x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / arm64 / kvm / hyp / switch.c
blobaede1658aedad21bca3a2caf73e423efe042dcf9
1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/types.h>
19 #include <linux/jump_label.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/fpsimd.h>
26 static bool __hyp_text __fpsimd_enabled_nvhe(void)
28 return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
31 static bool __hyp_text __fpsimd_enabled_vhe(void)
33 return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
36 static hyp_alternate_select(__fpsimd_is_enabled,
37 __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
38 ARM64_HAS_VIRT_HOST_EXTN);
40 bool __hyp_text __fpsimd_enabled(void)
42 return __fpsimd_is_enabled()();
45 static void __hyp_text __activate_traps_vhe(void)
47 u64 val;
49 val = read_sysreg(cpacr_el1);
50 val |= CPACR_EL1_TTA;
51 val &= ~CPACR_EL1_FPEN;
52 write_sysreg(val, cpacr_el1);
54 write_sysreg(__kvm_hyp_vector, vbar_el1);
57 static void __hyp_text __activate_traps_nvhe(void)
59 u64 val;
61 val = CPTR_EL2_DEFAULT;
62 val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
63 write_sysreg(val, cptr_el2);
66 static hyp_alternate_select(__activate_traps_arch,
67 __activate_traps_nvhe, __activate_traps_vhe,
68 ARM64_HAS_VIRT_HOST_EXTN);
70 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
72 u64 val;
75 * We are about to set CPTR_EL2.TFP to trap all floating point
76 * register accesses to EL2, however, the ARM ARM clearly states that
77 * traps are only taken to EL2 if the operation would not otherwise
78 * trap to EL1. Therefore, always make sure that for 32-bit guests,
79 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
80 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
81 * it will cause an exception.
83 val = vcpu->arch.hcr_el2;
84 if (!(val & HCR_RW) && system_supports_fpsimd()) {
85 write_sysreg(1 << 30, fpexc32_el2);
86 isb();
88 write_sysreg(val, hcr_el2);
89 /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
90 write_sysreg(1 << 15, hstr_el2);
92 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
93 * PMSELR_EL0 to make sure it never contains the cycle
94 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
95 * EL1 instead of being trapped to EL2.
97 write_sysreg(0, pmselr_el0);
98 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
99 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
100 __activate_traps_arch()();
103 static void __hyp_text __deactivate_traps_vhe(void)
105 extern char vectors[]; /* kernel exception vectors */
106 u64 mdcr_el2 = read_sysreg(mdcr_el2);
108 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
109 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
110 MDCR_EL2_TPMS;
112 write_sysreg(mdcr_el2, mdcr_el2);
113 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
114 write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
115 write_sysreg(vectors, vbar_el1);
118 static void __hyp_text __deactivate_traps_nvhe(void)
120 u64 mdcr_el2 = read_sysreg(mdcr_el2);
122 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
123 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
125 write_sysreg(mdcr_el2, mdcr_el2);
126 write_sysreg(HCR_RW, hcr_el2);
127 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
130 static hyp_alternate_select(__deactivate_traps_arch,
131 __deactivate_traps_nvhe, __deactivate_traps_vhe,
132 ARM64_HAS_VIRT_HOST_EXTN);
134 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
137 * If we pended a virtual abort, preserve it until it gets
138 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
139 * the crucial bit is "On taking a vSError interrupt,
140 * HCR_EL2.VSE is cleared to 0."
142 if (vcpu->arch.hcr_el2 & HCR_VSE)
143 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
145 __deactivate_traps_arch()();
146 write_sysreg(0, hstr_el2);
147 write_sysreg(0, pmuserenr_el0);
150 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
152 struct kvm *kvm = kern_hyp_va(vcpu->kvm);
153 write_sysreg(kvm->arch.vttbr, vttbr_el2);
156 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
158 write_sysreg(0, vttbr_el2);
161 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
163 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
164 __vgic_v3_save_state(vcpu);
165 else
166 __vgic_v2_save_state(vcpu);
168 write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
171 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
173 u64 val;
175 val = read_sysreg(hcr_el2);
176 val |= HCR_INT_OVERRIDE;
177 val |= vcpu->arch.irq_lines;
178 write_sysreg(val, hcr_el2);
180 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
181 __vgic_v3_restore_state(vcpu);
182 else
183 __vgic_v2_restore_state(vcpu);
186 static bool __hyp_text __true_value(void)
188 return true;
191 static bool __hyp_text __false_value(void)
193 return false;
196 static hyp_alternate_select(__check_arm_834220,
197 __false_value, __true_value,
198 ARM64_WORKAROUND_834220);
200 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
202 u64 par, tmp;
205 * Resolve the IPA the hard way using the guest VA.
207 * Stage-1 translation already validated the memory access
208 * rights. As such, we can use the EL1 translation regime, and
209 * don't have to distinguish between EL0 and EL1 access.
211 * We do need to save/restore PAR_EL1 though, as we haven't
212 * saved the guest context yet, and we may return early...
214 par = read_sysreg(par_el1);
215 asm volatile("at s1e1r, %0" : : "r" (far));
216 isb();
218 tmp = read_sysreg(par_el1);
219 write_sysreg(par, par_el1);
221 if (unlikely(tmp & 1))
222 return false; /* Translation failed, back to guest */
224 /* Convert PAR to HPFAR format */
225 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
226 return true;
229 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
231 u64 esr = read_sysreg_el2(esr);
232 u8 ec = ESR_ELx_EC(esr);
233 u64 hpfar, far;
235 vcpu->arch.fault.esr_el2 = esr;
237 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
238 return true;
240 far = read_sysreg_el2(far);
243 * The HPFAR can be invalid if the stage 2 fault did not
244 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
245 * bit is clear) and one of the two following cases are true:
246 * 1. The fault was due to a permission fault
247 * 2. The processor carries errata 834220
249 * Therefore, for all non S1PTW faults where we either have a
250 * permission fault or the errata workaround is enabled, we
251 * resolve the IPA using the AT instruction.
253 if (!(esr & ESR_ELx_S1PTW) &&
254 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
255 if (!__translate_far_to_hpfar(far, &hpfar))
256 return false;
257 } else {
258 hpfar = read_sysreg(hpfar_el2);
261 vcpu->arch.fault.far_el2 = far;
262 vcpu->arch.fault.hpfar_el2 = hpfar;
263 return true;
266 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
268 *vcpu_pc(vcpu) = read_sysreg_el2(elr);
270 if (vcpu_mode_is_32bit(vcpu)) {
271 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
272 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
273 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
274 } else {
275 *vcpu_pc(vcpu) += 4;
278 write_sysreg_el2(*vcpu_pc(vcpu), elr);
281 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
283 struct kvm_cpu_context *host_ctxt;
284 struct kvm_cpu_context *guest_ctxt;
285 bool fp_enabled;
286 u64 exit_code;
288 vcpu = kern_hyp_va(vcpu);
289 write_sysreg(vcpu, tpidr_el2);
291 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
292 guest_ctxt = &vcpu->arch.ctxt;
294 __sysreg_save_host_state(host_ctxt);
295 __debug_cond_save_host_state(vcpu);
297 __activate_traps(vcpu);
298 __activate_vm(vcpu);
300 __vgic_restore_state(vcpu);
301 __timer_restore_state(vcpu);
304 * We must restore the 32-bit state before the sysregs, thanks
305 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
307 __sysreg32_restore_state(vcpu);
308 __sysreg_restore_guest_state(guest_ctxt);
309 __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
311 /* Jump in the fire! */
312 again:
313 exit_code = __guest_enter(vcpu, host_ctxt);
314 /* And we're baaack! */
317 * We're using the raw exception code in order to only process
318 * the trap if no SError is pending. We will come back to the
319 * same PC once the SError has been injected, and replay the
320 * trapping instruction.
322 if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
323 goto again;
325 if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
326 exit_code == ARM_EXCEPTION_TRAP) {
327 bool valid;
329 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
330 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
331 kvm_vcpu_dabt_isvalid(vcpu) &&
332 !kvm_vcpu_dabt_isextabt(vcpu) &&
333 !kvm_vcpu_dabt_iss1tw(vcpu);
335 if (valid) {
336 int ret = __vgic_v2_perform_cpuif_access(vcpu);
338 if (ret == 1) {
339 __skip_instr(vcpu);
340 goto again;
343 if (ret == -1) {
344 /* Promote an illegal access to an SError */
345 __skip_instr(vcpu);
346 exit_code = ARM_EXCEPTION_EL1_SERROR;
349 /* 0 falls through to be handler out of EL2 */
353 fp_enabled = __fpsimd_enabled();
355 __sysreg_save_guest_state(guest_ctxt);
356 __sysreg32_save_state(vcpu);
357 __timer_save_state(vcpu);
358 __vgic_save_state(vcpu);
360 __deactivate_traps(vcpu);
361 __deactivate_vm(vcpu);
363 __sysreg_restore_host_state(host_ctxt);
365 if (fp_enabled) {
366 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
367 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
370 __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
372 * This must come after restoring the host sysregs, since a non-VHE
373 * system may enable SPE here and make use of the TTBRs.
375 __debug_cond_restore_host_state(vcpu);
377 return exit_code;
380 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
382 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par)
384 unsigned long str_va;
387 * Force the panic string to be loaded from the literal pool,
388 * making sure it is a kernel address and not a PC-relative
389 * reference.
391 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
393 __hyp_do_panic(str_va,
394 spsr, elr,
395 read_sysreg(esr_el2), read_sysreg_el2(far),
396 read_sysreg(hpfar_el2), par,
397 (void *)read_sysreg(tpidr_el2));
400 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par)
402 panic(__hyp_panic_string,
403 spsr, elr,
404 read_sysreg_el2(esr), read_sysreg_el2(far),
405 read_sysreg(hpfar_el2), par,
406 (void *)read_sysreg(tpidr_el2));
409 static hyp_alternate_select(__hyp_call_panic,
410 __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
411 ARM64_HAS_VIRT_HOST_EXTN);
413 void __hyp_text __noreturn __hyp_panic(void)
415 u64 spsr = read_sysreg_el2(spsr);
416 u64 elr = read_sysreg_el2(elr);
417 u64 par = read_sysreg(par_el1);
419 if (read_sysreg(vttbr_el2)) {
420 struct kvm_vcpu *vcpu;
421 struct kvm_cpu_context *host_ctxt;
423 vcpu = (struct kvm_vcpu *)read_sysreg(tpidr_el2);
424 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
425 __deactivate_traps(vcpu);
426 __deactivate_vm(vcpu);
427 __sysreg_restore_host_state(host_ctxt);
430 /* Call panic for real */
431 __hyp_call_panic()(spsr, elr, par);
433 unreachable();