x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / powerpc / include / asm / io.h
blob5ed292431b5b1ff556ecca7c1703b8e318aa3cd2
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
5 #define ARCH_HAS_IOREMAP_WC
7 /*
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG 0x60
17 #define FDC_BASE 0x3f0
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
22 * has legacy ISA devices ?
24 #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
27 #include <linux/device.h>
28 #include <linux/io.h>
30 #include <linux/compiler.h>
31 #include <asm/page.h>
32 #include <asm/byteorder.h>
33 #include <asm/synch.h>
34 #include <asm/delay.h>
35 #include <asm/mmu.h>
36 #include <asm/ppc_asm.h>
38 #include <asm-generic/iomap.h>
40 #ifdef CONFIG_PPC64
41 #include <asm/paca.h>
42 #endif
44 #define SIO_CONFIG_RA 0x398
45 #define SIO_CONFIG_RD 0x399
47 #define SLOW_DOWN_IO
49 /* 32 bits uses slightly different variables for the various IO
50 * bases. Most of this file only uses _IO_BASE though which we
51 * define properly based on the platform
53 #ifndef CONFIG_PCI
54 #define _IO_BASE 0
55 #define _ISA_MEM_BASE 0
56 #define PCI_DRAM_OFFSET 0
57 #elif defined(CONFIG_PPC32)
58 #define _IO_BASE isa_io_base
59 #define _ISA_MEM_BASE isa_mem_base
60 #define PCI_DRAM_OFFSET pci_dram_offset
61 #else
62 #define _IO_BASE pci_io_base
63 #define _ISA_MEM_BASE isa_mem_base
64 #define PCI_DRAM_OFFSET 0
65 #endif
67 extern unsigned long isa_io_base;
68 extern unsigned long pci_io_base;
69 extern unsigned long pci_dram_offset;
71 extern resource_size_t isa_mem_base;
73 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
74 * is not set or addresses cannot be translated to MMIO. This is typically
75 * set when the platform supports "special" PIO accesses via a non memory
76 * mapped mechanism, and allows things like the early udbg UART code to
77 * function.
79 extern bool isa_io_special;
81 #ifdef CONFIG_PPC32
82 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
83 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
84 #endif
85 #endif
89 * Low level MMIO accessors
91 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
92 * specific and thus shouldn't be used in generic code. The accessors
93 * provided here are:
95 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
96 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
97 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
99 * Those operate directly on a kernel virtual address. Note that the prototype
100 * for the out_* accessors has the arguments in opposite order from the usual
101 * linux PCI accessors. Unlike those, they take the address first and the value
102 * next.
104 * Note: I might drop the _ns suffix on the stream operations soon as it is
105 * simply normal for stream operations to not swap in the first place.
109 #ifdef CONFIG_PPC64
110 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
111 #else
112 #define IO_SET_SYNC_FLAG()
113 #endif
115 /* gcc 4.0 and older doesn't have 'Z' constraint */
116 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
117 #define DEF_MMIO_IN_X(name, size, insn) \
118 static inline u##size name(const volatile u##size __iomem *addr) \
120 u##size ret; \
121 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \
122 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \
123 return ret; \
126 #define DEF_MMIO_OUT_X(name, size, insn) \
127 static inline void name(volatile u##size __iomem *addr, u##size val) \
129 __asm__ __volatile__("sync;"#insn" %1,0,%2" \
130 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \
131 IO_SET_SYNC_FLAG(); \
133 #else /* newer gcc */
134 #define DEF_MMIO_IN_X(name, size, insn) \
135 static inline u##size name(const volatile u##size __iomem *addr) \
137 u##size ret; \
138 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
139 : "=r" (ret) : "Z" (*addr) : "memory"); \
140 return ret; \
143 #define DEF_MMIO_OUT_X(name, size, insn) \
144 static inline void name(volatile u##size __iomem *addr, u##size val) \
146 __asm__ __volatile__("sync;"#insn" %1,%y0" \
147 : "=Z" (*addr) : "r" (val) : "memory"); \
148 IO_SET_SYNC_FLAG(); \
150 #endif
152 #define DEF_MMIO_IN_D(name, size, insn) \
153 static inline u##size name(const volatile u##size __iomem *addr) \
155 u##size ret; \
156 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
157 : "=r" (ret) : "m" (*addr) : "memory"); \
158 return ret; \
161 #define DEF_MMIO_OUT_D(name, size, insn) \
162 static inline void name(volatile u##size __iomem *addr, u##size val) \
164 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
165 : "=m" (*addr) : "r" (val) : "memory"); \
166 IO_SET_SYNC_FLAG(); \
169 DEF_MMIO_IN_D(in_8, 8, lbz);
170 DEF_MMIO_OUT_D(out_8, 8, stb);
172 #ifdef __BIG_ENDIAN__
173 DEF_MMIO_IN_D(in_be16, 16, lhz);
174 DEF_MMIO_IN_D(in_be32, 32, lwz);
175 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
176 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
178 DEF_MMIO_OUT_D(out_be16, 16, sth);
179 DEF_MMIO_OUT_D(out_be32, 32, stw);
180 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
181 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
182 #else
183 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
184 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
185 DEF_MMIO_IN_D(in_le16, 16, lhz);
186 DEF_MMIO_IN_D(in_le32, 32, lwz);
188 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
189 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
190 DEF_MMIO_OUT_D(out_le16, 16, sth);
191 DEF_MMIO_OUT_D(out_le32, 32, stw);
193 #endif /* __BIG_ENDIAN */
196 * Cache inhibitied accessors for use in real mode, you don't want to use these
197 * unless you know what you're doing.
199 * NB. These use the cpu byte ordering.
201 DEF_MMIO_OUT_X(out_rm8, 8, stbcix);
202 DEF_MMIO_OUT_X(out_rm16, 16, sthcix);
203 DEF_MMIO_OUT_X(out_rm32, 32, stwcix);
204 DEF_MMIO_IN_X(in_rm8, 8, lbzcix);
205 DEF_MMIO_IN_X(in_rm16, 16, lhzcix);
206 DEF_MMIO_IN_X(in_rm32, 32, lwzcix);
208 #ifdef __powerpc64__
210 DEF_MMIO_OUT_X(out_rm64, 64, stdcix);
211 DEF_MMIO_IN_X(in_rm64, 64, ldcix);
213 #ifdef __BIG_ENDIAN__
214 DEF_MMIO_OUT_D(out_be64, 64, std);
215 DEF_MMIO_IN_D(in_be64, 64, ld);
217 /* There is no asm instructions for 64 bits reverse loads and stores */
218 static inline u64 in_le64(const volatile u64 __iomem *addr)
220 return swab64(in_be64(addr));
223 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
225 out_be64(addr, swab64(val));
227 #else
228 DEF_MMIO_OUT_D(out_le64, 64, std);
229 DEF_MMIO_IN_D(in_le64, 64, ld);
231 /* There is no asm instructions for 64 bits reverse loads and stores */
232 static inline u64 in_be64(const volatile u64 __iomem *addr)
234 return swab64(in_le64(addr));
237 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
239 out_le64(addr, swab64(val));
242 #endif
243 #endif /* __powerpc64__ */
247 * Simple Cache inhibited accessors
248 * Unlike the DEF_MMIO_* macros, these don't include any h/w memory
249 * barriers, callers need to manage memory barriers on their own.
250 * These can only be used in hypervisor real mode.
253 static inline u32 _lwzcix(unsigned long addr)
255 u32 ret;
257 __asm__ __volatile__("lwzcix %0,0, %1"
258 : "=r" (ret) : "r" (addr) : "memory");
259 return ret;
262 static inline void _stbcix(u64 addr, u8 val)
264 __asm__ __volatile__("stbcix %0,0,%1"
265 : : "r" (val), "r" (addr) : "memory");
268 static inline void _stwcix(u64 addr, u32 val)
270 __asm__ __volatile__("stwcix %0,0,%1"
271 : : "r" (val), "r" (addr) : "memory");
275 * Low level IO stream instructions are defined out of line for now
277 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
278 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
279 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
280 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
281 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
282 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
284 /* The _ns naming is historical and will be removed. For now, just #define
285 * the non _ns equivalent names
287 #define _insw _insw_ns
288 #define _insl _insl_ns
289 #define _outsw _outsw_ns
290 #define _outsl _outsl_ns
294 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
297 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
298 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
299 unsigned long n);
300 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
301 unsigned long n);
305 * PCI and standard ISA accessors
307 * Those are globally defined linux accessors for devices on PCI or ISA
308 * busses. They follow the Linux defined semantics. The current implementation
309 * for PowerPC is as close as possible to the x86 version of these, and thus
310 * provides fairly heavy weight barriers for the non-raw versions
312 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
313 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
314 * own implementation of some or all of the accessors.
318 * Include the EEH definitions when EEH is enabled only so they don't get
319 * in the way when building for 32 bits
321 #ifdef CONFIG_EEH
322 #include <asm/eeh.h>
323 #endif
325 /* Shortcut to the MMIO argument pointer */
326 #define PCI_IO_ADDR volatile void __iomem *
328 /* Indirect IO address tokens:
330 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
331 * on all MMIOs. (Note that this is all 64 bits only for now)
333 * To help platforms who may need to differentiate MMIO addresses in
334 * their hooks, a bitfield is reserved for use by the platform near the
335 * top of MMIO addresses (not PIO, those have to cope the hard way).
337 * This bit field is 12 bits and is at the top of the IO virtual
338 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
340 * The kernel virtual space is thus:
342 * 0xD000000000000000 : vmalloc
343 * 0xD000080000000000 : PCI PHB IO space
344 * 0xD000080080000000 : ioremap
345 * 0xD0000fffffffffff : end of ioremap region
347 * Since the top 4 bits are reserved as the region ID, we use thus
348 * the next 12 bits and keep 4 bits available for the future if the
349 * virtual address space is ever to be extended.
351 * The direct IO mapping operations will then mask off those bits
352 * before doing the actual access, though that only happen when
353 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
354 * mechanism
356 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
357 * all PIO functions call through a hook.
360 #ifdef CONFIG_PPC_INDIRECT_MMIO
361 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
362 #define PCI_IO_IND_TOKEN_SHIFT 48
363 #define PCI_FIX_ADDR(addr) \
364 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
365 #define PCI_GET_ADDR_TOKEN(addr) \
366 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
367 PCI_IO_IND_TOKEN_SHIFT)
368 #define PCI_SET_ADDR_TOKEN(addr, token) \
369 do { \
370 unsigned long __a = (unsigned long)(addr); \
371 __a &= ~PCI_IO_IND_TOKEN_MASK; \
372 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
373 (addr) = (void __iomem *)__a; \
374 } while(0)
375 #else
376 #define PCI_FIX_ADDR(addr) (addr)
377 #endif
381 * Non ordered and non-swapping "raw" accessors
384 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
386 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
388 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
390 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
392 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
394 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
396 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
398 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
400 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
402 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
404 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
406 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
409 #ifdef __powerpc64__
410 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
412 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
414 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
416 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
420 * Real mode version of the above. stdcix is only supposed to be used
421 * in hypervisor real mode as per the architecture spec.
423 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
425 __asm__ __volatile__("stdcix %0,0,%1"
426 : : "r" (val), "r" (paddr) : "memory");
429 #endif /* __powerpc64__ */
433 * PCI PIO and MMIO accessors.
436 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
437 * machine checks (which they occasionally do when probing non existing
438 * IO ports on some platforms, like PowerMac and 8xx).
439 * I always found it to be of dubious reliability and I am tempted to get
440 * rid of it one of these days. So if you think it's important to keep it,
441 * please voice up asap. We never had it for 64 bits and I do not intend
442 * to port it over
445 #ifdef CONFIG_PPC32
447 #define __do_in_asm(name, op) \
448 static inline unsigned int name(unsigned int port) \
450 unsigned int x; \
451 __asm__ __volatile__( \
452 "sync\n" \
453 "0:" op " %0,0,%1\n" \
454 "1: twi 0,%0,0\n" \
455 "2: isync\n" \
456 "3: nop\n" \
457 "4:\n" \
458 ".section .fixup,\"ax\"\n" \
459 "5: li %0,-1\n" \
460 " b 4b\n" \
461 ".previous\n" \
462 EX_TABLE(0b, 5b) \
463 EX_TABLE(1b, 5b) \
464 EX_TABLE(2b, 5b) \
465 EX_TABLE(3b, 5b) \
466 : "=&r" (x) \
467 : "r" (port + _IO_BASE) \
468 : "memory"); \
469 return x; \
472 #define __do_out_asm(name, op) \
473 static inline void name(unsigned int val, unsigned int port) \
475 __asm__ __volatile__( \
476 "sync\n" \
477 "0:" op " %0,0,%1\n" \
478 "1: sync\n" \
479 "2:\n" \
480 EX_TABLE(0b, 2b) \
481 EX_TABLE(1b, 2b) \
482 : : "r" (val), "r" (port + _IO_BASE) \
483 : "memory"); \
486 __do_in_asm(_rec_inb, "lbzx")
487 __do_in_asm(_rec_inw, "lhbrx")
488 __do_in_asm(_rec_inl, "lwbrx")
489 __do_out_asm(_rec_outb, "stbx")
490 __do_out_asm(_rec_outw, "sthbrx")
491 __do_out_asm(_rec_outl, "stwbrx")
493 #endif /* CONFIG_PPC32 */
495 /* The "__do_*" operations below provide the actual "base" implementation
496 * for each of the defined accessors. Some of them use the out_* functions
497 * directly, some of them still use EEH, though we might change that in the
498 * future. Those macros below provide the necessary argument swapping and
499 * handling of the IO base for PIO.
501 * They are themselves used by the macros that define the actual accessors
502 * and can be used by the hooks if any.
504 * Note that PIO operations are always defined in terms of their corresonding
505 * MMIO operations. That allows platforms like iSeries who want to modify the
506 * behaviour of both to only hook on the MMIO version and get both. It's also
507 * possible to hook directly at the toplevel PIO operation if they have to
508 * be handled differently
510 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
511 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
512 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
513 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
514 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
515 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
516 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
518 #ifdef CONFIG_EEH
519 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
520 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
521 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
522 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
523 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
524 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
525 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
526 #else /* CONFIG_EEH */
527 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
528 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
529 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
530 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
531 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
532 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
533 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
534 #endif /* !defined(CONFIG_EEH) */
536 #ifdef CONFIG_PPC32
537 #define __do_outb(val, port) _rec_outb(val, port)
538 #define __do_outw(val, port) _rec_outw(val, port)
539 #define __do_outl(val, port) _rec_outl(val, port)
540 #define __do_inb(port) _rec_inb(port)
541 #define __do_inw(port) _rec_inw(port)
542 #define __do_inl(port) _rec_inl(port)
543 #else /* CONFIG_PPC32 */
544 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
545 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
546 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
547 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
548 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
549 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
550 #endif /* !CONFIG_PPC32 */
552 #ifdef CONFIG_EEH
553 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
554 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
555 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
556 #else /* CONFIG_EEH */
557 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
558 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
559 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
560 #endif /* !CONFIG_EEH */
561 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
562 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
563 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
565 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
566 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
567 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
568 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
569 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
570 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
572 #define __do_memset_io(addr, c, n) \
573 _memset_io(PCI_FIX_ADDR(addr), c, n)
574 #define __do_memcpy_toio(dst, src, n) \
575 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
577 #ifdef CONFIG_EEH
578 #define __do_memcpy_fromio(dst, src, n) \
579 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
580 #else /* CONFIG_EEH */
581 #define __do_memcpy_fromio(dst, src, n) \
582 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
583 #endif /* !CONFIG_EEH */
585 #ifdef CONFIG_PPC_INDIRECT_PIO
586 #define DEF_PCI_HOOK_pio(x) x
587 #else
588 #define DEF_PCI_HOOK_pio(x) NULL
589 #endif
591 #ifdef CONFIG_PPC_INDIRECT_MMIO
592 #define DEF_PCI_HOOK_mem(x) x
593 #else
594 #define DEF_PCI_HOOK_mem(x) NULL
595 #endif
597 /* Structure containing all the hooks */
598 extern struct ppc_pci_io {
600 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
601 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
603 #include <asm/io-defs.h>
605 #undef DEF_PCI_AC_RET
606 #undef DEF_PCI_AC_NORET
608 } ppc_pci_io;
610 /* The inline wrappers */
611 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
612 static inline ret name at \
614 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
615 return ppc_pci_io.name al; \
616 return __do_##name al; \
619 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \
620 static inline void name at \
622 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
623 ppc_pci_io.name al; \
624 else \
625 __do_##name al; \
628 #include <asm/io-defs.h>
630 #undef DEF_PCI_AC_RET
631 #undef DEF_PCI_AC_NORET
633 /* Some drivers check for the presence of readq & writeq with
634 * a #ifdef, so we make them happy here.
636 #ifdef __powerpc64__
637 #define readq readq
638 #define writeq writeq
639 #endif
642 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
643 * access
645 #define xlate_dev_mem_ptr(p) __va(p)
648 * Convert a virtual cached pointer to an uncached pointer
650 #define xlate_dev_kmem_ptr(p) p
653 * We don't do relaxed operations yet, at least not with this semantic
655 #define readb_relaxed(addr) readb(addr)
656 #define readw_relaxed(addr) readw(addr)
657 #define readl_relaxed(addr) readl(addr)
658 #define readq_relaxed(addr) readq(addr)
659 #define writeb_relaxed(v, addr) writeb(v, addr)
660 #define writew_relaxed(v, addr) writew(v, addr)
661 #define writel_relaxed(v, addr) writel(v, addr)
662 #define writeq_relaxed(v, addr) writeq(v, addr)
664 #ifdef CONFIG_PPC32
665 #define mmiowb()
666 #else
668 * Enforce synchronisation of stores vs. spin_unlock
669 * (this does it explicitly, though our implementation of spin_unlock
670 * does it implicitely too)
672 static inline void mmiowb(void)
674 unsigned long tmp;
676 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
677 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
678 : "memory");
680 #endif /* !CONFIG_PPC32 */
682 static inline void iosync(void)
684 __asm__ __volatile__ ("sync" : : : "memory");
687 /* Enforce in-order execution of data I/O.
688 * No distinction between read/write on PPC; use eieio for all three.
689 * Those are fairly week though. They don't provide a barrier between
690 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
691 * they only provide barriers between 2 __raw MMIO operations and
692 * possibly break write combining.
694 #define iobarrier_rw() eieio()
695 #define iobarrier_r() eieio()
696 #define iobarrier_w() eieio()
700 * output pause versions need a delay at least for the
701 * w83c105 ide controller in a p610.
703 #define inb_p(port) inb(port)
704 #define outb_p(val, port) (udelay(1), outb((val), (port)))
705 #define inw_p(port) inw(port)
706 #define outw_p(val, port) (udelay(1), outw((val), (port)))
707 #define inl_p(port) inl(port)
708 #define outl_p(val, port) (udelay(1), outl((val), (port)))
711 #define IO_SPACE_LIMIT ~(0UL)
715 * ioremap - map bus memory into CPU space
716 * @address: bus address of the memory
717 * @size: size of the resource to map
719 * ioremap performs a platform specific sequence of operations to
720 * make bus memory CPU accessible via the readb/readw/readl/writeb/
721 * writew/writel functions and the other mmio helpers. The returned
722 * address is not guaranteed to be usable directly as a virtual
723 * address.
725 * We provide a few variations of it:
727 * * ioremap is the standard one and provides non-cacheable guarded mappings
728 * and can be hooked by the platform via ppc_md
730 * * ioremap_prot allows to specify the page flags as an argument and can
731 * also be hooked by the platform via ppc_md.
733 * * ioremap_nocache is identical to ioremap
735 * * ioremap_wc enables write combining
737 * * iounmap undoes such a mapping and can be hooked
739 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
740 * create hand-made mappings for use only by the PCI code and cannot
741 * currently be hooked. Must be page aligned.
743 * * __ioremap is the low level implementation used by ioremap and
744 * ioremap_prot and cannot be hooked (but can be used by a hook on one
745 * of the previous ones)
747 * * __ioremap_caller is the same as above but takes an explicit caller
748 * reference rather than using __builtin_return_address(0)
750 * * __iounmap, is the low level implementation used by iounmap and cannot
751 * be hooked (but can be used by a hook on iounmap)
754 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
755 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
756 unsigned long flags);
757 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
758 #define ioremap_nocache(addr, size) ioremap((addr), (size))
759 #define ioremap_uc(addr, size) ioremap((addr), (size))
761 extern void iounmap(volatile void __iomem *addr);
763 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
764 unsigned long flags);
765 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
766 unsigned long flags, void *caller);
768 extern void __iounmap(volatile void __iomem *addr);
770 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
771 unsigned long size, unsigned long flags);
772 extern void __iounmap_at(void *ea, unsigned long size);
775 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
776 * which needs some additional definitions here. They basically allow PIO
777 * space overall to be 1GB. This will work as long as we never try to use
778 * iomap to map MMIO below 1GB which should be fine on ppc64
780 #define HAVE_ARCH_PIO_SIZE 1
781 #define PIO_OFFSET 0x00000000UL
782 #define PIO_MASK (FULL_IO_SIZE - 1)
783 #define PIO_RESERVED (FULL_IO_SIZE)
785 #define mmio_read16be(addr) readw_be(addr)
786 #define mmio_read32be(addr) readl_be(addr)
787 #define mmio_write16be(val, addr) writew_be(val, addr)
788 #define mmio_write32be(val, addr) writel_be(val, addr)
789 #define mmio_insb(addr, dst, count) readsb(addr, dst, count)
790 #define mmio_insw(addr, dst, count) readsw(addr, dst, count)
791 #define mmio_insl(addr, dst, count) readsl(addr, dst, count)
792 #define mmio_outsb(addr, src, count) writesb(addr, src, count)
793 #define mmio_outsw(addr, src, count) writesw(addr, src, count)
794 #define mmio_outsl(addr, src, count) writesl(addr, src, count)
797 * virt_to_phys - map virtual addresses to physical
798 * @address: address to remap
800 * The returned physical address is the physical (CPU) mapping for
801 * the memory address given. It is only valid to use this function on
802 * addresses directly mapped or allocated via kmalloc.
804 * This function does not give bus mappings for DMA transfers. In
805 * almost all conceivable cases a device driver should not be using
806 * this function
808 static inline unsigned long virt_to_phys(volatile void * address)
810 return __pa((unsigned long)address);
814 * phys_to_virt - map physical address to virtual
815 * @address: address to remap
817 * The returned virtual address is a current CPU mapping for
818 * the memory address given. It is only valid to use this function on
819 * addresses that have a kernel mapping
821 * This function does not handle bus mappings for DMA transfers. In
822 * almost all conceivable cases a device driver should not be using
823 * this function
825 static inline void * phys_to_virt(unsigned long address)
827 return (void *)__va(address);
831 * Change "struct page" to physical address.
833 #define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
836 * 32 bits still uses virt_to_bus() for it's implementation of DMA
837 * mappings se we have to keep it defined here. We also have some old
838 * drivers (shame shame shame) that use bus_to_virt() and haven't been
839 * fixed yet so I need to define it here.
841 #ifdef CONFIG_PPC32
843 static inline unsigned long virt_to_bus(volatile void * address)
845 if (address == NULL)
846 return 0;
847 return __pa(address) + PCI_DRAM_OFFSET;
850 static inline void * bus_to_virt(unsigned long address)
852 if (address == 0)
853 return NULL;
854 return __va(address - PCI_DRAM_OFFSET);
857 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
859 #endif /* CONFIG_PPC32 */
861 /* access ports */
862 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
863 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
865 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
866 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
868 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
869 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
871 /* Clear and set bits in one shot. These macros can be used to clear and
872 * set multiple bits in a register using a single read-modify-write. These
873 * macros can also be used to set a multiple-bit bit pattern using a mask,
874 * by specifying the mask in the 'clear' parameter and the new bit pattern
875 * in the 'set' parameter.
878 #define clrsetbits(type, addr, clear, set) \
879 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
881 #ifdef __powerpc64__
882 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
883 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
884 #endif
886 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
887 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
889 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
890 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
892 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
894 #endif /* __KERNEL__ */
896 #endif /* _ASM_POWERPC_IO_H */