x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / x86 / include / asm / mmu_context.h
blob306c7e12af55b6518943dcf6fe2ab89745efdd1b
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 #include <linux/pkeys.h>
9 #include <trace/events/tlb.h>
11 #include <asm/pgalloc.h>
12 #include <asm/tlbflush.h>
13 #include <asm/paravirt.h>
14 #include <asm/mpx.h>
15 #ifndef CONFIG_PARAVIRT
16 static inline void paravirt_activate_mm(struct mm_struct *prev,
17 struct mm_struct *next)
20 #endif /* !CONFIG_PARAVIRT */
22 #ifdef CONFIG_PERF_EVENTS
23 extern struct static_key rdpmc_always_available;
25 static inline void load_mm_cr4(struct mm_struct *mm)
27 if (static_key_false(&rdpmc_always_available) ||
28 atomic_read(&mm->context.perf_rdpmc_allowed))
29 cr4_set_bits(X86_CR4_PCE);
30 else
31 cr4_clear_bits(X86_CR4_PCE);
33 #else
34 static inline void load_mm_cr4(struct mm_struct *mm) {}
35 #endif
37 #ifdef CONFIG_MODIFY_LDT_SYSCALL
39 * ldt_structs can be allocated, used, and freed, but they are never
40 * modified while live.
42 struct ldt_struct {
44 * Xen requires page-aligned LDTs with special permissions. This is
45 * needed to prevent us from installing evil descriptors such as
46 * call gates. On native, we could merge the ldt_struct and LDT
47 * allocations, but it's not worth trying to optimize.
49 struct desc_struct *entries;
50 unsigned int size;
54 * Used for LDT copy/destruction.
56 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
57 void destroy_context_ldt(struct mm_struct *mm);
58 #else /* CONFIG_MODIFY_LDT_SYSCALL */
59 static inline int init_new_context_ldt(struct task_struct *tsk,
60 struct mm_struct *mm)
62 return 0;
64 static inline void destroy_context_ldt(struct mm_struct *mm) {}
65 #endif
67 static inline void load_mm_ldt(struct mm_struct *mm)
69 #ifdef CONFIG_MODIFY_LDT_SYSCALL
70 struct ldt_struct *ldt;
72 /* lockless_dereference synchronizes with smp_store_release */
73 ldt = lockless_dereference(mm->context.ldt);
76 * Any change to mm->context.ldt is followed by an IPI to all
77 * CPUs with the mm active. The LDT will not be freed until
78 * after the IPI is handled by all such CPUs. This means that,
79 * if the ldt_struct changes before we return, the values we see
80 * will be safe, and the new values will be loaded before we run
81 * any user code.
83 * NB: don't try to convert this to use RCU without extreme care.
84 * We would still need IRQs off, because we don't want to change
85 * the local LDT after an IPI loaded a newer value than the one
86 * that we can see.
89 if (unlikely(ldt))
90 set_ldt(ldt->entries, ldt->size);
91 else
92 clear_LDT();
93 #else
94 clear_LDT();
95 #endif
97 DEBUG_LOCKS_WARN_ON(preemptible());
100 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
102 #ifdef CONFIG_SMP
103 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
104 this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
105 #endif
108 static inline int init_new_context(struct task_struct *tsk,
109 struct mm_struct *mm)
111 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
112 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
113 /* pkey 0 is the default and always allocated */
114 mm->context.pkey_allocation_map = 0x1;
115 /* -1 means unallocated or invalid */
116 mm->context.execute_only_pkey = -1;
118 #endif
119 init_new_context_ldt(tsk, mm);
121 return 0;
123 static inline void destroy_context(struct mm_struct *mm)
125 destroy_context_ldt(mm);
128 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
129 struct task_struct *tsk);
131 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
132 struct task_struct *tsk);
133 #define switch_mm_irqs_off switch_mm_irqs_off
135 #define activate_mm(prev, next) \
136 do { \
137 paravirt_activate_mm((prev), (next)); \
138 switch_mm((prev), (next), NULL); \
139 } while (0);
141 #ifdef CONFIG_X86_32
142 #define deactivate_mm(tsk, mm) \
143 do { \
144 lazy_load_gs(0); \
145 } while (0)
146 #else
147 #define deactivate_mm(tsk, mm) \
148 do { \
149 load_gs_index(0); \
150 loadsegment(fs, 0); \
151 } while (0)
152 #endif
154 static inline void arch_dup_mmap(struct mm_struct *oldmm,
155 struct mm_struct *mm)
157 paravirt_arch_dup_mmap(oldmm, mm);
160 static inline void arch_exit_mmap(struct mm_struct *mm)
162 paravirt_arch_exit_mmap(mm);
165 #ifdef CONFIG_X86_64
166 static inline bool is_64bit_mm(struct mm_struct *mm)
168 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
169 !(mm->context.ia32_compat == TIF_IA32);
171 #else
172 static inline bool is_64bit_mm(struct mm_struct *mm)
174 return false;
176 #endif
178 static inline void arch_bprm_mm_init(struct mm_struct *mm,
179 struct vm_area_struct *vma)
181 mpx_mm_init(mm);
184 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
185 unsigned long start, unsigned long end)
188 * mpx_notify_unmap() goes and reads a rarely-hot
189 * cacheline in the mm_struct. That can be expensive
190 * enough to be seen in profiles.
192 * The mpx_notify_unmap() call and its contents have been
193 * observed to affect munmap() performance on hardware
194 * where MPX is not present.
196 * The unlikely() optimizes for the fast case: no MPX
197 * in the CPU, or no MPX use in the process. Even if
198 * we get this wrong (in the unlikely event that MPX
199 * is widely enabled on some system) the overhead of
200 * MPX itself (reading bounds tables) is expected to
201 * overwhelm the overhead of getting this unlikely()
202 * consistently wrong.
204 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
205 mpx_notify_unmap(mm, vma, start, end);
208 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
209 static inline int vma_pkey(struct vm_area_struct *vma)
211 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
212 VM_PKEY_BIT2 | VM_PKEY_BIT3;
214 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
216 #else
217 static inline int vma_pkey(struct vm_area_struct *vma)
219 return 0;
221 #endif
223 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
225 u32 pkru = read_pkru();
227 if (!__pkru_allows_read(pkru, pkey))
228 return false;
229 if (write && !__pkru_allows_write(pkru, pkey))
230 return false;
232 return true;
236 * We only want to enforce protection keys on the current process
237 * because we effectively have no access to PKRU for other
238 * processes or any way to tell *which * PKRU in a threaded
239 * process we could use.
241 * So do not enforce things if the VMA is not from the current
242 * mm, or if we are in a kernel thread.
244 static inline bool vma_is_foreign(struct vm_area_struct *vma)
246 if (!current->mm)
247 return true;
249 * Should PKRU be enforced on the access to this VMA? If
250 * the VMA is from another process, then PKRU has no
251 * relevance and should not be enforced.
253 if (current->mm != vma->vm_mm)
254 return true;
256 return false;
259 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
260 bool write, bool execute, bool foreign)
262 /* pkeys never affect instruction fetches */
263 if (execute)
264 return true;
265 /* allow access if the VMA is not one from this process */
266 if (foreign || vma_is_foreign(vma))
267 return true;
268 return __pkru_allows_pkey(vma_pkey(vma), write);
271 static inline bool arch_pte_access_permitted(pte_t pte, bool write)
273 return __pkru_allows_pkey(pte_flags_pkey(pte_flags(pte)), write);
275 #endif /* _ASM_X86_MMU_CONTEXT_H */