1 #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
2 #define _ASM_POWERPC_NOHASH_PGTABLE_H
4 #if defined(CONFIG_PPC64)
5 #include <asm/nohash/64/pgtable.h>
7 #include <asm/nohash/32/pgtable.h>
12 /* Generic accessors to PTE bits */
13 static inline int pte_write(pte_t pte
)
15 return (pte_val(pte
) & (_PAGE_RW
| _PAGE_RO
)) != _PAGE_RO
;
17 static inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_DIRTY
; }
18 static inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
19 static inline int pte_special(pte_t pte
) { return pte_val(pte
) & _PAGE_SPECIAL
; }
20 static inline int pte_none(pte_t pte
) { return (pte_val(pte
) & ~_PTE_NONE_MASK
) == 0; }
21 static inline pgprot_t
pte_pgprot(pte_t pte
) { return __pgprot(pte_val(pte
) & PAGE_PROT_BITS
); }
23 #ifdef CONFIG_NUMA_BALANCING
25 * These work without NUMA balancing but the kernel does not care. See the
26 * comment in include/asm-generic/pgtable.h . On powerpc, this will only
27 * work for user pages and always return true for kernel pages.
29 static inline int pte_protnone(pte_t pte
)
31 return (pte_val(pte
) &
32 (_PAGE_PRESENT
| _PAGE_USER
)) == _PAGE_PRESENT
;
35 static inline int pmd_protnone(pmd_t pmd
)
37 return pte_protnone(pmd_pte(pmd
));
39 #endif /* CONFIG_NUMA_BALANCING */
41 static inline int pte_present(pte_t pte
)
43 return pte_val(pte
) & _PAGE_PRESENT
;
46 /* Conversion functions: convert a page and protection to a page entry,
47 * and a page entry and page directory to the page they refer to.
49 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
52 static inline pte_t
pfn_pte(unsigned long pfn
, pgprot_t pgprot
) {
53 return __pte(((pte_basic_t
)(pfn
) << PTE_RPN_SHIFT
) |
54 pgprot_val(pgprot
)); }
55 static inline unsigned long pte_pfn(pte_t pte
) {
56 return pte_val(pte
) >> PTE_RPN_SHIFT
; }
58 /* Generic modifiers for PTE bits */
59 static inline pte_t
pte_wrprotect(pte_t pte
)
63 ptev
= pte_val(pte
) & ~(_PAGE_RW
| _PAGE_HWWRITE
);
68 static inline pte_t
pte_mkclean(pte_t pte
)
70 return __pte(pte_val(pte
) & ~(_PAGE_DIRTY
| _PAGE_HWWRITE
));
73 static inline pte_t
pte_mkold(pte_t pte
)
75 return __pte(pte_val(pte
) & ~_PAGE_ACCESSED
);
78 static inline pte_t
pte_mkwrite(pte_t pte
)
82 ptev
= pte_val(pte
) & ~_PAGE_RO
;
87 static inline pte_t
pte_mkdirty(pte_t pte
)
89 return __pte(pte_val(pte
) | _PAGE_DIRTY
);
92 static inline pte_t
pte_mkyoung(pte_t pte
)
94 return __pte(pte_val(pte
) | _PAGE_ACCESSED
);
97 static inline pte_t
pte_mkspecial(pte_t pte
)
99 return __pte(pte_val(pte
) | _PAGE_SPECIAL
);
102 static inline pte_t
pte_mkhuge(pte_t pte
)
107 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
109 return __pte((pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
));
112 /* Insert a PTE, top-level function is out of line. It uses an inline
113 * low level function in the respective pgtable-* files
115 extern void set_pte_at(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
,
118 /* This low level function performs the actual PTE insertion
119 * Setting the PTE depends on the MMU type and other factors. It's
120 * an horrible mess that I'm not going to try to clean up now but
121 * I'm keeping it in one place rather than spread around
123 static inline void __set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
124 pte_t
*ptep
, pte_t pte
, int percpu
)
126 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
127 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
128 * helper pte_update() which does an atomic update. We need to do that
129 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
130 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
131 * the hash bits instead (ie, same as the non-SMP case)
134 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
135 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
137 pte_update(ptep
, ~_PAGE_HASHPTE
, pte_val(pte
));
139 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
140 /* Second case is 32-bit with 64-bit PTE. In this case, we
141 * can just store as long as we do the two halves in the right order
142 * with a barrier in between. This is possible because we take care,
143 * in the hash code, to pre-invalidate if the PTE was already hashed,
144 * which synchronizes us with any concurrent invalidation.
145 * In the percpu case, we also fallback to the simple update preserving
149 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
150 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
153 #if _PAGE_HASHPTE != 0
154 if (pte_val(*ptep
) & _PAGE_HASHPTE
)
155 flush_hash_entry(mm
, ptep
, addr
);
157 __asm__
__volatile__("\
161 : "=m" (*ptep
), "=m" (*((unsigned char *)ptep
+4))
162 : "r" (pte
) : "memory");
164 #elif defined(CONFIG_PPC_STD_MMU_32)
165 /* Third case is 32-bit hash table in UP mode, we need to preserve
166 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
167 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
168 * and see we need to keep track that this PTE needs invalidating
170 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
171 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
174 /* Anything else just stores the PTE normally. That covers all 64-bit
175 * cases, and 32-bit non-hash with 32-bit PTEs.
179 #ifdef CONFIG_PPC_BOOK3E_64
181 * With hardware tablewalk, a sync is needed to ensure that
182 * subsequent accesses see the PTE we just wrote. Unlike userspace
183 * mappings, we can't tolerate spurious faults, so make sure
184 * the new PTE will be seen the first time.
186 if (is_kernel_addr(addr
))
193 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
194 extern int ptep_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
195 pte_t
*ptep
, pte_t entry
, int dirty
);
198 * Macro to mark a page protection value as "uncacheable".
201 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
204 #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
205 _PAGE_NO_CACHE | _PAGE_GUARDED))
207 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
210 #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
213 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
214 _PAGE_COHERENT | _PAGE_WRITETHRU))
216 #define pgprot_cached_noncoherent(prot) \
217 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
219 #define pgprot_writecombine pgprot_noncached_wc
222 extern pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
223 unsigned long size
, pgprot_t vma_prot
);
224 #define __HAVE_PHYS_MEM_ACCESS_PROT
226 #ifdef CONFIG_HUGETLB_PAGE
227 static inline int hugepd_ok(hugepd_t hpd
)
229 #ifdef CONFIG_PPC_8xx
230 return ((hpd_val(hpd
) & 0x4) != 0);
232 /* We clear the top bit to indicate hugepd */
233 return (hpd_val(hpd
) && (hpd_val(hpd
) & PD_HUGE
) == 0);
237 static inline int pmd_huge(pmd_t pmd
)
242 static inline int pud_huge(pud_t pud
)
247 static inline int pgd_huge(pgd_t pgd
)
251 #define pgd_huge pgd_huge
253 #define is_hugepd(hpd) (hugepd_ok(hpd))
256 #endif /* __ASSEMBLY__ */