x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / powerpc / include / asm / book3s / 64 / mmu-hash.h
blob52d8d1e4b772e27bc333786a49d61d943d2d01df
1 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3 /*
4 * PowerPC64 memory management structures
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 #include <asm/bug.h>
20 * This is necessary to get the definition of PGTABLE_RANGE which we
21 * need for various slices related matters. Note that this isn't the
22 * complete pgtable.h but only a portion of it.
24 #include <asm/book3s/64/pgtable.h>
25 #include <asm/bug.h>
26 #include <asm/processor.h>
27 #include <asm/cpu_has_feature.h>
30 * SLB
33 #define SLB_NUM_BOLTED 3
34 #define SLB_CACHE_ENTRIES 8
35 #define SLB_MIN_SIZE 32
37 /* Bits in the SLB ESID word */
38 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
40 /* Bits in the SLB VSID word */
41 #define SLB_VSID_SHIFT 12
42 #define SLB_VSID_SHIFT_1T 24
43 #define SLB_VSID_SSIZE_SHIFT 62
44 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
45 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
46 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
47 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
48 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
49 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
50 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
51 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
52 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
53 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
54 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
55 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
56 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
57 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
59 #define SLB_VSID_KERNEL (SLB_VSID_KP)
60 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
62 #define SLBIE_C (0x08000000)
63 #define SLBIE_SSIZE_SHIFT 25
66 * Hash table
69 #define HPTES_PER_GROUP 8
71 #define HPTE_V_SSIZE_SHIFT 62
72 #define HPTE_V_AVPN_SHIFT 7
73 #define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
74 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
75 #define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
76 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
77 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
78 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
79 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
80 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
81 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
82 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
85 * ISA 3.0 has a different HPTE format.
87 #define HPTE_R_3_0_SSIZE_SHIFT 58
88 #define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
89 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
90 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
91 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
92 #define HPTE_R_RPN_SHIFT 12
93 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
94 #define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
95 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
96 #define HPTE_R_PPP ASM_CONST(0x8000000000000003)
97 #define HPTE_R_N ASM_CONST(0x0000000000000004)
98 #define HPTE_R_G ASM_CONST(0x0000000000000008)
99 #define HPTE_R_M ASM_CONST(0x0000000000000010)
100 #define HPTE_R_I ASM_CONST(0x0000000000000020)
101 #define HPTE_R_W ASM_CONST(0x0000000000000040)
102 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
103 #define HPTE_R_C ASM_CONST(0x0000000000000080)
104 #define HPTE_R_R ASM_CONST(0x0000000000000100)
105 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
107 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
108 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
110 /* Values for PP (assumes Ks=0, Kp=1) */
111 #define PP_RWXX 0 /* Supervisor read/write, User none */
112 #define PP_RWRX 1 /* Supervisor read/write, User read */
113 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
114 #define PP_RXRX 3 /* Supervisor read, User read */
115 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
117 /* Fields for tlbiel instruction in architecture 2.06 */
118 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
119 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
120 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
121 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
122 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
123 #define TLBIEL_INVAL_SET_SHIFT 12
125 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
126 #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
127 #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
128 #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
130 #ifndef __ASSEMBLY__
132 struct mmu_hash_ops {
133 void (*hpte_invalidate)(unsigned long slot,
134 unsigned long vpn,
135 int bpsize, int apsize,
136 int ssize, int local);
137 long (*hpte_updatepp)(unsigned long slot,
138 unsigned long newpp,
139 unsigned long vpn,
140 int bpsize, int apsize,
141 int ssize, unsigned long flags);
142 void (*hpte_updateboltedpp)(unsigned long newpp,
143 unsigned long ea,
144 int psize, int ssize);
145 long (*hpte_insert)(unsigned long hpte_group,
146 unsigned long vpn,
147 unsigned long prpn,
148 unsigned long rflags,
149 unsigned long vflags,
150 int psize, int apsize,
151 int ssize);
152 long (*hpte_remove)(unsigned long hpte_group);
153 int (*hpte_removebolted)(unsigned long ea,
154 int psize, int ssize);
155 void (*flush_hash_range)(unsigned long number, int local);
156 void (*hugepage_invalidate)(unsigned long vsid,
157 unsigned long addr,
158 unsigned char *hpte_slot_array,
159 int psize, int ssize, int local);
160 int (*resize_hpt)(unsigned long shift);
162 * Special for kexec.
163 * To be called in real mode with interrupts disabled. No locks are
164 * taken as such, concurrent access on pre POWER5 hardware could result
165 * in a deadlock.
166 * The linear mapping is destroyed as well.
168 void (*hpte_clear_all)(void);
170 extern struct mmu_hash_ops mmu_hash_ops;
172 struct hash_pte {
173 __be64 v;
174 __be64 r;
177 extern struct hash_pte *htab_address;
178 extern unsigned long htab_size_bytes;
179 extern unsigned long htab_hash_mask;
182 static inline int shift_to_mmu_psize(unsigned int shift)
184 int psize;
186 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
187 if (mmu_psize_defs[psize].shift == shift)
188 return psize;
189 return -1;
192 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
194 if (mmu_psize_defs[mmu_psize].shift)
195 return mmu_psize_defs[mmu_psize].shift;
196 BUG();
199 static inline unsigned long get_sllp_encoding(int psize)
201 unsigned long sllp;
203 sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
204 ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
205 return sllp;
208 #endif /* __ASSEMBLY__ */
211 * Segment sizes.
212 * These are the values used by hardware in the B field of
213 * SLB entries and the first dword of MMU hashtable entries.
214 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
216 #define MMU_SEGSIZE_256M 0
217 #define MMU_SEGSIZE_1T 1
220 * encode page number shift.
221 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
222 * 12 bits. This enable us to address upto 76 bit va.
223 * For hpt hash from a va we can ignore the page size bits of va and for
224 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
225 * we work in all cases including 4k page size.
227 #define VPN_SHIFT 12
230 * HPTE Large Page (LP) details
232 #define LP_SHIFT 12
233 #define LP_BITS 8
234 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
236 #ifndef __ASSEMBLY__
238 static inline int slb_vsid_shift(int ssize)
240 if (ssize == MMU_SEGSIZE_256M)
241 return SLB_VSID_SHIFT;
242 return SLB_VSID_SHIFT_1T;
245 static inline int segment_shift(int ssize)
247 if (ssize == MMU_SEGSIZE_256M)
248 return SID_SHIFT;
249 return SID_SHIFT_1T;
253 * This array is indexed by the LP field of the HPTE second dword.
254 * Since this field may contain some RPN bits, some entries are
255 * replicated so that we get the same value irrespective of RPN.
256 * The top 4 bits are the page size index (MMU_PAGE_*) for the
257 * actual page size, the bottom 4 bits are the base page size.
259 extern u8 hpte_page_sizes[1 << LP_BITS];
261 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
262 bool is_base_size)
264 unsigned int i, lp;
266 if (!(h & HPTE_V_LARGE))
267 return 1ul << 12;
269 /* Look at the 8 bit LP value */
270 lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
271 i = hpte_page_sizes[lp];
272 if (!i)
273 return 0;
274 if (!is_base_size)
275 i >>= 4;
276 return 1ul << mmu_psize_defs[i & 0xf].shift;
279 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
281 return __hpte_page_size(h, l, 0);
284 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
286 return __hpte_page_size(h, l, 1);
290 * The current system page and segment sizes
292 extern int mmu_kernel_ssize;
293 extern int mmu_highuser_ssize;
294 extern u16 mmu_slb_size;
295 extern unsigned long tce_alloc_start, tce_alloc_end;
298 * If the processor supports 64k normal pages but not 64k cache
299 * inhibited pages, we have to be prepared to switch processes
300 * to use 4k pages when they create cache-inhibited mappings.
301 * If this is the case, mmu_ci_restrictions will be set to 1.
303 extern int mmu_ci_restrictions;
306 * This computes the AVPN and B fields of the first dword of a HPTE,
307 * for use when we want to match an existing PTE. The bottom 7 bits
308 * of the returned value are zero.
310 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
311 int ssize)
313 unsigned long v;
315 * The AVA field omits the low-order 23 bits of the 78 bits VA.
316 * These bits are not needed in the PTE, because the
317 * low-order b of these bits are part of the byte offset
318 * into the virtual page and, if b < 23, the high-order
319 * 23-b of these bits are always used in selecting the
320 * PTEGs to be searched
322 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
323 v <<= HPTE_V_AVPN_SHIFT;
324 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
325 return v;
329 * ISA v3.0 defines a new HPTE format, which differs from the old
330 * format in having smaller AVPN and ARPN fields, and the B field
331 * in the second dword instead of the first.
333 static inline unsigned long hpte_old_to_new_v(unsigned long v)
335 /* trim AVPN, drop B */
336 return v & HPTE_V_COMMON_BITS;
339 static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
341 /* move B field from 1st to 2nd dword, trim ARPN */
342 return (r & ~HPTE_R_3_0_SSIZE_MASK) |
343 (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
346 static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
348 /* insert B field */
349 return (v & HPTE_V_COMMON_BITS) |
350 ((r & HPTE_R_3_0_SSIZE_MASK) <<
351 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
354 static inline unsigned long hpte_new_to_old_r(unsigned long r)
356 /* clear out B field */
357 return r & ~HPTE_R_3_0_SSIZE_MASK;
361 * This function sets the AVPN and L fields of the HPTE appropriately
362 * using the base page size and actual page size.
364 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
365 int actual_psize, int ssize)
367 unsigned long v;
368 v = hpte_encode_avpn(vpn, base_psize, ssize);
369 if (actual_psize != MMU_PAGE_4K)
370 v |= HPTE_V_LARGE;
371 return v;
375 * This function sets the ARPN, and LP fields of the HPTE appropriately
376 * for the page size. We assume the pa is already "clean" that is properly
377 * aligned for the requested page size
379 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
380 int actual_psize)
382 /* A 4K page needs no special encoding */
383 if (actual_psize == MMU_PAGE_4K)
384 return pa & HPTE_R_RPN;
385 else {
386 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
387 unsigned int shift = mmu_psize_defs[actual_psize].shift;
388 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
393 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
395 static inline unsigned long hpt_vpn(unsigned long ea,
396 unsigned long vsid, int ssize)
398 unsigned long mask;
399 int s_shift = segment_shift(ssize);
401 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
402 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
406 * This hashes a virtual address
408 static inline unsigned long hpt_hash(unsigned long vpn,
409 unsigned int shift, int ssize)
411 int mask;
412 unsigned long hash, vsid;
414 /* VPN_SHIFT can be atmost 12 */
415 if (ssize == MMU_SEGSIZE_256M) {
416 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
417 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
418 ((vpn & mask) >> (shift - VPN_SHIFT));
419 } else {
420 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
421 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
422 hash = vsid ^ (vsid << 25) ^
423 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
425 return hash & 0x7fffffffffUL;
428 #define HPTE_LOCAL_UPDATE 0x1
429 #define HPTE_NOHPTE_UPDATE 0x2
431 extern int __hash_page_4K(unsigned long ea, unsigned long access,
432 unsigned long vsid, pte_t *ptep, unsigned long trap,
433 unsigned long flags, int ssize, int subpage_prot);
434 extern int __hash_page_64K(unsigned long ea, unsigned long access,
435 unsigned long vsid, pte_t *ptep, unsigned long trap,
436 unsigned long flags, int ssize);
437 struct mm_struct;
438 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
439 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
440 unsigned long access, unsigned long trap,
441 unsigned long flags);
442 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
443 unsigned long dsisr);
444 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
445 pte_t *ptep, unsigned long trap, unsigned long flags,
446 int ssize, unsigned int shift, unsigned int mmu_psize);
447 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
448 extern int __hash_page_thp(unsigned long ea, unsigned long access,
449 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
450 unsigned long flags, int ssize, unsigned int psize);
451 #else
452 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
453 unsigned long vsid, pmd_t *pmdp,
454 unsigned long trap, unsigned long flags,
455 int ssize, unsigned int psize)
457 BUG();
458 return -1;
460 #endif
461 extern void hash_failure_debug(unsigned long ea, unsigned long access,
462 unsigned long vsid, unsigned long trap,
463 int ssize, int psize, int lpsize,
464 unsigned long pte);
465 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
466 unsigned long pstart, unsigned long prot,
467 int psize, int ssize);
468 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
469 int psize, int ssize);
470 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
471 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
473 #ifdef CONFIG_PPC_PSERIES
474 void hpte_init_pseries(void);
475 #else
476 static inline void hpte_init_pseries(void) { }
477 #endif
479 extern void hpte_init_native(void);
481 extern void slb_initialize(void);
482 extern void slb_flush_and_rebolt(void);
484 extern void slb_vmalloc_update(void);
485 extern void slb_set_size(u16 size);
486 #endif /* __ASSEMBLY__ */
489 * VSID allocation (256MB segment)
491 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
492 * from mmu context id and effective segment id of the address.
494 * For user processes max context id is limited to ((1ul << 19) - 5)
495 * for kernel space, we use the top 4 context ids to map address as below
496 * NOTE: each context only support 64TB now.
497 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
498 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
499 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
500 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
502 * The proto-VSIDs are then scrambled into real VSIDs with the
503 * multiplicative hash:
505 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
507 * VSID_MULTIPLIER is prime, so in particular it is
508 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
509 * Because the modulus is 2^n-1 we can compute it efficiently without
510 * a divide or extra multiply (see below). The scramble function gives
511 * robust scattering in the hash table (at least based on some initial
512 * results).
514 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
515 * bad address. This enables us to consolidate bad address handling in
516 * hash_page.
518 * We also need to avoid the last segment of the last context, because that
519 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
520 * because of the modulo operation in vsid scramble. But the vmemmap
521 * (which is what uses region 0xf) will never be close to 64TB in size
522 * (it's 56 bytes per page of system memory).
525 #define CONTEXT_BITS 19
526 #define ESID_BITS 18
527 #define ESID_BITS_1T 6
529 #define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
530 #define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
533 * 256MB segment
534 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
535 * available for user + kernel mapping. The top 4 contexts are used for
536 * kernel mapping. Each segment contains 2^28 bytes. Each
537 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
538 * (19 == 37 + 28 - 46).
540 #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
543 * This should be computed such that protovosid * vsid_mulitplier
544 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
546 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
547 #define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
548 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
550 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
551 #define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
552 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
555 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
558 * This macro generates asm code to compute the VSID scramble
559 * function. Used in slb_allocate() and do_stab_bolted. The function
560 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
562 * rt = register containing the proto-VSID and into which the
563 * VSID will be stored
564 * rx = scratch register (clobbered)
566 * - rt and rx must be different registers
567 * - The answer will end up in the low VSID_BITS bits of rt. The higher
568 * bits may contain other garbage, so you may need to mask the
569 * result.
571 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
572 lis rx,VSID_MULTIPLIER_##size@h; \
573 ori rx,rx,VSID_MULTIPLIER_##size@l; \
574 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
576 srdi rx,rt,VSID_BITS_##size; \
577 clrldi rt,rt,(64-VSID_BITS_##size); \
578 add rt,rt,rx; /* add high and low bits */ \
579 /* NOTE: explanation based on VSID_BITS_##size = 36 \
580 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
581 * 2^36-1+2^28-1. That in particular means that if r3 >= \
582 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
583 * the bit clear, r3 already has the answer we want, if it \
584 * doesn't, the answer is the low 36 bits of r3+1. So in all \
585 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
586 addi rx,rt,1; \
587 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
588 add rt,rt,rx
590 /* 4 bits per slice and we have one slice per 1TB */
591 #define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
593 #ifndef __ASSEMBLY__
595 #ifdef CONFIG_PPC_SUBPAGE_PROT
597 * For the sub-page protection option, we extend the PGD with one of
598 * these. Basically we have a 3-level tree, with the top level being
599 * the protptrs array. To optimize speed and memory consumption when
600 * only addresses < 4GB are being protected, pointers to the first
601 * four pages of sub-page protection words are stored in the low_prot
602 * array.
603 * Each page of sub-page protection words protects 1GB (4 bytes
604 * protects 64k). For the 3-level tree, each page of pointers then
605 * protects 8TB.
607 struct subpage_prot_table {
608 unsigned long maxaddr; /* only addresses < this are protected */
609 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
610 unsigned int *low_prot[4];
613 #define SBP_L1_BITS (PAGE_SHIFT - 2)
614 #define SBP_L2_BITS (PAGE_SHIFT - 3)
615 #define SBP_L1_COUNT (1 << SBP_L1_BITS)
616 #define SBP_L2_COUNT (1 << SBP_L2_BITS)
617 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
618 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
620 extern void subpage_prot_free(struct mm_struct *mm);
621 extern void subpage_prot_init_new_context(struct mm_struct *mm);
622 #else
623 static inline void subpage_prot_free(struct mm_struct *mm) {}
624 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
625 #endif /* CONFIG_PPC_SUBPAGE_PROT */
627 #if 0
629 * The code below is equivalent to this function for arguments
630 * < 2^VSID_BITS, which is all this should ever be called
631 * with. However gcc is not clever enough to compute the
632 * modulus (2^n-1) without a second multiply.
634 #define vsid_scramble(protovsid, size) \
635 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
637 #else /* 1 */
638 #define vsid_scramble(protovsid, size) \
639 ({ \
640 unsigned long x; \
641 x = (protovsid) * VSID_MULTIPLIER_##size; \
642 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
643 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
645 #endif /* 1 */
647 /* Returns the segment size indicator for a user address */
648 static inline int user_segment_size(unsigned long addr)
650 /* Use 1T segments if possible for addresses >= 1T */
651 if (addr >= (1UL << SID_SHIFT_1T))
652 return mmu_highuser_ssize;
653 return MMU_SEGSIZE_256M;
656 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
657 int ssize)
660 * Bad address. We return VSID 0 for that
662 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
663 return 0;
665 if (ssize == MMU_SEGSIZE_256M)
666 return vsid_scramble((context << ESID_BITS)
667 | ((ea >> SID_SHIFT) & ESID_BITS_MASK), 256M);
668 return vsid_scramble((context << ESID_BITS_1T)
669 | ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK), 1T);
673 * This is only valid for addresses >= PAGE_OFFSET
675 * For kernel space, we use the top 4 context ids to map address as below
676 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
677 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
678 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
679 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
681 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
683 unsigned long context;
686 * kernel take the top 4 context from the available range
688 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
689 return get_vsid(context, ea, ssize);
692 unsigned htab_shift_for_mem_size(unsigned long mem_size);
694 #endif /* __ASSEMBLY__ */
696 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */