x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / powerpc / kernel / eeh.c
blob9de7f79e702b1d755bdc855a2da82876959eeade
1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
50 /** Overview:
51 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
84 /* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
89 #define EEH_MAX_FAILS 2100000
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
112 int eeh_max_freezes = 5;
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 EXPORT_SYMBOL_GPL(confirm_error_lock);
121 /* Lock to protect passed flags */
122 static DEFINE_MUTEX(eeh_dev_mutex);
124 /* Buffer for reporting pci register dumps. Its here in BSS, and
125 * not dynamically alloced, so that it ends up in RMO where RTAS
126 * can access it.
128 #define EEH_PCI_REGS_LOG_LEN 8192
129 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
132 * The struct is used to maintain the EEH global statistic
133 * information. Besides, the EEH global statistics will be
134 * exported to user space through procfs
136 struct eeh_stats {
137 u64 no_device; /* PCI device not found */
138 u64 no_dn; /* OF node not found */
139 u64 no_cfg_addr; /* Config address not found */
140 u64 ignored_check; /* EEH check skipped */
141 u64 total_mmio_ffs; /* Total EEH checks */
142 u64 false_positives; /* Unnecessary EEH checks */
143 u64 slot_resets; /* PE reset */
146 static struct eeh_stats eeh_stats;
148 static int __init eeh_setup(char *str)
150 if (!strcmp(str, "off"))
151 eeh_add_flag(EEH_FORCE_DISABLED);
152 else if (!strcmp(str, "early_log"))
153 eeh_add_flag(EEH_EARLY_DUMP_LOG);
155 return 1;
157 __setup("eeh=", eeh_setup);
160 * This routine captures assorted PCI configuration space data
161 * for the indicated PCI device, and puts them into a buffer
162 * for RTAS error logging.
164 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
166 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
167 u32 cfg;
168 int cap, i;
169 int n = 0, l = 0;
170 char buffer[128];
172 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
173 edev->phb->global_number, pdn->busno,
174 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
175 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
176 edev->phb->global_number, pdn->busno,
177 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
179 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
180 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
181 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
183 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
184 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
185 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
187 /* Gather bridge-specific registers */
188 if (edev->mode & EEH_DEV_BRIDGE) {
189 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
190 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
191 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
193 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
194 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
195 pr_warn("EEH: Bridge control: %04x\n", cfg);
198 /* Dump out the PCI-X command and status regs */
199 cap = edev->pcix_cap;
200 if (cap) {
201 eeh_ops->read_config(pdn, cap, 4, &cfg);
202 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
203 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
205 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
206 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
207 pr_warn("EEH: PCI-X status: %08x\n", cfg);
210 /* If PCI-E capable, dump PCI-E cap 10 */
211 cap = edev->pcie_cap;
212 if (cap) {
213 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
214 pr_warn("EEH: PCI-E capabilities and status follow:\n");
216 for (i=0; i<=8; i++) {
217 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
218 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
220 if ((i % 4) == 0) {
221 if (i != 0)
222 pr_warn("%s\n", buffer);
224 l = scnprintf(buffer, sizeof(buffer),
225 "EEH: PCI-E %02x: %08x ",
226 4*i, cfg);
227 } else {
228 l += scnprintf(buffer+l, sizeof(buffer)-l,
229 "%08x ", cfg);
234 pr_warn("%s\n", buffer);
237 /* If AER capable, dump it */
238 cap = edev->aer_cap;
239 if (cap) {
240 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
241 pr_warn("EEH: PCI-E AER capability register set follows:\n");
243 for (i=0; i<=13; i++) {
244 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
245 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
247 if ((i % 4) == 0) {
248 if (i != 0)
249 pr_warn("%s\n", buffer);
251 l = scnprintf(buffer, sizeof(buffer),
252 "EEH: PCI-E AER %02x: %08x ",
253 4*i, cfg);
254 } else {
255 l += scnprintf(buffer+l, sizeof(buffer)-l,
256 "%08x ", cfg);
260 pr_warn("%s\n", buffer);
263 return n;
266 static void *eeh_dump_pe_log(void *data, void *flag)
268 struct eeh_pe *pe = data;
269 struct eeh_dev *edev, *tmp;
270 size_t *plen = flag;
272 eeh_pe_for_each_dev(pe, edev, tmp)
273 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
274 EEH_PCI_REGS_LOG_LEN - *plen);
276 return NULL;
280 * eeh_slot_error_detail - Generate combined log including driver log and error log
281 * @pe: EEH PE
282 * @severity: temporary or permanent error log
284 * This routine should be called to generate the combined log, which
285 * is comprised of driver log and error log. The driver log is figured
286 * out from the config space of the corresponding PCI device, while
287 * the error log is fetched through platform dependent function call.
289 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
291 size_t loglen = 0;
294 * When the PHB is fenced or dead, it's pointless to collect
295 * the data from PCI config space because it should return
296 * 0xFF's. For ER, we still retrieve the data from the PCI
297 * config space.
299 * For pHyp, we have to enable IO for log retrieval. Otherwise,
300 * 0xFF's is always returned from PCI config space.
302 * When the @severity is EEH_LOG_PERM, the PE is going to be
303 * removed. Prior to that, the drivers for devices included in
304 * the PE will be closed. The drivers rely on working IO path
305 * to bring the devices to quiet state. Otherwise, PCI traffic
306 * from those devices after they are removed is like to cause
307 * another unexpected EEH error.
309 if (!(pe->type & EEH_PE_PHB)) {
310 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
311 severity == EEH_LOG_PERM)
312 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315 * The config space of some PCI devices can't be accessed
316 * when their PEs are in frozen state. Otherwise, fenced
317 * PHB might be seen. Those PEs are identified with flag
318 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
319 * is set automatically when the PE is put to EEH_PE_ISOLATED.
321 * Restoring BARs possibly triggers PCI config access in
322 * (OPAL) firmware and then causes fenced PHB. If the
323 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
324 * pointless to restore BARs and dump config space.
326 eeh_ops->configure_bridge(pe);
327 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
328 eeh_pe_restore_bars(pe);
330 pci_regs_buf[0] = 0;
331 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
335 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
339 * eeh_token_to_phys - Convert EEH address token to phys address
340 * @token: I/O token, should be address in the form 0xA....
342 * This routine should be called to convert virtual I/O address
343 * to physical one.
345 static inline unsigned long eeh_token_to_phys(unsigned long token)
347 pte_t *ptep;
348 unsigned long pa;
349 int hugepage_shift;
352 * We won't find hugepages here(this is iomem). Hence we are not
353 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
354 * page table free, because of init_mm.
356 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
357 NULL, &hugepage_shift);
358 if (!ptep)
359 return token;
360 WARN_ON(hugepage_shift);
361 pa = pte_pfn(*ptep) << PAGE_SHIFT;
363 return pa | (token & (PAGE_SIZE-1));
367 * On PowerNV platform, we might already have fenced PHB there.
368 * For that case, it's meaningless to recover frozen PE. Intead,
369 * We have to handle fenced PHB firstly.
371 static int eeh_phb_check_failure(struct eeh_pe *pe)
373 struct eeh_pe *phb_pe;
374 unsigned long flags;
375 int ret;
377 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
378 return -EPERM;
380 /* Find the PHB PE */
381 phb_pe = eeh_phb_pe_get(pe->phb);
382 if (!phb_pe) {
383 pr_warn("%s Can't find PE for PHB#%x\n",
384 __func__, pe->phb->global_number);
385 return -EEXIST;
388 /* If the PHB has been in problematic state */
389 eeh_serialize_lock(&flags);
390 if (phb_pe->state & EEH_PE_ISOLATED) {
391 ret = 0;
392 goto out;
395 /* Check PHB state */
396 ret = eeh_ops->get_state(phb_pe, NULL);
397 if ((ret < 0) ||
398 (ret == EEH_STATE_NOT_SUPPORT) ||
399 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
400 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
401 ret = 0;
402 goto out;
405 /* Isolate the PHB and send event */
406 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
407 eeh_serialize_unlock(flags);
409 pr_err("EEH: PHB#%x failure detected, location: %s\n",
410 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
411 dump_stack();
412 eeh_send_failure_event(phb_pe);
414 return 1;
415 out:
416 eeh_serialize_unlock(flags);
417 return ret;
421 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
422 * @edev: eeh device
424 * Check for an EEH failure for the given device node. Call this
425 * routine if the result of a read was all 0xff's and you want to
426 * find out if this is due to an EEH slot freeze. This routine
427 * will query firmware for the EEH status.
429 * Returns 0 if there has not been an EEH error; otherwise returns
430 * a non-zero value and queues up a slot isolation event notification.
432 * It is safe to call this routine in an interrupt context.
434 int eeh_dev_check_failure(struct eeh_dev *edev)
436 int ret;
437 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
438 unsigned long flags;
439 struct pci_dn *pdn;
440 struct pci_dev *dev;
441 struct eeh_pe *pe, *parent_pe, *phb_pe;
442 int rc = 0;
443 const char *location = NULL;
445 eeh_stats.total_mmio_ffs++;
447 if (!eeh_enabled())
448 return 0;
450 if (!edev) {
451 eeh_stats.no_dn++;
452 return 0;
454 dev = eeh_dev_to_pci_dev(edev);
455 pe = eeh_dev_to_pe(edev);
457 /* Access to IO BARs might get this far and still not want checking. */
458 if (!pe) {
459 eeh_stats.ignored_check++;
460 pr_debug("EEH: Ignored check for %s\n",
461 eeh_pci_name(dev));
462 return 0;
465 if (!pe->addr && !pe->config_addr) {
466 eeh_stats.no_cfg_addr++;
467 return 0;
471 * On PowerNV platform, we might already have fenced PHB
472 * there and we need take care of that firstly.
474 ret = eeh_phb_check_failure(pe);
475 if (ret > 0)
476 return ret;
479 * If the PE isn't owned by us, we shouldn't check the
480 * state. Instead, let the owner handle it if the PE has
481 * been frozen.
483 if (eeh_pe_passed(pe))
484 return 0;
486 /* If we already have a pending isolation event for this
487 * slot, we know it's bad already, we don't need to check.
488 * Do this checking under a lock; as multiple PCI devices
489 * in one slot might report errors simultaneously, and we
490 * only want one error recovery routine running.
492 eeh_serialize_lock(&flags);
493 rc = 1;
494 if (pe->state & EEH_PE_ISOLATED) {
495 pe->check_count++;
496 if (pe->check_count % EEH_MAX_FAILS == 0) {
497 pdn = eeh_dev_to_pdn(edev);
498 if (pdn->node)
499 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
500 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
501 "location=%s driver=%s pci addr=%s\n",
502 pe->check_count,
503 location ? location : "unknown",
504 eeh_driver_name(dev), eeh_pci_name(dev));
505 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
506 eeh_driver_name(dev));
507 dump_stack();
509 goto dn_unlock;
513 * Now test for an EEH failure. This is VERY expensive.
514 * Note that the eeh_config_addr may be a parent device
515 * in the case of a device behind a bridge, or it may be
516 * function zero of a multi-function device.
517 * In any case they must share a common PHB.
519 ret = eeh_ops->get_state(pe, NULL);
521 /* Note that config-io to empty slots may fail;
522 * they are empty when they don't have children.
523 * We will punt with the following conditions: Failure to get
524 * PE's state, EEH not support and Permanently unavailable
525 * state, PE is in good state.
527 if ((ret < 0) ||
528 (ret == EEH_STATE_NOT_SUPPORT) ||
529 ((ret & active_flags) == active_flags)) {
530 eeh_stats.false_positives++;
531 pe->false_positives++;
532 rc = 0;
533 goto dn_unlock;
537 * It should be corner case that the parent PE has been
538 * put into frozen state as well. We should take care
539 * that at first.
541 parent_pe = pe->parent;
542 while (parent_pe) {
543 /* Hit the ceiling ? */
544 if (parent_pe->type & EEH_PE_PHB)
545 break;
547 /* Frozen parent PE ? */
548 ret = eeh_ops->get_state(parent_pe, NULL);
549 if (ret > 0 &&
550 (ret & active_flags) != active_flags)
551 pe = parent_pe;
553 /* Next parent level */
554 parent_pe = parent_pe->parent;
557 eeh_stats.slot_resets++;
559 /* Avoid repeated reports of this failure, including problems
560 * with other functions on this device, and functions under
561 * bridges.
563 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
564 eeh_serialize_unlock(flags);
566 /* Most EEH events are due to device driver bugs. Having
567 * a stack trace will help the device-driver authors figure
568 * out what happened. So print that out.
570 phb_pe = eeh_phb_pe_get(pe->phb);
571 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
572 pe->phb->global_number, pe->addr);
573 pr_err("EEH: PE location: %s, PHB location: %s\n",
574 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
575 dump_stack();
577 eeh_send_failure_event(pe);
579 return 1;
581 dn_unlock:
582 eeh_serialize_unlock(flags);
583 return rc;
586 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
589 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
590 * @token: I/O address
592 * Check for an EEH failure at the given I/O address. Call this
593 * routine if the result of a read was all 0xff's and you want to
594 * find out if this is due to an EEH slot freeze event. This routine
595 * will query firmware for the EEH status.
597 * Note this routine is safe to call in an interrupt context.
599 int eeh_check_failure(const volatile void __iomem *token)
601 unsigned long addr;
602 struct eeh_dev *edev;
604 /* Finding the phys addr + pci device; this is pretty quick. */
605 addr = eeh_token_to_phys((unsigned long __force) token);
606 edev = eeh_addr_cache_get_dev(addr);
607 if (!edev) {
608 eeh_stats.no_device++;
609 return 0;
612 return eeh_dev_check_failure(edev);
614 EXPORT_SYMBOL(eeh_check_failure);
618 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
619 * @pe: EEH PE
621 * This routine should be called to reenable frozen MMIO or DMA
622 * so that it would work correctly again. It's useful while doing
623 * recovery or log collection on the indicated device.
625 int eeh_pci_enable(struct eeh_pe *pe, int function)
627 int active_flag, rc;
630 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
631 * Also, it's pointless to enable them on unfrozen PE. So
632 * we have to check before enabling IO or DMA.
634 switch (function) {
635 case EEH_OPT_THAW_MMIO:
636 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
637 break;
638 case EEH_OPT_THAW_DMA:
639 active_flag = EEH_STATE_DMA_ACTIVE;
640 break;
641 case EEH_OPT_DISABLE:
642 case EEH_OPT_ENABLE:
643 case EEH_OPT_FREEZE_PE:
644 active_flag = 0;
645 break;
646 default:
647 pr_warn("%s: Invalid function %d\n",
648 __func__, function);
649 return -EINVAL;
653 * Check if IO or DMA has been enabled before
654 * enabling them.
656 if (active_flag) {
657 rc = eeh_ops->get_state(pe, NULL);
658 if (rc < 0)
659 return rc;
661 /* Needn't enable it at all */
662 if (rc == EEH_STATE_NOT_SUPPORT)
663 return 0;
665 /* It's already enabled */
666 if (rc & active_flag)
667 return 0;
671 /* Issue the request */
672 rc = eeh_ops->set_option(pe, function);
673 if (rc)
674 pr_warn("%s: Unexpected state change %d on "
675 "PHB#%x-PE#%x, err=%d\n",
676 __func__, function, pe->phb->global_number,
677 pe->addr, rc);
679 /* Check if the request is finished successfully */
680 if (active_flag) {
681 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
682 if (rc < 0)
683 return rc;
685 if (rc & active_flag)
686 return 0;
688 return -EIO;
691 return rc;
694 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
696 struct eeh_dev *edev = data;
697 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
698 struct pci_dev *dev = userdata;
701 * The caller should have disabled and saved the
702 * state for the specified device
704 if (!pdev || pdev == dev)
705 return NULL;
707 /* Ensure we have D0 power state */
708 pci_set_power_state(pdev, PCI_D0);
710 /* Save device state */
711 pci_save_state(pdev);
714 * Disable device to avoid any DMA traffic and
715 * interrupt from the device
717 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
719 return NULL;
722 static void *eeh_restore_dev_state(void *data, void *userdata)
724 struct eeh_dev *edev = data;
725 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
726 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
727 struct pci_dev *dev = userdata;
729 if (!pdev)
730 return NULL;
732 /* Apply customization from firmware */
733 if (pdn && eeh_ops->restore_config)
734 eeh_ops->restore_config(pdn);
736 /* The caller should restore state for the specified device */
737 if (pdev != dev)
738 pci_restore_state(pdev);
740 return NULL;
744 * pcibios_set_pcie_reset_state - Set PCI-E reset state
745 * @dev: pci device struct
746 * @state: reset state to enter
748 * Return value:
749 * 0 if success
751 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
753 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
754 struct eeh_pe *pe = eeh_dev_to_pe(edev);
756 if (!pe) {
757 pr_err("%s: No PE found on PCI device %s\n",
758 __func__, pci_name(dev));
759 return -EINVAL;
762 switch (state) {
763 case pcie_deassert_reset:
764 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
765 eeh_unfreeze_pe(pe, false);
766 if (!(pe->type & EEH_PE_VF))
767 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
768 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
769 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
770 break;
771 case pcie_hot_reset:
772 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
773 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
774 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
775 if (!(pe->type & EEH_PE_VF))
776 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
777 eeh_ops->reset(pe, EEH_RESET_HOT);
778 break;
779 case pcie_warm_reset:
780 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
781 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
782 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
783 if (!(pe->type & EEH_PE_VF))
784 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
785 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
786 break;
787 default:
788 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
789 return -EINVAL;
792 return 0;
796 * eeh_set_pe_freset - Check the required reset for the indicated device
797 * @data: EEH device
798 * @flag: return value
800 * Each device might have its preferred reset type: fundamental or
801 * hot reset. The routine is used to collected the information for
802 * the indicated device and its children so that the bunch of the
803 * devices could be reset properly.
805 static void *eeh_set_dev_freset(void *data, void *flag)
807 struct pci_dev *dev;
808 unsigned int *freset = (unsigned int *)flag;
809 struct eeh_dev *edev = (struct eeh_dev *)data;
811 dev = eeh_dev_to_pci_dev(edev);
812 if (dev)
813 *freset |= dev->needs_freset;
815 return NULL;
819 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
820 * @pe: EEH PE
822 * This function executes a full reset procedure on a PE, including setting
823 * the appropriate flags, performing a fundamental or hot reset, and then
824 * deactivating the reset status. It is designed to be used within the EEH
825 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
826 * only performs a single operation at a time.
828 * This function will attempt to reset a PE three times before failing.
830 int eeh_pe_reset_full(struct eeh_pe *pe)
832 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
833 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
834 int type = EEH_RESET_HOT;
835 unsigned int freset = 0;
836 int i, state, ret;
839 * Determine the type of reset to perform - hot or fundamental.
840 * Hot reset is the default operation, unless any device under the
841 * PE requires a fundamental reset.
843 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
845 if (freset)
846 type = EEH_RESET_FUNDAMENTAL;
848 /* Mark the PE as in reset state and block config space accesses */
849 eeh_pe_state_mark(pe, reset_state);
851 /* Make three attempts at resetting the bus */
852 for (i = 0; i < 3; i++) {
853 ret = eeh_pe_reset(pe, type);
854 if (ret)
855 break;
857 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
858 if (ret)
859 break;
861 /* Wait until the PE is in a functioning state */
862 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
863 if ((state & active_flags) == active_flags)
864 break;
866 if (state < 0) {
867 pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
868 __func__, pe->phb->global_number, pe->addr);
869 ret = -ENOTRECOVERABLE;
870 break;
873 /* Set error in case this is our last attempt */
874 ret = -EIO;
875 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
876 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
879 eeh_pe_state_clear(pe, reset_state);
880 return ret;
884 * eeh_save_bars - Save device bars
885 * @edev: PCI device associated EEH device
887 * Save the values of the device bars. Unlike the restore
888 * routine, this routine is *not* recursive. This is because
889 * PCI devices are added individually; but, for the restore,
890 * an entire slot is reset at a time.
892 void eeh_save_bars(struct eeh_dev *edev)
894 struct pci_dn *pdn;
895 int i;
897 pdn = eeh_dev_to_pdn(edev);
898 if (!pdn)
899 return;
901 for (i = 0; i < 16; i++)
902 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
905 * For PCI bridges including root port, we need enable bus
906 * master explicitly. Otherwise, it can't fetch IODA table
907 * entries correctly. So we cache the bit in advance so that
908 * we can restore it after reset, either PHB range or PE range.
910 if (edev->mode & EEH_DEV_BRIDGE)
911 edev->config_space[1] |= PCI_COMMAND_MASTER;
915 * eeh_ops_register - Register platform dependent EEH operations
916 * @ops: platform dependent EEH operations
918 * Register the platform dependent EEH operation callback
919 * functions. The platform should call this function before
920 * any other EEH operations.
922 int __init eeh_ops_register(struct eeh_ops *ops)
924 if (!ops->name) {
925 pr_warn("%s: Invalid EEH ops name for %p\n",
926 __func__, ops);
927 return -EINVAL;
930 if (eeh_ops && eeh_ops != ops) {
931 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
932 __func__, eeh_ops->name, ops->name);
933 return -EEXIST;
936 eeh_ops = ops;
938 return 0;
942 * eeh_ops_unregister - Unreigster platform dependent EEH operations
943 * @name: name of EEH platform operations
945 * Unregister the platform dependent EEH operation callback
946 * functions.
948 int __exit eeh_ops_unregister(const char *name)
950 if (!name || !strlen(name)) {
951 pr_warn("%s: Invalid EEH ops name\n",
952 __func__);
953 return -EINVAL;
956 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
957 eeh_ops = NULL;
958 return 0;
961 return -EEXIST;
964 static int eeh_reboot_notifier(struct notifier_block *nb,
965 unsigned long action, void *unused)
967 eeh_clear_flag(EEH_ENABLED);
968 return NOTIFY_DONE;
971 static struct notifier_block eeh_reboot_nb = {
972 .notifier_call = eeh_reboot_notifier,
976 * eeh_init - EEH initialization
978 * Initialize EEH by trying to enable it for all of the adapters in the system.
979 * As a side effect we can determine here if eeh is supported at all.
980 * Note that we leave EEH on so failed config cycles won't cause a machine
981 * check. If a user turns off EEH for a particular adapter they are really
982 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
983 * grant access to a slot if EEH isn't enabled, and so we always enable
984 * EEH for all slots/all devices.
986 * The eeh-force-off option disables EEH checking globally, for all slots.
987 * Even if force-off is set, the EEH hardware is still enabled, so that
988 * newer systems can boot.
990 int eeh_init(void)
992 struct pci_controller *hose, *tmp;
993 struct pci_dn *pdn;
994 static int cnt = 0;
995 int ret = 0;
998 * We have to delay the initialization on PowerNV after
999 * the PCI hierarchy tree has been built because the PEs
1000 * are figured out based on PCI devices instead of device
1001 * tree nodes
1003 if (machine_is(powernv) && cnt++ <= 0)
1004 return ret;
1006 /* Register reboot notifier */
1007 ret = register_reboot_notifier(&eeh_reboot_nb);
1008 if (ret) {
1009 pr_warn("%s: Failed to register notifier (%d)\n",
1010 __func__, ret);
1011 return ret;
1014 /* call platform initialization function */
1015 if (!eeh_ops) {
1016 pr_warn("%s: Platform EEH operation not found\n",
1017 __func__);
1018 return -EEXIST;
1019 } else if ((ret = eeh_ops->init()))
1020 return ret;
1022 /* Initialize EEH event */
1023 ret = eeh_event_init();
1024 if (ret)
1025 return ret;
1027 /* Enable EEH for all adapters */
1028 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1029 pdn = hose->pci_data;
1030 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1034 * Call platform post-initialization. Actually, It's good chance
1035 * to inform platform that EEH is ready to supply service if the
1036 * I/O cache stuff has been built up.
1038 if (eeh_ops->post_init) {
1039 ret = eeh_ops->post_init();
1040 if (ret)
1041 return ret;
1044 if (eeh_enabled())
1045 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1046 else
1047 pr_info("EEH: No capable adapters found\n");
1049 return ret;
1052 core_initcall_sync(eeh_init);
1055 * eeh_add_device_early - Enable EEH for the indicated device node
1056 * @pdn: PCI device node for which to set up EEH
1058 * This routine must be used to perform EEH initialization for PCI
1059 * devices that were added after system boot (e.g. hotplug, dlpar).
1060 * This routine must be called before any i/o is performed to the
1061 * adapter (inluding any config-space i/o).
1062 * Whether this actually enables EEH or not for this device depends
1063 * on the CEC architecture, type of the device, on earlier boot
1064 * command-line arguments & etc.
1066 void eeh_add_device_early(struct pci_dn *pdn)
1068 struct pci_controller *phb;
1069 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1071 if (!edev)
1072 return;
1074 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1075 return;
1077 /* USB Bus children of PCI devices will not have BUID's */
1078 phb = edev->phb;
1079 if (NULL == phb ||
1080 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1081 return;
1083 eeh_ops->probe(pdn, NULL);
1087 * eeh_add_device_tree_early - Enable EEH for the indicated device
1088 * @pdn: PCI device node
1090 * This routine must be used to perform EEH initialization for the
1091 * indicated PCI device that was added after system boot (e.g.
1092 * hotplug, dlpar).
1094 void eeh_add_device_tree_early(struct pci_dn *pdn)
1096 struct pci_dn *n;
1098 if (!pdn)
1099 return;
1101 list_for_each_entry(n, &pdn->child_list, list)
1102 eeh_add_device_tree_early(n);
1103 eeh_add_device_early(pdn);
1105 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1108 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1109 * @dev: pci device for which to set up EEH
1111 * This routine must be used to complete EEH initialization for PCI
1112 * devices that were added after system boot (e.g. hotplug, dlpar).
1114 void eeh_add_device_late(struct pci_dev *dev)
1116 struct pci_dn *pdn;
1117 struct eeh_dev *edev;
1119 if (!dev || !eeh_enabled())
1120 return;
1122 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1124 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1125 edev = pdn_to_eeh_dev(pdn);
1126 if (edev->pdev == dev) {
1127 pr_debug("EEH: Already referenced !\n");
1128 return;
1132 * The EEH cache might not be removed correctly because of
1133 * unbalanced kref to the device during unplug time, which
1134 * relies on pcibios_release_device(). So we have to remove
1135 * that here explicitly.
1137 if (edev->pdev) {
1138 eeh_rmv_from_parent_pe(edev);
1139 eeh_addr_cache_rmv_dev(edev->pdev);
1140 eeh_sysfs_remove_device(edev->pdev);
1141 edev->mode &= ~EEH_DEV_SYSFS;
1144 * We definitely should have the PCI device removed
1145 * though it wasn't correctly. So we needn't call
1146 * into error handler afterwards.
1148 edev->mode |= EEH_DEV_NO_HANDLER;
1150 edev->pdev = NULL;
1151 dev->dev.archdata.edev = NULL;
1154 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1155 eeh_ops->probe(pdn, NULL);
1157 edev->pdev = dev;
1158 dev->dev.archdata.edev = edev;
1160 eeh_addr_cache_insert_dev(dev);
1164 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1165 * @bus: PCI bus
1167 * This routine must be used to perform EEH initialization for PCI
1168 * devices which are attached to the indicated PCI bus. The PCI bus
1169 * is added after system boot through hotplug or dlpar.
1171 void eeh_add_device_tree_late(struct pci_bus *bus)
1173 struct pci_dev *dev;
1175 list_for_each_entry(dev, &bus->devices, bus_list) {
1176 eeh_add_device_late(dev);
1177 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1178 struct pci_bus *subbus = dev->subordinate;
1179 if (subbus)
1180 eeh_add_device_tree_late(subbus);
1184 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1187 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1188 * @bus: PCI bus
1190 * This routine must be used to add EEH sysfs files for PCI
1191 * devices which are attached to the indicated PCI bus. The PCI bus
1192 * is added after system boot through hotplug or dlpar.
1194 void eeh_add_sysfs_files(struct pci_bus *bus)
1196 struct pci_dev *dev;
1198 list_for_each_entry(dev, &bus->devices, bus_list) {
1199 eeh_sysfs_add_device(dev);
1200 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1201 struct pci_bus *subbus = dev->subordinate;
1202 if (subbus)
1203 eeh_add_sysfs_files(subbus);
1207 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1210 * eeh_remove_device - Undo EEH setup for the indicated pci device
1211 * @dev: pci device to be removed
1213 * This routine should be called when a device is removed from
1214 * a running system (e.g. by hotplug or dlpar). It unregisters
1215 * the PCI device from the EEH subsystem. I/O errors affecting
1216 * this device will no longer be detected after this call; thus,
1217 * i/o errors affecting this slot may leave this device unusable.
1219 void eeh_remove_device(struct pci_dev *dev)
1221 struct eeh_dev *edev;
1223 if (!dev || !eeh_enabled())
1224 return;
1225 edev = pci_dev_to_eeh_dev(dev);
1227 /* Unregister the device with the EEH/PCI address search system */
1228 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1230 if (!edev || !edev->pdev || !edev->pe) {
1231 pr_debug("EEH: Not referenced !\n");
1232 return;
1236 * During the hotplug for EEH error recovery, we need the EEH
1237 * device attached to the parent PE in order for BAR restore
1238 * a bit later. So we keep it for BAR restore and remove it
1239 * from the parent PE during the BAR resotre.
1241 edev->pdev = NULL;
1244 * The flag "in_error" is used to trace EEH devices for VFs
1245 * in error state or not. It's set in eeh_report_error(). If
1246 * it's not set, eeh_report_{reset,resume}() won't be called
1247 * for the VF EEH device.
1249 edev->in_error = false;
1250 dev->dev.archdata.edev = NULL;
1251 if (!(edev->pe->state & EEH_PE_KEEP))
1252 eeh_rmv_from_parent_pe(edev);
1253 else
1254 edev->mode |= EEH_DEV_DISCONNECTED;
1257 * We're removing from the PCI subsystem, that means
1258 * the PCI device driver can't support EEH or not
1259 * well. So we rely on hotplug completely to do recovery
1260 * for the specific PCI device.
1262 edev->mode |= EEH_DEV_NO_HANDLER;
1264 eeh_addr_cache_rmv_dev(dev);
1265 eeh_sysfs_remove_device(dev);
1266 edev->mode &= ~EEH_DEV_SYSFS;
1269 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1271 int ret;
1273 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1274 if (ret) {
1275 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1276 __func__, ret, pe->phb->global_number, pe->addr);
1277 return ret;
1280 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1281 if (ret) {
1282 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1283 __func__, ret, pe->phb->global_number, pe->addr);
1284 return ret;
1287 /* Clear software isolated state */
1288 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1289 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1291 return ret;
1295 static struct pci_device_id eeh_reset_ids[] = {
1296 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1297 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1298 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1299 { 0 }
1302 static int eeh_pe_change_owner(struct eeh_pe *pe)
1304 struct eeh_dev *edev, *tmp;
1305 struct pci_dev *pdev;
1306 struct pci_device_id *id;
1307 int flags, ret;
1309 /* Check PE state */
1310 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1311 ret = eeh_ops->get_state(pe, NULL);
1312 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1313 return 0;
1315 /* Unfrozen PE, nothing to do */
1316 if ((ret & flags) == flags)
1317 return 0;
1319 /* Frozen PE, check if it needs PE level reset */
1320 eeh_pe_for_each_dev(pe, edev, tmp) {
1321 pdev = eeh_dev_to_pci_dev(edev);
1322 if (!pdev)
1323 continue;
1325 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1326 if (id->vendor != PCI_ANY_ID &&
1327 id->vendor != pdev->vendor)
1328 continue;
1329 if (id->device != PCI_ANY_ID &&
1330 id->device != pdev->device)
1331 continue;
1332 if (id->subvendor != PCI_ANY_ID &&
1333 id->subvendor != pdev->subsystem_vendor)
1334 continue;
1335 if (id->subdevice != PCI_ANY_ID &&
1336 id->subdevice != pdev->subsystem_device)
1337 continue;
1339 return eeh_pe_reset_and_recover(pe);
1343 return eeh_unfreeze_pe(pe, true);
1347 * eeh_dev_open - Increase count of pass through devices for PE
1348 * @pdev: PCI device
1350 * Increase count of passed through devices for the indicated
1351 * PE. In the result, the EEH errors detected on the PE won't be
1352 * reported. The PE owner will be responsible for detection
1353 * and recovery.
1355 int eeh_dev_open(struct pci_dev *pdev)
1357 struct eeh_dev *edev;
1358 int ret = -ENODEV;
1360 mutex_lock(&eeh_dev_mutex);
1362 /* No PCI device ? */
1363 if (!pdev)
1364 goto out;
1366 /* No EEH device or PE ? */
1367 edev = pci_dev_to_eeh_dev(pdev);
1368 if (!edev || !edev->pe)
1369 goto out;
1372 * The PE might have been put into frozen state, but we
1373 * didn't detect that yet. The passed through PCI devices
1374 * in frozen PE won't work properly. Clear the frozen state
1375 * in advance.
1377 ret = eeh_pe_change_owner(edev->pe);
1378 if (ret)
1379 goto out;
1381 /* Increase PE's pass through count */
1382 atomic_inc(&edev->pe->pass_dev_cnt);
1383 mutex_unlock(&eeh_dev_mutex);
1385 return 0;
1386 out:
1387 mutex_unlock(&eeh_dev_mutex);
1388 return ret;
1390 EXPORT_SYMBOL_GPL(eeh_dev_open);
1393 * eeh_dev_release - Decrease count of pass through devices for PE
1394 * @pdev: PCI device
1396 * Decrease count of pass through devices for the indicated PE. If
1397 * there is no passed through device in PE, the EEH errors detected
1398 * on the PE will be reported and handled as usual.
1400 void eeh_dev_release(struct pci_dev *pdev)
1402 struct eeh_dev *edev;
1404 mutex_lock(&eeh_dev_mutex);
1406 /* No PCI device ? */
1407 if (!pdev)
1408 goto out;
1410 /* No EEH device ? */
1411 edev = pci_dev_to_eeh_dev(pdev);
1412 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1413 goto out;
1415 /* Decrease PE's pass through count */
1416 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1417 eeh_pe_change_owner(edev->pe);
1418 out:
1419 mutex_unlock(&eeh_dev_mutex);
1421 EXPORT_SYMBOL(eeh_dev_release);
1423 #ifdef CONFIG_IOMMU_API
1425 static int dev_has_iommu_table(struct device *dev, void *data)
1427 struct pci_dev *pdev = to_pci_dev(dev);
1428 struct pci_dev **ppdev = data;
1430 if (!dev)
1431 return 0;
1433 if (dev->iommu_group) {
1434 *ppdev = pdev;
1435 return 1;
1438 return 0;
1442 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1443 * @group: IOMMU group
1445 * The routine is called to convert IOMMU group to EEH PE.
1447 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1449 struct pci_dev *pdev = NULL;
1450 struct eeh_dev *edev;
1451 int ret;
1453 /* No IOMMU group ? */
1454 if (!group)
1455 return NULL;
1457 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1458 if (!ret || !pdev)
1459 return NULL;
1461 /* No EEH device or PE ? */
1462 edev = pci_dev_to_eeh_dev(pdev);
1463 if (!edev || !edev->pe)
1464 return NULL;
1466 return edev->pe;
1468 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1470 #endif /* CONFIG_IOMMU_API */
1473 * eeh_pe_set_option - Set options for the indicated PE
1474 * @pe: EEH PE
1475 * @option: requested option
1477 * The routine is called to enable or disable EEH functionality
1478 * on the indicated PE, to enable IO or DMA for the frozen PE.
1480 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1482 int ret = 0;
1484 /* Invalid PE ? */
1485 if (!pe)
1486 return -ENODEV;
1489 * EEH functionality could possibly be disabled, just
1490 * return error for the case. And the EEH functinality
1491 * isn't expected to be disabled on one specific PE.
1493 switch (option) {
1494 case EEH_OPT_ENABLE:
1495 if (eeh_enabled()) {
1496 ret = eeh_pe_change_owner(pe);
1497 break;
1499 ret = -EIO;
1500 break;
1501 case EEH_OPT_DISABLE:
1502 break;
1503 case EEH_OPT_THAW_MMIO:
1504 case EEH_OPT_THAW_DMA:
1505 case EEH_OPT_FREEZE_PE:
1506 if (!eeh_ops || !eeh_ops->set_option) {
1507 ret = -ENOENT;
1508 break;
1511 ret = eeh_pci_enable(pe, option);
1512 break;
1513 default:
1514 pr_debug("%s: Option %d out of range (%d, %d)\n",
1515 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1516 ret = -EINVAL;
1519 return ret;
1521 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1524 * eeh_pe_get_state - Retrieve PE's state
1525 * @pe: EEH PE
1527 * Retrieve the PE's state, which includes 3 aspects: enabled
1528 * DMA, enabled IO and asserted reset.
1530 int eeh_pe_get_state(struct eeh_pe *pe)
1532 int result, ret = 0;
1533 bool rst_active, dma_en, mmio_en;
1535 /* Existing PE ? */
1536 if (!pe)
1537 return -ENODEV;
1539 if (!eeh_ops || !eeh_ops->get_state)
1540 return -ENOENT;
1543 * If the parent PE is owned by the host kernel and is undergoing
1544 * error recovery, we should return the PE state as temporarily
1545 * unavailable so that the error recovery on the guest is suspended
1546 * until the recovery completes on the host.
1548 if (pe->parent &&
1549 !(pe->state & EEH_PE_REMOVED) &&
1550 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1551 return EEH_PE_STATE_UNAVAIL;
1553 result = eeh_ops->get_state(pe, NULL);
1554 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1555 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1556 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1558 if (rst_active)
1559 ret = EEH_PE_STATE_RESET;
1560 else if (dma_en && mmio_en)
1561 ret = EEH_PE_STATE_NORMAL;
1562 else if (!dma_en && !mmio_en)
1563 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1564 else if (!dma_en && mmio_en)
1565 ret = EEH_PE_STATE_STOPPED_DMA;
1566 else
1567 ret = EEH_PE_STATE_UNAVAIL;
1569 return ret;
1571 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1573 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1575 struct eeh_dev *edev, *tmp;
1576 struct pci_dev *pdev;
1577 int ret = 0;
1579 /* Restore config space */
1580 eeh_pe_restore_bars(pe);
1583 * Reenable PCI devices as the devices passed
1584 * through are always enabled before the reset.
1586 eeh_pe_for_each_dev(pe, edev, tmp) {
1587 pdev = eeh_dev_to_pci_dev(edev);
1588 if (!pdev)
1589 continue;
1591 ret = pci_reenable_device(pdev);
1592 if (ret) {
1593 pr_warn("%s: Failure %d reenabling %s\n",
1594 __func__, ret, pci_name(pdev));
1595 return ret;
1599 /* The PE is still in frozen state */
1600 return eeh_unfreeze_pe(pe, true);
1605 * eeh_pe_reset - Issue PE reset according to specified type
1606 * @pe: EEH PE
1607 * @option: reset type
1609 * The routine is called to reset the specified PE with the
1610 * indicated type, either fundamental reset or hot reset.
1611 * PE reset is the most important part for error recovery.
1613 int eeh_pe_reset(struct eeh_pe *pe, int option)
1615 int ret = 0;
1617 /* Invalid PE ? */
1618 if (!pe)
1619 return -ENODEV;
1621 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1622 return -ENOENT;
1624 switch (option) {
1625 case EEH_RESET_DEACTIVATE:
1626 ret = eeh_ops->reset(pe, option);
1627 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1628 if (ret)
1629 break;
1631 ret = eeh_pe_reenable_devices(pe);
1632 break;
1633 case EEH_RESET_HOT:
1634 case EEH_RESET_FUNDAMENTAL:
1636 * Proactively freeze the PE to drop all MMIO access
1637 * during reset, which should be banned as it's always
1638 * cause recursive EEH error.
1640 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1642 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1643 ret = eeh_ops->reset(pe, option);
1644 break;
1645 default:
1646 pr_debug("%s: Unsupported option %d\n",
1647 __func__, option);
1648 ret = -EINVAL;
1651 return ret;
1653 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1656 * eeh_pe_configure - Configure PCI bridges after PE reset
1657 * @pe: EEH PE
1659 * The routine is called to restore the PCI config space for
1660 * those PCI devices, especially PCI bridges affected by PE
1661 * reset issued previously.
1663 int eeh_pe_configure(struct eeh_pe *pe)
1665 int ret = 0;
1667 /* Invalid PE ? */
1668 if (!pe)
1669 return -ENODEV;
1671 return ret;
1673 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1676 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1677 * @pe: the indicated PE
1678 * @type: error type
1679 * @function: error function
1680 * @addr: address
1681 * @mask: address mask
1683 * The routine is called to inject the specified PCI error, which
1684 * is determined by @type and @function, to the indicated PE for
1685 * testing purpose.
1687 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1688 unsigned long addr, unsigned long mask)
1690 /* Invalid PE ? */
1691 if (!pe)
1692 return -ENODEV;
1694 /* Unsupported operation ? */
1695 if (!eeh_ops || !eeh_ops->err_inject)
1696 return -ENOENT;
1698 /* Check on PCI error type */
1699 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1700 return -EINVAL;
1702 /* Check on PCI error function */
1703 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1704 return -EINVAL;
1706 return eeh_ops->err_inject(pe, type, func, addr, mask);
1708 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1710 static int proc_eeh_show(struct seq_file *m, void *v)
1712 if (!eeh_enabled()) {
1713 seq_printf(m, "EEH Subsystem is globally disabled\n");
1714 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1715 } else {
1716 seq_printf(m, "EEH Subsystem is enabled\n");
1717 seq_printf(m,
1718 "no device=%llu\n"
1719 "no device node=%llu\n"
1720 "no config address=%llu\n"
1721 "check not wanted=%llu\n"
1722 "eeh_total_mmio_ffs=%llu\n"
1723 "eeh_false_positives=%llu\n"
1724 "eeh_slot_resets=%llu\n",
1725 eeh_stats.no_device,
1726 eeh_stats.no_dn,
1727 eeh_stats.no_cfg_addr,
1728 eeh_stats.ignored_check,
1729 eeh_stats.total_mmio_ffs,
1730 eeh_stats.false_positives,
1731 eeh_stats.slot_resets);
1734 return 0;
1737 static int proc_eeh_open(struct inode *inode, struct file *file)
1739 return single_open(file, proc_eeh_show, NULL);
1742 static const struct file_operations proc_eeh_operations = {
1743 .open = proc_eeh_open,
1744 .read = seq_read,
1745 .llseek = seq_lseek,
1746 .release = single_release,
1749 #ifdef CONFIG_DEBUG_FS
1750 static int eeh_enable_dbgfs_set(void *data, u64 val)
1752 if (val)
1753 eeh_clear_flag(EEH_FORCE_DISABLED);
1754 else
1755 eeh_add_flag(EEH_FORCE_DISABLED);
1757 /* Notify the backend */
1758 if (eeh_ops->post_init)
1759 eeh_ops->post_init();
1761 return 0;
1764 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1766 if (eeh_enabled())
1767 *val = 0x1ul;
1768 else
1769 *val = 0x0ul;
1770 return 0;
1773 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1775 eeh_max_freezes = val;
1776 return 0;
1779 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1781 *val = eeh_max_freezes;
1782 return 0;
1785 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1786 eeh_enable_dbgfs_set, "0x%llx\n");
1787 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1788 eeh_freeze_dbgfs_set, "0x%llx\n");
1789 #endif
1791 static int __init eeh_init_proc(void)
1793 if (machine_is(pseries) || machine_is(powernv)) {
1794 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1795 #ifdef CONFIG_DEBUG_FS
1796 debugfs_create_file("eeh_enable", 0600,
1797 powerpc_debugfs_root, NULL,
1798 &eeh_enable_dbgfs_ops);
1799 debugfs_create_file("eeh_max_freezes", 0600,
1800 powerpc_debugfs_root, NULL,
1801 &eeh_freeze_dbgfs_ops);
1802 #endif
1805 return 0;
1807 __initcall(eeh_init_proc);