dma_addr
+ offset
;
1964 __free_iova(mapping
, dma_addr
, len
);
1965 return DMA_ERROR_CODE
;
1969 * arm_iommu_map_page
1970 * @dev: valid struct device pointer
1971 * @page: page that buffer resides in
1972 * @offset: offset into page for start of buffer
1973 * @size: size of buffer to map
1974 * @dir: DMA transfer direction
1976 * IOMMU aware version of arm_dma_map_page()
1978 static dma_addr_t
arm_iommu_map_page(struct device
*dev
, struct page
*page
,
1979 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1980 unsigned long attrs
)
1982 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1983 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1985 return arm_coherent_iommu_map_page(dev
, page
, offset
, size
, dir
, attrs
);
1989 * arm_coherent_iommu_unmap_page
1990 * @dev: valid struct device pointer
1991 * @handle: DMA address of buffer
1992 * @size: size of buffer (same as passed to dma_map_page)
1993 * @dir: DMA transfer direction (same as passed to dma_map_page)
1995 * Coherent IOMMU aware version of arm_dma_unmap_page()
1997 static void arm_coherent_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1998 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
2000 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2001 dma_addr_t iova
= handle
& PAGE_MASK
;
2002 int offset
= handle
& ~PAGE_MASK
;
2003 int len
= PAGE_ALIGN(size
+ offset
);
2008 iommu_unmap(mapping
->domain
, iova
, len
);
2009 __free_iova(mapping
, iova
, len
);
2013 * arm_iommu_unmap_page
2014 * @dev: valid struct device pointer
2015 * @handle: DMA address of buffer
2016 * @size: size of buffer (same as passed to dma_map_page)
2017 * @dir: DMA transfer direction (same as passed to dma_map_page)
2019 * IOMMU aware version of arm_dma_unmap_page()
2021 static void arm_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
2022 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
2024 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2025 dma_addr_t iova
= handle
& PAGE_MASK
;
2026 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
2027 int offset
= handle
& ~PAGE_MASK
;
2028 int len
= PAGE_ALIGN(size
+ offset
);
2033 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
2034 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
2036 iommu_unmap(mapping
->domain
, iova
, len
);
2037 __free_iova(mapping
, iova
, len
);
2041 * arm_iommu_map_resource - map a device resource for DMA
2042 * @dev: valid struct device pointer
2043 * @phys_addr: physical address of resource
2044 * @size: size of resource to map
2045 * @dir: DMA transfer direction
2047 static dma_addr_t
arm_iommu_map_resource(struct device
*dev
,
2048 phys_addr_t phys_addr
, size_t size
,
2049 enum dma_data_direction dir
, unsigned long attrs
)
2051 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2052 dma_addr_t dma_addr
;
2054 phys_addr_t addr
= phys_addr
& PAGE_MASK
;
2055 unsigned int offset
= phys_addr
& ~PAGE_MASK
;
2056 size_t len
= PAGE_ALIGN(size
+ offset
);
2058 dma_addr
= __alloc_iova(mapping
, len
);
2059 if (dma_addr
== DMA_ERROR_CODE
)
2062 prot
= __dma_info_to_prot(dir
, attrs
) | IOMMU_MMIO
;
2064 ret
= iommu_map(mapping
->domain
, dma_addr
, addr
, len
, prot
);
2068 return dma_addr
+ offset
;
2070 __free_iova(mapping
, dma_addr
, len
);
2071 return DMA_ERROR_CODE
;
2075 * arm_iommu_unmap_resource - unmap a device DMA resource
2076 * @dev: valid struct device pointer
2077 * @dma_handle: DMA address to resource
2078 * @size: size of resource to map
2079 * @dir: DMA transfer direction
2081 static void arm_iommu_unmap_resource(struct device
*dev
, dma_addr_t dma_handle
,
2082 size_t size
, enum dma_data_direction dir
,
2083 unsigned long attrs
)
2085 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2086 dma_addr_t iova
= dma_handle
& PAGE_MASK
;
2087 unsigned int offset
= dma_handle
& ~PAGE_MASK
;
2088 size_t len
= PAGE_ALIGN(size
+ offset
);
2093 iommu_unmap(mapping
->domain
, iova
, len
);
2094 __free_iova(mapping
, iova
, len
);
2097 static void arm_iommu_sync_single_for_cpu(struct device
*dev
,
2098 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
2100 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2101 dma_addr_t iova
= handle
& PAGE_MASK
;
2102 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
2103 unsigned int offset
= handle
& ~PAGE_MASK
;
2108 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
2111 static void arm_iommu_sync_single_for_device(struct device
*dev
,
2112 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
2114 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2115 dma_addr_t iova
= handle
& PAGE_MASK
;
2116 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
2117 unsigned int offset
= handle
& ~PAGE_MASK
;
2122 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
2125 const struct dma_map_ops iommu_ops
= {
2126 .alloc
= arm_iommu_alloc_attrs
,
2127 .free
= arm_iommu_free_attrs
,
2128 .mmap
= arm_iommu_mmap_attrs
,
2129 .get_sgtable
= arm_iommu_get_sgtable
,
2131 .map_page
= arm_iommu_map_page
,
2132 .unmap_page
= arm_iommu_unmap_page
,
2133 .sync_single_for_cpu
= arm_iommu_sync_single_for_cpu
,
2134 .sync_single_for_device
= arm_iommu_sync_single_for_device
,
2136 .map_sg
= arm_iommu_map_sg
,
2137 .unmap_sg
= arm_iommu_unmap_sg
,
2138 .sync_sg_for_cpu
= arm_iommu_sync_sg_for_cpu
,
2139 .sync_sg_for_device
= arm_iommu_sync_sg_for_device
,
2141 .map_resource
= arm_iommu_map_resource
,
2142 .unmap_resource
= arm_iommu_unmap_resource
,
2145 const struct dma_map_ops iommu_coherent_ops
= {
2146 .alloc
= arm_coherent_iommu_alloc_attrs
,
2147 .free
= arm_coherent_iommu_free_attrs
,
2148 .mmap
= arm_coherent_iommu_mmap_attrs
,
2149 .get_sgtable
= arm_iommu_get_sgtable
,
2151 .map_page
= arm_coherent_iommu_map_page
,
2152 .unmap_page
= arm_coherent_iommu_unmap_page
,
2154 .map_sg
= arm_coherent_iommu_map_sg
,
2155 .unmap_sg
= arm_coherent_iommu_unmap_sg
,
2157 .map_resource
= arm_iommu_map_resource
,
2158 .unmap_resource
= arm_iommu_unmap_resource
,
2162 * arm_iommu_create_mapping
2163 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2164 * @base: start address of the valid IO address space
2165 * @size: maximum size of the valid IO address space
2167 * Creates a mapping structure which holds information about used/unused
2168 * IO address ranges, which is required to perform memory allocation and
2169 * mapping with IOMMU aware functions.
2171 * The client device need to be attached to the mapping with
2172 * arm_iommu_attach_device function.
2174 struct dma_iommu_mapping
*
2175 arm_iommu_create_mapping(struct bus_type
*bus
, dma_addr_t base
, u64 size
)
2177 unsigned int bits
= size
>> PAGE_SHIFT
;
2178 unsigned int bitmap_size
= BITS_TO_LONGS(bits
) * sizeof(long);
2179 struct dma_iommu_mapping
*mapping
;
2183 /* currently only 32-bit DMA address space is supported */
2184 if (size
> DMA_BIT_MASK(32) + 1)
2185 return ERR_PTR(-ERANGE
);
2188 return ERR_PTR(-EINVAL
);
2190 if (bitmap_size
> PAGE_SIZE
) {
2191 extensions
= bitmap_size
/ PAGE_SIZE
;
2192 bitmap_size
= PAGE_SIZE
;
2195 mapping
= kzalloc(sizeof(struct dma_iommu_mapping
), GFP_KERNEL
);
2199 mapping
->bitmap_size
= bitmap_size
;
2200 mapping
->bitmaps
= kzalloc(extensions
* sizeof(unsigned long *),
2202 if (!mapping
->bitmaps
)
2205 mapping
->bitmaps
[0] = kzalloc(bitmap_size
, GFP_KERNEL
);
2206 if (!mapping
->bitmaps
[0])
2209 mapping
->nr_bitmaps
= 1;
2210 mapping
->extensions
= extensions
;
2211 mapping
->base
= base
;
2212 mapping
->bits
= BITS_PER_BYTE
* bitmap_size
;
2214 spin_lock_init(&mapping
->lock
);
2216 mapping
->domain
= iommu_domain_alloc(bus
);
2217 if (!mapping
->domain
)
2220 kref_init(&mapping
->kref
);
2223 kfree(mapping
->bitmaps
[0]);
2225 kfree(mapping
->bitmaps
);
2229 return ERR_PTR(err
);
2231 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping
);
2233 static void release_iommu_mapping(struct kref
*kref
)
2236 struct dma_iommu_mapping
*mapping
=
2237 container_of(kref
, struct dma_iommu_mapping
, kref
);
2239 iommu_domain_free(mapping
->domain
);
2240 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++)
2241 kfree(mapping
->bitmaps
[i
]);
2242 kfree(mapping
->bitmaps
);
2246 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
)
2250 if (mapping
->nr_bitmaps
>= mapping
->extensions
)
2253 next_bitmap
= mapping
->nr_bitmaps
;
2254 mapping
->bitmaps
[next_bitmap
] = kzalloc(mapping
->bitmap_size
,
2256 if (!mapping
->bitmaps
[next_bitmap
])
2259 mapping
->nr_bitmaps
++;
2264 void arm_iommu_release_mapping(struct dma_iommu_mapping
*mapping
)
2267 kref_put(&mapping
->kref
, release_iommu_mapping
);
2269 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping
);
2271 static int __arm_iommu_attach_device(struct device
*dev
,
2272 struct dma_iommu_mapping
*mapping
)
2276 err
= iommu_attach_device(mapping
->domain
, dev
);
2280 kref_get(&mapping
->kref
);
2281 to_dma_iommu_mapping(dev
) = mapping
;
2283 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev
));
2288 * arm_iommu_attach_device
2289 * @dev: valid struct device pointer
2290 * @mapping: io address space mapping structure (returned from
2291 * arm_iommu_create_mapping)
2293 * Attaches specified io address space mapping to the provided device.
2294 * This replaces the dma operations (dma_map_ops pointer) with the
2295 * IOMMU aware version.
2297 * More than one client might be attached to the same io address space
2300 int arm_iommu_attach_device(struct device
*dev
,
2301 struct dma_iommu_mapping
*mapping
)
2305 err
= __arm_iommu_attach_device(dev
, mapping
);
2309 set_dma_ops(dev
, &iommu_ops
);
2312 EXPORT_SYMBOL_GPL(arm_iommu_attach_device
);
2314 static void __arm_iommu_detach_device(struct device
*dev
)
2316 struct dma_iommu_mapping
*mapping
;
2318 mapping
= to_dma_iommu_mapping(dev
);
2320 dev_warn(dev
, "Not attached\n");
2324 iommu_detach_device(mapping
->domain
, dev
);
2325 kref_put(&mapping
->kref
, release_iommu_mapping
);
2326 to_dma_iommu_mapping(dev
) = NULL
;
2328 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev
));
2332 * arm_iommu_detach_device
2333 * @dev: valid struct device pointer
2335 * Detaches the provided device from a previously attached map.
2336 * This voids the dma operations (dma_map_ops pointer)
2338 void arm_iommu_detach_device(struct device
*dev
)
2340 __arm_iommu_detach_device(dev
);
2341 set_dma_ops(dev
, NULL
);
2343 EXPORT_SYMBOL_GPL(arm_iommu_detach_device
);
2345 static const struct dma_map_ops
*arm_get_iommu_dma_map_ops(bool coherent
)
2347 return coherent
? &iommu_coherent_ops
: &iommu_ops
;
2350 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2351 const struct iommu_ops
*iommu
)
2353 struct dma_iommu_mapping
*mapping
;
2358 mapping
= arm_iommu_create_mapping(dev
->bus
, dma_base
, size
);
2359 if (IS_ERR(mapping
)) {
2360 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2361 size
, dev_name(dev
));
2365 if (__arm_iommu_attach_device(dev
, mapping
)) {
2366 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2368 arm_iommu_release_mapping(mapping
);
2375 static void arm_teardown_iommu_dma_ops(struct device
*dev
)
2377 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2382 __arm_iommu_detach_device(dev
);
2383 arm_iommu_release_mapping(mapping
);
2388 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2389 const struct iommu_ops
*iommu
)
2394 static void arm_teardown_iommu_dma_ops(struct device
*dev
) { }
2396 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2398 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2400 static const struct dma_map_ops
*arm_get_dma_map_ops(bool coherent
)
2402 return coherent
? &arm_coherent_dma_ops
: &arm_dma_ops
;
2405 void arch_setup_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2406 const struct iommu_ops
*iommu
, bool coherent
)
2408 const struct dma_map_ops
*dma_ops
;
2410 dev
->archdata
.dma_coherent
= coherent
;
2411 if (arm_setup_iommu_dma_ops(dev
, dma_base
, size
, iommu
))
2412 dma_ops
= arm_get_iommu_dma_map_ops(coherent
);
2414 dma_ops
= arm_get_dma_map_ops(coherent
);
2416 set_dma_ops(dev
, dma_ops
);
2419 if (xen_initial_domain()) {
2420 dev
->archdata
.dev_dma_ops
= dev
->dma_ops
;
2421 dev
->dma_ops
= xen_dma_ops
;
2426 void arch_teardown_dma_ops(struct device
*dev
)
2428 arm_teardown_iommu_dma_ops(dev
);