x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / powerpc / mm / hash_utils_64.c
blobc554768b1fa2d42f2f5bb6d1c97a57e23d8241af
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched/mm.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37 #include <linux/libfdt.h>
38 #include <linux/debugfs.h>
40 #include <asm/debug.h>
41 #include <asm/processor.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/page.h>
46 #include <asm/types.h>
47 #include <linux/uaccess.h>
48 #include <asm/machdep.h>
49 #include <asm/prom.h>
50 #include <asm/tlbflush.h>
51 #include <asm/io.h>
52 #include <asm/eeh.h>
53 #include <asm/tlb.h>
54 #include <asm/cacheflush.h>
55 #include <asm/cputable.h>
56 #include <asm/sections.h>
57 #include <asm/copro.h>
58 #include <asm/udbg.h>
59 #include <asm/code-patching.h>
60 #include <asm/fadump.h>
61 #include <asm/firmware.h>
62 #include <asm/tm.h>
63 #include <asm/trace.h>
64 #include <asm/ps3.h>
66 #ifdef DEBUG
67 #define DBG(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG(fmt...)
70 #endif
72 #ifdef DEBUG_LOW
73 #define DBG_LOW(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG_LOW(fmt...)
76 #endif
78 #define KB (1024)
79 #define MB (1024*KB)
80 #define GB (1024L*MB)
83 * Note: pte --> Linux PTE
84 * HPTE --> PowerPC Hashed Page Table Entry
86 * Execution context:
87 * htab_initialize is called with the MMU off (of course), but
88 * the kernel has been copied down to zero so it can directly
89 * reference global data. At this point it is very difficult
90 * to print debug info.
94 static unsigned long _SDR1;
95 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
96 EXPORT_SYMBOL_GPL(mmu_psize_defs);
98 u8 hpte_page_sizes[1 << LP_BITS];
99 EXPORT_SYMBOL_GPL(hpte_page_sizes);
101 struct hash_pte *htab_address;
102 unsigned long htab_size_bytes;
103 unsigned long htab_hash_mask;
104 EXPORT_SYMBOL_GPL(htab_hash_mask);
105 int mmu_linear_psize = MMU_PAGE_4K;
106 EXPORT_SYMBOL_GPL(mmu_linear_psize);
107 int mmu_virtual_psize = MMU_PAGE_4K;
108 int mmu_vmalloc_psize = MMU_PAGE_4K;
109 #ifdef CONFIG_SPARSEMEM_VMEMMAP
110 int mmu_vmemmap_psize = MMU_PAGE_4K;
111 #endif
112 int mmu_io_psize = MMU_PAGE_4K;
113 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
114 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
115 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
116 u16 mmu_slb_size = 64;
117 EXPORT_SYMBOL_GPL(mmu_slb_size);
118 #ifdef CONFIG_PPC_64K_PAGES
119 int mmu_ci_restrictions;
120 #endif
121 #ifdef CONFIG_DEBUG_PAGEALLOC
122 static u8 *linear_map_hash_slots;
123 static unsigned long linear_map_hash_count;
124 static DEFINE_SPINLOCK(linear_map_hash_lock);
125 #endif /* CONFIG_DEBUG_PAGEALLOC */
126 struct mmu_hash_ops mmu_hash_ops;
127 EXPORT_SYMBOL(mmu_hash_ops);
129 /* There are definitions of page sizes arrays to be used when none
130 * is provided by the firmware.
133 /* Pre-POWER4 CPUs (4k pages only)
135 static struct mmu_psize_def mmu_psize_defaults_old[] = {
136 [MMU_PAGE_4K] = {
137 .shift = 12,
138 .sllp = 0,
139 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
140 .avpnm = 0,
141 .tlbiel = 0,
145 /* POWER4, GPUL, POWER5
147 * Support for 16Mb large pages
149 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
150 [MMU_PAGE_4K] = {
151 .shift = 12,
152 .sllp = 0,
153 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
154 .avpnm = 0,
155 .tlbiel = 1,
157 [MMU_PAGE_16M] = {
158 .shift = 24,
159 .sllp = SLB_VSID_L,
160 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
161 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
162 .avpnm = 0x1UL,
163 .tlbiel = 0,
168 * 'R' and 'C' update notes:
169 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
170 * create writeable HPTEs without C set, because the hcall H_PROTECT
171 * that we use in that case will not update C
172 * - The above is however not a problem, because we also don't do that
173 * fancy "no flush" variant of eviction and we use H_REMOVE which will
174 * do the right thing and thus we don't have the race I described earlier
176 * - Under bare metal, we do have the race, so we need R and C set
177 * - We make sure R is always set and never lost
178 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
180 unsigned long htab_convert_pte_flags(unsigned long pteflags)
182 unsigned long rflags = 0;
184 /* _PAGE_EXEC -> NOEXEC */
185 if ((pteflags & _PAGE_EXEC) == 0)
186 rflags |= HPTE_R_N;
188 * PPP bits:
189 * Linux uses slb key 0 for kernel and 1 for user.
190 * kernel RW areas are mapped with PPP=0b000
191 * User area is mapped with PPP=0b010 for read/write
192 * or PPP=0b011 for read-only (including writeable but clean pages).
194 if (pteflags & _PAGE_PRIVILEGED) {
196 * Kernel read only mapped with ppp bits 0b110
198 if (!(pteflags & _PAGE_WRITE)) {
199 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
200 rflags |= (HPTE_R_PP0 | 0x2);
201 else
202 rflags |= 0x3;
204 } else {
205 if (pteflags & _PAGE_RWX)
206 rflags |= 0x2;
207 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
208 rflags |= 0x1;
211 * We can't allow hardware to update hpte bits. Hence always
212 * set 'R' bit and set 'C' if it is a write fault
214 rflags |= HPTE_R_R;
216 if (pteflags & _PAGE_DIRTY)
217 rflags |= HPTE_R_C;
219 * Add in WIG bits
222 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
223 rflags |= HPTE_R_I;
224 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
225 rflags |= (HPTE_R_I | HPTE_R_G);
226 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
227 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
228 else
230 * Add memory coherence if cache inhibited is not set
232 rflags |= HPTE_R_M;
234 return rflags;
237 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
238 unsigned long pstart, unsigned long prot,
239 int psize, int ssize)
241 unsigned long vaddr, paddr;
242 unsigned int step, shift;
243 int ret = 0;
245 shift = mmu_psize_defs[psize].shift;
246 step = 1 << shift;
248 prot = htab_convert_pte_flags(prot);
250 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
251 vstart, vend, pstart, prot, psize, ssize);
253 for (vaddr = vstart, paddr = pstart; vaddr < vend;
254 vaddr += step, paddr += step) {
255 unsigned long hash, hpteg;
256 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
257 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
258 unsigned long tprot = prot;
261 * If we hit a bad address return error.
263 if (!vsid)
264 return -1;
265 /* Make kernel text executable */
266 if (overlaps_kernel_text(vaddr, vaddr + step))
267 tprot &= ~HPTE_R_N;
269 /* Make kvm guest trampolines executable */
270 if (overlaps_kvm_tmp(vaddr, vaddr + step))
271 tprot &= ~HPTE_R_N;
274 * If relocatable, check if it overlaps interrupt vectors that
275 * are copied down to real 0. For relocatable kernel
276 * (e.g. kdump case) we copy interrupt vectors down to real
277 * address 0. Mark that region as executable. This is
278 * because on p8 system with relocation on exception feature
279 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
280 * in order to execute the interrupt handlers in virtual
281 * mode the vector region need to be marked as executable.
283 if ((PHYSICAL_START > MEMORY_START) &&
284 overlaps_interrupt_vector_text(vaddr, vaddr + step))
285 tprot &= ~HPTE_R_N;
287 hash = hpt_hash(vpn, shift, ssize);
288 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
290 BUG_ON(!mmu_hash_ops.hpte_insert);
291 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
292 HPTE_V_BOLTED, psize, psize,
293 ssize);
295 if (ret < 0)
296 break;
298 #ifdef CONFIG_DEBUG_PAGEALLOC
299 if (debug_pagealloc_enabled() &&
300 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
301 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
302 #endif /* CONFIG_DEBUG_PAGEALLOC */
304 return ret < 0 ? ret : 0;
307 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
308 int psize, int ssize)
310 unsigned long vaddr;
311 unsigned int step, shift;
312 int rc;
313 int ret = 0;
315 shift = mmu_psize_defs[psize].shift;
316 step = 1 << shift;
318 if (!mmu_hash_ops.hpte_removebolted)
319 return -ENODEV;
321 for (vaddr = vstart; vaddr < vend; vaddr += step) {
322 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
323 if (rc == -ENOENT) {
324 ret = -ENOENT;
325 continue;
327 if (rc < 0)
328 return rc;
331 return ret;
334 static bool disable_1tb_segments = false;
336 static int __init parse_disable_1tb_segments(char *p)
338 disable_1tb_segments = true;
339 return 0;
341 early_param("disable_1tb_segments", parse_disable_1tb_segments);
343 static int __init htab_dt_scan_seg_sizes(unsigned long node,
344 const char *uname, int depth,
345 void *data)
347 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
348 const __be32 *prop;
349 int size = 0;
351 /* We are scanning "cpu" nodes only */
352 if (type == NULL || strcmp(type, "cpu") != 0)
353 return 0;
355 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
356 if (prop == NULL)
357 return 0;
358 for (; size >= 4; size -= 4, ++prop) {
359 if (be32_to_cpu(prop[0]) == 40) {
360 DBG("1T segment support detected\n");
362 if (disable_1tb_segments) {
363 DBG("1T segments disabled by command line\n");
364 break;
367 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
368 return 1;
371 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
372 return 0;
375 static int __init get_idx_from_shift(unsigned int shift)
377 int idx = -1;
379 switch (shift) {
380 case 0xc:
381 idx = MMU_PAGE_4K;
382 break;
383 case 0x10:
384 idx = MMU_PAGE_64K;
385 break;
386 case 0x14:
387 idx = MMU_PAGE_1M;
388 break;
389 case 0x18:
390 idx = MMU_PAGE_16M;
391 break;
392 case 0x22:
393 idx = MMU_PAGE_16G;
394 break;
396 return idx;
399 static int __init htab_dt_scan_page_sizes(unsigned long node,
400 const char *uname, int depth,
401 void *data)
403 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
404 const __be32 *prop;
405 int size = 0;
407 /* We are scanning "cpu" nodes only */
408 if (type == NULL || strcmp(type, "cpu") != 0)
409 return 0;
411 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
412 if (!prop)
413 return 0;
415 pr_info("Page sizes from device-tree:\n");
416 size /= 4;
417 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
418 while(size > 0) {
419 unsigned int base_shift = be32_to_cpu(prop[0]);
420 unsigned int slbenc = be32_to_cpu(prop[1]);
421 unsigned int lpnum = be32_to_cpu(prop[2]);
422 struct mmu_psize_def *def;
423 int idx, base_idx;
425 size -= 3; prop += 3;
426 base_idx = get_idx_from_shift(base_shift);
427 if (base_idx < 0) {
428 /* skip the pte encoding also */
429 prop += lpnum * 2; size -= lpnum * 2;
430 continue;
432 def = &mmu_psize_defs[base_idx];
433 if (base_idx == MMU_PAGE_16M)
434 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
436 def->shift = base_shift;
437 if (base_shift <= 23)
438 def->avpnm = 0;
439 else
440 def->avpnm = (1 << (base_shift - 23)) - 1;
441 def->sllp = slbenc;
443 * We don't know for sure what's up with tlbiel, so
444 * for now we only set it for 4K and 64K pages
446 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
447 def->tlbiel = 1;
448 else
449 def->tlbiel = 0;
451 while (size > 0 && lpnum) {
452 unsigned int shift = be32_to_cpu(prop[0]);
453 int penc = be32_to_cpu(prop[1]);
455 prop += 2; size -= 2;
456 lpnum--;
458 idx = get_idx_from_shift(shift);
459 if (idx < 0)
460 continue;
462 if (penc == -1)
463 pr_err("Invalid penc for base_shift=%d "
464 "shift=%d\n", base_shift, shift);
466 def->penc[idx] = penc;
467 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
468 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
469 base_shift, shift, def->sllp,
470 def->avpnm, def->tlbiel, def->penc[idx]);
474 return 1;
477 #ifdef CONFIG_HUGETLB_PAGE
478 /* Scan for 16G memory blocks that have been set aside for huge pages
479 * and reserve those blocks for 16G huge pages.
481 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
482 const char *uname, int depth,
483 void *data) {
484 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
485 const __be64 *addr_prop;
486 const __be32 *page_count_prop;
487 unsigned int expected_pages;
488 long unsigned int phys_addr;
489 long unsigned int block_size;
491 /* We are scanning "memory" nodes only */
492 if (type == NULL || strcmp(type, "memory") != 0)
493 return 0;
495 /* This property is the log base 2 of the number of virtual pages that
496 * will represent this memory block. */
497 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
498 if (page_count_prop == NULL)
499 return 0;
500 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
501 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
502 if (addr_prop == NULL)
503 return 0;
504 phys_addr = be64_to_cpu(addr_prop[0]);
505 block_size = be64_to_cpu(addr_prop[1]);
506 if (block_size != (16 * GB))
507 return 0;
508 printk(KERN_INFO "Huge page(16GB) memory: "
509 "addr = 0x%lX size = 0x%lX pages = %d\n",
510 phys_addr, block_size, expected_pages);
511 if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
512 memblock_reserve(phys_addr, block_size * expected_pages);
513 add_gpage(phys_addr, block_size, expected_pages);
515 return 0;
517 #endif /* CONFIG_HUGETLB_PAGE */
519 static void mmu_psize_set_default_penc(void)
521 int bpsize, apsize;
522 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
523 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
524 mmu_psize_defs[bpsize].penc[apsize] = -1;
527 #ifdef CONFIG_PPC_64K_PAGES
529 static bool might_have_hea(void)
532 * The HEA ethernet adapter requires awareness of the
533 * GX bus. Without that awareness we can easily assume
534 * we will never see an HEA ethernet device.
536 #ifdef CONFIG_IBMEBUS
537 return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
538 firmware_has_feature(FW_FEATURE_SPLPAR);
539 #else
540 return false;
541 #endif
544 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
546 static void __init htab_scan_page_sizes(void)
548 int rc;
550 /* se the invalid penc to -1 */
551 mmu_psize_set_default_penc();
553 /* Default to 4K pages only */
554 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
555 sizeof(mmu_psize_defaults_old));
558 * Try to find the available page sizes in the device-tree
560 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
561 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
563 * Nothing in the device-tree, but the CPU supports 16M pages,
564 * so let's fallback on a known size list for 16M capable CPUs.
566 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
567 sizeof(mmu_psize_defaults_gp));
570 #ifdef CONFIG_HUGETLB_PAGE
571 /* Reserve 16G huge page memory sections for huge pages */
572 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
573 #endif /* CONFIG_HUGETLB_PAGE */
577 * Fill in the hpte_page_sizes[] array.
578 * We go through the mmu_psize_defs[] array looking for all the
579 * supported base/actual page size combinations. Each combination
580 * has a unique pagesize encoding (penc) value in the low bits of
581 * the LP field of the HPTE. For actual page sizes less than 1MB,
582 * some of the upper LP bits are used for RPN bits, meaning that
583 * we need to fill in several entries in hpte_page_sizes[].
585 * In diagrammatic form, with r = RPN bits and z = page size bits:
586 * PTE LP actual page size
587 * rrrr rrrz >=8KB
588 * rrrr rrzz >=16KB
589 * rrrr rzzz >=32KB
590 * rrrr zzzz >=64KB
591 * ...
593 * The zzzz bits are implementation-specific but are chosen so that
594 * no encoding for a larger page size uses the same value in its
595 * low-order N bits as the encoding for the 2^(12+N) byte page size
596 * (if it exists).
598 static void init_hpte_page_sizes(void)
600 long int ap, bp;
601 long int shift, penc;
603 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
604 if (!mmu_psize_defs[bp].shift)
605 continue; /* not a supported page size */
606 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
607 penc = mmu_psize_defs[bp].penc[ap];
608 if (penc == -1)
609 continue;
610 shift = mmu_psize_defs[ap].shift - LP_SHIFT;
611 if (shift <= 0)
612 continue; /* should never happen */
614 * For page sizes less than 1MB, this loop
615 * replicates the entry for all possible values
616 * of the rrrr bits.
618 while (penc < (1 << LP_BITS)) {
619 hpte_page_sizes[penc] = (ap << 4) | bp;
620 penc += 1 << shift;
626 static void __init htab_init_page_sizes(void)
628 init_hpte_page_sizes();
630 if (!debug_pagealloc_enabled()) {
632 * Pick a size for the linear mapping. Currently, we only
633 * support 16M, 1M and 4K which is the default
635 if (mmu_psize_defs[MMU_PAGE_16M].shift)
636 mmu_linear_psize = MMU_PAGE_16M;
637 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
638 mmu_linear_psize = MMU_PAGE_1M;
641 #ifdef CONFIG_PPC_64K_PAGES
643 * Pick a size for the ordinary pages. Default is 4K, we support
644 * 64K for user mappings and vmalloc if supported by the processor.
645 * We only use 64k for ioremap if the processor
646 * (and firmware) support cache-inhibited large pages.
647 * If not, we use 4k and set mmu_ci_restrictions so that
648 * hash_page knows to switch processes that use cache-inhibited
649 * mappings to 4k pages.
651 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
652 mmu_virtual_psize = MMU_PAGE_64K;
653 mmu_vmalloc_psize = MMU_PAGE_64K;
654 if (mmu_linear_psize == MMU_PAGE_4K)
655 mmu_linear_psize = MMU_PAGE_64K;
656 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
658 * When running on pSeries using 64k pages for ioremap
659 * would stop us accessing the HEA ethernet. So if we
660 * have the chance of ever seeing one, stay at 4k.
662 if (!might_have_hea())
663 mmu_io_psize = MMU_PAGE_64K;
664 } else
665 mmu_ci_restrictions = 1;
667 #endif /* CONFIG_PPC_64K_PAGES */
669 #ifdef CONFIG_SPARSEMEM_VMEMMAP
670 /* We try to use 16M pages for vmemmap if that is supported
671 * and we have at least 1G of RAM at boot
673 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
674 memblock_phys_mem_size() >= 0x40000000)
675 mmu_vmemmap_psize = MMU_PAGE_16M;
676 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
677 mmu_vmemmap_psize = MMU_PAGE_64K;
678 else
679 mmu_vmemmap_psize = MMU_PAGE_4K;
680 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
682 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
683 "virtual = %d, io = %d"
684 #ifdef CONFIG_SPARSEMEM_VMEMMAP
685 ", vmemmap = %d"
686 #endif
687 "\n",
688 mmu_psize_defs[mmu_linear_psize].shift,
689 mmu_psize_defs[mmu_virtual_psize].shift,
690 mmu_psize_defs[mmu_io_psize].shift
691 #ifdef CONFIG_SPARSEMEM_VMEMMAP
692 ,mmu_psize_defs[mmu_vmemmap_psize].shift
693 #endif
697 static int __init htab_dt_scan_pftsize(unsigned long node,
698 const char *uname, int depth,
699 void *data)
701 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
702 const __be32 *prop;
704 /* We are scanning "cpu" nodes only */
705 if (type == NULL || strcmp(type, "cpu") != 0)
706 return 0;
708 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
709 if (prop != NULL) {
710 /* pft_size[0] is the NUMA CEC cookie */
711 ppc64_pft_size = be32_to_cpu(prop[1]);
712 return 1;
714 return 0;
717 unsigned htab_shift_for_mem_size(unsigned long mem_size)
719 unsigned memshift = __ilog2(mem_size);
720 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
721 unsigned pteg_shift;
723 /* round mem_size up to next power of 2 */
724 if ((1UL << memshift) < mem_size)
725 memshift += 1;
727 /* aim for 2 pages / pteg */
728 pteg_shift = memshift - (pshift + 1);
731 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
732 * size permitted by the architecture.
734 return max(pteg_shift + 7, 18U);
737 static unsigned long __init htab_get_table_size(void)
739 /* If hash size isn't already provided by the platform, we try to
740 * retrieve it from the device-tree. If it's not there neither, we
741 * calculate it now based on the total RAM size
743 if (ppc64_pft_size == 0)
744 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
745 if (ppc64_pft_size)
746 return 1UL << ppc64_pft_size;
748 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
751 #ifdef CONFIG_MEMORY_HOTPLUG
752 void resize_hpt_for_hotplug(unsigned long new_mem_size)
754 unsigned target_hpt_shift;
756 if (!mmu_hash_ops.resize_hpt)
757 return;
759 target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
762 * To avoid lots of HPT resizes if memory size is fluctuating
763 * across a boundary, we deliberately have some hysterisis
764 * here: we immediately increase the HPT size if the target
765 * shift exceeds the current shift, but we won't attempt to
766 * reduce unless the target shift is at least 2 below the
767 * current shift
769 if ((target_hpt_shift > ppc64_pft_size)
770 || (target_hpt_shift < (ppc64_pft_size - 1))) {
771 int rc;
773 rc = mmu_hash_ops.resize_hpt(target_hpt_shift);
774 if (rc)
775 printk(KERN_WARNING
776 "Unable to resize hash page table to target order %d: %d\n",
777 target_hpt_shift, rc);
781 int hash__create_section_mapping(unsigned long start, unsigned long end)
783 int rc = htab_bolt_mapping(start, end, __pa(start),
784 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
785 mmu_kernel_ssize);
787 if (rc < 0) {
788 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
789 mmu_kernel_ssize);
790 BUG_ON(rc2 && (rc2 != -ENOENT));
792 return rc;
795 int hash__remove_section_mapping(unsigned long start, unsigned long end)
797 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
798 mmu_kernel_ssize);
799 WARN_ON(rc < 0);
800 return rc;
802 #endif /* CONFIG_MEMORY_HOTPLUG */
804 static void update_hid_for_hash(void)
806 unsigned long hid0;
807 unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
809 asm volatile("ptesync": : :"memory");
810 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
811 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
812 : : "r"(rb), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
813 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
815 * now switch the HID
817 hid0 = mfspr(SPRN_HID0);
818 hid0 &= ~HID0_POWER9_RADIX;
819 mtspr(SPRN_HID0, hid0);
820 asm volatile("isync": : :"memory");
822 /* Wait for it to happen */
823 while ((mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
824 cpu_relax();
827 static void __init hash_init_partition_table(phys_addr_t hash_table,
828 unsigned long htab_size)
830 mmu_partition_table_init();
833 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
834 * For now, UPRT is 0 and we have no segment table.
836 htab_size = __ilog2(htab_size) - 18;
837 mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
838 pr_info("Partition table %p\n", partition_tb);
839 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
840 update_hid_for_hash();
843 static void __init htab_initialize(void)
845 unsigned long table;
846 unsigned long pteg_count;
847 unsigned long prot;
848 unsigned long base = 0, size = 0;
849 struct memblock_region *reg;
851 DBG(" -> htab_initialize()\n");
853 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
854 mmu_kernel_ssize = MMU_SEGSIZE_1T;
855 mmu_highuser_ssize = MMU_SEGSIZE_1T;
856 printk(KERN_INFO "Using 1TB segments\n");
860 * Calculate the required size of the htab. We want the number of
861 * PTEGs to equal one half the number of real pages.
863 htab_size_bytes = htab_get_table_size();
864 pteg_count = htab_size_bytes >> 7;
866 htab_hash_mask = pteg_count - 1;
868 if (firmware_has_feature(FW_FEATURE_LPAR) ||
869 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
870 /* Using a hypervisor which owns the htab */
871 htab_address = NULL;
872 _SDR1 = 0;
873 #ifdef CONFIG_FA_DUMP
875 * If firmware assisted dump is active firmware preserves
876 * the contents of htab along with entire partition memory.
877 * Clear the htab if firmware assisted dump is active so
878 * that we dont end up using old mappings.
880 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
881 mmu_hash_ops.hpte_clear_all();
882 #endif
883 } else {
884 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
886 #ifdef CONFIG_PPC_CELL
888 * Cell may require the hash table down low when using the
889 * Axon IOMMU in order to fit the dynamic region over it, see
890 * comments in cell/iommu.c
892 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
893 limit = 0x80000000;
894 pr_info("Hash table forced below 2G for Axon IOMMU\n");
896 #endif /* CONFIG_PPC_CELL */
898 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
899 limit);
901 DBG("Hash table allocated at %lx, size: %lx\n", table,
902 htab_size_bytes);
904 htab_address = __va(table);
906 /* htab absolute addr + encoded htabsize */
907 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
909 /* Initialize the HPT with no entries */
910 memset((void *)table, 0, htab_size_bytes);
912 if (!cpu_has_feature(CPU_FTR_ARCH_300))
913 /* Set SDR1 */
914 mtspr(SPRN_SDR1, _SDR1);
915 else
916 hash_init_partition_table(table, htab_size_bytes);
919 prot = pgprot_val(PAGE_KERNEL);
921 #ifdef CONFIG_DEBUG_PAGEALLOC
922 if (debug_pagealloc_enabled()) {
923 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
924 linear_map_hash_slots = __va(memblock_alloc_base(
925 linear_map_hash_count, 1, ppc64_rma_size));
926 memset(linear_map_hash_slots, 0, linear_map_hash_count);
928 #endif /* CONFIG_DEBUG_PAGEALLOC */
930 /* On U3 based machines, we need to reserve the DART area and
931 * _NOT_ map it to avoid cache paradoxes as it's remapped non
932 * cacheable later on
935 /* create bolted the linear mapping in the hash table */
936 for_each_memblock(memory, reg) {
937 base = (unsigned long)__va(reg->base);
938 size = reg->size;
940 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
941 base, size, prot);
943 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
944 prot, mmu_linear_psize, mmu_kernel_ssize));
946 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
949 * If we have a memory_limit and we've allocated TCEs then we need to
950 * explicitly map the TCE area at the top of RAM. We also cope with the
951 * case that the TCEs start below memory_limit.
952 * tce_alloc_start/end are 16MB aligned so the mapping should work
953 * for either 4K or 16MB pages.
955 if (tce_alloc_start) {
956 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
957 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
959 if (base + size >= tce_alloc_start)
960 tce_alloc_start = base + size + 1;
962 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
963 __pa(tce_alloc_start), prot,
964 mmu_linear_psize, mmu_kernel_ssize));
968 DBG(" <- htab_initialize()\n");
970 #undef KB
971 #undef MB
973 void __init hash__early_init_devtree(void)
975 /* Initialize segment sizes */
976 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
978 /* Initialize page sizes */
979 htab_scan_page_sizes();
982 void __init hash__early_init_mmu(void)
984 htab_init_page_sizes();
987 * initialize page table size
989 __pte_frag_nr = H_PTE_FRAG_NR;
990 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
992 __pte_index_size = H_PTE_INDEX_SIZE;
993 __pmd_index_size = H_PMD_INDEX_SIZE;
994 __pud_index_size = H_PUD_INDEX_SIZE;
995 __pgd_index_size = H_PGD_INDEX_SIZE;
996 __pmd_cache_index = H_PMD_CACHE_INDEX;
997 __pte_table_size = H_PTE_TABLE_SIZE;
998 __pmd_table_size = H_PMD_TABLE_SIZE;
999 __pud_table_size = H_PUD_TABLE_SIZE;
1000 __pgd_table_size = H_PGD_TABLE_SIZE;
1002 * 4k use hugepd format, so for hash set then to
1003 * zero
1005 __pmd_val_bits = 0;
1006 __pud_val_bits = 0;
1007 __pgd_val_bits = 0;
1009 __kernel_virt_start = H_KERN_VIRT_START;
1010 __kernel_virt_size = H_KERN_VIRT_SIZE;
1011 __vmalloc_start = H_VMALLOC_START;
1012 __vmalloc_end = H_VMALLOC_END;
1013 vmemmap = (struct page *)H_VMEMMAP_BASE;
1014 ioremap_bot = IOREMAP_BASE;
1016 #ifdef CONFIG_PCI
1017 pci_io_base = ISA_IO_BASE;
1018 #endif
1020 /* Select appropriate backend */
1021 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1022 ps3_early_mm_init();
1023 else if (firmware_has_feature(FW_FEATURE_LPAR))
1024 hpte_init_pseries();
1025 else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1026 hpte_init_native();
1028 if (!mmu_hash_ops.hpte_insert)
1029 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1031 /* Initialize the MMU Hash table and create the linear mapping
1032 * of memory. Has to be done before SLB initialization as this is
1033 * currently where the page size encoding is obtained.
1035 htab_initialize();
1037 pr_info("Initializing hash mmu with SLB\n");
1038 /* Initialize SLB management */
1039 slb_initialize();
1042 #ifdef CONFIG_SMP
1043 void hash__early_init_mmu_secondary(void)
1045 /* Initialize hash table for that CPU */
1046 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1048 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1049 update_hid_for_hash();
1051 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1052 mtspr(SPRN_SDR1, _SDR1);
1053 else
1054 mtspr(SPRN_PTCR,
1055 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1057 /* Initialize SLB */
1058 slb_initialize();
1060 #endif /* CONFIG_SMP */
1063 * Called by asm hashtable.S for doing lazy icache flush
1065 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1067 struct page *page;
1069 if (!pfn_valid(pte_pfn(pte)))
1070 return pp;
1072 page = pte_page(pte);
1074 /* page is dirty */
1075 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1076 if (trap == 0x400) {
1077 flush_dcache_icache_page(page);
1078 set_bit(PG_arch_1, &page->flags);
1079 } else
1080 pp |= HPTE_R_N;
1082 return pp;
1085 #ifdef CONFIG_PPC_MM_SLICES
1086 static unsigned int get_paca_psize(unsigned long addr)
1088 u64 lpsizes;
1089 unsigned char *hpsizes;
1090 unsigned long index, mask_index;
1092 if (addr < SLICE_LOW_TOP) {
1093 lpsizes = get_paca()->mm_ctx_low_slices_psize;
1094 index = GET_LOW_SLICE_INDEX(addr);
1095 return (lpsizes >> (index * 4)) & 0xF;
1097 hpsizes = get_paca()->mm_ctx_high_slices_psize;
1098 index = GET_HIGH_SLICE_INDEX(addr);
1099 mask_index = index & 0x1;
1100 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
1103 #else
1104 unsigned int get_paca_psize(unsigned long addr)
1106 return get_paca()->mm_ctx_user_psize;
1108 #endif
1111 * Demote a segment to using 4k pages.
1112 * For now this makes the whole process use 4k pages.
1114 #ifdef CONFIG_PPC_64K_PAGES
1115 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1117 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1118 return;
1119 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1120 copro_flush_all_slbs(mm);
1121 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1123 copy_mm_to_paca(&mm->context);
1124 slb_flush_and_rebolt();
1127 #endif /* CONFIG_PPC_64K_PAGES */
1129 #ifdef CONFIG_PPC_SUBPAGE_PROT
1131 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1132 * Userspace sets the subpage permissions using the subpage_prot system call.
1134 * Result is 0: full permissions, _PAGE_RW: read-only,
1135 * _PAGE_RWX: no access.
1137 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1139 struct subpage_prot_table *spt = &mm->context.spt;
1140 u32 spp = 0;
1141 u32 **sbpm, *sbpp;
1143 if (ea >= spt->maxaddr)
1144 return 0;
1145 if (ea < 0x100000000UL) {
1146 /* addresses below 4GB use spt->low_prot */
1147 sbpm = spt->low_prot;
1148 } else {
1149 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1150 if (!sbpm)
1151 return 0;
1153 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1154 if (!sbpp)
1155 return 0;
1156 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1158 /* extract 2-bit bitfield for this 4k subpage */
1159 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1162 * 0 -> full premission
1163 * 1 -> Read only
1164 * 2 -> no access.
1165 * We return the flag that need to be cleared.
1167 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1168 return spp;
1171 #else /* CONFIG_PPC_SUBPAGE_PROT */
1172 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1174 return 0;
1176 #endif
1178 void hash_failure_debug(unsigned long ea, unsigned long access,
1179 unsigned long vsid, unsigned long trap,
1180 int ssize, int psize, int lpsize, unsigned long pte)
1182 if (!printk_ratelimit())
1183 return;
1184 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1185 ea, access, current->comm);
1186 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1187 trap, vsid, ssize, psize, lpsize, pte);
1190 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1191 int psize, bool user_region)
1193 if (user_region) {
1194 if (psize != get_paca_psize(ea)) {
1195 copy_mm_to_paca(&mm->context);
1196 slb_flush_and_rebolt();
1198 } else if (get_paca()->vmalloc_sllp !=
1199 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1200 get_paca()->vmalloc_sllp =
1201 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1202 slb_vmalloc_update();
1206 /* Result code is:
1207 * 0 - handled
1208 * 1 - normal page fault
1209 * -1 - critical hash insertion error
1210 * -2 - access not permitted by subpage protection mechanism
1212 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1213 unsigned long access, unsigned long trap,
1214 unsigned long flags)
1216 bool is_thp;
1217 enum ctx_state prev_state = exception_enter();
1218 pgd_t *pgdir;
1219 unsigned long vsid;
1220 pte_t *ptep;
1221 unsigned hugeshift;
1222 const struct cpumask *tmp;
1223 int rc, user_region = 0;
1224 int psize, ssize;
1226 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1227 ea, access, trap);
1228 trace_hash_fault(ea, access, trap);
1230 /* Get region & vsid */
1231 switch (REGION_ID(ea)) {
1232 case USER_REGION_ID:
1233 user_region = 1;
1234 if (! mm) {
1235 DBG_LOW(" user region with no mm !\n");
1236 rc = 1;
1237 goto bail;
1239 psize = get_slice_psize(mm, ea);
1240 ssize = user_segment_size(ea);
1241 vsid = get_vsid(mm->context.id, ea, ssize);
1242 break;
1243 case VMALLOC_REGION_ID:
1244 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1245 if (ea < VMALLOC_END)
1246 psize = mmu_vmalloc_psize;
1247 else
1248 psize = mmu_io_psize;
1249 ssize = mmu_kernel_ssize;
1250 break;
1251 default:
1252 /* Not a valid range
1253 * Send the problem up to do_page_fault
1255 rc = 1;
1256 goto bail;
1258 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1260 /* Bad address. */
1261 if (!vsid) {
1262 DBG_LOW("Bad address!\n");
1263 rc = 1;
1264 goto bail;
1266 /* Get pgdir */
1267 pgdir = mm->pgd;
1268 if (pgdir == NULL) {
1269 rc = 1;
1270 goto bail;
1273 /* Check CPU locality */
1274 tmp = cpumask_of(smp_processor_id());
1275 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1276 flags |= HPTE_LOCAL_UPDATE;
1278 #ifndef CONFIG_PPC_64K_PAGES
1279 /* If we use 4K pages and our psize is not 4K, then we might
1280 * be hitting a special driver mapping, and need to align the
1281 * address before we fetch the PTE.
1283 * It could also be a hugepage mapping, in which case this is
1284 * not necessary, but it's not harmful, either.
1286 if (psize != MMU_PAGE_4K)
1287 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1288 #endif /* CONFIG_PPC_64K_PAGES */
1290 /* Get PTE and page size from page tables */
1291 ptep = __find_linux_pte_or_hugepte(pgdir, ea, &is_thp, &hugeshift);
1292 if (ptep == NULL || !pte_present(*ptep)) {
1293 DBG_LOW(" no PTE !\n");
1294 rc = 1;
1295 goto bail;
1298 /* Add _PAGE_PRESENT to the required access perm */
1299 access |= _PAGE_PRESENT;
1301 /* Pre-check access permissions (will be re-checked atomically
1302 * in __hash_page_XX but this pre-check is a fast path
1304 if (!check_pte_access(access, pte_val(*ptep))) {
1305 DBG_LOW(" no access !\n");
1306 rc = 1;
1307 goto bail;
1310 if (hugeshift) {
1311 if (is_thp)
1312 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1313 trap, flags, ssize, psize);
1314 #ifdef CONFIG_HUGETLB_PAGE
1315 else
1316 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1317 flags, ssize, hugeshift, psize);
1318 #else
1319 else {
1321 * if we have hugeshift, and is not transhuge with
1322 * hugetlb disabled, something is really wrong.
1324 rc = 1;
1325 WARN_ON(1);
1327 #endif
1328 if (current->mm == mm)
1329 check_paca_psize(ea, mm, psize, user_region);
1331 goto bail;
1334 #ifndef CONFIG_PPC_64K_PAGES
1335 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1336 #else
1337 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1338 pte_val(*(ptep + PTRS_PER_PTE)));
1339 #endif
1340 /* Do actual hashing */
1341 #ifdef CONFIG_PPC_64K_PAGES
1342 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1343 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1344 demote_segment_4k(mm, ea);
1345 psize = MMU_PAGE_4K;
1348 /* If this PTE is non-cacheable and we have restrictions on
1349 * using non cacheable large pages, then we switch to 4k
1351 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1352 if (user_region) {
1353 demote_segment_4k(mm, ea);
1354 psize = MMU_PAGE_4K;
1355 } else if (ea < VMALLOC_END) {
1357 * some driver did a non-cacheable mapping
1358 * in vmalloc space, so switch vmalloc
1359 * to 4k pages
1361 printk(KERN_ALERT "Reducing vmalloc segment "
1362 "to 4kB pages because of "
1363 "non-cacheable mapping\n");
1364 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1365 copro_flush_all_slbs(mm);
1369 #endif /* CONFIG_PPC_64K_PAGES */
1371 if (current->mm == mm)
1372 check_paca_psize(ea, mm, psize, user_region);
1374 #ifdef CONFIG_PPC_64K_PAGES
1375 if (psize == MMU_PAGE_64K)
1376 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1377 flags, ssize);
1378 else
1379 #endif /* CONFIG_PPC_64K_PAGES */
1381 int spp = subpage_protection(mm, ea);
1382 if (access & spp)
1383 rc = -2;
1384 else
1385 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1386 flags, ssize, spp);
1389 /* Dump some info in case of hash insertion failure, they should
1390 * never happen so it is really useful to know if/when they do
1392 if (rc == -1)
1393 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1394 psize, pte_val(*ptep));
1395 #ifndef CONFIG_PPC_64K_PAGES
1396 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1397 #else
1398 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1399 pte_val(*(ptep + PTRS_PER_PTE)));
1400 #endif
1401 DBG_LOW(" -> rc=%d\n", rc);
1403 bail:
1404 exception_exit(prev_state);
1405 return rc;
1407 EXPORT_SYMBOL_GPL(hash_page_mm);
1409 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1410 unsigned long dsisr)
1412 unsigned long flags = 0;
1413 struct mm_struct *mm = current->mm;
1415 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1416 mm = &init_mm;
1418 if (dsisr & DSISR_NOHPTE)
1419 flags |= HPTE_NOHPTE_UPDATE;
1421 return hash_page_mm(mm, ea, access, trap, flags);
1423 EXPORT_SYMBOL_GPL(hash_page);
1425 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1426 unsigned long dsisr)
1428 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1429 unsigned long flags = 0;
1430 struct mm_struct *mm = current->mm;
1432 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1433 mm = &init_mm;
1435 if (dsisr & DSISR_NOHPTE)
1436 flags |= HPTE_NOHPTE_UPDATE;
1438 if (dsisr & DSISR_ISSTORE)
1439 access |= _PAGE_WRITE;
1441 * We set _PAGE_PRIVILEGED only when
1442 * kernel mode access kernel space.
1444 * _PAGE_PRIVILEGED is NOT set
1445 * 1) when kernel mode access user space
1446 * 2) user space access kernel space.
1448 access |= _PAGE_PRIVILEGED;
1449 if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1450 access &= ~_PAGE_PRIVILEGED;
1452 if (trap == 0x400)
1453 access |= _PAGE_EXEC;
1455 return hash_page_mm(mm, ea, access, trap, flags);
1458 #ifdef CONFIG_PPC_MM_SLICES
1459 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1461 int psize = get_slice_psize(mm, ea);
1463 /* We only prefault standard pages for now */
1464 if (unlikely(psize != mm->context.user_psize))
1465 return false;
1468 * Don't prefault if subpage protection is enabled for the EA.
1470 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1471 return false;
1473 return true;
1475 #else
1476 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1478 return true;
1480 #endif
1482 void hash_preload(struct mm_struct *mm, unsigned long ea,
1483 unsigned long access, unsigned long trap)
1485 int hugepage_shift;
1486 unsigned long vsid;
1487 pgd_t *pgdir;
1488 pte_t *ptep;
1489 unsigned long flags;
1490 int rc, ssize, update_flags = 0;
1492 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1494 if (!should_hash_preload(mm, ea))
1495 return;
1497 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1498 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1500 /* Get Linux PTE if available */
1501 pgdir = mm->pgd;
1502 if (pgdir == NULL)
1503 return;
1505 /* Get VSID */
1506 ssize = user_segment_size(ea);
1507 vsid = get_vsid(mm->context.id, ea, ssize);
1508 if (!vsid)
1509 return;
1511 * Hash doesn't like irqs. Walking linux page table with irq disabled
1512 * saves us from holding multiple locks.
1514 local_irq_save(flags);
1517 * THP pages use update_mmu_cache_pmd. We don't do
1518 * hash preload there. Hence can ignore THP here
1520 ptep = find_linux_pte_or_hugepte(pgdir, ea, NULL, &hugepage_shift);
1521 if (!ptep)
1522 goto out_exit;
1524 WARN_ON(hugepage_shift);
1525 #ifdef CONFIG_PPC_64K_PAGES
1526 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1527 * a 64K kernel), then we don't preload, hash_page() will take
1528 * care of it once we actually try to access the page.
1529 * That way we don't have to duplicate all of the logic for segment
1530 * page size demotion here
1532 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1533 goto out_exit;
1534 #endif /* CONFIG_PPC_64K_PAGES */
1536 /* Is that local to this CPU ? */
1537 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1538 update_flags |= HPTE_LOCAL_UPDATE;
1540 /* Hash it in */
1541 #ifdef CONFIG_PPC_64K_PAGES
1542 if (mm->context.user_psize == MMU_PAGE_64K)
1543 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1544 update_flags, ssize);
1545 else
1546 #endif /* CONFIG_PPC_64K_PAGES */
1547 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1548 ssize, subpage_protection(mm, ea));
1550 /* Dump some info in case of hash insertion failure, they should
1551 * never happen so it is really useful to know if/when they do
1553 if (rc == -1)
1554 hash_failure_debug(ea, access, vsid, trap, ssize,
1555 mm->context.user_psize,
1556 mm->context.user_psize,
1557 pte_val(*ptep));
1558 out_exit:
1559 local_irq_restore(flags);
1562 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1563 static inline void tm_flush_hash_page(int local)
1566 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1567 * page back to a block device w/PIO could pick up transactional data
1568 * (bad!) so we force an abort here. Before the sync the page will be
1569 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1570 * kernel uses a page from userspace without unmapping it first, it may
1571 * see the speculated version.
1573 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1574 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1575 tm_enable();
1576 tm_abort(TM_CAUSE_TLBI);
1579 #else
1580 static inline void tm_flush_hash_page(int local)
1583 #endif
1585 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1586 * do not forget to update the assembly call site !
1588 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1589 unsigned long flags)
1591 unsigned long hash, index, shift, hidx, slot;
1592 int local = flags & HPTE_LOCAL_UPDATE;
1594 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1595 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1596 hash = hpt_hash(vpn, shift, ssize);
1597 hidx = __rpte_to_hidx(pte, index);
1598 if (hidx & _PTEIDX_SECONDARY)
1599 hash = ~hash;
1600 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1601 slot += hidx & _PTEIDX_GROUP_IX;
1602 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1604 * We use same base page size and actual psize, because we don't
1605 * use these functions for hugepage
1607 mmu_hash_ops.hpte_invalidate(slot, vpn, psize, psize,
1608 ssize, local);
1609 } pte_iterate_hashed_end();
1611 tm_flush_hash_page(local);
1614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1615 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1616 pmd_t *pmdp, unsigned int psize, int ssize,
1617 unsigned long flags)
1619 int i, max_hpte_count, valid;
1620 unsigned long s_addr;
1621 unsigned char *hpte_slot_array;
1622 unsigned long hidx, shift, vpn, hash, slot;
1623 int local = flags & HPTE_LOCAL_UPDATE;
1625 s_addr = addr & HPAGE_PMD_MASK;
1626 hpte_slot_array = get_hpte_slot_array(pmdp);
1628 * IF we try to do a HUGE PTE update after a withdraw is done.
1629 * we will find the below NULL. This happens when we do
1630 * split_huge_page_pmd
1632 if (!hpte_slot_array)
1633 return;
1635 if (mmu_hash_ops.hugepage_invalidate) {
1636 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1637 psize, ssize, local);
1638 goto tm_abort;
1641 * No bluk hpte removal support, invalidate each entry
1643 shift = mmu_psize_defs[psize].shift;
1644 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1645 for (i = 0; i < max_hpte_count; i++) {
1647 * 8 bits per each hpte entries
1648 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1650 valid = hpte_valid(hpte_slot_array, i);
1651 if (!valid)
1652 continue;
1653 hidx = hpte_hash_index(hpte_slot_array, i);
1655 /* get the vpn */
1656 addr = s_addr + (i * (1ul << shift));
1657 vpn = hpt_vpn(addr, vsid, ssize);
1658 hash = hpt_hash(vpn, shift, ssize);
1659 if (hidx & _PTEIDX_SECONDARY)
1660 hash = ~hash;
1662 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1663 slot += hidx & _PTEIDX_GROUP_IX;
1664 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1665 MMU_PAGE_16M, ssize, local);
1667 tm_abort:
1668 tm_flush_hash_page(local);
1670 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1672 void flush_hash_range(unsigned long number, int local)
1674 if (mmu_hash_ops.flush_hash_range)
1675 mmu_hash_ops.flush_hash_range(number, local);
1676 else {
1677 int i;
1678 struct ppc64_tlb_batch *batch =
1679 this_cpu_ptr(&ppc64_tlb_batch);
1681 for (i = 0; i < number; i++)
1682 flush_hash_page(batch->vpn[i], batch->pte[i],
1683 batch->psize, batch->ssize, local);
1688 * low_hash_fault is called when we the low level hash code failed
1689 * to instert a PTE due to an hypervisor error
1691 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1693 enum ctx_state prev_state = exception_enter();
1695 if (user_mode(regs)) {
1696 #ifdef CONFIG_PPC_SUBPAGE_PROT
1697 if (rc == -2)
1698 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1699 else
1700 #endif
1701 _exception(SIGBUS, regs, BUS_ADRERR, address);
1702 } else
1703 bad_page_fault(regs, address, SIGBUS);
1705 exception_exit(prev_state);
1708 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1709 unsigned long pa, unsigned long rflags,
1710 unsigned long vflags, int psize, int ssize)
1712 unsigned long hpte_group;
1713 long slot;
1715 repeat:
1716 hpte_group = ((hash & htab_hash_mask) *
1717 HPTES_PER_GROUP) & ~0x7UL;
1719 /* Insert into the hash table, primary slot */
1720 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1721 psize, psize, ssize);
1723 /* Primary is full, try the secondary */
1724 if (unlikely(slot == -1)) {
1725 hpte_group = ((~hash & htab_hash_mask) *
1726 HPTES_PER_GROUP) & ~0x7UL;
1727 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1728 vflags | HPTE_V_SECONDARY,
1729 psize, psize, ssize);
1730 if (slot == -1) {
1731 if (mftb() & 0x1)
1732 hpte_group = ((hash & htab_hash_mask) *
1733 HPTES_PER_GROUP)&~0x7UL;
1735 mmu_hash_ops.hpte_remove(hpte_group);
1736 goto repeat;
1740 return slot;
1743 #ifdef CONFIG_DEBUG_PAGEALLOC
1744 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1746 unsigned long hash;
1747 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1748 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1749 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1750 long ret;
1752 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1754 /* Don't create HPTE entries for bad address */
1755 if (!vsid)
1756 return;
1758 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1759 HPTE_V_BOLTED,
1760 mmu_linear_psize, mmu_kernel_ssize);
1762 BUG_ON (ret < 0);
1763 spin_lock(&linear_map_hash_lock);
1764 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1765 linear_map_hash_slots[lmi] = ret | 0x80;
1766 spin_unlock(&linear_map_hash_lock);
1769 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1771 unsigned long hash, hidx, slot;
1772 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1773 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1775 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1776 spin_lock(&linear_map_hash_lock);
1777 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1778 hidx = linear_map_hash_slots[lmi] & 0x7f;
1779 linear_map_hash_slots[lmi] = 0;
1780 spin_unlock(&linear_map_hash_lock);
1781 if (hidx & _PTEIDX_SECONDARY)
1782 hash = ~hash;
1783 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1784 slot += hidx & _PTEIDX_GROUP_IX;
1785 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1786 mmu_linear_psize,
1787 mmu_kernel_ssize, 0);
1790 void __kernel_map_pages(struct page *page, int numpages, int enable)
1792 unsigned long flags, vaddr, lmi;
1793 int i;
1795 local_irq_save(flags);
1796 for (i = 0; i < numpages; i++, page++) {
1797 vaddr = (unsigned long)page_address(page);
1798 lmi = __pa(vaddr) >> PAGE_SHIFT;
1799 if (lmi >= linear_map_hash_count)
1800 continue;
1801 if (enable)
1802 kernel_map_linear_page(vaddr, lmi);
1803 else
1804 kernel_unmap_linear_page(vaddr, lmi);
1806 local_irq_restore(flags);
1808 #endif /* CONFIG_DEBUG_PAGEALLOC */
1810 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1811 phys_addr_t first_memblock_size)
1813 /* We don't currently support the first MEMBLOCK not mapping 0
1814 * physical on those processors
1816 BUG_ON(first_memblock_base != 0);
1818 /* On LPAR systems, the first entry is our RMA region,
1819 * non-LPAR 64-bit hash MMU systems don't have a limitation
1820 * on real mode access, but using the first entry works well
1821 * enough. We also clamp it to 1G to avoid some funky things
1822 * such as RTAS bugs etc...
1824 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1826 /* Finally limit subsequent allocations */
1827 memblock_set_current_limit(ppc64_rma_size);
1830 #ifdef CONFIG_DEBUG_FS
1832 static int hpt_order_get(void *data, u64 *val)
1834 *val = ppc64_pft_size;
1835 return 0;
1838 static int hpt_order_set(void *data, u64 val)
1840 if (!mmu_hash_ops.resize_hpt)
1841 return -ENODEV;
1843 return mmu_hash_ops.resize_hpt(val);
1846 DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1848 static int __init hash64_debugfs(void)
1850 if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root,
1851 NULL, &fops_hpt_order)) {
1852 pr_err("lpar: unable to create hpt_order debugsfs file\n");
1855 return 0;
1857 machine_device_initcall(pseries, hash64_debugfs);
1859 #endif /* CONFIG_DEBUG_FS */