x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / tile / mm / pgtable.c
blob492a7361e58e10e4157ed51eab2ae9cb6537ce17
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/spinlock.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/smp.h>
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/fixmap.h>
33 #include <asm/tlb.h>
34 #include <asm/tlbflush.h>
35 #include <asm/homecache.h>
37 #define K(x) ((x) << (PAGE_SHIFT-10))
39 /**
40 * shatter_huge_page() - ensure a given address is mapped by a small page.
42 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
43 * of small PTEs with the same caching. No cache flush required, but we
44 * must do a global TLB flush.
46 * Any caller that wishes to modify a kernel mapping that might
47 * have been made with a huge page should call this function,
48 * since doing so properly avoids race conditions with installing the
49 * newly-shattered page and then flushing all the TLB entries.
51 * @addr: Address at which to shatter any existing huge page.
53 void shatter_huge_page(unsigned long addr)
55 pgd_t *pgd;
56 pud_t *pud;
57 pmd_t *pmd;
58 unsigned long flags = 0; /* happy compiler */
59 #ifdef __PAGETABLE_PMD_FOLDED
60 struct list_head *pos;
61 #endif
63 /* Get a pointer to the pmd entry that we need to change. */
64 addr &= HPAGE_MASK;
65 BUG_ON(pgd_addr_invalid(addr));
66 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
67 pgd = swapper_pg_dir + pgd_index(addr);
68 pud = pud_offset(pgd, addr);
69 BUG_ON(!pud_present(*pud));
70 pmd = pmd_offset(pud, addr);
71 BUG_ON(!pmd_present(*pmd));
72 if (!pmd_huge_page(*pmd))
73 return;
75 spin_lock_irqsave(&init_mm.page_table_lock, flags);
76 if (!pmd_huge_page(*pmd)) {
77 /* Lost the race to convert the huge page. */
78 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
79 return;
82 /* Shatter the huge page into the preallocated L2 page table. */
83 pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd)));
85 #ifdef __PAGETABLE_PMD_FOLDED
86 /* Walk every pgd on the system and update the pmd there. */
87 spin_lock(&pgd_lock);
88 list_for_each(pos, &pgd_list) {
89 pmd_t *copy_pmd;
90 pgd = list_to_pgd(pos) + pgd_index(addr);
91 pud = pud_offset(pgd, addr);
92 copy_pmd = pmd_offset(pud, addr);
93 __set_pmd(copy_pmd, *pmd);
95 spin_unlock(&pgd_lock);
96 #endif
98 /* Tell every cpu to notice the change. */
99 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
100 cpu_possible_mask, NULL, 0);
102 /* Hold the lock until the TLB flush is finished to avoid races. */
103 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
107 * List of all pgd's needed so it can invalidate entries in both cached
108 * and uncached pgd's. This is essentially codepath-based locking
109 * against pageattr.c; it is the unique case in which a valid change
110 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
111 * vmalloc faults work because attached pagetables are never freed.
113 * The lock is always taken with interrupts disabled, unlike on x86
114 * and other platforms, because we need to take the lock in
115 * shatter_huge_page(), which may be called from an interrupt context.
116 * We are not at risk from the tlbflush IPI deadlock that was seen on
117 * x86, since we use the flush_remote() API to have the hypervisor do
118 * the TLB flushes regardless of irq disabling.
120 DEFINE_SPINLOCK(pgd_lock);
121 LIST_HEAD(pgd_list);
123 static inline void pgd_list_add(pgd_t *pgd)
125 list_add(pgd_to_list(pgd), &pgd_list);
128 static inline void pgd_list_del(pgd_t *pgd)
130 list_del(pgd_to_list(pgd));
133 #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
134 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
136 static void pgd_ctor(pgd_t *pgd)
138 unsigned long flags;
140 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
141 spin_lock_irqsave(&pgd_lock, flags);
143 #ifndef __tilegx__
145 * Check that the user interrupt vector has no L2.
146 * It never should for the swapper, and new page tables
147 * should always start with an empty user interrupt vector.
149 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
150 #endif
152 memcpy(pgd + KERNEL_PGD_INDEX_START,
153 swapper_pg_dir + KERNEL_PGD_INDEX_START,
154 KERNEL_PGD_PTRS * sizeof(pgd_t));
156 pgd_list_add(pgd);
157 spin_unlock_irqrestore(&pgd_lock, flags);
160 static void pgd_dtor(pgd_t *pgd)
162 unsigned long flags; /* can be called from interrupt context */
164 spin_lock_irqsave(&pgd_lock, flags);
165 pgd_list_del(pgd);
166 spin_unlock_irqrestore(&pgd_lock, flags);
169 pgd_t *pgd_alloc(struct mm_struct *mm)
171 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
172 if (pgd)
173 pgd_ctor(pgd);
174 return pgd;
177 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
179 pgd_dtor(pgd);
180 kmem_cache_free(pgd_cache, pgd);
184 #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
186 struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
187 int order)
189 gfp_t flags = GFP_KERNEL|__GFP_ZERO;
190 struct page *p;
191 int i;
193 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
194 if (p == NULL)
195 return NULL;
197 if (!pgtable_page_ctor(p)) {
198 __free_pages(p, L2_USER_PGTABLE_ORDER);
199 return NULL;
203 * Make every page have a page_count() of one, not just the first.
204 * We don't use __GFP_COMP since it doesn't look like it works
205 * correctly with tlb_remove_page().
207 for (i = 1; i < order; ++i) {
208 init_page_count(p+i);
209 inc_zone_page_state(p+i, NR_PAGETABLE);
212 return p;
216 * Free page immediately (used in __pte_alloc if we raced with another
217 * process). We have to correct whatever pte_alloc_one() did before
218 * returning the pages to the allocator.
220 void pgtable_free(struct mm_struct *mm, struct page *p, int order)
222 int i;
224 pgtable_page_dtor(p);
225 __free_page(p);
227 for (i = 1; i < order; ++i) {
228 __free_page(p+i);
229 dec_zone_page_state(p+i, NR_PAGETABLE);
233 void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
234 unsigned long address, int order)
236 int i;
238 pgtable_page_dtor(pte);
239 tlb_remove_page(tlb, pte);
241 for (i = 1; i < order; ++i) {
242 tlb_remove_page(tlb, pte + i);
243 dec_zone_page_state(pte + i, NR_PAGETABLE);
247 #ifndef __tilegx__
250 * FIXME: needs to be atomic vs hypervisor writes. For now we make the
251 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
253 int ptep_test_and_clear_young(struct vm_area_struct *vma,
254 unsigned long addr, pte_t *ptep)
256 #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
257 # error Code assumes HV_PTE "accessed" bit in second byte
258 #endif
259 u8 *tmp = (u8 *)ptep;
260 u8 second_byte = tmp[1];
261 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
262 return 0;
263 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
264 return 1;
268 * This implementation is atomic vs hypervisor writes, since the hypervisor
269 * always writes the low word (where "accessed" and "dirty" are) and this
270 * routine only writes the high word.
272 void ptep_set_wrprotect(struct mm_struct *mm,
273 unsigned long addr, pte_t *ptep)
275 #if HV_PTE_INDEX_WRITABLE < 32
276 # error Code assumes HV_PTE "writable" bit in high word
277 #endif
278 u32 *tmp = (u32 *)ptep;
279 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
282 #endif
285 * Return a pointer to the PTE that corresponds to the given
286 * address in the given page table. A NULL page table just uses
287 * the standard kernel page table; the preferred API in this case
288 * is virt_to_kpte().
290 * The returned pointer can point to a huge page in other levels
291 * of the page table than the bottom, if the huge page is present
292 * in the page table. For bottom-level PTEs, the returned pointer
293 * can point to a PTE that is either present or not.
295 pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
297 pgd_t *pgd;
298 pud_t *pud;
299 pmd_t *pmd;
301 if (pgd_addr_invalid(addr))
302 return NULL;
304 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
305 pud = pud_offset(pgd, addr);
306 if (!pud_present(*pud))
307 return NULL;
308 if (pud_huge_page(*pud))
309 return (pte_t *)pud;
310 pmd = pmd_offset(pud, addr);
311 if (!pmd_present(*pmd))
312 return NULL;
313 if (pmd_huge_page(*pmd))
314 return (pte_t *)pmd;
315 return pte_offset_kernel(pmd, addr);
317 EXPORT_SYMBOL(virt_to_pte);
319 pte_t *virt_to_kpte(unsigned long kaddr)
321 BUG_ON(kaddr < PAGE_OFFSET);
322 return virt_to_pte(NULL, kaddr);
324 EXPORT_SYMBOL(virt_to_kpte);
326 pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
328 unsigned int width = smp_width;
329 int x = cpu % width;
330 int y = cpu / width;
331 BUG_ON(y >= smp_height);
332 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
333 BUG_ON(cpu < 0 || cpu >= NR_CPUS);
334 BUG_ON(!cpu_is_valid_lotar(cpu));
335 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
338 int get_remote_cache_cpu(pgprot_t prot)
340 HV_LOTAR lotar = hv_pte_get_lotar(prot);
341 int x = HV_LOTAR_X(lotar);
342 int y = HV_LOTAR_Y(lotar);
343 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
344 return x + y * smp_width;
348 * Convert a kernel VA to a PA and homing information.
350 int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
352 struct page *page = virt_to_page(va);
353 pte_t null_pte = { 0 };
355 *cpa = __pa(va);
357 /* Note that this is not writing a page table, just returning a pte. */
358 *pte = pte_set_home(null_pte, page_home(page));
360 return 0; /* return non-zero if not hfh? */
362 EXPORT_SYMBOL(va_to_cpa_and_pte);
364 void __set_pte(pte_t *ptep, pte_t pte)
366 #ifdef __tilegx__
367 *ptep = pte;
368 #else
369 # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
370 # error Must write the present and migrating bits last
371 # endif
372 if (pte_present(pte)) {
373 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
374 barrier();
375 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
376 } else {
377 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
378 barrier();
379 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
381 #endif /* __tilegx__ */
384 void set_pte(pte_t *ptep, pte_t pte)
386 if (pte_present(pte) &&
387 (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
388 /* The PTE actually references physical memory. */
389 unsigned long pfn = pte_pfn(pte);
390 if (pfn_valid(pfn)) {
391 /* Update the home of the PTE from the struct page. */
392 pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
393 } else if (hv_pte_get_mode(pte) == 0) {
394 /* remap_pfn_range(), etc, must supply PTE mode. */
395 panic("set_pte(): out-of-range PFN and mode 0\n");
399 __set_pte(ptep, pte);
402 /* Can this mm load a PTE with cached_priority set? */
403 static inline int mm_is_priority_cached(struct mm_struct *mm)
405 return mm->context.priority_cached != 0;
409 * Add a priority mapping to an mm_context and
410 * notify the hypervisor if this is the first one.
412 void start_mm_caching(struct mm_struct *mm)
414 if (!mm_is_priority_cached(mm)) {
415 mm->context.priority_cached = -1UL;
416 hv_set_caching(-1UL);
421 * Validate and return the priority_cached flag. We know if it's zero
422 * that we don't need to scan, since we immediately set it non-zero
423 * when we first consider a MAP_CACHE_PRIORITY mapping.
425 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
426 * since we're in an interrupt context (servicing switch_mm) we don't
427 * worry about it and don't unset the "priority_cached" field.
428 * Presumably we'll come back later and have more luck and clear
429 * the value then; for now we'll just keep the cache marked for priority.
431 static unsigned long update_priority_cached(struct mm_struct *mm)
433 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
434 struct vm_area_struct *vm;
435 for (vm = mm->mmap; vm; vm = vm->vm_next) {
436 if (hv_pte_get_cached_priority(vm->vm_page_prot))
437 break;
439 if (vm == NULL)
440 mm->context.priority_cached = 0;
441 up_write(&mm->mmap_sem);
443 return mm->context.priority_cached;
446 /* Set caching correctly for an mm that we are switching to. */
447 void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
449 if (!mm_is_priority_cached(next)) {
451 * If the new mm doesn't use priority caching, just see if we
452 * need the hv_set_caching(), or can assume it's already zero.
454 if (mm_is_priority_cached(prev))
455 hv_set_caching(0);
456 } else {
457 hv_set_caching(update_priority_cached(next));
461 #if CHIP_HAS_MMIO()
463 /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
464 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
465 pgprot_t home)
467 void *addr;
468 struct vm_struct *area;
469 unsigned long offset, last_addr;
470 pgprot_t pgprot;
472 /* Don't allow wraparound or zero size */
473 last_addr = phys_addr + size - 1;
474 if (!size || last_addr < phys_addr)
475 return NULL;
477 /* Create a read/write, MMIO VA mapping homed at the requested shim. */
478 pgprot = PAGE_KERNEL;
479 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
480 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
483 * Mappings have to be page-aligned
485 offset = phys_addr & ~PAGE_MASK;
486 phys_addr &= PAGE_MASK;
487 size = PAGE_ALIGN(last_addr+1) - phys_addr;
490 * Ok, go for it..
492 area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
493 if (!area)
494 return NULL;
495 area->phys_addr = phys_addr;
496 addr = area->addr;
497 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
498 phys_addr, pgprot)) {
499 free_vm_area(area);
500 return NULL;
502 return (__force void __iomem *) (offset + (char *)addr);
504 EXPORT_SYMBOL(ioremap_prot);
506 /* Unmap an MMIO VA mapping. */
507 void iounmap(volatile void __iomem *addr_in)
509 volatile void __iomem *addr = (volatile void __iomem *)
510 (PAGE_MASK & (unsigned long __force)addr_in);
511 #if 1
512 vunmap((void * __force)addr);
513 #else
514 /* x86 uses this complicated flow instead of vunmap(). Is
515 * there any particular reason we should do the same? */
516 struct vm_struct *p, *o;
518 /* Use the vm area unlocked, assuming the caller
519 ensures there isn't another iounmap for the same address
520 in parallel. Reuse of the virtual address is prevented by
521 leaving it in the global lists until we're done with it.
522 cpa takes care of the direct mappings. */
523 p = find_vm_area((void *)addr);
525 if (!p) {
526 pr_err("iounmap: bad address %p\n", addr);
527 dump_stack();
528 return;
531 /* Finally remove it */
532 o = remove_vm_area((void *)addr);
533 BUG_ON(p != o || o == NULL);
534 kfree(p);
535 #endif
537 EXPORT_SYMBOL(iounmap);
539 #endif /* CHIP_HAS_MMIO() */