x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / x86 / kvm / paging_tmpl.h
bloba01105485315ab56faffb79489f2eb55ba117c29
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
27 * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
28 * uses for EPT without A/D paging type.
30 extern u64 __pure __using_nonexistent_pte_bit(void)
31 __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
33 #if PTTYPE == 64
34 #define pt_element_t u64
35 #define guest_walker guest_walker64
36 #define FNAME(name) paging##64_##name
37 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
38 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
39 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
40 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
41 #define PT_LEVEL_BITS PT64_LEVEL_BITS
42 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
43 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
44 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
45 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
46 #ifdef CONFIG_X86_64
47 #define PT_MAX_FULL_LEVELS 4
48 #define CMPXCHG cmpxchg
49 #else
50 #define CMPXCHG cmpxchg64
51 #define PT_MAX_FULL_LEVELS 2
52 #endif
53 #elif PTTYPE == 32
54 #define pt_element_t u32
55 #define guest_walker guest_walker32
56 #define FNAME(name) paging##32_##name
57 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
58 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
59 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
60 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
61 #define PT_LEVEL_BITS PT32_LEVEL_BITS
62 #define PT_MAX_FULL_LEVELS 2
63 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
64 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
65 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
66 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
67 #define CMPXCHG cmpxchg
68 #elif PTTYPE == PTTYPE_EPT
69 #define pt_element_t u64
70 #define guest_walker guest_walkerEPT
71 #define FNAME(name) ept_##name
72 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
73 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
74 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
75 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
76 #define PT_LEVEL_BITS PT64_LEVEL_BITS
77 #define PT_GUEST_ACCESSED_MASK 0
78 #define PT_GUEST_DIRTY_MASK 0
79 #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
80 #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
81 #define CMPXCHG cmpxchg64
82 #define PT_MAX_FULL_LEVELS 4
83 #else
84 #error Invalid PTTYPE value
85 #endif
87 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
88 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
91 * The guest_walker structure emulates the behavior of the hardware page
92 * table walker.
94 struct guest_walker {
95 int level;
96 unsigned max_level;
97 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
98 pt_element_t ptes[PT_MAX_FULL_LEVELS];
99 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
100 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
101 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
102 bool pte_writable[PT_MAX_FULL_LEVELS];
103 unsigned pt_access;
104 unsigned pte_access;
105 gfn_t gfn;
106 struct x86_exception fault;
109 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
111 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
114 static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
116 unsigned mask;
118 /* dirty bit is not supported, so no need to track it */
119 if (!PT_GUEST_DIRTY_MASK)
120 return;
122 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
124 mask = (unsigned)~ACC_WRITE_MASK;
125 /* Allow write access to dirty gptes */
126 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
127 PT_WRITABLE_MASK;
128 *access &= mask;
131 static inline int FNAME(is_present_gpte)(unsigned long pte)
133 #if PTTYPE != PTTYPE_EPT
134 return pte & PT_PRESENT_MASK;
135 #else
136 return pte & 7;
137 #endif
140 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
141 pt_element_t __user *ptep_user, unsigned index,
142 pt_element_t orig_pte, pt_element_t new_pte)
144 int npages;
145 pt_element_t ret;
146 pt_element_t *table;
147 struct page *page;
149 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
150 /* Check if the user is doing something meaningless. */
151 if (unlikely(npages != 1))
152 return -EFAULT;
154 table = kmap_atomic(page);
155 ret = CMPXCHG(&table[index], orig_pte, new_pte);
156 kunmap_atomic(table);
158 kvm_release_page_dirty(page);
160 return (ret != orig_pte);
163 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
164 struct kvm_mmu_page *sp, u64 *spte,
165 u64 gpte)
167 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
168 goto no_present;
170 if (!FNAME(is_present_gpte)(gpte))
171 goto no_present;
173 /* if accessed bit is not supported prefetch non accessed gpte */
174 if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
175 goto no_present;
177 return false;
179 no_present:
180 drop_spte(vcpu->kvm, spte);
181 return true;
185 * For PTTYPE_EPT, a page table can be executable but not readable
186 * on supported processors. Therefore, set_spte does not automatically
187 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
188 * to signify readability since it isn't used in the EPT case
190 static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
192 unsigned access;
193 #if PTTYPE == PTTYPE_EPT
194 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
195 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
196 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
197 #else
198 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
199 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
200 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
201 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
202 access ^= (gpte >> PT64_NX_SHIFT);
203 #endif
205 return access;
208 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
209 struct kvm_mmu *mmu,
210 struct guest_walker *walker,
211 int write_fault)
213 unsigned level, index;
214 pt_element_t pte, orig_pte;
215 pt_element_t __user *ptep_user;
216 gfn_t table_gfn;
217 int ret;
219 /* dirty/accessed bits are not supported, so no need to update them */
220 if (!PT_GUEST_DIRTY_MASK)
221 return 0;
223 for (level = walker->max_level; level >= walker->level; --level) {
224 pte = orig_pte = walker->ptes[level - 1];
225 table_gfn = walker->table_gfn[level - 1];
226 ptep_user = walker->ptep_user[level - 1];
227 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
228 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
229 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
230 pte |= PT_GUEST_ACCESSED_MASK;
232 if (level == walker->level && write_fault &&
233 !(pte & PT_GUEST_DIRTY_MASK)) {
234 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
235 pte |= PT_GUEST_DIRTY_MASK;
237 if (pte == orig_pte)
238 continue;
241 * If the slot is read-only, simply do not process the accessed
242 * and dirty bits. This is the correct thing to do if the slot
243 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
244 * are only supported if the accessed and dirty bits are already
245 * set in the ROM (so that MMIO writes are never needed).
247 * Note that NPT does not allow this at all and faults, since
248 * it always wants nested page table entries for the guest
249 * page tables to be writable. And EPT works but will simply
250 * overwrite the read-only memory to set the accessed and dirty
251 * bits.
253 if (unlikely(!walker->pte_writable[level - 1]))
254 continue;
256 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
257 if (ret)
258 return ret;
260 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
261 walker->ptes[level - 1] = pte;
263 return 0;
266 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
268 unsigned pkeys = 0;
269 #if PTTYPE == 64
270 pte_t pte = {.pte = gpte};
272 pkeys = pte_flags_pkey(pte_flags(pte));
273 #endif
274 return pkeys;
278 * Fetch a guest pte for a guest virtual address
280 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
281 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
282 gva_t addr, u32 access)
284 int ret;
285 pt_element_t pte;
286 pt_element_t __user *uninitialized_var(ptep_user);
287 gfn_t table_gfn;
288 unsigned index, pt_access, pte_access, accessed_dirty, pte_pkey;
289 gpa_t pte_gpa;
290 int offset;
291 const int write_fault = access & PFERR_WRITE_MASK;
292 const int user_fault = access & PFERR_USER_MASK;
293 const int fetch_fault = access & PFERR_FETCH_MASK;
294 u16 errcode = 0;
295 gpa_t real_gpa;
296 gfn_t gfn;
298 trace_kvm_mmu_pagetable_walk(addr, access);
299 retry_walk:
300 walker->level = mmu->root_level;
301 pte = mmu->get_cr3(vcpu);
303 #if PTTYPE == 64
304 if (walker->level == PT32E_ROOT_LEVEL) {
305 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
306 trace_kvm_mmu_paging_element(pte, walker->level);
307 if (!FNAME(is_present_gpte)(pte))
308 goto error;
309 --walker->level;
311 #endif
312 walker->max_level = walker->level;
313 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
315 accessed_dirty = PT_GUEST_ACCESSED_MASK;
316 pt_access = pte_access = ACC_ALL;
317 ++walker->level;
319 do {
320 gfn_t real_gfn;
321 unsigned long host_addr;
323 pt_access &= pte_access;
324 --walker->level;
326 index = PT_INDEX(addr, walker->level);
328 table_gfn = gpte_to_gfn(pte);
329 offset = index * sizeof(pt_element_t);
330 pte_gpa = gfn_to_gpa(table_gfn) + offset;
331 walker->table_gfn[walker->level - 1] = table_gfn;
332 walker->pte_gpa[walker->level - 1] = pte_gpa;
334 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
335 PFERR_USER_MASK|PFERR_WRITE_MASK,
336 &walker->fault);
339 * FIXME: This can happen if emulation (for of an INS/OUTS
340 * instruction) triggers a nested page fault. The exit
341 * qualification / exit info field will incorrectly have
342 * "guest page access" as the nested page fault's cause,
343 * instead of "guest page structure access". To fix this,
344 * the x86_exception struct should be augmented with enough
345 * information to fix the exit_qualification or exit_info_1
346 * fields.
348 if (unlikely(real_gfn == UNMAPPED_GVA))
349 return 0;
351 real_gfn = gpa_to_gfn(real_gfn);
353 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
354 &walker->pte_writable[walker->level - 1]);
355 if (unlikely(kvm_is_error_hva(host_addr)))
356 goto error;
358 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
359 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
360 goto error;
361 walker->ptep_user[walker->level - 1] = ptep_user;
363 trace_kvm_mmu_paging_element(pte, walker->level);
365 if (unlikely(!FNAME(is_present_gpte)(pte)))
366 goto error;
368 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
369 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
370 goto error;
373 accessed_dirty &= pte;
374 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
376 walker->ptes[walker->level - 1] = pte;
377 } while (!is_last_gpte(mmu, walker->level, pte));
379 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
380 errcode = permission_fault(vcpu, mmu, pte_access, pte_pkey, access);
381 if (unlikely(errcode))
382 goto error;
384 gfn = gpte_to_gfn_lvl(pte, walker->level);
385 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
387 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
388 gfn += pse36_gfn_delta(pte);
390 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
391 if (real_gpa == UNMAPPED_GVA)
392 return 0;
394 walker->gfn = real_gpa >> PAGE_SHIFT;
396 if (!write_fault)
397 FNAME(protect_clean_gpte)(&pte_access, pte);
398 else
400 * On a write fault, fold the dirty bit into accessed_dirty.
401 * For modes without A/D bits support accessed_dirty will be
402 * always clear.
404 accessed_dirty &= pte >>
405 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
407 if (unlikely(!accessed_dirty)) {
408 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
409 if (unlikely(ret < 0))
410 goto error;
411 else if (ret)
412 goto retry_walk;
415 walker->pt_access = pt_access;
416 walker->pte_access = pte_access;
417 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
418 __func__, (u64)pte, pte_access, pt_access);
419 return 1;
421 error:
422 errcode |= write_fault | user_fault;
423 if (fetch_fault && (mmu->nx ||
424 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
425 errcode |= PFERR_FETCH_MASK;
427 walker->fault.vector = PF_VECTOR;
428 walker->fault.error_code_valid = true;
429 walker->fault.error_code = errcode;
431 #if PTTYPE == PTTYPE_EPT
433 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
434 * misconfiguration requires to be injected. The detection is
435 * done by is_rsvd_bits_set() above.
437 * We set up the value of exit_qualification to inject:
438 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
439 * [5:3] - Calculated by the page walk of the guest EPT page tables
440 * [7:8] - Derived from [7:8] of real exit_qualification
442 * The other bits are set to 0.
444 if (!(errcode & PFERR_RSVD_MASK)) {
445 vcpu->arch.exit_qualification &= 0x187;
446 vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
448 #endif
449 walker->fault.address = addr;
450 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
452 trace_kvm_mmu_walker_error(walker->fault.error_code);
453 return 0;
456 static int FNAME(walk_addr)(struct guest_walker *walker,
457 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
459 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
460 access);
463 #if PTTYPE != PTTYPE_EPT
464 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
465 struct kvm_vcpu *vcpu, gva_t addr,
466 u32 access)
468 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
469 addr, access);
471 #endif
473 static bool
474 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
475 u64 *spte, pt_element_t gpte, bool no_dirty_log)
477 unsigned pte_access;
478 gfn_t gfn;
479 kvm_pfn_t pfn;
481 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
482 return false;
484 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
486 gfn = gpte_to_gfn(gpte);
487 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
488 FNAME(protect_clean_gpte)(&pte_access, gpte);
489 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
490 no_dirty_log && (pte_access & ACC_WRITE_MASK));
491 if (is_error_pfn(pfn))
492 return false;
495 * we call mmu_set_spte() with host_writable = true because
496 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
498 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
499 true, true);
501 return true;
504 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
505 u64 *spte, const void *pte)
507 pt_element_t gpte = *(const pt_element_t *)pte;
509 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
512 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
513 struct guest_walker *gw, int level)
515 pt_element_t curr_pte;
516 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
517 u64 mask;
518 int r, index;
520 if (level == PT_PAGE_TABLE_LEVEL) {
521 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
522 base_gpa = pte_gpa & ~mask;
523 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
525 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
526 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
527 curr_pte = gw->prefetch_ptes[index];
528 } else
529 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
530 &curr_pte, sizeof(curr_pte));
532 return r || curr_pte != gw->ptes[level - 1];
535 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
536 u64 *sptep)
538 struct kvm_mmu_page *sp;
539 pt_element_t *gptep = gw->prefetch_ptes;
540 u64 *spte;
541 int i;
543 sp = page_header(__pa(sptep));
545 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
546 return;
548 if (sp->role.direct)
549 return __direct_pte_prefetch(vcpu, sp, sptep);
551 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
552 spte = sp->spt + i;
554 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
555 if (spte == sptep)
556 continue;
558 if (is_shadow_present_pte(*spte))
559 continue;
561 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
562 break;
567 * Fetch a shadow pte for a specific level in the paging hierarchy.
568 * If the guest tries to write a write-protected page, we need to
569 * emulate this operation, return 1 to indicate this case.
571 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
572 struct guest_walker *gw,
573 int write_fault, int hlevel,
574 kvm_pfn_t pfn, bool map_writable, bool prefault)
576 struct kvm_mmu_page *sp = NULL;
577 struct kvm_shadow_walk_iterator it;
578 unsigned direct_access, access = gw->pt_access;
579 int top_level, emulate;
581 direct_access = gw->pte_access;
583 top_level = vcpu->arch.mmu.root_level;
584 if (top_level == PT32E_ROOT_LEVEL)
585 top_level = PT32_ROOT_LEVEL;
587 * Verify that the top-level gpte is still there. Since the page
588 * is a root page, it is either write protected (and cannot be
589 * changed from now on) or it is invalid (in which case, we don't
590 * really care if it changes underneath us after this point).
592 if (FNAME(gpte_changed)(vcpu, gw, top_level))
593 goto out_gpte_changed;
595 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
596 goto out_gpte_changed;
598 for (shadow_walk_init(&it, vcpu, addr);
599 shadow_walk_okay(&it) && it.level > gw->level;
600 shadow_walk_next(&it)) {
601 gfn_t table_gfn;
603 clear_sp_write_flooding_count(it.sptep);
604 drop_large_spte(vcpu, it.sptep);
606 sp = NULL;
607 if (!is_shadow_present_pte(*it.sptep)) {
608 table_gfn = gw->table_gfn[it.level - 2];
609 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
610 false, access);
614 * Verify that the gpte in the page we've just write
615 * protected is still there.
617 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
618 goto out_gpte_changed;
620 if (sp)
621 link_shadow_page(vcpu, it.sptep, sp);
624 for (;
625 shadow_walk_okay(&it) && it.level > hlevel;
626 shadow_walk_next(&it)) {
627 gfn_t direct_gfn;
629 clear_sp_write_flooding_count(it.sptep);
630 validate_direct_spte(vcpu, it.sptep, direct_access);
632 drop_large_spte(vcpu, it.sptep);
634 if (is_shadow_present_pte(*it.sptep))
635 continue;
637 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
639 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
640 true, direct_access);
641 link_shadow_page(vcpu, it.sptep, sp);
644 clear_sp_write_flooding_count(it.sptep);
645 emulate = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
646 it.level, gw->gfn, pfn, prefault, map_writable);
647 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
649 return emulate;
651 out_gpte_changed:
652 kvm_release_pfn_clean(pfn);
653 return 0;
657 * To see whether the mapped gfn can write its page table in the current
658 * mapping.
660 * It is the helper function of FNAME(page_fault). When guest uses large page
661 * size to map the writable gfn which is used as current page table, we should
662 * force kvm to use small page size to map it because new shadow page will be
663 * created when kvm establishes shadow page table that stop kvm using large
664 * page size. Do it early can avoid unnecessary #PF and emulation.
666 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
667 * currently used as its page table.
669 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
670 * since the PDPT is always shadowed, that means, we can not use large page
671 * size to map the gfn which is used as PDPT.
673 static bool
674 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
675 struct guest_walker *walker, int user_fault,
676 bool *write_fault_to_shadow_pgtable)
678 int level;
679 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
680 bool self_changed = false;
682 if (!(walker->pte_access & ACC_WRITE_MASK ||
683 (!is_write_protection(vcpu) && !user_fault)))
684 return false;
686 for (level = walker->level; level <= walker->max_level; level++) {
687 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
689 self_changed |= !(gfn & mask);
690 *write_fault_to_shadow_pgtable |= !gfn;
693 return self_changed;
697 * Page fault handler. There are several causes for a page fault:
698 * - there is no shadow pte for the guest pte
699 * - write access through a shadow pte marked read only so that we can set
700 * the dirty bit
701 * - write access to a shadow pte marked read only so we can update the page
702 * dirty bitmap, when userspace requests it
703 * - mmio access; in this case we will never install a present shadow pte
704 * - normal guest page fault due to the guest pte marked not present, not
705 * writable, or not executable
707 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
708 * a negative value on error.
710 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
711 bool prefault)
713 int write_fault = error_code & PFERR_WRITE_MASK;
714 int user_fault = error_code & PFERR_USER_MASK;
715 struct guest_walker walker;
716 int r;
717 kvm_pfn_t pfn;
718 int level = PT_PAGE_TABLE_LEVEL;
719 bool force_pt_level = false;
720 unsigned long mmu_seq;
721 bool map_writable, is_self_change_mapping;
723 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
725 r = mmu_topup_memory_caches(vcpu);
726 if (r)
727 return r;
730 * If PFEC.RSVD is set, this is a shadow page fault.
731 * The bit needs to be cleared before walking guest page tables.
733 error_code &= ~PFERR_RSVD_MASK;
736 * Look up the guest pte for the faulting address.
738 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
741 * The page is not mapped by the guest. Let the guest handle it.
743 if (!r) {
744 pgprintk("%s: guest page fault\n", __func__);
745 if (!prefault)
746 inject_page_fault(vcpu, &walker.fault);
748 return 0;
751 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
752 shadow_page_table_clear_flood(vcpu, addr);
753 return 1;
756 vcpu->arch.write_fault_to_shadow_pgtable = false;
758 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
759 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
761 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
762 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
763 if (likely(!force_pt_level)) {
764 level = min(walker.level, level);
765 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
767 } else
768 force_pt_level = true;
770 mmu_seq = vcpu->kvm->mmu_notifier_seq;
771 smp_rmb();
773 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
774 &map_writable))
775 return 0;
777 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
778 walker.gfn, pfn, walker.pte_access, &r))
779 return r;
782 * Do not change pte_access if the pfn is a mmio page, otherwise
783 * we will cache the incorrect access into mmio spte.
785 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
786 !is_write_protection(vcpu) && !user_fault &&
787 !is_noslot_pfn(pfn)) {
788 walker.pte_access |= ACC_WRITE_MASK;
789 walker.pte_access &= ~ACC_USER_MASK;
792 * If we converted a user page to a kernel page,
793 * so that the kernel can write to it when cr0.wp=0,
794 * then we should prevent the kernel from executing it
795 * if SMEP is enabled.
797 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
798 walker.pte_access &= ~ACC_EXEC_MASK;
801 spin_lock(&vcpu->kvm->mmu_lock);
802 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
803 goto out_unlock;
805 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
806 make_mmu_pages_available(vcpu);
807 if (!force_pt_level)
808 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
809 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
810 level, pfn, map_writable, prefault);
811 ++vcpu->stat.pf_fixed;
812 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
813 spin_unlock(&vcpu->kvm->mmu_lock);
815 return r;
817 out_unlock:
818 spin_unlock(&vcpu->kvm->mmu_lock);
819 kvm_release_pfn_clean(pfn);
820 return 0;
823 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
825 int offset = 0;
827 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
829 if (PTTYPE == 32)
830 offset = sp->role.quadrant << PT64_LEVEL_BITS;
832 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
835 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
837 struct kvm_shadow_walk_iterator iterator;
838 struct kvm_mmu_page *sp;
839 int level;
840 u64 *sptep;
842 vcpu_clear_mmio_info(vcpu, gva);
845 * No need to check return value here, rmap_can_add() can
846 * help us to skip pte prefetch later.
848 mmu_topup_memory_caches(vcpu);
850 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
851 WARN_ON(1);
852 return;
855 spin_lock(&vcpu->kvm->mmu_lock);
856 for_each_shadow_entry(vcpu, gva, iterator) {
857 level = iterator.level;
858 sptep = iterator.sptep;
860 sp = page_header(__pa(sptep));
861 if (is_last_spte(*sptep, level)) {
862 pt_element_t gpte;
863 gpa_t pte_gpa;
865 if (!sp->unsync)
866 break;
868 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
869 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
871 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
872 kvm_flush_remote_tlbs(vcpu->kvm);
874 if (!rmap_can_add(vcpu))
875 break;
877 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
878 sizeof(pt_element_t)))
879 break;
881 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
884 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
885 break;
887 spin_unlock(&vcpu->kvm->mmu_lock);
890 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
891 struct x86_exception *exception)
893 struct guest_walker walker;
894 gpa_t gpa = UNMAPPED_GVA;
895 int r;
897 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
899 if (r) {
900 gpa = gfn_to_gpa(walker.gfn);
901 gpa |= vaddr & ~PAGE_MASK;
902 } else if (exception)
903 *exception = walker.fault;
905 return gpa;
908 #if PTTYPE != PTTYPE_EPT
909 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
910 u32 access,
911 struct x86_exception *exception)
913 struct guest_walker walker;
914 gpa_t gpa = UNMAPPED_GVA;
915 int r;
917 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
919 if (r) {
920 gpa = gfn_to_gpa(walker.gfn);
921 gpa |= vaddr & ~PAGE_MASK;
922 } else if (exception)
923 *exception = walker.fault;
925 return gpa;
927 #endif
930 * Using the cached information from sp->gfns is safe because:
931 * - The spte has a reference to the struct page, so the pfn for a given gfn
932 * can't change unless all sptes pointing to it are nuked first.
934 * Note:
935 * We should flush all tlbs if spte is dropped even though guest is
936 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
937 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
938 * used by guest then tlbs are not flushed, so guest is allowed to access the
939 * freed pages.
940 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
942 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
944 int i, nr_present = 0;
945 bool host_writable;
946 gpa_t first_pte_gpa;
948 /* direct kvm_mmu_page can not be unsync. */
949 BUG_ON(sp->role.direct);
951 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
953 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
954 unsigned pte_access;
955 pt_element_t gpte;
956 gpa_t pte_gpa;
957 gfn_t gfn;
959 if (!sp->spt[i])
960 continue;
962 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
964 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
965 sizeof(pt_element_t)))
966 return 0;
968 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
970 * Update spte before increasing tlbs_dirty to make
971 * sure no tlb flush is lost after spte is zapped; see
972 * the comments in kvm_flush_remote_tlbs().
974 smp_wmb();
975 vcpu->kvm->tlbs_dirty++;
976 continue;
979 gfn = gpte_to_gfn(gpte);
980 pte_access = sp->role.access;
981 pte_access &= FNAME(gpte_access)(vcpu, gpte);
982 FNAME(protect_clean_gpte)(&pte_access, gpte);
984 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
985 &nr_present))
986 continue;
988 if (gfn != sp->gfns[i]) {
989 drop_spte(vcpu->kvm, &sp->spt[i]);
991 * The same as above where we are doing
992 * prefetch_invalid_gpte().
994 smp_wmb();
995 vcpu->kvm->tlbs_dirty++;
996 continue;
999 nr_present++;
1001 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1003 set_spte(vcpu, &sp->spt[i], pte_access,
1004 PT_PAGE_TABLE_LEVEL, gfn,
1005 spte_to_pfn(sp->spt[i]), true, false,
1006 host_writable);
1009 return nr_present;
1012 #undef pt_element_t
1013 #undef guest_walker
1014 #undef FNAME
1015 #undef PT_BASE_ADDR_MASK
1016 #undef PT_INDEX
1017 #undef PT_LVL_ADDR_MASK
1018 #undef PT_LVL_OFFSET_MASK
1019 #undef PT_LEVEL_BITS
1020 #undef PT_MAX_FULL_LEVELS
1021 #undef gpte_to_gfn
1022 #undef gpte_to_gfn_lvl
1023 #undef CMPXCHG
1024 #undef PT_GUEST_ACCESSED_MASK
1025 #undef PT_GUEST_DIRTY_MASK
1026 #undef PT_GUEST_DIRTY_SHIFT
1027 #undef PT_GUEST_ACCESSED_SHIFT