x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / powerpc / include / asm / book3s / 64 / hash-64k.h
blobf3dd21efa2ead0e059fcfcca0056a20c22d56131
1 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
2 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4 #define H_PTE_INDEX_SIZE 8
5 #define H_PMD_INDEX_SIZE 5
6 #define H_PUD_INDEX_SIZE 5
7 #define H_PGD_INDEX_SIZE 12
9 #define H_PAGE_COMBO 0x00001000 /* this is a combo 4k page */
10 #define H_PAGE_4K_PFN 0x00002000 /* PFN is for a single 4k page */
12 * We need to differentiate between explicit huge page and THP huge
13 * page, since THP huge page also need to track real subpage details
15 #define H_PAGE_THP_HUGE H_PAGE_4K_PFN
18 * Used to track subpage group valid if H_PAGE_COMBO is set
19 * This overloads H_PAGE_F_GIX and H_PAGE_F_SECOND
21 #define H_PAGE_COMBO_VALID (H_PAGE_F_GIX | H_PAGE_F_SECOND)
23 /* PTE flags to conserve for HPTE identification */
24 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_F_SECOND | \
25 H_PAGE_F_GIX | H_PAGE_HASHPTE | H_PAGE_COMBO)
27 * we support 16 fragments per PTE page of 64K size.
29 #define H_PTE_FRAG_NR 16
31 * We use a 2K PTE page fragment and another 2K for storing
32 * real_pte_t hash index
34 #define H_PTE_FRAG_SIZE_SHIFT 12
35 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
37 #ifndef __ASSEMBLY__
38 #include <asm/errno.h>
41 * With 64K pages on hash table, we have a special PTE format that
42 * uses a second "half" of the page table to encode sub-page information
43 * in order to deal with 64K made of 4K HW pages. Thus we override the
44 * generic accessors and iterators here
46 #define __real_pte __real_pte
47 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep)
49 real_pte_t rpte;
50 unsigned long *hidxp;
52 rpte.pte = pte;
53 rpte.hidx = 0;
54 if (pte_val(pte) & H_PAGE_COMBO) {
56 * Make sure we order the hidx load against the H_PAGE_COMBO
57 * check. The store side ordering is done in __hash_page_4K
59 smp_rmb();
60 hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
61 rpte.hidx = *hidxp;
63 return rpte;
66 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
68 if ((pte_val(rpte.pte) & H_PAGE_COMBO))
69 return (rpte.hidx >> (index<<2)) & 0xf;
70 return (pte_val(rpte.pte) >> H_PAGE_F_GIX_SHIFT) & 0xf;
73 #define __rpte_to_pte(r) ((r).pte)
74 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
76 * Trick: we set __end to va + 64k, which happens works for
77 * a 16M page as well as we want only one iteration
79 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
80 do { \
81 unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
82 unsigned __split = (psize == MMU_PAGE_4K || \
83 psize == MMU_PAGE_64K_AP); \
84 shift = mmu_psize_defs[psize].shift; \
85 for (index = 0; vpn < __end; index++, \
86 vpn += (1L << (shift - VPN_SHIFT))) { \
87 if (!__split || __rpte_sub_valid(rpte, index)) \
88 do {
90 #define pte_iterate_hashed_end() } while(0); } } while(0)
92 #define pte_pagesize_index(mm, addr, pte) \
93 (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
95 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
96 unsigned long pfn, unsigned long size, pgprot_t);
97 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
98 unsigned long pfn, pgprot_t prot)
100 if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
101 WARN(1, "remap_4k_pfn called with wrong pfn value\n");
102 return -EINVAL;
104 return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
105 __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
108 #define H_PTE_TABLE_SIZE PTE_FRAG_SIZE
109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
110 #define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
111 (sizeof(unsigned long) << PMD_INDEX_SIZE))
112 #else
113 #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
114 #endif
115 #define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
116 #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
119 static inline char *get_hpte_slot_array(pmd_t *pmdp)
122 * The hpte hindex is stored in the pgtable whose address is in the
123 * second half of the PMD
125 * Order this load with the test for pmd_trans_huge in the caller
127 smp_rmb();
128 return *(char **)(pmdp + PTRS_PER_PMD);
133 * The linux hugepage PMD now include the pmd entries followed by the address
134 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
135 * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
136 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
137 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
139 * The top three bits are intentionally left as zero. This memory location
140 * are also used as normal page PTE pointers. So if we have any pointers
141 * left around while we collapse a hugepage, we need to make sure
142 * _PAGE_PRESENT bit of that is zero when we look at them
144 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
146 return hpte_slot_array[index] & 0x1;
149 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
150 int index)
152 return hpte_slot_array[index] >> 1;
155 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
156 unsigned int index, unsigned int hidx)
158 hpte_slot_array[index] = (hidx << 1) | 0x1;
163 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
164 * page. The hugetlbfs page table walking and mangling paths are totally
165 * separated form the core VM paths and they're differentiated by
166 * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
168 * pmd_trans_huge() is defined as false at build time if
169 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
170 * time in such case.
172 * For ppc64 we need to differntiate from explicit hugepages from THP, because
173 * for THP we also track the subpage details at the pmd level. We don't do
174 * that for explicit huge pages.
177 static inline int hash__pmd_trans_huge(pmd_t pmd)
179 return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
180 (_PAGE_PTE | H_PAGE_THP_HUGE));
183 static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
185 return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
188 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
190 return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
193 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
194 unsigned long addr, pmd_t *pmdp,
195 unsigned long clr, unsigned long set);
196 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
197 unsigned long address, pmd_t *pmdp);
198 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
199 pgtable_t pgtable);
200 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
201 extern void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
202 unsigned long address, pmd_t *pmdp);
203 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
204 unsigned long addr, pmd_t *pmdp);
205 extern int hash__has_transparent_hugepage(void);
206 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
207 #endif /* __ASSEMBLY__ */
209 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */