2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
36 unsigned long elf_hwcap __read_mostly
;
37 EXPORT_SYMBOL_GPL(elf_hwcap
);
40 #define COMPAT_ELF_HWCAP_DEFAULT \
41 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 unsigned int compat_elf_hwcap __read_mostly
= COMPAT_ELF_HWCAP_DEFAULT
;
48 unsigned int compat_elf_hwcap2 __read_mostly
;
51 DECLARE_BITMAP(cpu_hwcaps
, ARM64_NCAPS
);
52 EXPORT_SYMBOL(cpu_hwcaps
);
54 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys
, ARM64_NCAPS
);
55 EXPORT_SYMBOL(cpu_hwcap_keys
);
57 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65 .safe_val = SAFE_VAL, \
68 /* Define a feature with unsigned values */
69 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
72 /* Define a feature with a signed value */
73 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
74 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
76 #define ARM64_FTR_END \
81 /* meta feature for alternatives */
82 static bool __maybe_unused
83 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
);
87 * NOTE: Any changes to the visibility of features should be kept in
88 * sync with the documentation of the CPU feature register ABI.
90 static const struct arm64_ftr_bits ftr_id_aa64isar0
[] = {
91 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, ID_AA64ISAR0_RDM_SHIFT
, 4, 0),
92 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_ATOMICS_SHIFT
, 4, 0),
93 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_CRC32_SHIFT
, 4, 0),
94 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA2_SHIFT
, 4, 0),
95 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA1_SHIFT
, 4, 0),
96 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_AES_SHIFT
, 4, 0),
100 static const struct arm64_ftr_bits ftr_id_aa64pfr0
[] = {
101 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_GIC_SHIFT
, 4, 0),
102 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_ASIMD_SHIFT
, 4, ID_AA64PFR0_ASIMD_NI
),
103 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_FP_SHIFT
, 4, ID_AA64PFR0_FP_NI
),
104 /* Linux doesn't care about the EL3 */
105 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64PFR0_EL3_SHIFT
, 4, 0),
106 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_EL2_SHIFT
, 4, 0),
107 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_EL1_SHIFT
, 4, ID_AA64PFR0_EL1_64BIT_ONLY
),
108 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_EL0_SHIFT
, 4, ID_AA64PFR0_EL0_64BIT_ONLY
),
112 static const struct arm64_ftr_bits ftr_id_aa64mmfr0
[] = {
113 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_TGRAN4_SHIFT
, 4, ID_AA64MMFR0_TGRAN4_NI
),
114 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_TGRAN64_SHIFT
, 4, ID_AA64MMFR0_TGRAN64_NI
),
115 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_TGRAN16_SHIFT
, 4, ID_AA64MMFR0_TGRAN16_NI
),
116 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_BIGENDEL0_SHIFT
, 4, 0),
117 /* Linux shouldn't care about secure memory */
118 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64MMFR0_SNSMEM_SHIFT
, 4, 0),
119 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_BIGENDEL_SHIFT
, 4, 0),
120 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_ASID_SHIFT
, 4, 0),
122 * Differing PARange is fine as long as all peripherals and memory are mapped
123 * within the minimum PARange of all CPUs
125 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_PARANGE_SHIFT
, 4, 0),
129 static const struct arm64_ftr_bits ftr_id_aa64mmfr1
[] = {
130 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_PAN_SHIFT
, 4, 0),
131 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_LOR_SHIFT
, 4, 0),
132 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_HPD_SHIFT
, 4, 0),
133 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_VHE_SHIFT
, 4, 0),
134 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_VMIDBITS_SHIFT
, 4, 0),
135 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_HADBS_SHIFT
, 4, 0),
139 static const struct arm64_ftr_bits ftr_id_aa64mmfr2
[] = {
140 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_LVA_SHIFT
, 4, 0),
141 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_IESB_SHIFT
, 4, 0),
142 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_LSM_SHIFT
, 4, 0),
143 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_UAO_SHIFT
, 4, 0),
144 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_CNP_SHIFT
, 4, 0),
148 static const struct arm64_ftr_bits ftr_ctr
[] = {
149 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 31, 1, 1), /* RAO */
150 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_SAFE
, 24, 4, 0), /* CWG */
151 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* ERG */
152 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 1), /* DminLine */
154 * Linux can handle differing I-cache policies. Userspace JITs will
155 * make use of *minLine.
156 * If we have differing I-cache policies, report it as the weakest - AIVIVT.
158 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_EXACT
, 14, 2, ICACHE_POLICY_AIVIVT
), /* L1Ip */
159 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* IminLine */
163 struct arm64_ftr_reg arm64_ftr_reg_ctrel0
= {
164 .name
= "SYS_CTR_EL0",
168 static const struct arm64_ftr_bits ftr_id_mmfr0
[] = {
169 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 28, 4, 0xf), /* InnerShr */
170 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 24, 4, 0), /* FCSE */
171 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* AuxReg */
172 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 16, 4, 0), /* TCM */
173 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 12, 4, 0), /* ShareLvl */
174 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 8, 4, 0xf), /* OuterShr */
175 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* PMSA */
176 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* VMSA */
180 static const struct arm64_ftr_bits ftr_id_aa64dfr0
[] = {
181 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 36, 28, 0),
182 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_PMSVER_SHIFT
, 4, 0),
183 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_CTX_CMPS_SHIFT
, 4, 0),
184 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_WRPS_SHIFT
, 4, 0),
185 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_BRPS_SHIFT
, 4, 0),
187 * We can instantiate multiple PMU instances with different levels
190 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64DFR0_PMUVER_SHIFT
, 4, 0),
191 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_TRACEVER_SHIFT
, 4, 0),
192 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_DEBUGVER_SHIFT
, 4, 0x6),
196 static const struct arm64_ftr_bits ftr_mvfr2
[] = {
197 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* FPMisc */
198 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* SIMDMisc */
202 static const struct arm64_ftr_bits ftr_dczid
[] = {
203 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 4, 1, 1), /* DZP */
204 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* BS */
209 static const struct arm64_ftr_bits ftr_id_isar5
[] = {
210 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_ISAR5_RDM_SHIFT
, 4, 0),
211 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_ISAR5_CRC32_SHIFT
, 4, 0),
212 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_ISAR5_SHA2_SHIFT
, 4, 0),
213 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_ISAR5_SHA1_SHIFT
, 4, 0),
214 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_ISAR5_AES_SHIFT
, 4, 0),
215 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_ISAR5_SEVL_SHIFT
, 4, 0),
219 static const struct arm64_ftr_bits ftr_id_mmfr4
[] = {
220 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* ac2 */
224 static const struct arm64_ftr_bits ftr_id_pfr0
[] = {
225 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 12, 4, 0), /* State3 */
226 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 8, 4, 0), /* State2 */
227 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* State1 */
228 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* State0 */
232 static const struct arm64_ftr_bits ftr_id_dfr0
[] = {
233 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
234 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0xf), /* PerfMon */
235 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
236 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
237 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
238 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
245 * Common ftr bits for a 32bit register with all hidden, strict
246 * attributes, with 4bit feature fields and a default safe value of
247 * 0. Covers the following 32bit registers:
248 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
250 static const struct arm64_ftr_bits ftr_generic_32bits
[] = {
251 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
252 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0),
253 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
254 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
255 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
256 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
257 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
258 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
262 /* Table for a single 32bit feature value */
263 static const struct arm64_ftr_bits ftr_single32
[] = {
264 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 32, 0),
268 static const struct arm64_ftr_bits ftr_raz
[] = {
272 #define ARM64_FTR_REG(id, table) { \
274 .reg = &(struct arm64_ftr_reg){ \
276 .ftr_bits = &((table)[0]), \
279 static const struct __ftr_reg_entry
{
281 struct arm64_ftr_reg
*reg
;
282 } arm64_ftr_regs
[] = {
284 /* Op1 = 0, CRn = 0, CRm = 1 */
285 ARM64_FTR_REG(SYS_ID_PFR0_EL1
, ftr_id_pfr0
),
286 ARM64_FTR_REG(SYS_ID_PFR1_EL1
, ftr_generic_32bits
),
287 ARM64_FTR_REG(SYS_ID_DFR0_EL1
, ftr_id_dfr0
),
288 ARM64_FTR_REG(SYS_ID_MMFR0_EL1
, ftr_id_mmfr0
),
289 ARM64_FTR_REG(SYS_ID_MMFR1_EL1
, ftr_generic_32bits
),
290 ARM64_FTR_REG(SYS_ID_MMFR2_EL1
, ftr_generic_32bits
),
291 ARM64_FTR_REG(SYS_ID_MMFR3_EL1
, ftr_generic_32bits
),
293 /* Op1 = 0, CRn = 0, CRm = 2 */
294 ARM64_FTR_REG(SYS_ID_ISAR0_EL1
, ftr_generic_32bits
),
295 ARM64_FTR_REG(SYS_ID_ISAR1_EL1
, ftr_generic_32bits
),
296 ARM64_FTR_REG(SYS_ID_ISAR2_EL1
, ftr_generic_32bits
),
297 ARM64_FTR_REG(SYS_ID_ISAR3_EL1
, ftr_generic_32bits
),
298 ARM64_FTR_REG(SYS_ID_ISAR4_EL1
, ftr_generic_32bits
),
299 ARM64_FTR_REG(SYS_ID_ISAR5_EL1
, ftr_id_isar5
),
300 ARM64_FTR_REG(SYS_ID_MMFR4_EL1
, ftr_id_mmfr4
),
302 /* Op1 = 0, CRn = 0, CRm = 3 */
303 ARM64_FTR_REG(SYS_MVFR0_EL1
, ftr_generic_32bits
),
304 ARM64_FTR_REG(SYS_MVFR1_EL1
, ftr_generic_32bits
),
305 ARM64_FTR_REG(SYS_MVFR2_EL1
, ftr_mvfr2
),
307 /* Op1 = 0, CRn = 0, CRm = 4 */
308 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1
, ftr_id_aa64pfr0
),
309 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1
, ftr_raz
),
311 /* Op1 = 0, CRn = 0, CRm = 5 */
312 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1
, ftr_id_aa64dfr0
),
313 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1
, ftr_raz
),
315 /* Op1 = 0, CRn = 0, CRm = 6 */
316 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1
, ftr_id_aa64isar0
),
317 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1
, ftr_raz
),
319 /* Op1 = 0, CRn = 0, CRm = 7 */
320 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1
, ftr_id_aa64mmfr0
),
321 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1
, ftr_id_aa64mmfr1
),
322 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1
, ftr_id_aa64mmfr2
),
324 /* Op1 = 3, CRn = 0, CRm = 0 */
325 { SYS_CTR_EL0
, &arm64_ftr_reg_ctrel0
},
326 ARM64_FTR_REG(SYS_DCZID_EL0
, ftr_dczid
),
328 /* Op1 = 3, CRn = 14, CRm = 0 */
329 ARM64_FTR_REG(SYS_CNTFRQ_EL0
, ftr_single32
),
332 static int search_cmp_ftr_reg(const void *id
, const void *regp
)
334 return (int)(unsigned long)id
- (int)((const struct __ftr_reg_entry
*)regp
)->sys_id
;
338 * get_arm64_ftr_reg - Lookup a feature register entry using its
339 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
340 * ascending order of sys_id , we use binary search to find a matching
343 * returns - Upon success, matching ftr_reg entry for id.
344 * - NULL on failure. It is upto the caller to decide
345 * the impact of a failure.
347 static struct arm64_ftr_reg
*get_arm64_ftr_reg(u32 sys_id
)
349 const struct __ftr_reg_entry
*ret
;
351 ret
= bsearch((const void *)(unsigned long)sys_id
,
353 ARRAY_SIZE(arm64_ftr_regs
),
354 sizeof(arm64_ftr_regs
[0]),
361 static u64
arm64_ftr_set_value(const struct arm64_ftr_bits
*ftrp
, s64 reg
,
364 u64 mask
= arm64_ftr_mask(ftrp
);
367 reg
|= (ftr_val
<< ftrp
->shift
) & mask
;
371 static s64
arm64_ftr_safe_value(const struct arm64_ftr_bits
*ftrp
, s64
new,
376 switch (ftrp
->type
) {
378 ret
= ftrp
->safe_val
;
381 ret
= new < cur
? new : cur
;
383 case FTR_HIGHER_SAFE
:
384 ret
= new > cur
? new : cur
;
393 static void __init
sort_ftr_regs(void)
397 /* Check that the array is sorted so that we can do the binary search */
398 for (i
= 1; i
< ARRAY_SIZE(arm64_ftr_regs
); i
++)
399 BUG_ON(arm64_ftr_regs
[i
].sys_id
< arm64_ftr_regs
[i
- 1].sys_id
);
403 * Initialise the CPU feature register from Boot CPU values.
404 * Also initiliases the strict_mask for the register.
405 * Any bits that are not covered by an arm64_ftr_bits entry are considered
406 * RES0 for the system-wide value, and must strictly match.
408 static void __init
init_cpu_ftr_reg(u32 sys_reg
, u64
new)
411 u64 strict_mask
= ~0x0ULL
;
415 const struct arm64_ftr_bits
*ftrp
;
416 struct arm64_ftr_reg
*reg
= get_arm64_ftr_reg(sys_reg
);
420 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
421 u64 ftr_mask
= arm64_ftr_mask(ftrp
);
422 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
424 val
= arm64_ftr_set_value(ftrp
, val
, ftr_new
);
426 valid_mask
|= ftr_mask
;
428 strict_mask
&= ~ftr_mask
;
430 user_mask
|= ftr_mask
;
432 reg
->user_val
= arm64_ftr_set_value(ftrp
,
440 reg
->strict_mask
= strict_mask
;
441 reg
->user_mask
= user_mask
;
444 void __init
init_cpu_features(struct cpuinfo_arm64
*info
)
446 /* Before we start using the tables, make sure it is sorted */
449 init_cpu_ftr_reg(SYS_CTR_EL0
, info
->reg_ctr
);
450 init_cpu_ftr_reg(SYS_DCZID_EL0
, info
->reg_dczid
);
451 init_cpu_ftr_reg(SYS_CNTFRQ_EL0
, info
->reg_cntfrq
);
452 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1
, info
->reg_id_aa64dfr0
);
453 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1
, info
->reg_id_aa64dfr1
);
454 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1
, info
->reg_id_aa64isar0
);
455 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1
, info
->reg_id_aa64isar1
);
456 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1
, info
->reg_id_aa64mmfr0
);
457 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1
, info
->reg_id_aa64mmfr1
);
458 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1
, info
->reg_id_aa64mmfr2
);
459 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1
, info
->reg_id_aa64pfr0
);
460 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1
, info
->reg_id_aa64pfr1
);
462 if (id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
463 init_cpu_ftr_reg(SYS_ID_DFR0_EL1
, info
->reg_id_dfr0
);
464 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1
, info
->reg_id_isar0
);
465 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1
, info
->reg_id_isar1
);
466 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1
, info
->reg_id_isar2
);
467 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1
, info
->reg_id_isar3
);
468 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, info
->reg_id_isar4
);
469 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1
, info
->reg_id_isar5
);
470 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1
, info
->reg_id_mmfr0
);
471 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1
, info
->reg_id_mmfr1
);
472 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1
, info
->reg_id_mmfr2
);
473 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1
, info
->reg_id_mmfr3
);
474 init_cpu_ftr_reg(SYS_ID_PFR0_EL1
, info
->reg_id_pfr0
);
475 init_cpu_ftr_reg(SYS_ID_PFR1_EL1
, info
->reg_id_pfr1
);
476 init_cpu_ftr_reg(SYS_MVFR0_EL1
, info
->reg_mvfr0
);
477 init_cpu_ftr_reg(SYS_MVFR1_EL1
, info
->reg_mvfr1
);
478 init_cpu_ftr_reg(SYS_MVFR2_EL1
, info
->reg_mvfr2
);
483 static void update_cpu_ftr_reg(struct arm64_ftr_reg
*reg
, u64
new)
485 const struct arm64_ftr_bits
*ftrp
;
487 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
488 s64 ftr_cur
= arm64_ftr_value(ftrp
, reg
->sys_val
);
489 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
491 if (ftr_cur
== ftr_new
)
493 /* Find a safe value */
494 ftr_new
= arm64_ftr_safe_value(ftrp
, ftr_new
, ftr_cur
);
495 reg
->sys_val
= arm64_ftr_set_value(ftrp
, reg
->sys_val
, ftr_new
);
500 static int check_update_ftr_reg(u32 sys_id
, int cpu
, u64 val
, u64 boot
)
502 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
505 update_cpu_ftr_reg(regp
, val
);
506 if ((boot
& regp
->strict_mask
) == (val
& regp
->strict_mask
))
508 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
509 regp
->name
, boot
, cpu
, val
);
514 * Update system wide CPU feature registers with the values from a
515 * non-boot CPU. Also performs SANITY checks to make sure that there
516 * aren't any insane variations from that of the boot CPU.
518 void update_cpu_features(int cpu
,
519 struct cpuinfo_arm64
*info
,
520 struct cpuinfo_arm64
*boot
)
525 * The kernel can handle differing I-cache policies, but otherwise
526 * caches should look identical. Userspace JITs will make use of
529 taint
|= check_update_ftr_reg(SYS_CTR_EL0
, cpu
,
530 info
->reg_ctr
, boot
->reg_ctr
);
533 * Userspace may perform DC ZVA instructions. Mismatched block sizes
534 * could result in too much or too little memory being zeroed if a
535 * process is preempted and migrated between CPUs.
537 taint
|= check_update_ftr_reg(SYS_DCZID_EL0
, cpu
,
538 info
->reg_dczid
, boot
->reg_dczid
);
540 /* If different, timekeeping will be broken (especially with KVM) */
541 taint
|= check_update_ftr_reg(SYS_CNTFRQ_EL0
, cpu
,
542 info
->reg_cntfrq
, boot
->reg_cntfrq
);
545 * The kernel uses self-hosted debug features and expects CPUs to
546 * support identical debug features. We presently need CTX_CMPs, WRPs,
547 * and BRPs to be identical.
548 * ID_AA64DFR1 is currently RES0.
550 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1
, cpu
,
551 info
->reg_id_aa64dfr0
, boot
->reg_id_aa64dfr0
);
552 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1
, cpu
,
553 info
->reg_id_aa64dfr1
, boot
->reg_id_aa64dfr1
);
555 * Even in big.LITTLE, processors should be identical instruction-set
558 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1
, cpu
,
559 info
->reg_id_aa64isar0
, boot
->reg_id_aa64isar0
);
560 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1
, cpu
,
561 info
->reg_id_aa64isar1
, boot
->reg_id_aa64isar1
);
564 * Differing PARange support is fine as long as all peripherals and
565 * memory are mapped within the minimum PARange of all CPUs.
566 * Linux should not care about secure memory.
568 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1
, cpu
,
569 info
->reg_id_aa64mmfr0
, boot
->reg_id_aa64mmfr0
);
570 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1
, cpu
,
571 info
->reg_id_aa64mmfr1
, boot
->reg_id_aa64mmfr1
);
572 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1
, cpu
,
573 info
->reg_id_aa64mmfr2
, boot
->reg_id_aa64mmfr2
);
576 * EL3 is not our concern.
577 * ID_AA64PFR1 is currently RES0.
579 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1
, cpu
,
580 info
->reg_id_aa64pfr0
, boot
->reg_id_aa64pfr0
);
581 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1
, cpu
,
582 info
->reg_id_aa64pfr1
, boot
->reg_id_aa64pfr1
);
585 * If we have AArch32, we care about 32-bit features for compat.
586 * If the system doesn't support AArch32, don't update them.
588 if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1
)) &&
589 id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
591 taint
|= check_update_ftr_reg(SYS_ID_DFR0_EL1
, cpu
,
592 info
->reg_id_dfr0
, boot
->reg_id_dfr0
);
593 taint
|= check_update_ftr_reg(SYS_ID_ISAR0_EL1
, cpu
,
594 info
->reg_id_isar0
, boot
->reg_id_isar0
);
595 taint
|= check_update_ftr_reg(SYS_ID_ISAR1_EL1
, cpu
,
596 info
->reg_id_isar1
, boot
->reg_id_isar1
);
597 taint
|= check_update_ftr_reg(SYS_ID_ISAR2_EL1
, cpu
,
598 info
->reg_id_isar2
, boot
->reg_id_isar2
);
599 taint
|= check_update_ftr_reg(SYS_ID_ISAR3_EL1
, cpu
,
600 info
->reg_id_isar3
, boot
->reg_id_isar3
);
601 taint
|= check_update_ftr_reg(SYS_ID_ISAR4_EL1
, cpu
,
602 info
->reg_id_isar4
, boot
->reg_id_isar4
);
603 taint
|= check_update_ftr_reg(SYS_ID_ISAR5_EL1
, cpu
,
604 info
->reg_id_isar5
, boot
->reg_id_isar5
);
607 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
608 * ACTLR formats could differ across CPUs and therefore would have to
609 * be trapped for virtualization anyway.
611 taint
|= check_update_ftr_reg(SYS_ID_MMFR0_EL1
, cpu
,
612 info
->reg_id_mmfr0
, boot
->reg_id_mmfr0
);
613 taint
|= check_update_ftr_reg(SYS_ID_MMFR1_EL1
, cpu
,
614 info
->reg_id_mmfr1
, boot
->reg_id_mmfr1
);
615 taint
|= check_update_ftr_reg(SYS_ID_MMFR2_EL1
, cpu
,
616 info
->reg_id_mmfr2
, boot
->reg_id_mmfr2
);
617 taint
|= check_update_ftr_reg(SYS_ID_MMFR3_EL1
, cpu
,
618 info
->reg_id_mmfr3
, boot
->reg_id_mmfr3
);
619 taint
|= check_update_ftr_reg(SYS_ID_PFR0_EL1
, cpu
,
620 info
->reg_id_pfr0
, boot
->reg_id_pfr0
);
621 taint
|= check_update_ftr_reg(SYS_ID_PFR1_EL1
, cpu
,
622 info
->reg_id_pfr1
, boot
->reg_id_pfr1
);
623 taint
|= check_update_ftr_reg(SYS_MVFR0_EL1
, cpu
,
624 info
->reg_mvfr0
, boot
->reg_mvfr0
);
625 taint
|= check_update_ftr_reg(SYS_MVFR1_EL1
, cpu
,
626 info
->reg_mvfr1
, boot
->reg_mvfr1
);
627 taint
|= check_update_ftr_reg(SYS_MVFR2_EL1
, cpu
,
628 info
->reg_mvfr2
, boot
->reg_mvfr2
);
632 * Mismatched CPU features are a recipe for disaster. Don't even
633 * pretend to support them.
635 WARN_TAINT_ONCE(taint
, TAINT_CPU_OUT_OF_SPEC
,
636 "Unsupported CPU feature variation.\n");
639 u64
read_system_reg(u32 id
)
641 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(id
);
643 /* We shouldn't get a request for an unsupported register */
645 return regp
->sys_val
;
648 #define read_sysreg_case(r) \
649 case r: return read_sysreg_s(r)
652 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
653 * Read the system register on the current CPU
655 static u64
__raw_read_system_reg(u32 sys_id
)
658 read_sysreg_case(SYS_ID_PFR0_EL1
);
659 read_sysreg_case(SYS_ID_PFR1_EL1
);
660 read_sysreg_case(SYS_ID_DFR0_EL1
);
661 read_sysreg_case(SYS_ID_MMFR0_EL1
);
662 read_sysreg_case(SYS_ID_MMFR1_EL1
);
663 read_sysreg_case(SYS_ID_MMFR2_EL1
);
664 read_sysreg_case(SYS_ID_MMFR3_EL1
);
665 read_sysreg_case(SYS_ID_ISAR0_EL1
);
666 read_sysreg_case(SYS_ID_ISAR1_EL1
);
667 read_sysreg_case(SYS_ID_ISAR2_EL1
);
668 read_sysreg_case(SYS_ID_ISAR3_EL1
);
669 read_sysreg_case(SYS_ID_ISAR4_EL1
);
670 read_sysreg_case(SYS_ID_ISAR5_EL1
);
671 read_sysreg_case(SYS_MVFR0_EL1
);
672 read_sysreg_case(SYS_MVFR1_EL1
);
673 read_sysreg_case(SYS_MVFR2_EL1
);
675 read_sysreg_case(SYS_ID_AA64PFR0_EL1
);
676 read_sysreg_case(SYS_ID_AA64PFR1_EL1
);
677 read_sysreg_case(SYS_ID_AA64DFR0_EL1
);
678 read_sysreg_case(SYS_ID_AA64DFR1_EL1
);
679 read_sysreg_case(SYS_ID_AA64MMFR0_EL1
);
680 read_sysreg_case(SYS_ID_AA64MMFR1_EL1
);
681 read_sysreg_case(SYS_ID_AA64MMFR2_EL1
);
682 read_sysreg_case(SYS_ID_AA64ISAR0_EL1
);
683 read_sysreg_case(SYS_ID_AA64ISAR1_EL1
);
685 read_sysreg_case(SYS_CNTFRQ_EL0
);
686 read_sysreg_case(SYS_CTR_EL0
);
687 read_sysreg_case(SYS_DCZID_EL0
);
695 #include <linux/irqchip/arm-gic-v3.h>
698 feature_matches(u64 reg
, const struct arm64_cpu_capabilities
*entry
)
700 int val
= cpuid_feature_extract_field(reg
, entry
->field_pos
, entry
->sign
);
702 return val
>= entry
->min_field_value
;
706 has_cpuid_feature(const struct arm64_cpu_capabilities
*entry
, int scope
)
710 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
711 if (scope
== SCOPE_SYSTEM
)
712 val
= read_system_reg(entry
->sys_reg
);
714 val
= __raw_read_system_reg(entry
->sys_reg
);
716 return feature_matches(val
, entry
);
719 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities
*entry
, int scope
)
723 if (!has_cpuid_feature(entry
, scope
))
726 has_sre
= gic_enable_sre();
728 pr_warn_once("%s present but disabled by higher exception level\n",
734 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities
*entry
, int __unused
)
736 u32 midr
= read_cpuid_id();
738 /* Cavium ThunderX pass 1.x and 2.x */
739 return MIDR_IS_CPU_MODEL_RANGE(midr
, MIDR_THUNDERX
,
740 MIDR_CPU_VAR_REV(0, 0),
741 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK
));
744 static bool runs_at_el2(const struct arm64_cpu_capabilities
*entry
, int __unused
)
746 return is_kernel_in_hyp_mode();
749 static bool hyp_offset_low(const struct arm64_cpu_capabilities
*entry
,
752 phys_addr_t idmap_addr
= __pa_symbol(__hyp_idmap_text_start
);
755 * Activate the lower HYP offset only if:
756 * - the idmap doesn't clash with it,
757 * - the kernel is not running at EL2.
759 return idmap_addr
> GENMASK(VA_BITS
- 2, 0) && !is_kernel_in_hyp_mode();
762 static bool has_no_fpsimd(const struct arm64_cpu_capabilities
*entry
, int __unused
)
764 u64 pfr0
= read_system_reg(SYS_ID_AA64PFR0_EL1
);
766 return cpuid_feature_extract_signed_field(pfr0
,
767 ID_AA64PFR0_FP_SHIFT
) < 0;
770 static const struct arm64_cpu_capabilities arm64_features
[] = {
772 .desc
= "GIC system register CPU interface",
773 .capability
= ARM64_HAS_SYSREG_GIC_CPUIF
,
774 .def_scope
= SCOPE_SYSTEM
,
775 .matches
= has_useable_gicv3_cpuif
,
776 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
777 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
778 .sign
= FTR_UNSIGNED
,
779 .min_field_value
= 1,
781 #ifdef CONFIG_ARM64_PAN
783 .desc
= "Privileged Access Never",
784 .capability
= ARM64_HAS_PAN
,
785 .def_scope
= SCOPE_SYSTEM
,
786 .matches
= has_cpuid_feature
,
787 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
788 .field_pos
= ID_AA64MMFR1_PAN_SHIFT
,
789 .sign
= FTR_UNSIGNED
,
790 .min_field_value
= 1,
791 .enable
= cpu_enable_pan
,
793 #endif /* CONFIG_ARM64_PAN */
794 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
796 .desc
= "LSE atomic instructions",
797 .capability
= ARM64_HAS_LSE_ATOMICS
,
798 .def_scope
= SCOPE_SYSTEM
,
799 .matches
= has_cpuid_feature
,
800 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
801 .field_pos
= ID_AA64ISAR0_ATOMICS_SHIFT
,
802 .sign
= FTR_UNSIGNED
,
803 .min_field_value
= 2,
805 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
807 .desc
= "Software prefetching using PRFM",
808 .capability
= ARM64_HAS_NO_HW_PREFETCH
,
809 .def_scope
= SCOPE_SYSTEM
,
810 .matches
= has_no_hw_prefetch
,
812 #ifdef CONFIG_ARM64_UAO
814 .desc
= "User Access Override",
815 .capability
= ARM64_HAS_UAO
,
816 .def_scope
= SCOPE_SYSTEM
,
817 .matches
= has_cpuid_feature
,
818 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
819 .field_pos
= ID_AA64MMFR2_UAO_SHIFT
,
820 .min_field_value
= 1,
822 * We rely on stop_machine() calling uao_thread_switch() to set
823 * UAO immediately after patching.
826 #endif /* CONFIG_ARM64_UAO */
827 #ifdef CONFIG_ARM64_PAN
829 .capability
= ARM64_ALT_PAN_NOT_UAO
,
830 .def_scope
= SCOPE_SYSTEM
,
831 .matches
= cpufeature_pan_not_uao
,
833 #endif /* CONFIG_ARM64_PAN */
835 .desc
= "Virtualization Host Extensions",
836 .capability
= ARM64_HAS_VIRT_HOST_EXTN
,
837 .def_scope
= SCOPE_SYSTEM
,
838 .matches
= runs_at_el2
,
841 .desc
= "32-bit EL0 Support",
842 .capability
= ARM64_HAS_32BIT_EL0
,
843 .def_scope
= SCOPE_SYSTEM
,
844 .matches
= has_cpuid_feature
,
845 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
846 .sign
= FTR_UNSIGNED
,
847 .field_pos
= ID_AA64PFR0_EL0_SHIFT
,
848 .min_field_value
= ID_AA64PFR0_EL0_32BIT_64BIT
,
851 .desc
= "Reduced HYP mapping offset",
852 .capability
= ARM64_HYP_OFFSET_LOW
,
853 .def_scope
= SCOPE_SYSTEM
,
854 .matches
= hyp_offset_low
,
857 /* FP/SIMD is not implemented */
858 .capability
= ARM64_HAS_NO_FPSIMD
,
859 .def_scope
= SCOPE_SYSTEM
,
860 .min_field_value
= 0,
861 .matches
= has_no_fpsimd
,
866 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
869 .def_scope = SCOPE_SYSTEM, \
870 .matches = has_cpuid_feature, \
872 .field_pos = field, \
874 .min_field_value = min_value, \
875 .hwcap_type = type, \
879 static const struct arm64_cpu_capabilities arm64_elf_hwcaps
[] = {
880 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_PMULL
),
881 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_AES
),
882 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA1
),
883 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA2
),
884 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_CRC32
),
885 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_ATOMICS_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_ATOMICS
),
886 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_RDM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDRDM
),
887 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, HWCAP_FP
),
888 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, HWCAP_FPHP
),
889 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, HWCAP_ASIMD
),
890 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDHP
),
894 static const struct arm64_cpu_capabilities compat_elf_hwcaps
[] = {
896 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_PMULL
),
897 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_AES
),
898 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA1
),
899 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA2
),
900 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_CRC32
),
905 static void __init
cap_set_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
907 switch (cap
->hwcap_type
) {
909 elf_hwcap
|= cap
->hwcap
;
912 case CAP_COMPAT_HWCAP
:
913 compat_elf_hwcap
|= (u32
)cap
->hwcap
;
915 case CAP_COMPAT_HWCAP2
:
916 compat_elf_hwcap2
|= (u32
)cap
->hwcap
;
925 /* Check if we have a particular HWCAP enabled */
926 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
930 switch (cap
->hwcap_type
) {
932 rc
= (elf_hwcap
& cap
->hwcap
) != 0;
935 case CAP_COMPAT_HWCAP
:
936 rc
= (compat_elf_hwcap
& (u32
)cap
->hwcap
) != 0;
938 case CAP_COMPAT_HWCAP2
:
939 rc
= (compat_elf_hwcap2
& (u32
)cap
->hwcap
) != 0;
950 static void __init
setup_elf_hwcaps(const struct arm64_cpu_capabilities
*hwcaps
)
952 /* We support emulation of accesses to CPU ID feature registers */
953 elf_hwcap
|= HWCAP_CPUID
;
954 for (; hwcaps
->matches
; hwcaps
++)
955 if (hwcaps
->matches(hwcaps
, hwcaps
->def_scope
))
956 cap_set_elf_hwcap(hwcaps
);
959 void update_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
,
962 for (; caps
->matches
; caps
++) {
963 if (!caps
->matches(caps
, caps
->def_scope
))
966 if (!cpus_have_cap(caps
->capability
) && caps
->desc
)
967 pr_info("%s %s\n", info
, caps
->desc
);
968 cpus_set_cap(caps
->capability
);
973 * Run through the enabled capabilities and enable() it on all active
976 void __init
enable_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
)
978 for (; caps
->matches
; caps
++)
979 if (caps
->enable
&& cpus_have_cap(caps
->capability
))
981 * Use stop_machine() as it schedules the work allowing
982 * us to modify PSTATE, instead of on_each_cpu() which
983 * uses an IPI, giving us a PSTATE that disappears when
986 stop_machine(caps
->enable
, NULL
, cpu_online_mask
);
990 * Flag to indicate if we have computed the system wide
991 * capabilities based on the boot time active CPUs. This
992 * will be used to determine if a new booting CPU should
993 * go through the verification process to make sure that it
994 * supports the system capabilities, without using a hotplug
997 static bool sys_caps_initialised
;
999 static inline void set_sys_caps_initialised(void)
1001 sys_caps_initialised
= true;
1005 * Check for CPU features that are used in early boot
1006 * based on the Boot CPU value.
1008 static void check_early_cpu_features(void)
1010 verify_cpu_run_el();
1011 verify_cpu_asid_bits();
1015 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities
*caps
)
1018 for (; caps
->matches
; caps
++)
1019 if (cpus_have_elf_hwcap(caps
) && !caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
1020 pr_crit("CPU%d: missing HWCAP: %s\n",
1021 smp_processor_id(), caps
->desc
);
1027 verify_local_cpu_features(const struct arm64_cpu_capabilities
*caps
)
1029 for (; caps
->matches
; caps
++) {
1030 if (!cpus_have_cap(caps
->capability
))
1033 * If the new CPU misses an advertised feature, we cannot proceed
1034 * further, park the cpu.
1036 if (!caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
1037 pr_crit("CPU%d: missing feature: %s\n",
1038 smp_processor_id(), caps
->desc
);
1047 * Run through the enabled system capabilities and enable() it on this CPU.
1048 * The capabilities were decided based on the available CPUs at the boot time.
1049 * Any new CPU should match the system wide status of the capability. If the
1050 * new CPU doesn't have a capability which the system now has enabled, we
1051 * cannot do anything to fix it up and could cause unexpected failures. So
1054 static void verify_local_cpu_capabilities(void)
1056 verify_local_cpu_errata_workarounds();
1057 verify_local_cpu_features(arm64_features
);
1058 verify_local_elf_hwcaps(arm64_elf_hwcaps
);
1059 if (system_supports_32bit_el0())
1060 verify_local_elf_hwcaps(compat_elf_hwcaps
);
1063 void check_local_cpu_capabilities(void)
1066 * All secondary CPUs should conform to the early CPU features
1067 * in use by the kernel based on boot CPU.
1069 check_early_cpu_features();
1072 * If we haven't finalised the system capabilities, this CPU gets
1073 * a chance to update the errata work arounds.
1074 * Otherwise, this CPU should verify that it has all the system
1075 * advertised capabilities.
1077 if (!sys_caps_initialised
)
1078 update_cpu_errata_workarounds();
1080 verify_local_cpu_capabilities();
1083 static void __init
setup_feature_capabilities(void)
1085 update_cpu_capabilities(arm64_features
, "detected feature:");
1086 enable_cpu_capabilities(arm64_features
);
1090 * Check if the current CPU has a given feature capability.
1091 * Should be called from non-preemptible context.
1093 bool this_cpu_has_cap(unsigned int cap
)
1095 const struct arm64_cpu_capabilities
*caps
;
1097 if (WARN_ON(preemptible()))
1100 for (caps
= arm64_features
; caps
->desc
; caps
++)
1101 if (caps
->capability
== cap
&& caps
->matches
)
1102 return caps
->matches(caps
, SCOPE_LOCAL_CPU
);
1107 void __init
setup_cpu_features(void)
1112 /* Set the CPU feature capabilies */
1113 setup_feature_capabilities();
1114 enable_errata_workarounds();
1115 setup_elf_hwcaps(arm64_elf_hwcaps
);
1117 if (system_supports_32bit_el0())
1118 setup_elf_hwcaps(compat_elf_hwcaps
);
1120 /* Advertise that we have computed the system capabilities */
1121 set_sys_caps_initialised();
1124 * Check for sane CTR_EL0.CWG value.
1126 cwg
= cache_type_cwg();
1127 cls
= cache_line_size();
1129 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1131 if (L1_CACHE_BYTES
< cls
)
1132 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1133 L1_CACHE_BYTES
, cls
);
1136 static bool __maybe_unused
1137 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
)
1139 return (cpus_have_const_cap(ARM64_HAS_PAN
) && !cpus_have_const_cap(ARM64_HAS_UAO
));
1143 * We emulate only the following system register space.
1144 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1145 * See Table C5-6 System instruction encodings for System register accesses,
1146 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1148 static inline bool __attribute_const__
is_emulated(u32 id
)
1150 return (sys_reg_Op0(id
) == 0x3 &&
1151 sys_reg_CRn(id
) == 0x0 &&
1152 sys_reg_Op1(id
) == 0x0 &&
1153 (sys_reg_CRm(id
) == 0 ||
1154 ((sys_reg_CRm(id
) >= 4) && (sys_reg_CRm(id
) <= 7))));
1158 * With CRm == 0, reg should be one of :
1159 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1161 static inline int emulate_id_reg(u32 id
, u64
*valp
)
1165 *valp
= read_cpuid_id();
1168 *valp
= SYS_MPIDR_SAFE_VAL
;
1170 case SYS_REVIDR_EL1
:
1171 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1181 static int emulate_sys_reg(u32 id
, u64
*valp
)
1183 struct arm64_ftr_reg
*regp
;
1185 if (!is_emulated(id
))
1188 if (sys_reg_CRm(id
) == 0)
1189 return emulate_id_reg(id
, valp
);
1191 regp
= get_arm64_ftr_reg(id
);
1193 *valp
= arm64_ftr_reg_user_value(regp
);
1196 * The untracked registers are either IMPLEMENTATION DEFINED
1197 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1203 static int emulate_mrs(struct pt_regs
*regs
, u32 insn
)
1210 * sys_reg values are defined as used in mrs/msr instruction.
1211 * shift the imm value to get the encoding.
1213 sys_reg
= (u32
)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16
, insn
) << 5;
1214 rc
= emulate_sys_reg(sys_reg
, &val
);
1216 dst
= aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT
, insn
);
1217 pt_regs_write_reg(regs
, dst
, val
);
1224 static struct undef_hook mrs_hook
= {
1225 .instr_mask
= 0xfff00000,
1226 .instr_val
= 0xd5300000,
1227 .pstate_mask
= COMPAT_PSR_MODE_MASK
,
1228 .pstate_val
= PSR_MODE_EL0t
,
1232 static int __init
enable_mrs_emulation(void)
1234 register_undef_hook(&mrs_hook
);
1238 late_initcall(enable_mrs_emulation
);