x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / arm64 / kernel / cpufeature.c
blobabda8e861865779d96087b3de57d60305d26e582
1 /*
2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT \
41 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46 COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
54 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
55 EXPORT_SYMBOL(cpu_hwcap_keys);
57 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
58 { \
59 .sign = SIGNED, \
60 .visible = VISIBLE, \
61 .strict = STRICT, \
62 .type = TYPE, \
63 .shift = SHIFT, \
64 .width = WIDTH, \
65 .safe_val = SAFE_VAL, \
68 /* Define a feature with unsigned values */
69 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
72 /* Define a feature with a signed value */
73 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
74 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
76 #define ARM64_FTR_END \
77 { \
78 .width = 0, \
81 /* meta feature for alternatives */
82 static bool __maybe_unused
83 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
87 * NOTE: Any changes to the visibility of features should be kept in
88 * sync with the documentation of the CPU feature register ABI.
90 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
91 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
92 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
93 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
94 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
95 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
96 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
97 ARM64_FTR_END,
100 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
101 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
102 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
103 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
104 /* Linux doesn't care about the EL3 */
105 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
106 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
107 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
108 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
109 ARM64_FTR_END,
112 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
113 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
114 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
115 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
116 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
117 /* Linux shouldn't care about secure memory */
118 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
119 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
120 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
122 * Differing PARange is fine as long as all peripherals and memory are mapped
123 * within the minimum PARange of all CPUs
125 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
126 ARM64_FTR_END,
129 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
130 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
136 ARM64_FTR_END,
139 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
140 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
141 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
142 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
143 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
144 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
145 ARM64_FTR_END,
148 static const struct arm64_ftr_bits ftr_ctr[] = {
149 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
150 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
151 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
152 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
154 * Linux can handle differing I-cache policies. Userspace JITs will
155 * make use of *minLine.
156 * If we have differing I-cache policies, report it as the weakest - AIVIVT.
158 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT), /* L1Ip */
159 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
160 ARM64_FTR_END,
163 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
164 .name = "SYS_CTR_EL0",
165 .ftr_bits = ftr_ctr
168 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
169 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
171 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
172 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
173 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
174 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
175 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
176 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
177 ARM64_FTR_END,
180 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
181 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
182 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
183 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
184 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
185 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
187 * We can instantiate multiple PMU instances with different levels
188 * of support.
190 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
193 ARM64_FTR_END,
196 static const struct arm64_ftr_bits ftr_mvfr2[] = {
197 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
199 ARM64_FTR_END,
202 static const struct arm64_ftr_bits ftr_dczid[] = {
203 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
204 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
205 ARM64_FTR_END,
209 static const struct arm64_ftr_bits ftr_id_isar5[] = {
210 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
215 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
216 ARM64_FTR_END,
219 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
221 ARM64_FTR_END,
224 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
226 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
227 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
228 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
229 ARM64_FTR_END,
232 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
233 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
234 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
235 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
236 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
237 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
241 ARM64_FTR_END,
245 * Common ftr bits for a 32bit register with all hidden, strict
246 * attributes, with 4bit feature fields and a default safe value of
247 * 0. Covers the following 32bit registers:
248 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
250 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
251 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
252 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
253 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
254 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
255 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
256 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
257 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
258 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
259 ARM64_FTR_END,
262 /* Table for a single 32bit feature value */
263 static const struct arm64_ftr_bits ftr_single32[] = {
264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
265 ARM64_FTR_END,
268 static const struct arm64_ftr_bits ftr_raz[] = {
269 ARM64_FTR_END,
272 #define ARM64_FTR_REG(id, table) { \
273 .sys_id = id, \
274 .reg = &(struct arm64_ftr_reg){ \
275 .name = #id, \
276 .ftr_bits = &((table)[0]), \
279 static const struct __ftr_reg_entry {
280 u32 sys_id;
281 struct arm64_ftr_reg *reg;
282 } arm64_ftr_regs[] = {
284 /* Op1 = 0, CRn = 0, CRm = 1 */
285 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
286 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
287 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
288 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
289 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
290 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
291 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
293 /* Op1 = 0, CRn = 0, CRm = 2 */
294 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
295 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
296 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
297 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
298 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
299 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
300 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
302 /* Op1 = 0, CRn = 0, CRm = 3 */
303 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
304 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
305 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
307 /* Op1 = 0, CRn = 0, CRm = 4 */
308 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
309 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
311 /* Op1 = 0, CRn = 0, CRm = 5 */
312 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
313 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
315 /* Op1 = 0, CRn = 0, CRm = 6 */
316 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
317 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_raz),
319 /* Op1 = 0, CRn = 0, CRm = 7 */
320 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
321 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
322 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
324 /* Op1 = 3, CRn = 0, CRm = 0 */
325 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
326 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
328 /* Op1 = 3, CRn = 14, CRm = 0 */
329 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
332 static int search_cmp_ftr_reg(const void *id, const void *regp)
334 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
338 * get_arm64_ftr_reg - Lookup a feature register entry using its
339 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
340 * ascending order of sys_id , we use binary search to find a matching
341 * entry.
343 * returns - Upon success, matching ftr_reg entry for id.
344 * - NULL on failure. It is upto the caller to decide
345 * the impact of a failure.
347 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
349 const struct __ftr_reg_entry *ret;
351 ret = bsearch((const void *)(unsigned long)sys_id,
352 arm64_ftr_regs,
353 ARRAY_SIZE(arm64_ftr_regs),
354 sizeof(arm64_ftr_regs[0]),
355 search_cmp_ftr_reg);
356 if (ret)
357 return ret->reg;
358 return NULL;
361 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
362 s64 ftr_val)
364 u64 mask = arm64_ftr_mask(ftrp);
366 reg &= ~mask;
367 reg |= (ftr_val << ftrp->shift) & mask;
368 return reg;
371 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
372 s64 cur)
374 s64 ret = 0;
376 switch (ftrp->type) {
377 case FTR_EXACT:
378 ret = ftrp->safe_val;
379 break;
380 case FTR_LOWER_SAFE:
381 ret = new < cur ? new : cur;
382 break;
383 case FTR_HIGHER_SAFE:
384 ret = new > cur ? new : cur;
385 break;
386 default:
387 BUG();
390 return ret;
393 static void __init sort_ftr_regs(void)
395 int i;
397 /* Check that the array is sorted so that we can do the binary search */
398 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
399 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
403 * Initialise the CPU feature register from Boot CPU values.
404 * Also initiliases the strict_mask for the register.
405 * Any bits that are not covered by an arm64_ftr_bits entry are considered
406 * RES0 for the system-wide value, and must strictly match.
408 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
410 u64 val = 0;
411 u64 strict_mask = ~0x0ULL;
412 u64 user_mask = 0;
413 u64 valid_mask = 0;
415 const struct arm64_ftr_bits *ftrp;
416 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
418 BUG_ON(!reg);
420 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
421 u64 ftr_mask = arm64_ftr_mask(ftrp);
422 s64 ftr_new = arm64_ftr_value(ftrp, new);
424 val = arm64_ftr_set_value(ftrp, val, ftr_new);
426 valid_mask |= ftr_mask;
427 if (!ftrp->strict)
428 strict_mask &= ~ftr_mask;
429 if (ftrp->visible)
430 user_mask |= ftr_mask;
431 else
432 reg->user_val = arm64_ftr_set_value(ftrp,
433 reg->user_val,
434 ftrp->safe_val);
437 val &= valid_mask;
439 reg->sys_val = val;
440 reg->strict_mask = strict_mask;
441 reg->user_mask = user_mask;
444 void __init init_cpu_features(struct cpuinfo_arm64 *info)
446 /* Before we start using the tables, make sure it is sorted */
447 sort_ftr_regs();
449 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
450 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
451 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
452 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
453 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
454 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
455 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
456 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
457 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
458 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
459 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
460 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
462 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
463 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
464 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
465 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
466 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
467 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
468 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
469 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
470 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
471 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
472 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
473 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
474 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
475 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
476 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
477 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
478 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
483 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
485 const struct arm64_ftr_bits *ftrp;
487 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
488 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
489 s64 ftr_new = arm64_ftr_value(ftrp, new);
491 if (ftr_cur == ftr_new)
492 continue;
493 /* Find a safe value */
494 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
495 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
500 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
502 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
504 BUG_ON(!regp);
505 update_cpu_ftr_reg(regp, val);
506 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
507 return 0;
508 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
509 regp->name, boot, cpu, val);
510 return 1;
514 * Update system wide CPU feature registers with the values from a
515 * non-boot CPU. Also performs SANITY checks to make sure that there
516 * aren't any insane variations from that of the boot CPU.
518 void update_cpu_features(int cpu,
519 struct cpuinfo_arm64 *info,
520 struct cpuinfo_arm64 *boot)
522 int taint = 0;
525 * The kernel can handle differing I-cache policies, but otherwise
526 * caches should look identical. Userspace JITs will make use of
527 * *minLine.
529 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
530 info->reg_ctr, boot->reg_ctr);
533 * Userspace may perform DC ZVA instructions. Mismatched block sizes
534 * could result in too much or too little memory being zeroed if a
535 * process is preempted and migrated between CPUs.
537 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
538 info->reg_dczid, boot->reg_dczid);
540 /* If different, timekeeping will be broken (especially with KVM) */
541 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
542 info->reg_cntfrq, boot->reg_cntfrq);
545 * The kernel uses self-hosted debug features and expects CPUs to
546 * support identical debug features. We presently need CTX_CMPs, WRPs,
547 * and BRPs to be identical.
548 * ID_AA64DFR1 is currently RES0.
550 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
551 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
552 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
553 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
555 * Even in big.LITTLE, processors should be identical instruction-set
556 * wise.
558 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
559 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
560 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
561 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
564 * Differing PARange support is fine as long as all peripherals and
565 * memory are mapped within the minimum PARange of all CPUs.
566 * Linux should not care about secure memory.
568 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
569 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
570 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
571 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
572 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
573 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
576 * EL3 is not our concern.
577 * ID_AA64PFR1 is currently RES0.
579 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
580 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
581 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
582 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
585 * If we have AArch32, we care about 32-bit features for compat.
586 * If the system doesn't support AArch32, don't update them.
588 if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
589 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
591 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
592 info->reg_id_dfr0, boot->reg_id_dfr0);
593 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
594 info->reg_id_isar0, boot->reg_id_isar0);
595 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
596 info->reg_id_isar1, boot->reg_id_isar1);
597 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
598 info->reg_id_isar2, boot->reg_id_isar2);
599 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
600 info->reg_id_isar3, boot->reg_id_isar3);
601 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
602 info->reg_id_isar4, boot->reg_id_isar4);
603 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
604 info->reg_id_isar5, boot->reg_id_isar5);
607 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
608 * ACTLR formats could differ across CPUs and therefore would have to
609 * be trapped for virtualization anyway.
611 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
612 info->reg_id_mmfr0, boot->reg_id_mmfr0);
613 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
614 info->reg_id_mmfr1, boot->reg_id_mmfr1);
615 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
616 info->reg_id_mmfr2, boot->reg_id_mmfr2);
617 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
618 info->reg_id_mmfr3, boot->reg_id_mmfr3);
619 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
620 info->reg_id_pfr0, boot->reg_id_pfr0);
621 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
622 info->reg_id_pfr1, boot->reg_id_pfr1);
623 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
624 info->reg_mvfr0, boot->reg_mvfr0);
625 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
626 info->reg_mvfr1, boot->reg_mvfr1);
627 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
628 info->reg_mvfr2, boot->reg_mvfr2);
632 * Mismatched CPU features are a recipe for disaster. Don't even
633 * pretend to support them.
635 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
636 "Unsupported CPU feature variation.\n");
639 u64 read_system_reg(u32 id)
641 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
643 /* We shouldn't get a request for an unsupported register */
644 BUG_ON(!regp);
645 return regp->sys_val;
648 #define read_sysreg_case(r) \
649 case r: return read_sysreg_s(r)
652 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
653 * Read the system register on the current CPU
655 static u64 __raw_read_system_reg(u32 sys_id)
657 switch (sys_id) {
658 read_sysreg_case(SYS_ID_PFR0_EL1);
659 read_sysreg_case(SYS_ID_PFR1_EL1);
660 read_sysreg_case(SYS_ID_DFR0_EL1);
661 read_sysreg_case(SYS_ID_MMFR0_EL1);
662 read_sysreg_case(SYS_ID_MMFR1_EL1);
663 read_sysreg_case(SYS_ID_MMFR2_EL1);
664 read_sysreg_case(SYS_ID_MMFR3_EL1);
665 read_sysreg_case(SYS_ID_ISAR0_EL1);
666 read_sysreg_case(SYS_ID_ISAR1_EL1);
667 read_sysreg_case(SYS_ID_ISAR2_EL1);
668 read_sysreg_case(SYS_ID_ISAR3_EL1);
669 read_sysreg_case(SYS_ID_ISAR4_EL1);
670 read_sysreg_case(SYS_ID_ISAR5_EL1);
671 read_sysreg_case(SYS_MVFR0_EL1);
672 read_sysreg_case(SYS_MVFR1_EL1);
673 read_sysreg_case(SYS_MVFR2_EL1);
675 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
676 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
677 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
678 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
679 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
680 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
681 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
682 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
683 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
685 read_sysreg_case(SYS_CNTFRQ_EL0);
686 read_sysreg_case(SYS_CTR_EL0);
687 read_sysreg_case(SYS_DCZID_EL0);
689 default:
690 BUG();
691 return 0;
695 #include <linux/irqchip/arm-gic-v3.h>
697 static bool
698 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
700 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
702 return val >= entry->min_field_value;
705 static bool
706 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
708 u64 val;
710 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
711 if (scope == SCOPE_SYSTEM)
712 val = read_system_reg(entry->sys_reg);
713 else
714 val = __raw_read_system_reg(entry->sys_reg);
716 return feature_matches(val, entry);
719 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
721 bool has_sre;
723 if (!has_cpuid_feature(entry, scope))
724 return false;
726 has_sre = gic_enable_sre();
727 if (!has_sre)
728 pr_warn_once("%s present but disabled by higher exception level\n",
729 entry->desc);
731 return has_sre;
734 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
736 u32 midr = read_cpuid_id();
738 /* Cavium ThunderX pass 1.x and 2.x */
739 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
740 MIDR_CPU_VAR_REV(0, 0),
741 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
744 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
746 return is_kernel_in_hyp_mode();
749 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
750 int __unused)
752 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
755 * Activate the lower HYP offset only if:
756 * - the idmap doesn't clash with it,
757 * - the kernel is not running at EL2.
759 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
762 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
764 u64 pfr0 = read_system_reg(SYS_ID_AA64PFR0_EL1);
766 return cpuid_feature_extract_signed_field(pfr0,
767 ID_AA64PFR0_FP_SHIFT) < 0;
770 static const struct arm64_cpu_capabilities arm64_features[] = {
772 .desc = "GIC system register CPU interface",
773 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
774 .def_scope = SCOPE_SYSTEM,
775 .matches = has_useable_gicv3_cpuif,
776 .sys_reg = SYS_ID_AA64PFR0_EL1,
777 .field_pos = ID_AA64PFR0_GIC_SHIFT,
778 .sign = FTR_UNSIGNED,
779 .min_field_value = 1,
781 #ifdef CONFIG_ARM64_PAN
783 .desc = "Privileged Access Never",
784 .capability = ARM64_HAS_PAN,
785 .def_scope = SCOPE_SYSTEM,
786 .matches = has_cpuid_feature,
787 .sys_reg = SYS_ID_AA64MMFR1_EL1,
788 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
789 .sign = FTR_UNSIGNED,
790 .min_field_value = 1,
791 .enable = cpu_enable_pan,
793 #endif /* CONFIG_ARM64_PAN */
794 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
796 .desc = "LSE atomic instructions",
797 .capability = ARM64_HAS_LSE_ATOMICS,
798 .def_scope = SCOPE_SYSTEM,
799 .matches = has_cpuid_feature,
800 .sys_reg = SYS_ID_AA64ISAR0_EL1,
801 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
802 .sign = FTR_UNSIGNED,
803 .min_field_value = 2,
805 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
807 .desc = "Software prefetching using PRFM",
808 .capability = ARM64_HAS_NO_HW_PREFETCH,
809 .def_scope = SCOPE_SYSTEM,
810 .matches = has_no_hw_prefetch,
812 #ifdef CONFIG_ARM64_UAO
814 .desc = "User Access Override",
815 .capability = ARM64_HAS_UAO,
816 .def_scope = SCOPE_SYSTEM,
817 .matches = has_cpuid_feature,
818 .sys_reg = SYS_ID_AA64MMFR2_EL1,
819 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
820 .min_field_value = 1,
822 * We rely on stop_machine() calling uao_thread_switch() to set
823 * UAO immediately after patching.
826 #endif /* CONFIG_ARM64_UAO */
827 #ifdef CONFIG_ARM64_PAN
829 .capability = ARM64_ALT_PAN_NOT_UAO,
830 .def_scope = SCOPE_SYSTEM,
831 .matches = cpufeature_pan_not_uao,
833 #endif /* CONFIG_ARM64_PAN */
835 .desc = "Virtualization Host Extensions",
836 .capability = ARM64_HAS_VIRT_HOST_EXTN,
837 .def_scope = SCOPE_SYSTEM,
838 .matches = runs_at_el2,
841 .desc = "32-bit EL0 Support",
842 .capability = ARM64_HAS_32BIT_EL0,
843 .def_scope = SCOPE_SYSTEM,
844 .matches = has_cpuid_feature,
845 .sys_reg = SYS_ID_AA64PFR0_EL1,
846 .sign = FTR_UNSIGNED,
847 .field_pos = ID_AA64PFR0_EL0_SHIFT,
848 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
851 .desc = "Reduced HYP mapping offset",
852 .capability = ARM64_HYP_OFFSET_LOW,
853 .def_scope = SCOPE_SYSTEM,
854 .matches = hyp_offset_low,
857 /* FP/SIMD is not implemented */
858 .capability = ARM64_HAS_NO_FPSIMD,
859 .def_scope = SCOPE_SYSTEM,
860 .min_field_value = 0,
861 .matches = has_no_fpsimd,
866 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
868 .desc = #cap, \
869 .def_scope = SCOPE_SYSTEM, \
870 .matches = has_cpuid_feature, \
871 .sys_reg = reg, \
872 .field_pos = field, \
873 .sign = s, \
874 .min_field_value = min_value, \
875 .hwcap_type = type, \
876 .hwcap = cap, \
879 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
880 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
881 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
882 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
883 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
884 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
885 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
886 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
887 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
888 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
889 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
890 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
894 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
895 #ifdef CONFIG_COMPAT
896 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
897 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
898 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
899 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
900 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
901 #endif
905 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
907 switch (cap->hwcap_type) {
908 case CAP_HWCAP:
909 elf_hwcap |= cap->hwcap;
910 break;
911 #ifdef CONFIG_COMPAT
912 case CAP_COMPAT_HWCAP:
913 compat_elf_hwcap |= (u32)cap->hwcap;
914 break;
915 case CAP_COMPAT_HWCAP2:
916 compat_elf_hwcap2 |= (u32)cap->hwcap;
917 break;
918 #endif
919 default:
920 WARN_ON(1);
921 break;
925 /* Check if we have a particular HWCAP enabled */
926 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
928 bool rc;
930 switch (cap->hwcap_type) {
931 case CAP_HWCAP:
932 rc = (elf_hwcap & cap->hwcap) != 0;
933 break;
934 #ifdef CONFIG_COMPAT
935 case CAP_COMPAT_HWCAP:
936 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
937 break;
938 case CAP_COMPAT_HWCAP2:
939 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
940 break;
941 #endif
942 default:
943 WARN_ON(1);
944 rc = false;
947 return rc;
950 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
952 /* We support emulation of accesses to CPU ID feature registers */
953 elf_hwcap |= HWCAP_CPUID;
954 for (; hwcaps->matches; hwcaps++)
955 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
956 cap_set_elf_hwcap(hwcaps);
959 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
960 const char *info)
962 for (; caps->matches; caps++) {
963 if (!caps->matches(caps, caps->def_scope))
964 continue;
966 if (!cpus_have_cap(caps->capability) && caps->desc)
967 pr_info("%s %s\n", info, caps->desc);
968 cpus_set_cap(caps->capability);
973 * Run through the enabled capabilities and enable() it on all active
974 * CPUs
976 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
978 for (; caps->matches; caps++)
979 if (caps->enable && cpus_have_cap(caps->capability))
981 * Use stop_machine() as it schedules the work allowing
982 * us to modify PSTATE, instead of on_each_cpu() which
983 * uses an IPI, giving us a PSTATE that disappears when
984 * we return.
986 stop_machine(caps->enable, NULL, cpu_online_mask);
990 * Flag to indicate if we have computed the system wide
991 * capabilities based on the boot time active CPUs. This
992 * will be used to determine if a new booting CPU should
993 * go through the verification process to make sure that it
994 * supports the system capabilities, without using a hotplug
995 * notifier.
997 static bool sys_caps_initialised;
999 static inline void set_sys_caps_initialised(void)
1001 sys_caps_initialised = true;
1005 * Check for CPU features that are used in early boot
1006 * based on the Boot CPU value.
1008 static void check_early_cpu_features(void)
1010 verify_cpu_run_el();
1011 verify_cpu_asid_bits();
1014 static void
1015 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1018 for (; caps->matches; caps++)
1019 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1020 pr_crit("CPU%d: missing HWCAP: %s\n",
1021 smp_processor_id(), caps->desc);
1022 cpu_die_early();
1026 static void
1027 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1029 for (; caps->matches; caps++) {
1030 if (!cpus_have_cap(caps->capability))
1031 continue;
1033 * If the new CPU misses an advertised feature, we cannot proceed
1034 * further, park the cpu.
1036 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1037 pr_crit("CPU%d: missing feature: %s\n",
1038 smp_processor_id(), caps->desc);
1039 cpu_die_early();
1041 if (caps->enable)
1042 caps->enable(NULL);
1047 * Run through the enabled system capabilities and enable() it on this CPU.
1048 * The capabilities were decided based on the available CPUs at the boot time.
1049 * Any new CPU should match the system wide status of the capability. If the
1050 * new CPU doesn't have a capability which the system now has enabled, we
1051 * cannot do anything to fix it up and could cause unexpected failures. So
1052 * we park the CPU.
1054 static void verify_local_cpu_capabilities(void)
1056 verify_local_cpu_errata_workarounds();
1057 verify_local_cpu_features(arm64_features);
1058 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1059 if (system_supports_32bit_el0())
1060 verify_local_elf_hwcaps(compat_elf_hwcaps);
1063 void check_local_cpu_capabilities(void)
1066 * All secondary CPUs should conform to the early CPU features
1067 * in use by the kernel based on boot CPU.
1069 check_early_cpu_features();
1072 * If we haven't finalised the system capabilities, this CPU gets
1073 * a chance to update the errata work arounds.
1074 * Otherwise, this CPU should verify that it has all the system
1075 * advertised capabilities.
1077 if (!sys_caps_initialised)
1078 update_cpu_errata_workarounds();
1079 else
1080 verify_local_cpu_capabilities();
1083 static void __init setup_feature_capabilities(void)
1085 update_cpu_capabilities(arm64_features, "detected feature:");
1086 enable_cpu_capabilities(arm64_features);
1090 * Check if the current CPU has a given feature capability.
1091 * Should be called from non-preemptible context.
1093 bool this_cpu_has_cap(unsigned int cap)
1095 const struct arm64_cpu_capabilities *caps;
1097 if (WARN_ON(preemptible()))
1098 return false;
1100 for (caps = arm64_features; caps->desc; caps++)
1101 if (caps->capability == cap && caps->matches)
1102 return caps->matches(caps, SCOPE_LOCAL_CPU);
1104 return false;
1107 void __init setup_cpu_features(void)
1109 u32 cwg;
1110 int cls;
1112 /* Set the CPU feature capabilies */
1113 setup_feature_capabilities();
1114 enable_errata_workarounds();
1115 setup_elf_hwcaps(arm64_elf_hwcaps);
1117 if (system_supports_32bit_el0())
1118 setup_elf_hwcaps(compat_elf_hwcaps);
1120 /* Advertise that we have computed the system capabilities */
1121 set_sys_caps_initialised();
1124 * Check for sane CTR_EL0.CWG value.
1126 cwg = cache_type_cwg();
1127 cls = cache_line_size();
1128 if (!cwg)
1129 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1130 cls);
1131 if (L1_CACHE_BYTES < cls)
1132 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1133 L1_CACHE_BYTES, cls);
1136 static bool __maybe_unused
1137 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1139 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1143 * We emulate only the following system register space.
1144 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1145 * See Table C5-6 System instruction encodings for System register accesses,
1146 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1148 static inline bool __attribute_const__ is_emulated(u32 id)
1150 return (sys_reg_Op0(id) == 0x3 &&
1151 sys_reg_CRn(id) == 0x0 &&
1152 sys_reg_Op1(id) == 0x0 &&
1153 (sys_reg_CRm(id) == 0 ||
1154 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1158 * With CRm == 0, reg should be one of :
1159 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1161 static inline int emulate_id_reg(u32 id, u64 *valp)
1163 switch (id) {
1164 case SYS_MIDR_EL1:
1165 *valp = read_cpuid_id();
1166 break;
1167 case SYS_MPIDR_EL1:
1168 *valp = SYS_MPIDR_SAFE_VAL;
1169 break;
1170 case SYS_REVIDR_EL1:
1171 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1172 *valp = 0;
1173 break;
1174 default:
1175 return -EINVAL;
1178 return 0;
1181 static int emulate_sys_reg(u32 id, u64 *valp)
1183 struct arm64_ftr_reg *regp;
1185 if (!is_emulated(id))
1186 return -EINVAL;
1188 if (sys_reg_CRm(id) == 0)
1189 return emulate_id_reg(id, valp);
1191 regp = get_arm64_ftr_reg(id);
1192 if (regp)
1193 *valp = arm64_ftr_reg_user_value(regp);
1194 else
1196 * The untracked registers are either IMPLEMENTATION DEFINED
1197 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1199 *valp = 0;
1200 return 0;
1203 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1205 int rc;
1206 u32 sys_reg, dst;
1207 u64 val;
1210 * sys_reg values are defined as used in mrs/msr instruction.
1211 * shift the imm value to get the encoding.
1213 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1214 rc = emulate_sys_reg(sys_reg, &val);
1215 if (!rc) {
1216 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1217 pt_regs_write_reg(regs, dst, val);
1218 regs->pc += 4;
1221 return rc;
1224 static struct undef_hook mrs_hook = {
1225 .instr_mask = 0xfff00000,
1226 .instr_val = 0xd5300000,
1227 .pstate_mask = COMPAT_PSR_MODE_MASK,
1228 .pstate_val = PSR_MODE_EL0t,
1229 .fn = emulate_mrs,
1232 static int __init enable_mrs_emulation(void)
1234 register_undef_hook(&mrs_hook);
1235 return 0;
1238 late_initcall(enable_mrs_emulation);