2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched/mm.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37 #include <linux/libfdt.h>
38 #include <linux/debugfs.h>
40 #include <asm/debug.h>
41 #include <asm/processor.h>
42 #include <asm/pgtable.h>
44 #include <asm/mmu_context.h>
46 #include <asm/types.h>
47 #include <linux/uaccess.h>
48 #include <asm/machdep.h>
50 #include <asm/tlbflush.h>
54 #include <asm/cacheflush.h>
55 #include <asm/cputable.h>
56 #include <asm/sections.h>
57 #include <asm/copro.h>
59 #include <asm/code-patching.h>
60 #include <asm/fadump.h>
61 #include <asm/firmware.h>
63 #include <asm/trace.h>
67 #define DBG(fmt...) udbg_printf(fmt)
73 #define DBG_LOW(fmt...) udbg_printf(fmt)
75 #define DBG_LOW(fmt...)
83 * Note: pte --> Linux PTE
84 * HPTE --> PowerPC Hashed Page Table Entry
87 * htab_initialize is called with the MMU off (of course), but
88 * the kernel has been copied down to zero so it can directly
89 * reference global data. At this point it is very difficult
90 * to print debug info.
94 static unsigned long _SDR1
;
95 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
96 EXPORT_SYMBOL_GPL(mmu_psize_defs
);
98 u8 hpte_page_sizes
[1 << LP_BITS
];
99 EXPORT_SYMBOL_GPL(hpte_page_sizes
);
101 struct hash_pte
*htab_address
;
102 unsigned long htab_size_bytes
;
103 unsigned long htab_hash_mask
;
104 EXPORT_SYMBOL_GPL(htab_hash_mask
);
105 int mmu_linear_psize
= MMU_PAGE_4K
;
106 EXPORT_SYMBOL_GPL(mmu_linear_psize
);
107 int mmu_virtual_psize
= MMU_PAGE_4K
;
108 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
109 #ifdef CONFIG_SPARSEMEM_VMEMMAP
110 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
112 int mmu_io_psize
= MMU_PAGE_4K
;
113 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
114 EXPORT_SYMBOL_GPL(mmu_kernel_ssize
);
115 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
116 u16 mmu_slb_size
= 64;
117 EXPORT_SYMBOL_GPL(mmu_slb_size
);
118 #ifdef CONFIG_PPC_64K_PAGES
119 int mmu_ci_restrictions
;
121 #ifdef CONFIG_DEBUG_PAGEALLOC
122 static u8
*linear_map_hash_slots
;
123 static unsigned long linear_map_hash_count
;
124 static DEFINE_SPINLOCK(linear_map_hash_lock
);
125 #endif /* CONFIG_DEBUG_PAGEALLOC */
126 struct mmu_hash_ops mmu_hash_ops
;
127 EXPORT_SYMBOL(mmu_hash_ops
);
129 /* There are definitions of page sizes arrays to be used when none
130 * is provided by the firmware.
133 /* Pre-POWER4 CPUs (4k pages only)
135 static struct mmu_psize_def mmu_psize_defaults_old
[] = {
139 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
145 /* POWER4, GPUL, POWER5
147 * Support for 16Mb large pages
149 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
153 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
160 .penc
= {[0 ... MMU_PAGE_16M
- 1] = -1, [MMU_PAGE_16M
] = 0,
161 [MMU_PAGE_16M
+ 1 ... MMU_PAGE_COUNT
- 1] = -1 },
168 * 'R' and 'C' update notes:
169 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
170 * create writeable HPTEs without C set, because the hcall H_PROTECT
171 * that we use in that case will not update C
172 * - The above is however not a problem, because we also don't do that
173 * fancy "no flush" variant of eviction and we use H_REMOVE which will
174 * do the right thing and thus we don't have the race I described earlier
176 * - Under bare metal, we do have the race, so we need R and C set
177 * - We make sure R is always set and never lost
178 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
180 unsigned long htab_convert_pte_flags(unsigned long pteflags
)
182 unsigned long rflags
= 0;
184 /* _PAGE_EXEC -> NOEXEC */
185 if ((pteflags
& _PAGE_EXEC
) == 0)
189 * Linux uses slb key 0 for kernel and 1 for user.
190 * kernel RW areas are mapped with PPP=0b000
191 * User area is mapped with PPP=0b010 for read/write
192 * or PPP=0b011 for read-only (including writeable but clean pages).
194 if (pteflags
& _PAGE_PRIVILEGED
) {
196 * Kernel read only mapped with ppp bits 0b110
198 if (!(pteflags
& _PAGE_WRITE
)) {
199 if (mmu_has_feature(MMU_FTR_KERNEL_RO
))
200 rflags
|= (HPTE_R_PP0
| 0x2);
205 if (pteflags
& _PAGE_RWX
)
207 if (!((pteflags
& _PAGE_WRITE
) && (pteflags
& _PAGE_DIRTY
)))
211 * We can't allow hardware to update hpte bits. Hence always
212 * set 'R' bit and set 'C' if it is a write fault
216 if (pteflags
& _PAGE_DIRTY
)
222 if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_TOLERANT
)
224 else if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_NON_IDEMPOTENT
)
225 rflags
|= (HPTE_R_I
| HPTE_R_G
);
226 else if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_SAO
)
227 rflags
|= (HPTE_R_W
| HPTE_R_I
| HPTE_R_M
);
230 * Add memory coherence if cache inhibited is not set
237 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
238 unsigned long pstart
, unsigned long prot
,
239 int psize
, int ssize
)
241 unsigned long vaddr
, paddr
;
242 unsigned int step
, shift
;
245 shift
= mmu_psize_defs
[psize
].shift
;
248 prot
= htab_convert_pte_flags(prot
);
250 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
251 vstart
, vend
, pstart
, prot
, psize
, ssize
);
253 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
254 vaddr
+= step
, paddr
+= step
) {
255 unsigned long hash
, hpteg
;
256 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
257 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, ssize
);
258 unsigned long tprot
= prot
;
261 * If we hit a bad address return error.
265 /* Make kernel text executable */
266 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
269 /* Make kvm guest trampolines executable */
270 if (overlaps_kvm_tmp(vaddr
, vaddr
+ step
))
274 * If relocatable, check if it overlaps interrupt vectors that
275 * are copied down to real 0. For relocatable kernel
276 * (e.g. kdump case) we copy interrupt vectors down to real
277 * address 0. Mark that region as executable. This is
278 * because on p8 system with relocation on exception feature
279 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
280 * in order to execute the interrupt handlers in virtual
281 * mode the vector region need to be marked as executable.
283 if ((PHYSICAL_START
> MEMORY_START
) &&
284 overlaps_interrupt_vector_text(vaddr
, vaddr
+ step
))
287 hash
= hpt_hash(vpn
, shift
, ssize
);
288 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
290 BUG_ON(!mmu_hash_ops
.hpte_insert
);
291 ret
= mmu_hash_ops
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
292 HPTE_V_BOLTED
, psize
, psize
,
298 #ifdef CONFIG_DEBUG_PAGEALLOC
299 if (debug_pagealloc_enabled() &&
300 (paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
301 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
302 #endif /* CONFIG_DEBUG_PAGEALLOC */
304 return ret
< 0 ? ret
: 0;
307 int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
308 int psize
, int ssize
)
311 unsigned int step
, shift
;
315 shift
= mmu_psize_defs
[psize
].shift
;
318 if (!mmu_hash_ops
.hpte_removebolted
)
321 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
) {
322 rc
= mmu_hash_ops
.hpte_removebolted(vaddr
, psize
, ssize
);
334 static bool disable_1tb_segments
= false;
336 static int __init
parse_disable_1tb_segments(char *p
)
338 disable_1tb_segments
= true;
341 early_param("disable_1tb_segments", parse_disable_1tb_segments
);
343 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
344 const char *uname
, int depth
,
347 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
351 /* We are scanning "cpu" nodes only */
352 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
355 prop
= of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes", &size
);
358 for (; size
>= 4; size
-= 4, ++prop
) {
359 if (be32_to_cpu(prop
[0]) == 40) {
360 DBG("1T segment support detected\n");
362 if (disable_1tb_segments
) {
363 DBG("1T segments disabled by command line\n");
367 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
371 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
375 static int __init
get_idx_from_shift(unsigned int shift
)
399 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
400 const char *uname
, int depth
,
403 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
407 /* We are scanning "cpu" nodes only */
408 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
411 prop
= of_get_flat_dt_prop(node
, "ibm,segment-page-sizes", &size
);
415 pr_info("Page sizes from device-tree:\n");
417 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
419 unsigned int base_shift
= be32_to_cpu(prop
[0]);
420 unsigned int slbenc
= be32_to_cpu(prop
[1]);
421 unsigned int lpnum
= be32_to_cpu(prop
[2]);
422 struct mmu_psize_def
*def
;
425 size
-= 3; prop
+= 3;
426 base_idx
= get_idx_from_shift(base_shift
);
428 /* skip the pte encoding also */
429 prop
+= lpnum
* 2; size
-= lpnum
* 2;
432 def
= &mmu_psize_defs
[base_idx
];
433 if (base_idx
== MMU_PAGE_16M
)
434 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
436 def
->shift
= base_shift
;
437 if (base_shift
<= 23)
440 def
->avpnm
= (1 << (base_shift
- 23)) - 1;
443 * We don't know for sure what's up with tlbiel, so
444 * for now we only set it for 4K and 64K pages
446 if (base_idx
== MMU_PAGE_4K
|| base_idx
== MMU_PAGE_64K
)
451 while (size
> 0 && lpnum
) {
452 unsigned int shift
= be32_to_cpu(prop
[0]);
453 int penc
= be32_to_cpu(prop
[1]);
455 prop
+= 2; size
-= 2;
458 idx
= get_idx_from_shift(shift
);
463 pr_err("Invalid penc for base_shift=%d "
464 "shift=%d\n", base_shift
, shift
);
466 def
->penc
[idx
] = penc
;
467 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
468 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
469 base_shift
, shift
, def
->sllp
,
470 def
->avpnm
, def
->tlbiel
, def
->penc
[idx
]);
477 #ifdef CONFIG_HUGETLB_PAGE
478 /* Scan for 16G memory blocks that have been set aside for huge pages
479 * and reserve those blocks for 16G huge pages.
481 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
482 const char *uname
, int depth
,
484 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
485 const __be64
*addr_prop
;
486 const __be32
*page_count_prop
;
487 unsigned int expected_pages
;
488 long unsigned int phys_addr
;
489 long unsigned int block_size
;
491 /* We are scanning "memory" nodes only */
492 if (type
== NULL
|| strcmp(type
, "memory") != 0)
495 /* This property is the log base 2 of the number of virtual pages that
496 * will represent this memory block. */
497 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
498 if (page_count_prop
== NULL
)
500 expected_pages
= (1 << be32_to_cpu(page_count_prop
[0]));
501 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
502 if (addr_prop
== NULL
)
504 phys_addr
= be64_to_cpu(addr_prop
[0]);
505 block_size
= be64_to_cpu(addr_prop
[1]);
506 if (block_size
!= (16 * GB
))
508 printk(KERN_INFO
"Huge page(16GB) memory: "
509 "addr = 0x%lX size = 0x%lX pages = %d\n",
510 phys_addr
, block_size
, expected_pages
);
511 if (phys_addr
+ (16 * GB
) <= memblock_end_of_DRAM()) {
512 memblock_reserve(phys_addr
, block_size
* expected_pages
);
513 add_gpage(phys_addr
, block_size
, expected_pages
);
517 #endif /* CONFIG_HUGETLB_PAGE */
519 static void mmu_psize_set_default_penc(void)
522 for (bpsize
= 0; bpsize
< MMU_PAGE_COUNT
; bpsize
++)
523 for (apsize
= 0; apsize
< MMU_PAGE_COUNT
; apsize
++)
524 mmu_psize_defs
[bpsize
].penc
[apsize
] = -1;
527 #ifdef CONFIG_PPC_64K_PAGES
529 static bool might_have_hea(void)
532 * The HEA ethernet adapter requires awareness of the
533 * GX bus. Without that awareness we can easily assume
534 * we will never see an HEA ethernet device.
536 #ifdef CONFIG_IBMEBUS
537 return !cpu_has_feature(CPU_FTR_ARCH_207S
) &&
538 firmware_has_feature(FW_FEATURE_SPLPAR
);
544 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
546 static void __init
htab_scan_page_sizes(void)
550 /* se the invalid penc to -1 */
551 mmu_psize_set_default_penc();
553 /* Default to 4K pages only */
554 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
555 sizeof(mmu_psize_defaults_old
));
558 * Try to find the available page sizes in the device-tree
560 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
561 if (rc
== 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE
)) {
563 * Nothing in the device-tree, but the CPU supports 16M pages,
564 * so let's fallback on a known size list for 16M capable CPUs.
566 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
567 sizeof(mmu_psize_defaults_gp
));
570 #ifdef CONFIG_HUGETLB_PAGE
571 /* Reserve 16G huge page memory sections for huge pages */
572 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
573 #endif /* CONFIG_HUGETLB_PAGE */
577 * Fill in the hpte_page_sizes[] array.
578 * We go through the mmu_psize_defs[] array looking for all the
579 * supported base/actual page size combinations. Each combination
580 * has a unique pagesize encoding (penc) value in the low bits of
581 * the LP field of the HPTE. For actual page sizes less than 1MB,
582 * some of the upper LP bits are used for RPN bits, meaning that
583 * we need to fill in several entries in hpte_page_sizes[].
585 * In diagrammatic form, with r = RPN bits and z = page size bits:
586 * PTE LP actual page size
593 * The zzzz bits are implementation-specific but are chosen so that
594 * no encoding for a larger page size uses the same value in its
595 * low-order N bits as the encoding for the 2^(12+N) byte page size
598 static void init_hpte_page_sizes(void)
601 long int shift
, penc
;
603 for (bp
= 0; bp
< MMU_PAGE_COUNT
; ++bp
) {
604 if (!mmu_psize_defs
[bp
].shift
)
605 continue; /* not a supported page size */
606 for (ap
= bp
; ap
< MMU_PAGE_COUNT
; ++ap
) {
607 penc
= mmu_psize_defs
[bp
].penc
[ap
];
610 shift
= mmu_psize_defs
[ap
].shift
- LP_SHIFT
;
612 continue; /* should never happen */
614 * For page sizes less than 1MB, this loop
615 * replicates the entry for all possible values
618 while (penc
< (1 << LP_BITS
)) {
619 hpte_page_sizes
[penc
] = (ap
<< 4) | bp
;
626 static void __init
htab_init_page_sizes(void)
628 init_hpte_page_sizes();
630 if (!debug_pagealloc_enabled()) {
632 * Pick a size for the linear mapping. Currently, we only
633 * support 16M, 1M and 4K which is the default
635 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
636 mmu_linear_psize
= MMU_PAGE_16M
;
637 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
638 mmu_linear_psize
= MMU_PAGE_1M
;
641 #ifdef CONFIG_PPC_64K_PAGES
643 * Pick a size for the ordinary pages. Default is 4K, we support
644 * 64K for user mappings and vmalloc if supported by the processor.
645 * We only use 64k for ioremap if the processor
646 * (and firmware) support cache-inhibited large pages.
647 * If not, we use 4k and set mmu_ci_restrictions so that
648 * hash_page knows to switch processes that use cache-inhibited
649 * mappings to 4k pages.
651 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
652 mmu_virtual_psize
= MMU_PAGE_64K
;
653 mmu_vmalloc_psize
= MMU_PAGE_64K
;
654 if (mmu_linear_psize
== MMU_PAGE_4K
)
655 mmu_linear_psize
= MMU_PAGE_64K
;
656 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
658 * When running on pSeries using 64k pages for ioremap
659 * would stop us accessing the HEA ethernet. So if we
660 * have the chance of ever seeing one, stay at 4k.
662 if (!might_have_hea())
663 mmu_io_psize
= MMU_PAGE_64K
;
665 mmu_ci_restrictions
= 1;
667 #endif /* CONFIG_PPC_64K_PAGES */
669 #ifdef CONFIG_SPARSEMEM_VMEMMAP
670 /* We try to use 16M pages for vmemmap if that is supported
671 * and we have at least 1G of RAM at boot
673 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
674 memblock_phys_mem_size() >= 0x40000000)
675 mmu_vmemmap_psize
= MMU_PAGE_16M
;
676 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
677 mmu_vmemmap_psize
= MMU_PAGE_64K
;
679 mmu_vmemmap_psize
= MMU_PAGE_4K
;
680 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
682 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
683 "virtual = %d, io = %d"
684 #ifdef CONFIG_SPARSEMEM_VMEMMAP
688 mmu_psize_defs
[mmu_linear_psize
].shift
,
689 mmu_psize_defs
[mmu_virtual_psize
].shift
,
690 mmu_psize_defs
[mmu_io_psize
].shift
691 #ifdef CONFIG_SPARSEMEM_VMEMMAP
692 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
697 static int __init
htab_dt_scan_pftsize(unsigned long node
,
698 const char *uname
, int depth
,
701 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
704 /* We are scanning "cpu" nodes only */
705 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
708 prop
= of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
710 /* pft_size[0] is the NUMA CEC cookie */
711 ppc64_pft_size
= be32_to_cpu(prop
[1]);
717 unsigned htab_shift_for_mem_size(unsigned long mem_size
)
719 unsigned memshift
= __ilog2(mem_size
);
720 unsigned pshift
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
723 /* round mem_size up to next power of 2 */
724 if ((1UL << memshift
) < mem_size
)
727 /* aim for 2 pages / pteg */
728 pteg_shift
= memshift
- (pshift
+ 1);
731 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
732 * size permitted by the architecture.
734 return max(pteg_shift
+ 7, 18U);
737 static unsigned long __init
htab_get_table_size(void)
739 /* If hash size isn't already provided by the platform, we try to
740 * retrieve it from the device-tree. If it's not there neither, we
741 * calculate it now based on the total RAM size
743 if (ppc64_pft_size
== 0)
744 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
746 return 1UL << ppc64_pft_size
;
748 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
751 #ifdef CONFIG_MEMORY_HOTPLUG
752 void resize_hpt_for_hotplug(unsigned long new_mem_size
)
754 unsigned target_hpt_shift
;
756 if (!mmu_hash_ops
.resize_hpt
)
759 target_hpt_shift
= htab_shift_for_mem_size(new_mem_size
);
762 * To avoid lots of HPT resizes if memory size is fluctuating
763 * across a boundary, we deliberately have some hysterisis
764 * here: we immediately increase the HPT size if the target
765 * shift exceeds the current shift, but we won't attempt to
766 * reduce unless the target shift is at least 2 below the
769 if ((target_hpt_shift
> ppc64_pft_size
)
770 || (target_hpt_shift
< (ppc64_pft_size
- 1))) {
773 rc
= mmu_hash_ops
.resize_hpt(target_hpt_shift
);
776 "Unable to resize hash page table to target order %d: %d\n",
777 target_hpt_shift
, rc
);
781 int hash__create_section_mapping(unsigned long start
, unsigned long end
)
783 int rc
= htab_bolt_mapping(start
, end
, __pa(start
),
784 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
788 int rc2
= htab_remove_mapping(start
, end
, mmu_linear_psize
,
790 BUG_ON(rc2
&& (rc2
!= -ENOENT
));
795 int hash__remove_section_mapping(unsigned long start
, unsigned long end
)
797 int rc
= htab_remove_mapping(start
, end
, mmu_linear_psize
,
802 #endif /* CONFIG_MEMORY_HOTPLUG */
804 static void update_hid_for_hash(void)
807 unsigned long rb
= 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
809 asm volatile("ptesync": : :"memory");
810 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
811 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
812 : : "r"(rb
), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
813 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
817 hid0
= mfspr(SPRN_HID0
);
818 hid0
&= ~HID0_POWER9_RADIX
;
819 mtspr(SPRN_HID0
, hid0
);
820 asm volatile("isync": : :"memory");
822 /* Wait for it to happen */
823 while ((mfspr(SPRN_HID0
) & HID0_POWER9_RADIX
))
827 static void __init
hash_init_partition_table(phys_addr_t hash_table
,
828 unsigned long htab_size
)
830 mmu_partition_table_init();
833 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
834 * For now, UPRT is 0 and we have no segment table.
836 htab_size
= __ilog2(htab_size
) - 18;
837 mmu_partition_table_set_entry(0, hash_table
| htab_size
, 0);
838 pr_info("Partition table %p\n", partition_tb
);
839 if (cpu_has_feature(CPU_FTR_POWER9_DD1
))
840 update_hid_for_hash();
843 static void __init
htab_initialize(void)
846 unsigned long pteg_count
;
848 unsigned long base
= 0, size
= 0;
849 struct memblock_region
*reg
;
851 DBG(" -> htab_initialize()\n");
853 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
854 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
855 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
856 printk(KERN_INFO
"Using 1TB segments\n");
860 * Calculate the required size of the htab. We want the number of
861 * PTEGs to equal one half the number of real pages.
863 htab_size_bytes
= htab_get_table_size();
864 pteg_count
= htab_size_bytes
>> 7;
866 htab_hash_mask
= pteg_count
- 1;
868 if (firmware_has_feature(FW_FEATURE_LPAR
) ||
869 firmware_has_feature(FW_FEATURE_PS3_LV1
)) {
870 /* Using a hypervisor which owns the htab */
873 #ifdef CONFIG_FA_DUMP
875 * If firmware assisted dump is active firmware preserves
876 * the contents of htab along with entire partition memory.
877 * Clear the htab if firmware assisted dump is active so
878 * that we dont end up using old mappings.
880 if (is_fadump_active() && mmu_hash_ops
.hpte_clear_all
)
881 mmu_hash_ops
.hpte_clear_all();
884 unsigned long limit
= MEMBLOCK_ALLOC_ANYWHERE
;
886 #ifdef CONFIG_PPC_CELL
888 * Cell may require the hash table down low when using the
889 * Axon IOMMU in order to fit the dynamic region over it, see
890 * comments in cell/iommu.c
892 if (fdt_subnode_offset(initial_boot_params
, 0, "axon") > 0) {
894 pr_info("Hash table forced below 2G for Axon IOMMU\n");
896 #endif /* CONFIG_PPC_CELL */
898 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
,
901 DBG("Hash table allocated at %lx, size: %lx\n", table
,
904 htab_address
= __va(table
);
906 /* htab absolute addr + encoded htabsize */
907 _SDR1
= table
+ __ilog2(htab_size_bytes
) - 18;
909 /* Initialize the HPT with no entries */
910 memset((void *)table
, 0, htab_size_bytes
);
912 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
914 mtspr(SPRN_SDR1
, _SDR1
);
916 hash_init_partition_table(table
, htab_size_bytes
);
919 prot
= pgprot_val(PAGE_KERNEL
);
921 #ifdef CONFIG_DEBUG_PAGEALLOC
922 if (debug_pagealloc_enabled()) {
923 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
924 linear_map_hash_slots
= __va(memblock_alloc_base(
925 linear_map_hash_count
, 1, ppc64_rma_size
));
926 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
928 #endif /* CONFIG_DEBUG_PAGEALLOC */
930 /* On U3 based machines, we need to reserve the DART area and
931 * _NOT_ map it to avoid cache paradoxes as it's remapped non
935 /* create bolted the linear mapping in the hash table */
936 for_each_memblock(memory
, reg
) {
937 base
= (unsigned long)__va(reg
->base
);
940 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
943 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
944 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
946 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
949 * If we have a memory_limit and we've allocated TCEs then we need to
950 * explicitly map the TCE area at the top of RAM. We also cope with the
951 * case that the TCEs start below memory_limit.
952 * tce_alloc_start/end are 16MB aligned so the mapping should work
953 * for either 4K or 16MB pages.
955 if (tce_alloc_start
) {
956 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
957 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
959 if (base
+ size
>= tce_alloc_start
)
960 tce_alloc_start
= base
+ size
+ 1;
962 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
963 __pa(tce_alloc_start
), prot
,
964 mmu_linear_psize
, mmu_kernel_ssize
));
968 DBG(" <- htab_initialize()\n");
973 void __init
hash__early_init_devtree(void)
975 /* Initialize segment sizes */
976 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
978 /* Initialize page sizes */
979 htab_scan_page_sizes();
982 void __init
hash__early_init_mmu(void)
984 htab_init_page_sizes();
987 * initialize page table size
989 __pte_frag_nr
= H_PTE_FRAG_NR
;
990 __pte_frag_size_shift
= H_PTE_FRAG_SIZE_SHIFT
;
992 __pte_index_size
= H_PTE_INDEX_SIZE
;
993 __pmd_index_size
= H_PMD_INDEX_SIZE
;
994 __pud_index_size
= H_PUD_INDEX_SIZE
;
995 __pgd_index_size
= H_PGD_INDEX_SIZE
;
996 __pmd_cache_index
= H_PMD_CACHE_INDEX
;
997 __pte_table_size
= H_PTE_TABLE_SIZE
;
998 __pmd_table_size
= H_PMD_TABLE_SIZE
;
999 __pud_table_size
= H_PUD_TABLE_SIZE
;
1000 __pgd_table_size
= H_PGD_TABLE_SIZE
;
1002 * 4k use hugepd format, so for hash set then to
1009 __kernel_virt_start
= H_KERN_VIRT_START
;
1010 __kernel_virt_size
= H_KERN_VIRT_SIZE
;
1011 __vmalloc_start
= H_VMALLOC_START
;
1012 __vmalloc_end
= H_VMALLOC_END
;
1013 vmemmap
= (struct page
*)H_VMEMMAP_BASE
;
1014 ioremap_bot
= IOREMAP_BASE
;
1017 pci_io_base
= ISA_IO_BASE
;
1020 /* Select appropriate backend */
1021 if (firmware_has_feature(FW_FEATURE_PS3_LV1
))
1022 ps3_early_mm_init();
1023 else if (firmware_has_feature(FW_FEATURE_LPAR
))
1024 hpte_init_pseries();
1025 else if (IS_ENABLED(CONFIG_PPC_NATIVE
))
1028 if (!mmu_hash_ops
.hpte_insert
)
1029 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1031 /* Initialize the MMU Hash table and create the linear mapping
1032 * of memory. Has to be done before SLB initialization as this is
1033 * currently where the page size encoding is obtained.
1037 pr_info("Initializing hash mmu with SLB\n");
1038 /* Initialize SLB management */
1043 void hash__early_init_mmu_secondary(void)
1045 /* Initialize hash table for that CPU */
1046 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
1048 if (cpu_has_feature(CPU_FTR_POWER9_DD1
))
1049 update_hid_for_hash();
1051 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
1052 mtspr(SPRN_SDR1
, _SDR1
);
1055 __pa(partition_tb
) | (PATB_SIZE_SHIFT
- 12));
1057 /* Initialize SLB */
1060 #endif /* CONFIG_SMP */
1063 * Called by asm hashtable.S for doing lazy icache flush
1065 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
1069 if (!pfn_valid(pte_pfn(pte
)))
1072 page
= pte_page(pte
);
1075 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
1076 if (trap
== 0x400) {
1077 flush_dcache_icache_page(page
);
1078 set_bit(PG_arch_1
, &page
->flags
);
1085 #ifdef CONFIG_PPC_MM_SLICES
1086 static unsigned int get_paca_psize(unsigned long addr
)
1089 unsigned char *hpsizes
;
1090 unsigned long index
, mask_index
;
1092 if (addr
< SLICE_LOW_TOP
) {
1093 lpsizes
= get_paca()->mm_ctx_low_slices_psize
;
1094 index
= GET_LOW_SLICE_INDEX(addr
);
1095 return (lpsizes
>> (index
* 4)) & 0xF;
1097 hpsizes
= get_paca()->mm_ctx_high_slices_psize
;
1098 index
= GET_HIGH_SLICE_INDEX(addr
);
1099 mask_index
= index
& 0x1;
1100 return (hpsizes
[index
>> 1] >> (mask_index
* 4)) & 0xF;
1104 unsigned int get_paca_psize(unsigned long addr
)
1106 return get_paca()->mm_ctx_user_psize
;
1111 * Demote a segment to using 4k pages.
1112 * For now this makes the whole process use 4k pages.
1114 #ifdef CONFIG_PPC_64K_PAGES
1115 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
1117 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
1119 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
1120 copro_flush_all_slbs(mm
);
1121 if ((get_paca_psize(addr
) != MMU_PAGE_4K
) && (current
->mm
== mm
)) {
1123 copy_mm_to_paca(&mm
->context
);
1124 slb_flush_and_rebolt();
1127 #endif /* CONFIG_PPC_64K_PAGES */
1129 #ifdef CONFIG_PPC_SUBPAGE_PROT
1131 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1132 * Userspace sets the subpage permissions using the subpage_prot system call.
1134 * Result is 0: full permissions, _PAGE_RW: read-only,
1135 * _PAGE_RWX: no access.
1137 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
1139 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
1143 if (ea
>= spt
->maxaddr
)
1145 if (ea
< 0x100000000UL
) {
1146 /* addresses below 4GB use spt->low_prot */
1147 sbpm
= spt
->low_prot
;
1149 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
1153 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
1156 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
1158 /* extract 2-bit bitfield for this 4k subpage */
1159 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
1162 * 0 -> full premission
1165 * We return the flag that need to be cleared.
1167 spp
= ((spp
& 2) ? _PAGE_RWX
: 0) | ((spp
& 1) ? _PAGE_WRITE
: 0);
1171 #else /* CONFIG_PPC_SUBPAGE_PROT */
1172 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
1178 void hash_failure_debug(unsigned long ea
, unsigned long access
,
1179 unsigned long vsid
, unsigned long trap
,
1180 int ssize
, int psize
, int lpsize
, unsigned long pte
)
1182 if (!printk_ratelimit())
1184 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1185 ea
, access
, current
->comm
);
1186 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1187 trap
, vsid
, ssize
, psize
, lpsize
, pte
);
1190 static void check_paca_psize(unsigned long ea
, struct mm_struct
*mm
,
1191 int psize
, bool user_region
)
1194 if (psize
!= get_paca_psize(ea
)) {
1195 copy_mm_to_paca(&mm
->context
);
1196 slb_flush_and_rebolt();
1198 } else if (get_paca()->vmalloc_sllp
!=
1199 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
1200 get_paca()->vmalloc_sllp
=
1201 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
1202 slb_vmalloc_update();
1208 * 1 - normal page fault
1209 * -1 - critical hash insertion error
1210 * -2 - access not permitted by subpage protection mechanism
1212 int hash_page_mm(struct mm_struct
*mm
, unsigned long ea
,
1213 unsigned long access
, unsigned long trap
,
1214 unsigned long flags
)
1217 enum ctx_state prev_state
= exception_enter();
1222 const struct cpumask
*tmp
;
1223 int rc
, user_region
= 0;
1226 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1228 trace_hash_fault(ea
, access
, trap
);
1230 /* Get region & vsid */
1231 switch (REGION_ID(ea
)) {
1232 case USER_REGION_ID
:
1235 DBG_LOW(" user region with no mm !\n");
1239 psize
= get_slice_psize(mm
, ea
);
1240 ssize
= user_segment_size(ea
);
1241 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1243 case VMALLOC_REGION_ID
:
1244 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
1245 if (ea
< VMALLOC_END
)
1246 psize
= mmu_vmalloc_psize
;
1248 psize
= mmu_io_psize
;
1249 ssize
= mmu_kernel_ssize
;
1252 /* Not a valid range
1253 * Send the problem up to do_page_fault
1258 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
1262 DBG_LOW("Bad address!\n");
1268 if (pgdir
== NULL
) {
1273 /* Check CPU locality */
1274 tmp
= cpumask_of(smp_processor_id());
1275 if (user_region
&& cpumask_equal(mm_cpumask(mm
), tmp
))
1276 flags
|= HPTE_LOCAL_UPDATE
;
1278 #ifndef CONFIG_PPC_64K_PAGES
1279 /* If we use 4K pages and our psize is not 4K, then we might
1280 * be hitting a special driver mapping, and need to align the
1281 * address before we fetch the PTE.
1283 * It could also be a hugepage mapping, in which case this is
1284 * not necessary, but it's not harmful, either.
1286 if (psize
!= MMU_PAGE_4K
)
1287 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
1288 #endif /* CONFIG_PPC_64K_PAGES */
1290 /* Get PTE and page size from page tables */
1291 ptep
= __find_linux_pte_or_hugepte(pgdir
, ea
, &is_thp
, &hugeshift
);
1292 if (ptep
== NULL
|| !pte_present(*ptep
)) {
1293 DBG_LOW(" no PTE !\n");
1298 /* Add _PAGE_PRESENT to the required access perm */
1299 access
|= _PAGE_PRESENT
;
1301 /* Pre-check access permissions (will be re-checked atomically
1302 * in __hash_page_XX but this pre-check is a fast path
1304 if (!check_pte_access(access
, pte_val(*ptep
))) {
1305 DBG_LOW(" no access !\n");
1312 rc
= __hash_page_thp(ea
, access
, vsid
, (pmd_t
*)ptep
,
1313 trap
, flags
, ssize
, psize
);
1314 #ifdef CONFIG_HUGETLB_PAGE
1316 rc
= __hash_page_huge(ea
, access
, vsid
, ptep
, trap
,
1317 flags
, ssize
, hugeshift
, psize
);
1321 * if we have hugeshift, and is not transhuge with
1322 * hugetlb disabled, something is really wrong.
1328 if (current
->mm
== mm
)
1329 check_paca_psize(ea
, mm
, psize
, user_region
);
1334 #ifndef CONFIG_PPC_64K_PAGES
1335 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1337 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1338 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1340 /* Do actual hashing */
1341 #ifdef CONFIG_PPC_64K_PAGES
1342 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1343 if ((pte_val(*ptep
) & H_PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1344 demote_segment_4k(mm
, ea
);
1345 psize
= MMU_PAGE_4K
;
1348 /* If this PTE is non-cacheable and we have restrictions on
1349 * using non cacheable large pages, then we switch to 4k
1351 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&& pte_ci(*ptep
)) {
1353 demote_segment_4k(mm
, ea
);
1354 psize
= MMU_PAGE_4K
;
1355 } else if (ea
< VMALLOC_END
) {
1357 * some driver did a non-cacheable mapping
1358 * in vmalloc space, so switch vmalloc
1361 printk(KERN_ALERT
"Reducing vmalloc segment "
1362 "to 4kB pages because of "
1363 "non-cacheable mapping\n");
1364 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1365 copro_flush_all_slbs(mm
);
1369 #endif /* CONFIG_PPC_64K_PAGES */
1371 if (current
->mm
== mm
)
1372 check_paca_psize(ea
, mm
, psize
, user_region
);
1374 #ifdef CONFIG_PPC_64K_PAGES
1375 if (psize
== MMU_PAGE_64K
)
1376 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1379 #endif /* CONFIG_PPC_64K_PAGES */
1381 int spp
= subpage_protection(mm
, ea
);
1385 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1389 /* Dump some info in case of hash insertion failure, they should
1390 * never happen so it is really useful to know if/when they do
1393 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1394 psize
, pte_val(*ptep
));
1395 #ifndef CONFIG_PPC_64K_PAGES
1396 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1398 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1399 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1401 DBG_LOW(" -> rc=%d\n", rc
);
1404 exception_exit(prev_state
);
1407 EXPORT_SYMBOL_GPL(hash_page_mm
);
1409 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
,
1410 unsigned long dsisr
)
1412 unsigned long flags
= 0;
1413 struct mm_struct
*mm
= current
->mm
;
1415 if (REGION_ID(ea
) == VMALLOC_REGION_ID
)
1418 if (dsisr
& DSISR_NOHPTE
)
1419 flags
|= HPTE_NOHPTE_UPDATE
;
1421 return hash_page_mm(mm
, ea
, access
, trap
, flags
);
1423 EXPORT_SYMBOL_GPL(hash_page
);
1425 int __hash_page(unsigned long ea
, unsigned long msr
, unsigned long trap
,
1426 unsigned long dsisr
)
1428 unsigned long access
= _PAGE_PRESENT
| _PAGE_READ
;
1429 unsigned long flags
= 0;
1430 struct mm_struct
*mm
= current
->mm
;
1432 if (REGION_ID(ea
) == VMALLOC_REGION_ID
)
1435 if (dsisr
& DSISR_NOHPTE
)
1436 flags
|= HPTE_NOHPTE_UPDATE
;
1438 if (dsisr
& DSISR_ISSTORE
)
1439 access
|= _PAGE_WRITE
;
1441 * We set _PAGE_PRIVILEGED only when
1442 * kernel mode access kernel space.
1444 * _PAGE_PRIVILEGED is NOT set
1445 * 1) when kernel mode access user space
1446 * 2) user space access kernel space.
1448 access
|= _PAGE_PRIVILEGED
;
1449 if ((msr
& MSR_PR
) || (REGION_ID(ea
) == USER_REGION_ID
))
1450 access
&= ~_PAGE_PRIVILEGED
;
1453 access
|= _PAGE_EXEC
;
1455 return hash_page_mm(mm
, ea
, access
, trap
, flags
);
1458 #ifdef CONFIG_PPC_MM_SLICES
1459 static bool should_hash_preload(struct mm_struct
*mm
, unsigned long ea
)
1461 int psize
= get_slice_psize(mm
, ea
);
1463 /* We only prefault standard pages for now */
1464 if (unlikely(psize
!= mm
->context
.user_psize
))
1468 * Don't prefault if subpage protection is enabled for the EA.
1470 if (unlikely((psize
== MMU_PAGE_4K
) && subpage_protection(mm
, ea
)))
1476 static bool should_hash_preload(struct mm_struct
*mm
, unsigned long ea
)
1482 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1483 unsigned long access
, unsigned long trap
)
1489 unsigned long flags
;
1490 int rc
, ssize
, update_flags
= 0;
1492 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1494 if (!should_hash_preload(mm
, ea
))
1497 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1498 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1500 /* Get Linux PTE if available */
1506 ssize
= user_segment_size(ea
);
1507 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1511 * Hash doesn't like irqs. Walking linux page table with irq disabled
1512 * saves us from holding multiple locks.
1514 local_irq_save(flags
);
1517 * THP pages use update_mmu_cache_pmd. We don't do
1518 * hash preload there. Hence can ignore THP here
1520 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, NULL
, &hugepage_shift
);
1524 WARN_ON(hugepage_shift
);
1525 #ifdef CONFIG_PPC_64K_PAGES
1526 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1527 * a 64K kernel), then we don't preload, hash_page() will take
1528 * care of it once we actually try to access the page.
1529 * That way we don't have to duplicate all of the logic for segment
1530 * page size demotion here
1532 if ((pte_val(*ptep
) & H_PAGE_4K_PFN
) || pte_ci(*ptep
))
1534 #endif /* CONFIG_PPC_64K_PAGES */
1536 /* Is that local to this CPU ? */
1537 if (cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1538 update_flags
|= HPTE_LOCAL_UPDATE
;
1541 #ifdef CONFIG_PPC_64K_PAGES
1542 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1543 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1544 update_flags
, ssize
);
1546 #endif /* CONFIG_PPC_64K_PAGES */
1547 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, update_flags
,
1548 ssize
, subpage_protection(mm
, ea
));
1550 /* Dump some info in case of hash insertion failure, they should
1551 * never happen so it is really useful to know if/when they do
1554 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1555 mm
->context
.user_psize
,
1556 mm
->context
.user_psize
,
1559 local_irq_restore(flags
);
1562 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1563 static inline void tm_flush_hash_page(int local
)
1566 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1567 * page back to a block device w/PIO could pick up transactional data
1568 * (bad!) so we force an abort here. Before the sync the page will be
1569 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1570 * kernel uses a page from userspace without unmapping it first, it may
1571 * see the speculated version.
1573 if (local
&& cpu_has_feature(CPU_FTR_TM
) && current
->thread
.regs
&&
1574 MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
1576 tm_abort(TM_CAUSE_TLBI
);
1580 static inline void tm_flush_hash_page(int local
)
1585 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1586 * do not forget to update the assembly call site !
1588 void flush_hash_page(unsigned long vpn
, real_pte_t pte
, int psize
, int ssize
,
1589 unsigned long flags
)
1591 unsigned long hash
, index
, shift
, hidx
, slot
;
1592 int local
= flags
& HPTE_LOCAL_UPDATE
;
1594 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn
);
1595 pte_iterate_hashed_subpages(pte
, psize
, vpn
, index
, shift
) {
1596 hash
= hpt_hash(vpn
, shift
, ssize
);
1597 hidx
= __rpte_to_hidx(pte
, index
);
1598 if (hidx
& _PTEIDX_SECONDARY
)
1600 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1601 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1602 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index
, slot
, hidx
);
1604 * We use same base page size and actual psize, because we don't
1605 * use these functions for hugepage
1607 mmu_hash_ops
.hpte_invalidate(slot
, vpn
, psize
, psize
,
1609 } pte_iterate_hashed_end();
1611 tm_flush_hash_page(local
);
1614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1615 void flush_hash_hugepage(unsigned long vsid
, unsigned long addr
,
1616 pmd_t
*pmdp
, unsigned int psize
, int ssize
,
1617 unsigned long flags
)
1619 int i
, max_hpte_count
, valid
;
1620 unsigned long s_addr
;
1621 unsigned char *hpte_slot_array
;
1622 unsigned long hidx
, shift
, vpn
, hash
, slot
;
1623 int local
= flags
& HPTE_LOCAL_UPDATE
;
1625 s_addr
= addr
& HPAGE_PMD_MASK
;
1626 hpte_slot_array
= get_hpte_slot_array(pmdp
);
1628 * IF we try to do a HUGE PTE update after a withdraw is done.
1629 * we will find the below NULL. This happens when we do
1630 * split_huge_page_pmd
1632 if (!hpte_slot_array
)
1635 if (mmu_hash_ops
.hugepage_invalidate
) {
1636 mmu_hash_ops
.hugepage_invalidate(vsid
, s_addr
, hpte_slot_array
,
1637 psize
, ssize
, local
);
1641 * No bluk hpte removal support, invalidate each entry
1643 shift
= mmu_psize_defs
[psize
].shift
;
1644 max_hpte_count
= HPAGE_PMD_SIZE
>> shift
;
1645 for (i
= 0; i
< max_hpte_count
; i
++) {
1647 * 8 bits per each hpte entries
1648 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1650 valid
= hpte_valid(hpte_slot_array
, i
);
1653 hidx
= hpte_hash_index(hpte_slot_array
, i
);
1656 addr
= s_addr
+ (i
* (1ul << shift
));
1657 vpn
= hpt_vpn(addr
, vsid
, ssize
);
1658 hash
= hpt_hash(vpn
, shift
, ssize
);
1659 if (hidx
& _PTEIDX_SECONDARY
)
1662 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1663 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1664 mmu_hash_ops
.hpte_invalidate(slot
, vpn
, psize
,
1665 MMU_PAGE_16M
, ssize
, local
);
1668 tm_flush_hash_page(local
);
1670 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1672 void flush_hash_range(unsigned long number
, int local
)
1674 if (mmu_hash_ops
.flush_hash_range
)
1675 mmu_hash_ops
.flush_hash_range(number
, local
);
1678 struct ppc64_tlb_batch
*batch
=
1679 this_cpu_ptr(&ppc64_tlb_batch
);
1681 for (i
= 0; i
< number
; i
++)
1682 flush_hash_page(batch
->vpn
[i
], batch
->pte
[i
],
1683 batch
->psize
, batch
->ssize
, local
);
1688 * low_hash_fault is called when we the low level hash code failed
1689 * to instert a PTE due to an hypervisor error
1691 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1693 enum ctx_state prev_state
= exception_enter();
1695 if (user_mode(regs
)) {
1696 #ifdef CONFIG_PPC_SUBPAGE_PROT
1698 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1701 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1703 bad_page_fault(regs
, address
, SIGBUS
);
1705 exception_exit(prev_state
);
1708 long hpte_insert_repeating(unsigned long hash
, unsigned long vpn
,
1709 unsigned long pa
, unsigned long rflags
,
1710 unsigned long vflags
, int psize
, int ssize
)
1712 unsigned long hpte_group
;
1716 hpte_group
= ((hash
& htab_hash_mask
) *
1717 HPTES_PER_GROUP
) & ~0x7UL
;
1719 /* Insert into the hash table, primary slot */
1720 slot
= mmu_hash_ops
.hpte_insert(hpte_group
, vpn
, pa
, rflags
, vflags
,
1721 psize
, psize
, ssize
);
1723 /* Primary is full, try the secondary */
1724 if (unlikely(slot
== -1)) {
1725 hpte_group
= ((~hash
& htab_hash_mask
) *
1726 HPTES_PER_GROUP
) & ~0x7UL
;
1727 slot
= mmu_hash_ops
.hpte_insert(hpte_group
, vpn
, pa
, rflags
,
1728 vflags
| HPTE_V_SECONDARY
,
1729 psize
, psize
, ssize
);
1732 hpte_group
= ((hash
& htab_hash_mask
) *
1733 HPTES_PER_GROUP
)&~0x7UL
;
1735 mmu_hash_ops
.hpte_remove(hpte_group
);
1743 #ifdef CONFIG_DEBUG_PAGEALLOC
1744 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1747 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1748 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1749 unsigned long mode
= htab_convert_pte_flags(pgprot_val(PAGE_KERNEL
));
1752 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1754 /* Don't create HPTE entries for bad address */
1758 ret
= hpte_insert_repeating(hash
, vpn
, __pa(vaddr
), mode
,
1760 mmu_linear_psize
, mmu_kernel_ssize
);
1763 spin_lock(&linear_map_hash_lock
);
1764 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1765 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1766 spin_unlock(&linear_map_hash_lock
);
1769 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1771 unsigned long hash
, hidx
, slot
;
1772 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1773 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1775 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1776 spin_lock(&linear_map_hash_lock
);
1777 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1778 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1779 linear_map_hash_slots
[lmi
] = 0;
1780 spin_unlock(&linear_map_hash_lock
);
1781 if (hidx
& _PTEIDX_SECONDARY
)
1783 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1784 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1785 mmu_hash_ops
.hpte_invalidate(slot
, vpn
, mmu_linear_psize
,
1787 mmu_kernel_ssize
, 0);
1790 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1792 unsigned long flags
, vaddr
, lmi
;
1795 local_irq_save(flags
);
1796 for (i
= 0; i
< numpages
; i
++, page
++) {
1797 vaddr
= (unsigned long)page_address(page
);
1798 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1799 if (lmi
>= linear_map_hash_count
)
1802 kernel_map_linear_page(vaddr
, lmi
);
1804 kernel_unmap_linear_page(vaddr
, lmi
);
1806 local_irq_restore(flags
);
1808 #endif /* CONFIG_DEBUG_PAGEALLOC */
1810 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1811 phys_addr_t first_memblock_size
)
1813 /* We don't currently support the first MEMBLOCK not mapping 0
1814 * physical on those processors
1816 BUG_ON(first_memblock_base
!= 0);
1818 /* On LPAR systems, the first entry is our RMA region,
1819 * non-LPAR 64-bit hash MMU systems don't have a limitation
1820 * on real mode access, but using the first entry works well
1821 * enough. We also clamp it to 1G to avoid some funky things
1822 * such as RTAS bugs etc...
1824 ppc64_rma_size
= min_t(u64
, first_memblock_size
, 0x40000000);
1826 /* Finally limit subsequent allocations */
1827 memblock_set_current_limit(ppc64_rma_size
);
1830 #ifdef CONFIG_DEBUG_FS
1832 static int hpt_order_get(void *data
, u64
*val
)
1834 *val
= ppc64_pft_size
;
1838 static int hpt_order_set(void *data
, u64 val
)
1840 if (!mmu_hash_ops
.resize_hpt
)
1843 return mmu_hash_ops
.resize_hpt(val
);
1846 DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order
, hpt_order_get
, hpt_order_set
, "%llu\n");
1848 static int __init
hash64_debugfs(void)
1850 if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root
,
1851 NULL
, &fops_hpt_order
)) {
1852 pr_err("lpar: unable to create hpt_order debugsfs file\n");
1857 machine_device_initcall(pseries
, hash64_debugfs
);
1859 #endif /* CONFIG_DEBUG_FS */