x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / arm / mm / fault.c
blobff8b0aa2dfde887f7c48065f84c581c06fe1c4b8
1 /*
2 * linux/arch/arm/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/extable.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/highmem.h>
22 #include <linux/perf_event.h>
24 #include <asm/exception.h>
25 #include <asm/pgtable.h>
26 #include <asm/system_misc.h>
27 #include <asm/system_info.h>
28 #include <asm/tlbflush.h>
30 #include "fault.h"
32 #ifdef CONFIG_MMU
34 #ifdef CONFIG_KPROBES
35 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
37 int ret = 0;
39 if (!user_mode(regs)) {
40 /* kprobe_running() needs smp_processor_id() */
41 preempt_disable();
42 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
43 ret = 1;
44 preempt_enable();
47 return ret;
49 #else
50 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
52 return 0;
54 #endif
57 * This is useful to dump out the page tables associated with
58 * 'addr' in mm 'mm'.
60 void show_pte(struct mm_struct *mm, unsigned long addr)
62 pgd_t *pgd;
64 if (!mm)
65 mm = &init_mm;
67 pr_alert("pgd = %p\n", mm->pgd);
68 pgd = pgd_offset(mm, addr);
69 pr_alert("[%08lx] *pgd=%08llx",
70 addr, (long long)pgd_val(*pgd));
72 do {
73 pud_t *pud;
74 pmd_t *pmd;
75 pte_t *pte;
77 if (pgd_none(*pgd))
78 break;
80 if (pgd_bad(*pgd)) {
81 pr_cont("(bad)");
82 break;
85 pud = pud_offset(pgd, addr);
86 if (PTRS_PER_PUD != 1)
87 pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
89 if (pud_none(*pud))
90 break;
92 if (pud_bad(*pud)) {
93 pr_cont("(bad)");
94 break;
97 pmd = pmd_offset(pud, addr);
98 if (PTRS_PER_PMD != 1)
99 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
101 if (pmd_none(*pmd))
102 break;
104 if (pmd_bad(*pmd)) {
105 pr_cont("(bad)");
106 break;
109 /* We must not map this if we have highmem enabled */
110 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
111 break;
113 pte = pte_offset_map(pmd, addr);
114 pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
115 #ifndef CONFIG_ARM_LPAE
116 pr_cont(", *ppte=%08llx",
117 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
118 #endif
119 pte_unmap(pte);
120 } while(0);
122 pr_cont("\n");
124 #else /* CONFIG_MMU */
125 void show_pte(struct mm_struct *mm, unsigned long addr)
127 #endif /* CONFIG_MMU */
130 * Oops. The kernel tried to access some page that wasn't present.
132 static void
133 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
134 struct pt_regs *regs)
137 * Are we prepared to handle this kernel fault?
139 if (fixup_exception(regs))
140 return;
143 * No handler, we'll have to terminate things with extreme prejudice.
145 bust_spinlocks(1);
146 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
147 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
148 "paging request", addr);
150 show_pte(mm, addr);
151 die("Oops", regs, fsr);
152 bust_spinlocks(0);
153 do_exit(SIGKILL);
157 * Something tried to access memory that isn't in our memory map..
158 * User mode accesses just cause a SIGSEGV
160 static void
161 __do_user_fault(struct task_struct *tsk, unsigned long addr,
162 unsigned int fsr, unsigned int sig, int code,
163 struct pt_regs *regs)
165 struct siginfo si;
167 #ifdef CONFIG_DEBUG_USER
168 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
169 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
170 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
171 tsk->comm, sig, addr, fsr);
172 show_pte(tsk->mm, addr);
173 show_regs(regs);
175 #endif
177 tsk->thread.address = addr;
178 tsk->thread.error_code = fsr;
179 tsk->thread.trap_no = 14;
180 si.si_signo = sig;
181 si.si_errno = 0;
182 si.si_code = code;
183 si.si_addr = (void __user *)addr;
184 force_sig_info(sig, &si, tsk);
187 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
189 struct task_struct *tsk = current;
190 struct mm_struct *mm = tsk->active_mm;
193 * If we are in kernel mode at this point, we
194 * have no context to handle this fault with.
196 if (user_mode(regs))
197 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
198 else
199 __do_kernel_fault(mm, addr, fsr, regs);
202 #ifdef CONFIG_MMU
203 #define VM_FAULT_BADMAP 0x010000
204 #define VM_FAULT_BADACCESS 0x020000
207 * Check that the permissions on the VMA allow for the fault which occurred.
208 * If we encountered a write fault, we must have write permission, otherwise
209 * we allow any permission.
211 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
213 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
215 if (fsr & FSR_WRITE)
216 mask = VM_WRITE;
217 if (fsr & FSR_LNX_PF)
218 mask = VM_EXEC;
220 return vma->vm_flags & mask ? false : true;
223 static int __kprobes
224 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
225 unsigned int flags, struct task_struct *tsk)
227 struct vm_area_struct *vma;
228 int fault;
230 vma = find_vma(mm, addr);
231 fault = VM_FAULT_BADMAP;
232 if (unlikely(!vma))
233 goto out;
234 if (unlikely(vma->vm_start > addr))
235 goto check_stack;
238 * Ok, we have a good vm_area for this
239 * memory access, so we can handle it.
241 good_area:
242 if (access_error(fsr, vma)) {
243 fault = VM_FAULT_BADACCESS;
244 goto out;
247 return handle_mm_fault(vma, addr & PAGE_MASK, flags);
249 check_stack:
250 /* Don't allow expansion below FIRST_USER_ADDRESS */
251 if (vma->vm_flags & VM_GROWSDOWN &&
252 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
253 goto good_area;
254 out:
255 return fault;
258 static int __kprobes
259 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
261 struct task_struct *tsk;
262 struct mm_struct *mm;
263 int fault, sig, code;
264 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
266 if (notify_page_fault(regs, fsr))
267 return 0;
269 tsk = current;
270 mm = tsk->mm;
272 /* Enable interrupts if they were enabled in the parent context. */
273 if (interrupts_enabled(regs))
274 local_irq_enable();
277 * If we're in an interrupt or have no user
278 * context, we must not take the fault..
280 if (faulthandler_disabled() || !mm)
281 goto no_context;
283 if (user_mode(regs))
284 flags |= FAULT_FLAG_USER;
285 if (fsr & FSR_WRITE)
286 flags |= FAULT_FLAG_WRITE;
289 * As per x86, we may deadlock here. However, since the kernel only
290 * validly references user space from well defined areas of the code,
291 * we can bug out early if this is from code which shouldn't.
293 if (!down_read_trylock(&mm->mmap_sem)) {
294 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
295 goto no_context;
296 retry:
297 down_read(&mm->mmap_sem);
298 } else {
300 * The above down_read_trylock() might have succeeded in
301 * which case, we'll have missed the might_sleep() from
302 * down_read()
304 might_sleep();
305 #ifdef CONFIG_DEBUG_VM
306 if (!user_mode(regs) &&
307 !search_exception_tables(regs->ARM_pc))
308 goto no_context;
309 #endif
312 fault = __do_page_fault(mm, addr, fsr, flags, tsk);
314 /* If we need to retry but a fatal signal is pending, handle the
315 * signal first. We do not need to release the mmap_sem because
316 * it would already be released in __lock_page_or_retry in
317 * mm/filemap.c. */
318 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
319 return 0;
322 * Major/minor page fault accounting is only done on the
323 * initial attempt. If we go through a retry, it is extremely
324 * likely that the page will be found in page cache at that point.
327 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
328 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
329 if (fault & VM_FAULT_MAJOR) {
330 tsk->maj_flt++;
331 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
332 regs, addr);
333 } else {
334 tsk->min_flt++;
335 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
336 regs, addr);
338 if (fault & VM_FAULT_RETRY) {
339 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
340 * of starvation. */
341 flags &= ~FAULT_FLAG_ALLOW_RETRY;
342 flags |= FAULT_FLAG_TRIED;
343 goto retry;
347 up_read(&mm->mmap_sem);
350 * Handle the "normal" case first - VM_FAULT_MAJOR
352 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
353 return 0;
356 * If we are in kernel mode at this point, we
357 * have no context to handle this fault with.
359 if (!user_mode(regs))
360 goto no_context;
362 if (fault & VM_FAULT_OOM) {
364 * We ran out of memory, call the OOM killer, and return to
365 * userspace (which will retry the fault, or kill us if we
366 * got oom-killed)
368 pagefault_out_of_memory();
369 return 0;
372 if (fault & VM_FAULT_SIGBUS) {
374 * We had some memory, but were unable to
375 * successfully fix up this page fault.
377 sig = SIGBUS;
378 code = BUS_ADRERR;
379 } else {
381 * Something tried to access memory that
382 * isn't in our memory map..
384 sig = SIGSEGV;
385 code = fault == VM_FAULT_BADACCESS ?
386 SEGV_ACCERR : SEGV_MAPERR;
389 __do_user_fault(tsk, addr, fsr, sig, code, regs);
390 return 0;
392 no_context:
393 __do_kernel_fault(mm, addr, fsr, regs);
394 return 0;
396 #else /* CONFIG_MMU */
397 static int
398 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
400 return 0;
402 #endif /* CONFIG_MMU */
405 * First Level Translation Fault Handler
407 * We enter here because the first level page table doesn't contain
408 * a valid entry for the address.
410 * If the address is in kernel space (>= TASK_SIZE), then we are
411 * probably faulting in the vmalloc() area.
413 * If the init_task's first level page tables contains the relevant
414 * entry, we copy the it to this task. If not, we send the process
415 * a signal, fixup the exception, or oops the kernel.
417 * NOTE! We MUST NOT take any locks for this case. We may be in an
418 * interrupt or a critical region, and should only copy the information
419 * from the master page table, nothing more.
421 #ifdef CONFIG_MMU
422 static int __kprobes
423 do_translation_fault(unsigned long addr, unsigned int fsr,
424 struct pt_regs *regs)
426 unsigned int index;
427 pgd_t *pgd, *pgd_k;
428 pud_t *pud, *pud_k;
429 pmd_t *pmd, *pmd_k;
431 if (addr < TASK_SIZE)
432 return do_page_fault(addr, fsr, regs);
434 if (user_mode(regs))
435 goto bad_area;
437 index = pgd_index(addr);
439 pgd = cpu_get_pgd() + index;
440 pgd_k = init_mm.pgd + index;
442 if (pgd_none(*pgd_k))
443 goto bad_area;
444 if (!pgd_present(*pgd))
445 set_pgd(pgd, *pgd_k);
447 pud = pud_offset(pgd, addr);
448 pud_k = pud_offset(pgd_k, addr);
450 if (pud_none(*pud_k))
451 goto bad_area;
452 if (!pud_present(*pud))
453 set_pud(pud, *pud_k);
455 pmd = pmd_offset(pud, addr);
456 pmd_k = pmd_offset(pud_k, addr);
458 #ifdef CONFIG_ARM_LPAE
460 * Only one hardware entry per PMD with LPAE.
462 index = 0;
463 #else
465 * On ARM one Linux PGD entry contains two hardware entries (see page
466 * tables layout in pgtable.h). We normally guarantee that we always
467 * fill both L1 entries. But create_mapping() doesn't follow the rule.
468 * It can create inidividual L1 entries, so here we have to call
469 * pmd_none() check for the entry really corresponded to address, not
470 * for the first of pair.
472 index = (addr >> SECTION_SHIFT) & 1;
473 #endif
474 if (pmd_none(pmd_k[index]))
475 goto bad_area;
477 copy_pmd(pmd, pmd_k);
478 return 0;
480 bad_area:
481 do_bad_area(addr, fsr, regs);
482 return 0;
484 #else /* CONFIG_MMU */
485 static int
486 do_translation_fault(unsigned long addr, unsigned int fsr,
487 struct pt_regs *regs)
489 return 0;
491 #endif /* CONFIG_MMU */
494 * Some section permission faults need to be handled gracefully.
495 * They can happen due to a __{get,put}_user during an oops.
497 #ifndef CONFIG_ARM_LPAE
498 static int
499 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
501 do_bad_area(addr, fsr, regs);
502 return 0;
504 #endif /* CONFIG_ARM_LPAE */
507 * This abort handler always returns "fault".
509 static int
510 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
512 return 1;
515 struct fsr_info {
516 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
517 int sig;
518 int code;
519 const char *name;
522 /* FSR definition */
523 #ifdef CONFIG_ARM_LPAE
524 #include "fsr-3level.c"
525 #else
526 #include "fsr-2level.c"
527 #endif
529 void __init
530 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
531 int sig, int code, const char *name)
533 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
534 BUG();
536 fsr_info[nr].fn = fn;
537 fsr_info[nr].sig = sig;
538 fsr_info[nr].code = code;
539 fsr_info[nr].name = name;
543 * Dispatch a data abort to the relevant handler.
545 asmlinkage void __exception
546 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
548 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
549 struct siginfo info;
551 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
552 return;
554 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
555 inf->name, fsr, addr);
556 show_pte(current->mm, addr);
558 info.si_signo = inf->sig;
559 info.si_errno = 0;
560 info.si_code = inf->code;
561 info.si_addr = (void __user *)addr;
562 arm_notify_die("", regs, &info, fsr, 0);
565 void __init
566 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
567 int sig, int code, const char *name)
569 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
570 BUG();
572 ifsr_info[nr].fn = fn;
573 ifsr_info[nr].sig = sig;
574 ifsr_info[nr].code = code;
575 ifsr_info[nr].name = name;
578 asmlinkage void __exception
579 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
581 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
582 struct siginfo info;
584 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
585 return;
587 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
588 inf->name, ifsr, addr);
590 info.si_signo = inf->sig;
591 info.si_errno = 0;
592 info.si_code = inf->code;
593 info.si_addr = (void __user *)addr;
594 arm_notify_die("", regs, &info, ifsr, 0);
598 * Abort handler to be used only during first unmasking of asynchronous aborts
599 * on the boot CPU. This makes sure that the machine will not die if the
600 * firmware/bootloader left an imprecise abort pending for us to trip over.
602 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
603 struct pt_regs *regs)
605 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
606 "first unmask, this is most likely caused by a "
607 "firmware/bootloader bug.\n", fsr);
609 return 0;
612 void __init early_abt_enable(void)
614 fsr_info[FSR_FS_AEA].fn = early_abort_handler;
615 local_abt_enable();
616 fsr_info[FSR_FS_AEA].fn = do_bad;
619 #ifndef CONFIG_ARM_LPAE
620 static int __init exceptions_init(void)
622 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
623 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
624 "I-cache maintenance fault");
627 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
629 * TODO: Access flag faults introduced in ARMv6K.
630 * Runtime check for 'K' extension is needed
632 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
633 "section access flag fault");
634 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
635 "section access flag fault");
638 return 0;
641 arch_initcall(exceptions_init);
642 #endif