2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
71 #define CREATE_TRACE_POINTS
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported
= MCG_CTL_P
| MCG_SER_P
;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported
);
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
88 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
90 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
99 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
100 static void process_nmi(struct kvm_vcpu
*vcpu
);
101 static void enter_smm(struct kvm_vcpu
*vcpu
);
102 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
104 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
107 static bool __read_mostly ignore_msrs
= 0;
108 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
110 unsigned int min_timer_period_us
= 500;
111 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
113 static bool __read_mostly kvmclock_periodic_sync
= true;
114 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
116 bool __read_mostly kvm_has_tsc_control
;
117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
118 u32 __read_mostly kvm_max_guest_tsc_khz
;
119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
120 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
122 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
124 u64 __read_mostly kvm_default_tsc_scaling_ratio
;
125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio
);
127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
128 static u32 __read_mostly tsc_tolerance_ppm
= 250;
129 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
132 unsigned int __read_mostly lapic_timer_advance_ns
= 0;
133 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
135 static bool __read_mostly vector_hashing
= true;
136 module_param(vector_hashing
, bool, S_IRUGO
);
138 static bool __read_mostly backwards_tsc_observed
= false;
140 #define KVM_NR_SHARED_MSRS 16
142 struct kvm_shared_msrs_global
{
144 u32 msrs
[KVM_NR_SHARED_MSRS
];
147 struct kvm_shared_msrs
{
148 struct user_return_notifier urn
;
150 struct kvm_shared_msr_values
{
153 } values
[KVM_NR_SHARED_MSRS
];
156 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
157 static struct kvm_shared_msrs __percpu
*shared_msrs
;
159 struct kvm_stats_debugfs_item debugfs_entries
[] = {
160 { "pf_fixed", VCPU_STAT(pf_fixed
) },
161 { "pf_guest", VCPU_STAT(pf_guest
) },
162 { "tlb_flush", VCPU_STAT(tlb_flush
) },
163 { "invlpg", VCPU_STAT(invlpg
) },
164 { "exits", VCPU_STAT(exits
) },
165 { "io_exits", VCPU_STAT(io_exits
) },
166 { "mmio_exits", VCPU_STAT(mmio_exits
) },
167 { "signal_exits", VCPU_STAT(signal_exits
) },
168 { "irq_window", VCPU_STAT(irq_window_exits
) },
169 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
170 { "halt_exits", VCPU_STAT(halt_exits
) },
171 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
172 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
173 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
) },
174 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
175 { "hypercalls", VCPU_STAT(hypercalls
) },
176 { "request_irq", VCPU_STAT(request_irq_exits
) },
177 { "irq_exits", VCPU_STAT(irq_exits
) },
178 { "host_state_reload", VCPU_STAT(host_state_reload
) },
179 { "efer_reload", VCPU_STAT(efer_reload
) },
180 { "fpu_reload", VCPU_STAT(fpu_reload
) },
181 { "insn_emulation", VCPU_STAT(insn_emulation
) },
182 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
183 { "irq_injections", VCPU_STAT(irq_injections
) },
184 { "nmi_injections", VCPU_STAT(nmi_injections
) },
185 { "req_event", VCPU_STAT(req_event
) },
186 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
187 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
188 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
189 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
190 { "mmu_flooded", VM_STAT(mmu_flooded
) },
191 { "mmu_recycled", VM_STAT(mmu_recycled
) },
192 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
193 { "mmu_unsync", VM_STAT(mmu_unsync
) },
194 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
195 { "largepages", VM_STAT(lpages
) },
196 { "max_mmu_page_hash_collisions",
197 VM_STAT(max_mmu_page_hash_collisions
) },
201 u64 __read_mostly host_xcr0
;
203 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
205 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
208 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
209 vcpu
->arch
.apf
.gfns
[i
] = ~0;
212 static void kvm_on_user_return(struct user_return_notifier
*urn
)
215 struct kvm_shared_msrs
*locals
216 = container_of(urn
, struct kvm_shared_msrs
, urn
);
217 struct kvm_shared_msr_values
*values
;
221 * Disabling irqs at this point since the following code could be
222 * interrupted and executed through kvm_arch_hardware_disable()
224 local_irq_save(flags
);
225 if (locals
->registered
) {
226 locals
->registered
= false;
227 user_return_notifier_unregister(urn
);
229 local_irq_restore(flags
);
230 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
231 values
= &locals
->values
[slot
];
232 if (values
->host
!= values
->curr
) {
233 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
234 values
->curr
= values
->host
;
239 static void shared_msr_update(unsigned slot
, u32 msr
)
242 unsigned int cpu
= smp_processor_id();
243 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
245 /* only read, and nobody should modify it at this time,
246 * so don't need lock */
247 if (slot
>= shared_msrs_global
.nr
) {
248 printk(KERN_ERR
"kvm: invalid MSR slot!");
251 rdmsrl_safe(msr
, &value
);
252 smsr
->values
[slot
].host
= value
;
253 smsr
->values
[slot
].curr
= value
;
256 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
258 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
259 shared_msrs_global
.msrs
[slot
] = msr
;
260 if (slot
>= shared_msrs_global
.nr
)
261 shared_msrs_global
.nr
= slot
+ 1;
263 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
265 static void kvm_shared_msr_cpu_online(void)
269 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
270 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
273 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
275 unsigned int cpu
= smp_processor_id();
276 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
279 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
281 smsr
->values
[slot
].curr
= value
;
282 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
286 if (!smsr
->registered
) {
287 smsr
->urn
.on_user_return
= kvm_on_user_return
;
288 user_return_notifier_register(&smsr
->urn
);
289 smsr
->registered
= true;
293 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
295 static void drop_user_return_notifiers(void)
297 unsigned int cpu
= smp_processor_id();
298 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
300 if (smsr
->registered
)
301 kvm_on_user_return(&smsr
->urn
);
304 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
306 return vcpu
->arch
.apic_base
;
308 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
310 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
312 u64 old_state
= vcpu
->arch
.apic_base
&
313 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
314 u64 new_state
= msr_info
->data
&
315 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
316 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
317 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
319 if (!msr_info
->host_initiated
&&
320 ((msr_info
->data
& reserved_bits
) != 0 ||
321 new_state
== X2APIC_ENABLE
||
322 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
323 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
324 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
328 kvm_lapic_set_base(vcpu
, msr_info
->data
);
331 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
333 asmlinkage __visible
void kvm_spurious_fault(void)
335 /* Fault while not rebooting. We want the trace. */
338 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
340 #define EXCPT_BENIGN 0
341 #define EXCPT_CONTRIBUTORY 1
344 static int exception_class(int vector
)
354 return EXCPT_CONTRIBUTORY
;
361 #define EXCPT_FAULT 0
363 #define EXCPT_ABORT 2
364 #define EXCPT_INTERRUPT 3
366 static int exception_type(int vector
)
370 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
371 return EXCPT_INTERRUPT
;
375 /* #DB is trap, as instruction watchpoints are handled elsewhere */
376 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
379 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
382 /* Reserved exceptions will result in fault */
386 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
387 unsigned nr
, bool has_error
, u32 error_code
,
393 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
395 if (!vcpu
->arch
.exception
.pending
) {
397 if (has_error
&& !is_protmode(vcpu
))
399 vcpu
->arch
.exception
.pending
= true;
400 vcpu
->arch
.exception
.has_error_code
= has_error
;
401 vcpu
->arch
.exception
.nr
= nr
;
402 vcpu
->arch
.exception
.error_code
= error_code
;
403 vcpu
->arch
.exception
.reinject
= reinject
;
407 /* to check exception */
408 prev_nr
= vcpu
->arch
.exception
.nr
;
409 if (prev_nr
== DF_VECTOR
) {
410 /* triple fault -> shutdown */
411 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
414 class1
= exception_class(prev_nr
);
415 class2
= exception_class(nr
);
416 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
417 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
418 /* generate double fault per SDM Table 5-5 */
419 vcpu
->arch
.exception
.pending
= true;
420 vcpu
->arch
.exception
.has_error_code
= true;
421 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
422 vcpu
->arch
.exception
.error_code
= 0;
424 /* replace previous exception with a new one in a hope
425 that instruction re-execution will regenerate lost
430 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
432 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
434 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
436 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
438 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
440 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
442 int kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
445 kvm_inject_gp(vcpu
, 0);
447 return kvm_skip_emulated_instruction(vcpu
);
451 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
453 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
455 ++vcpu
->stat
.pf_guest
;
456 vcpu
->arch
.cr2
= fault
->address
;
457 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
459 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
461 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
463 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
464 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
466 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
468 return fault
->nested_page_fault
;
471 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
473 atomic_inc(&vcpu
->arch
.nmi_queued
);
474 kvm_make_request(KVM_REQ_NMI
, vcpu
);
476 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
478 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
480 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
482 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
484 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
486 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
488 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
491 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
492 * a #GP and return false.
494 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
496 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
498 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
501 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
503 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
505 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
508 kvm_queue_exception(vcpu
, UD_VECTOR
);
511 EXPORT_SYMBOL_GPL(kvm_require_dr
);
514 * This function will be used to read from the physical memory of the currently
515 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
516 * can read from guest physical or from the guest's guest physical memory.
518 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
519 gfn_t ngfn
, void *data
, int offset
, int len
,
522 struct x86_exception exception
;
526 ngpa
= gfn_to_gpa(ngfn
);
527 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
528 if (real_gfn
== UNMAPPED_GVA
)
531 real_gfn
= gpa_to_gfn(real_gfn
);
533 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
535 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
537 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
538 void *data
, int offset
, int len
, u32 access
)
540 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
541 data
, offset
, len
, access
);
545 * Load the pae pdptrs. Return true is they are all valid.
547 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
549 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
550 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
553 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
555 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
556 offset
* sizeof(u64
), sizeof(pdpte
),
557 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
562 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
563 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
565 vcpu
->arch
.mmu
.guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
572 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
573 __set_bit(VCPU_EXREG_PDPTR
,
574 (unsigned long *)&vcpu
->arch
.regs_avail
);
575 __set_bit(VCPU_EXREG_PDPTR
,
576 (unsigned long *)&vcpu
->arch
.regs_dirty
);
581 EXPORT_SYMBOL_GPL(load_pdptrs
);
583 bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
585 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
591 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
594 if (!test_bit(VCPU_EXREG_PDPTR
,
595 (unsigned long *)&vcpu
->arch
.regs_avail
))
598 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
599 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
600 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
601 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
604 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
609 EXPORT_SYMBOL_GPL(pdptrs_changed
);
611 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
613 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
614 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
619 if (cr0
& 0xffffffff00000000UL
)
623 cr0
&= ~CR0_RESERVED_BITS
;
625 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
628 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
631 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
633 if ((vcpu
->arch
.efer
& EFER_LME
)) {
638 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
643 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
648 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
651 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
653 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
654 kvm_clear_async_pf_completion_queue(vcpu
);
655 kvm_async_pf_hash_reset(vcpu
);
658 if ((cr0
^ old_cr0
) & update_bits
)
659 kvm_mmu_reset_context(vcpu
);
661 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
662 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
663 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
664 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
668 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
670 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
672 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
674 EXPORT_SYMBOL_GPL(kvm_lmsw
);
676 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
678 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
679 !vcpu
->guest_xcr0_loaded
) {
680 /* kvm_set_xcr() also depends on this */
681 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
682 vcpu
->guest_xcr0_loaded
= 1;
686 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
688 if (vcpu
->guest_xcr0_loaded
) {
689 if (vcpu
->arch
.xcr0
!= host_xcr0
)
690 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
691 vcpu
->guest_xcr0_loaded
= 0;
695 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
698 u64 old_xcr0
= vcpu
->arch
.xcr0
;
701 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
702 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
704 if (!(xcr0
& XFEATURE_MASK_FP
))
706 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
710 * Do not allow the guest to set bits that we do not support
711 * saving. However, xcr0 bit 0 is always set, even if the
712 * emulated CPU does not support XSAVE (see fx_init).
714 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
715 if (xcr0
& ~valid_bits
)
718 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
719 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
722 if (xcr0
& XFEATURE_MASK_AVX512
) {
723 if (!(xcr0
& XFEATURE_MASK_YMM
))
725 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
728 vcpu
->arch
.xcr0
= xcr0
;
730 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
731 kvm_update_cpuid(vcpu
);
735 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
737 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
738 __kvm_set_xcr(vcpu
, index
, xcr
)) {
739 kvm_inject_gp(vcpu
, 0);
744 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
746 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
748 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
749 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
750 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
752 if (cr4
& CR4_RESERVED_BITS
)
755 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
758 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
761 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
764 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
767 if (!guest_cpuid_has_pku(vcpu
) && (cr4
& X86_CR4_PKE
))
770 if (is_long_mode(vcpu
)) {
771 if (!(cr4
& X86_CR4_PAE
))
773 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
774 && ((cr4
^ old_cr4
) & pdptr_bits
)
775 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
779 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
780 if (!guest_cpuid_has_pcid(vcpu
))
783 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
784 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
788 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
791 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
792 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
793 kvm_mmu_reset_context(vcpu
);
795 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
796 kvm_update_cpuid(vcpu
);
800 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
802 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
805 cr3
&= ~CR3_PCID_INVD
;
808 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
809 kvm_mmu_sync_roots(vcpu
);
810 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
814 if (is_long_mode(vcpu
)) {
815 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
817 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
818 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
821 vcpu
->arch
.cr3
= cr3
;
822 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
823 kvm_mmu_new_cr3(vcpu
);
826 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
828 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
830 if (cr8
& CR8_RESERVED_BITS
)
832 if (lapic_in_kernel(vcpu
))
833 kvm_lapic_set_tpr(vcpu
, cr8
);
835 vcpu
->arch
.cr8
= cr8
;
838 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
840 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
842 if (lapic_in_kernel(vcpu
))
843 return kvm_lapic_get_cr8(vcpu
);
845 return vcpu
->arch
.cr8
;
847 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
849 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
853 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
854 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
855 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
856 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
860 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
862 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
863 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
866 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
870 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
871 dr7
= vcpu
->arch
.guest_debug_dr7
;
873 dr7
= vcpu
->arch
.dr7
;
874 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
875 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
876 if (dr7
& DR7_BP_EN_MASK
)
877 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
880 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
882 u64 fixed
= DR6_FIXED_1
;
884 if (!guest_cpuid_has_rtm(vcpu
))
889 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
893 vcpu
->arch
.db
[dr
] = val
;
894 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
895 vcpu
->arch
.eff_db
[dr
] = val
;
900 if (val
& 0xffffffff00000000ULL
)
902 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
903 kvm_update_dr6(vcpu
);
908 if (val
& 0xffffffff00000000ULL
)
910 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
911 kvm_update_dr7(vcpu
);
918 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
920 if (__kvm_set_dr(vcpu
, dr
, val
)) {
921 kvm_inject_gp(vcpu
, 0);
926 EXPORT_SYMBOL_GPL(kvm_set_dr
);
928 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
932 *val
= vcpu
->arch
.db
[dr
];
937 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
938 *val
= vcpu
->arch
.dr6
;
940 *val
= kvm_x86_ops
->get_dr6(vcpu
);
945 *val
= vcpu
->arch
.dr7
;
950 EXPORT_SYMBOL_GPL(kvm_get_dr
);
952 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
954 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
958 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
961 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
962 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
965 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
968 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
969 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
971 * This list is modified at module load time to reflect the
972 * capabilities of the host cpu. This capabilities test skips MSRs that are
973 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
974 * may depend on host virtualization features rather than host cpu features.
977 static u32 msrs_to_save
[] = {
978 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
981 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
983 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
984 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
987 static unsigned num_msrs_to_save
;
989 static u32 emulated_msrs
[] = {
990 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
991 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
992 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
993 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
994 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
995 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
998 HV_X64_MSR_VP_RUNTIME
,
1000 HV_X64_MSR_STIMER0_CONFIG
,
1001 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
1004 MSR_IA32_TSC_ADJUST
,
1005 MSR_IA32_TSCDEADLINE
,
1006 MSR_IA32_MISC_ENABLE
,
1007 MSR_IA32_MCG_STATUS
,
1009 MSR_IA32_MCG_EXT_CTL
,
1013 static unsigned num_emulated_msrs
;
1015 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1017 if (efer
& efer_reserved_bits
)
1020 if (efer
& EFER_FFXSR
) {
1021 struct kvm_cpuid_entry2
*feat
;
1023 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
1024 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
1028 if (efer
& EFER_SVME
) {
1029 struct kvm_cpuid_entry2
*feat
;
1031 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
1032 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
1038 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1040 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1042 u64 old_efer
= vcpu
->arch
.efer
;
1044 if (!kvm_valid_efer(vcpu
, efer
))
1048 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1052 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1054 kvm_x86_ops
->set_efer(vcpu
, efer
);
1056 /* Update reserved bits */
1057 if ((efer
^ old_efer
) & EFER_NX
)
1058 kvm_mmu_reset_context(vcpu
);
1063 void kvm_enable_efer_bits(u64 mask
)
1065 efer_reserved_bits
&= ~mask
;
1067 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1070 * Writes msr value into into the appropriate "register".
1071 * Returns 0 on success, non-0 otherwise.
1072 * Assumes vcpu_load() was already called.
1074 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1076 switch (msr
->index
) {
1079 case MSR_KERNEL_GS_BASE
:
1082 if (is_noncanonical_address(msr
->data
))
1085 case MSR_IA32_SYSENTER_EIP
:
1086 case MSR_IA32_SYSENTER_ESP
:
1088 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1089 * non-canonical address is written on Intel but not on
1090 * AMD (which ignores the top 32-bits, because it does
1091 * not implement 64-bit SYSENTER).
1093 * 64-bit code should hence be able to write a non-canonical
1094 * value on AMD. Making the address canonical ensures that
1095 * vmentry does not fail on Intel after writing a non-canonical
1096 * value, and that something deterministic happens if the guest
1097 * invokes 64-bit SYSENTER.
1099 msr
->data
= get_canonical(msr
->data
);
1101 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1103 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1106 * Adapt set_msr() to msr_io()'s calling convention
1108 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1110 struct msr_data msr
;
1114 msr
.host_initiated
= true;
1115 r
= kvm_get_msr(vcpu
, &msr
);
1123 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1125 struct msr_data msr
;
1129 msr
.host_initiated
= true;
1130 return kvm_set_msr(vcpu
, &msr
);
1133 #ifdef CONFIG_X86_64
1134 struct pvclock_gtod_data
{
1137 struct { /* extract of a clocksource struct */
1150 static struct pvclock_gtod_data pvclock_gtod_data
;
1152 static void update_pvclock_gtod(struct timekeeper
*tk
)
1154 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1157 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1159 write_seqcount_begin(&vdata
->seq
);
1161 /* copy pvclock gtod data */
1162 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1163 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1164 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1165 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1166 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1168 vdata
->boot_ns
= boot_ns
;
1169 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1171 vdata
->wall_time_sec
= tk
->xtime_sec
;
1173 write_seqcount_end(&vdata
->seq
);
1177 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1180 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1181 * vcpu_enter_guest. This function is only called from
1182 * the physical CPU that is running vcpu.
1184 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1187 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1191 struct pvclock_wall_clock wc
;
1192 struct timespec64 boot
;
1197 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1202 ++version
; /* first time write, random junk */
1206 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1210 * The guest calculates current wall clock time by adding
1211 * system time (updated by kvm_guest_time_update below) to the
1212 * wall clock specified here. guest system time equals host
1213 * system time for us, thus we must fill in host boot time here.
1215 getboottime64(&boot
);
1217 if (kvm
->arch
.kvmclock_offset
) {
1218 struct timespec64 ts
= ns_to_timespec64(kvm
->arch
.kvmclock_offset
);
1219 boot
= timespec64_sub(boot
, ts
);
1221 wc
.sec
= (u32
)boot
.tv_sec
; /* overflow in 2106 guest time */
1222 wc
.nsec
= boot
.tv_nsec
;
1223 wc
.version
= version
;
1225 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1228 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1231 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1233 do_shl32_div32(dividend
, divisor
);
1237 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1238 s8
*pshift
, u32
*pmultiplier
)
1246 scaled64
= scaled_hz
;
1247 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1252 tps32
= (uint32_t)tps64
;
1253 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1254 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1262 *pmultiplier
= div_frac(scaled64
, tps32
);
1264 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1265 __func__
, base_hz
, scaled_hz
, shift
, *pmultiplier
);
1268 #ifdef CONFIG_X86_64
1269 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1272 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1273 static unsigned long max_tsc_khz
;
1275 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1277 u64 v
= (u64
)khz
* (1000000 + ppm
);
1282 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1286 /* Guest TSC same frequency as host TSC? */
1288 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1292 /* TSC scaling supported? */
1293 if (!kvm_has_tsc_control
) {
1294 if (user_tsc_khz
> tsc_khz
) {
1295 vcpu
->arch
.tsc_catchup
= 1;
1296 vcpu
->arch
.tsc_always_catchup
= 1;
1299 WARN(1, "user requested TSC rate below hardware speed\n");
1304 /* TSC scaling required - calculate ratio */
1305 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1306 user_tsc_khz
, tsc_khz
);
1308 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1309 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1314 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1318 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1320 u32 thresh_lo
, thresh_hi
;
1321 int use_scaling
= 0;
1323 /* tsc_khz can be zero if TSC calibration fails */
1324 if (user_tsc_khz
== 0) {
1325 /* set tsc_scaling_ratio to a safe value */
1326 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1330 /* Compute a scale to convert nanoseconds in TSC cycles */
1331 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1332 &vcpu
->arch
.virtual_tsc_shift
,
1333 &vcpu
->arch
.virtual_tsc_mult
);
1334 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1337 * Compute the variation in TSC rate which is acceptable
1338 * within the range of tolerance and decide if the
1339 * rate being applied is within that bounds of the hardware
1340 * rate. If so, no scaling or compensation need be done.
1342 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1343 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1344 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1345 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1348 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1351 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1353 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1354 vcpu
->arch
.virtual_tsc_mult
,
1355 vcpu
->arch
.virtual_tsc_shift
);
1356 tsc
+= vcpu
->arch
.this_tsc_write
;
1360 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1362 #ifdef CONFIG_X86_64
1364 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1365 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1367 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1368 atomic_read(&vcpu
->kvm
->online_vcpus
));
1371 * Once the masterclock is enabled, always perform request in
1372 * order to update it.
1374 * In order to enable masterclock, the host clocksource must be TSC
1375 * and the vcpus need to have matched TSCs. When that happens,
1376 * perform request to enable masterclock.
1378 if (ka
->use_master_clock
||
1379 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1380 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1382 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1383 atomic_read(&vcpu
->kvm
->online_vcpus
),
1384 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1388 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1390 u64 curr_offset
= vcpu
->arch
.tsc_offset
;
1391 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1395 * Multiply tsc by a fixed point number represented by ratio.
1397 * The most significant 64-N bits (mult) of ratio represent the
1398 * integral part of the fixed point number; the remaining N bits
1399 * (frac) represent the fractional part, ie. ratio represents a fixed
1400 * point number (mult + frac * 2^(-N)).
1402 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1404 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1406 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1409 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1412 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1414 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1415 _tsc
= __scale_tsc(ratio
, tsc
);
1419 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1421 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1425 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1427 return target_tsc
- tsc
;
1430 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1432 return vcpu
->arch
.tsc_offset
+ kvm_scale_tsc(vcpu
, host_tsc
);
1434 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1436 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1438 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1439 vcpu
->arch
.tsc_offset
= offset
;
1442 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1444 struct kvm
*kvm
= vcpu
->kvm
;
1445 u64 offset
, ns
, elapsed
;
1446 unsigned long flags
;
1449 bool already_matched
;
1450 u64 data
= msr
->data
;
1452 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1453 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1454 ns
= ktime_get_boot_ns();
1455 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1457 if (vcpu
->arch
.virtual_tsc_khz
) {
1460 /* n.b - signed multiplication and division required */
1461 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1462 #ifdef CONFIG_X86_64
1463 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1465 /* do_div() only does unsigned */
1466 asm("1: idivl %[divisor]\n"
1467 "2: xor %%edx, %%edx\n"
1468 " movl $0, %[faulted]\n"
1470 ".section .fixup,\"ax\"\n"
1471 "4: movl $1, %[faulted]\n"
1475 _ASM_EXTABLE(1b
, 4b
)
1477 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1478 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1481 do_div(elapsed
, 1000);
1486 /* idivl overflow => difference is larger than USEC_PER_SEC */
1488 usdiff
= USEC_PER_SEC
;
1490 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1493 * Special case: TSC write with a small delta (1 second) of virtual
1494 * cycle time against real time is interpreted as an attempt to
1495 * synchronize the CPU.
1497 * For a reliable TSC, we can match TSC offsets, and for an unstable
1498 * TSC, we add elapsed time in this computation. We could let the
1499 * compensation code attempt to catch up if we fall behind, but
1500 * it's better to try to match offsets from the beginning.
1502 if (usdiff
< USEC_PER_SEC
&&
1503 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1504 if (!check_tsc_unstable()) {
1505 offset
= kvm
->arch
.cur_tsc_offset
;
1506 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1508 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1510 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1511 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1514 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1517 * We split periods of matched TSC writes into generations.
1518 * For each generation, we track the original measured
1519 * nanosecond time, offset, and write, so if TSCs are in
1520 * sync, we can match exact offset, and if not, we can match
1521 * exact software computation in compute_guest_tsc()
1523 * These values are tracked in kvm->arch.cur_xxx variables.
1525 kvm
->arch
.cur_tsc_generation
++;
1526 kvm
->arch
.cur_tsc_nsec
= ns
;
1527 kvm
->arch
.cur_tsc_write
= data
;
1528 kvm
->arch
.cur_tsc_offset
= offset
;
1530 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1531 kvm
->arch
.cur_tsc_generation
, data
);
1535 * We also track th most recent recorded KHZ, write and time to
1536 * allow the matching interval to be extended at each write.
1538 kvm
->arch
.last_tsc_nsec
= ns
;
1539 kvm
->arch
.last_tsc_write
= data
;
1540 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1542 vcpu
->arch
.last_guest_tsc
= data
;
1544 /* Keep track of which generation this VCPU has synchronized to */
1545 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1546 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1547 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1549 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1550 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1551 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
1552 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1554 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1556 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1557 } else if (!already_matched
) {
1558 kvm
->arch
.nr_vcpus_matched_tsc
++;
1561 kvm_track_tsc_matching(vcpu
);
1562 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1565 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1567 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1570 kvm_vcpu_write_tsc_offset(vcpu
, vcpu
->arch
.tsc_offset
+ adjustment
);
1573 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1575 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1576 WARN_ON(adjustment
< 0);
1577 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1578 adjust_tsc_offset_guest(vcpu
, adjustment
);
1581 #ifdef CONFIG_X86_64
1583 static u64
read_tsc(void)
1585 u64 ret
= (u64
)rdtsc_ordered();
1586 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1588 if (likely(ret
>= last
))
1592 * GCC likes to generate cmov here, but this branch is extremely
1593 * predictable (it's just a function of time and the likely is
1594 * very likely) and there's a data dependence, so force GCC
1595 * to generate a branch instead. I don't barrier() because
1596 * we don't actually need a barrier, and if this function
1597 * ever gets inlined it will generate worse code.
1603 static inline u64
vgettsc(u64
*cycle_now
)
1606 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1608 *cycle_now
= read_tsc();
1610 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1611 return v
* gtod
->clock
.mult
;
1614 static int do_monotonic_boot(s64
*t
, u64
*cycle_now
)
1616 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1622 seq
= read_seqcount_begin(>od
->seq
);
1623 mode
= gtod
->clock
.vclock_mode
;
1624 ns
= gtod
->nsec_base
;
1625 ns
+= vgettsc(cycle_now
);
1626 ns
>>= gtod
->clock
.shift
;
1627 ns
+= gtod
->boot_ns
;
1628 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1634 static int do_realtime(struct timespec
*ts
, u64
*cycle_now
)
1636 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1642 seq
= read_seqcount_begin(>od
->seq
);
1643 mode
= gtod
->clock
.vclock_mode
;
1644 ts
->tv_sec
= gtod
->wall_time_sec
;
1645 ns
= gtod
->nsec_base
;
1646 ns
+= vgettsc(cycle_now
);
1647 ns
>>= gtod
->clock
.shift
;
1648 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1650 ts
->tv_sec
+= __iter_div_u64_rem(ns
, NSEC_PER_SEC
, &ns
);
1656 /* returns true if host is using tsc clocksource */
1657 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, u64
*cycle_now
)
1659 /* checked again under seqlock below */
1660 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1663 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1666 /* returns true if host is using tsc clocksource */
1667 static bool kvm_get_walltime_and_clockread(struct timespec
*ts
,
1670 /* checked again under seqlock below */
1671 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1674 return do_realtime(ts
, cycle_now
) == VCLOCK_TSC
;
1680 * Assuming a stable TSC across physical CPUS, and a stable TSC
1681 * across virtual CPUs, the following condition is possible.
1682 * Each numbered line represents an event visible to both
1683 * CPUs at the next numbered event.
1685 * "timespecX" represents host monotonic time. "tscX" represents
1688 * VCPU0 on CPU0 | VCPU1 on CPU1
1690 * 1. read timespec0,tsc0
1691 * 2. | timespec1 = timespec0 + N
1693 * 3. transition to guest | transition to guest
1694 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1695 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1696 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1698 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1701 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1703 * - 0 < N - M => M < N
1705 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1706 * always the case (the difference between two distinct xtime instances
1707 * might be smaller then the difference between corresponding TSC reads,
1708 * when updating guest vcpus pvclock areas).
1710 * To avoid that problem, do not allow visibility of distinct
1711 * system_timestamp/tsc_timestamp values simultaneously: use a master
1712 * copy of host monotonic time values. Update that master copy
1715 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1719 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1721 #ifdef CONFIG_X86_64
1722 struct kvm_arch
*ka
= &kvm
->arch
;
1724 bool host_tsc_clocksource
, vcpus_matched
;
1726 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1727 atomic_read(&kvm
->online_vcpus
));
1730 * If the host uses TSC clock, then passthrough TSC as stable
1733 host_tsc_clocksource
= kvm_get_time_and_clockread(
1734 &ka
->master_kernel_ns
,
1735 &ka
->master_cycle_now
);
1737 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1738 && !backwards_tsc_observed
1739 && !ka
->boot_vcpu_runs_old_kvmclock
;
1741 if (ka
->use_master_clock
)
1742 atomic_set(&kvm_guest_has_master_clock
, 1);
1744 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1745 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1750 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
1752 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
1755 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1757 #ifdef CONFIG_X86_64
1759 struct kvm_vcpu
*vcpu
;
1760 struct kvm_arch
*ka
= &kvm
->arch
;
1762 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1763 kvm_make_mclock_inprogress_request(kvm
);
1764 /* no guest entries from this point */
1765 pvclock_update_vm_gtod_copy(kvm
);
1767 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1768 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1770 /* guest entries allowed */
1771 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1772 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1774 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1778 static u64
__get_kvmclock_ns(struct kvm
*kvm
)
1780 struct kvm_arch
*ka
= &kvm
->arch
;
1781 struct pvclock_vcpu_time_info hv_clock
;
1784 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1785 if (!ka
->use_master_clock
) {
1786 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1787 return ktime_get_boot_ns() + ka
->kvmclock_offset
;
1790 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
1791 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
1792 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1794 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1797 kvm_get_time_scale(NSEC_PER_SEC
, __this_cpu_read(cpu_tsc_khz
) * 1000LL,
1798 &hv_clock
.tsc_shift
,
1799 &hv_clock
.tsc_to_system_mul
);
1800 ret
= __pvclock_read_cycles(&hv_clock
, rdtsc());
1807 u64
get_kvmclock_ns(struct kvm
*kvm
)
1809 unsigned long flags
;
1812 local_irq_save(flags
);
1813 ns
= __get_kvmclock_ns(kvm
);
1814 local_irq_restore(flags
);
1819 static void kvm_setup_pvclock_page(struct kvm_vcpu
*v
)
1821 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1822 struct pvclock_vcpu_time_info guest_hv_clock
;
1824 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1825 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1828 /* This VCPU is paused, but it's legal for a guest to read another
1829 * VCPU's kvmclock, so we really have to follow the specification where
1830 * it says that version is odd if data is being modified, and even after
1833 * Version field updates must be kept separate. This is because
1834 * kvm_write_guest_cached might use a "rep movs" instruction, and
1835 * writes within a string instruction are weakly ordered. So there
1836 * are three writes overall.
1838 * As a small optimization, only write the version field in the first
1839 * and third write. The vcpu->pv_time cache is still valid, because the
1840 * version field is the first in the struct.
1842 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1844 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1845 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1847 sizeof(vcpu
->hv_clock
.version
));
1851 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1852 vcpu
->hv_clock
.flags
|= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1854 if (vcpu
->pvclock_set_guest_stopped_request
) {
1855 vcpu
->hv_clock
.flags
|= PVCLOCK_GUEST_STOPPED
;
1856 vcpu
->pvclock_set_guest_stopped_request
= false;
1859 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1861 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1863 sizeof(vcpu
->hv_clock
));
1867 vcpu
->hv_clock
.version
++;
1868 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1870 sizeof(vcpu
->hv_clock
.version
));
1873 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1875 unsigned long flags
, tgt_tsc_khz
;
1876 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1877 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1879 u64 tsc_timestamp
, host_tsc
;
1881 bool use_master_clock
;
1887 * If the host uses TSC clock, then passthrough TSC as stable
1890 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1891 use_master_clock
= ka
->use_master_clock
;
1892 if (use_master_clock
) {
1893 host_tsc
= ka
->master_cycle_now
;
1894 kernel_ns
= ka
->master_kernel_ns
;
1896 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1898 /* Keep irq disabled to prevent changes to the clock */
1899 local_irq_save(flags
);
1900 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1901 if (unlikely(tgt_tsc_khz
== 0)) {
1902 local_irq_restore(flags
);
1903 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1906 if (!use_master_clock
) {
1908 kernel_ns
= ktime_get_boot_ns();
1911 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
1914 * We may have to catch up the TSC to match elapsed wall clock
1915 * time for two reasons, even if kvmclock is used.
1916 * 1) CPU could have been running below the maximum TSC rate
1917 * 2) Broken TSC compensation resets the base at each VCPU
1918 * entry to avoid unknown leaps of TSC even when running
1919 * again on the same CPU. This may cause apparent elapsed
1920 * time to disappear, and the guest to stand still or run
1923 if (vcpu
->tsc_catchup
) {
1924 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1925 if (tsc
> tsc_timestamp
) {
1926 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1927 tsc_timestamp
= tsc
;
1931 local_irq_restore(flags
);
1933 /* With all the info we got, fill in the values */
1935 if (kvm_has_tsc_control
)
1936 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
1938 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
1939 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
1940 &vcpu
->hv_clock
.tsc_shift
,
1941 &vcpu
->hv_clock
.tsc_to_system_mul
);
1942 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
1945 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1946 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1947 vcpu
->last_guest_tsc
= tsc_timestamp
;
1949 /* If the host uses TSC clocksource, then it is stable */
1951 if (use_master_clock
)
1952 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1954 vcpu
->hv_clock
.flags
= pvclock_flags
;
1956 if (vcpu
->pv_time_enabled
)
1957 kvm_setup_pvclock_page(v
);
1958 if (v
== kvm_get_vcpu(v
->kvm
, 0))
1959 kvm_hv_setup_tsc_page(v
->kvm
, &vcpu
->hv_clock
);
1964 * kvmclock updates which are isolated to a given vcpu, such as
1965 * vcpu->cpu migration, should not allow system_timestamp from
1966 * the rest of the vcpus to remain static. Otherwise ntp frequency
1967 * correction applies to one vcpu's system_timestamp but not
1970 * So in those cases, request a kvmclock update for all vcpus.
1971 * We need to rate-limit these requests though, as they can
1972 * considerably slow guests that have a large number of vcpus.
1973 * The time for a remote vcpu to update its kvmclock is bound
1974 * by the delay we use to rate-limit the updates.
1977 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1979 static void kvmclock_update_fn(struct work_struct
*work
)
1982 struct delayed_work
*dwork
= to_delayed_work(work
);
1983 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1984 kvmclock_update_work
);
1985 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1986 struct kvm_vcpu
*vcpu
;
1988 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1989 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1990 kvm_vcpu_kick(vcpu
);
1994 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1996 struct kvm
*kvm
= v
->kvm
;
1998 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1999 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
2000 KVMCLOCK_UPDATE_DELAY
);
2003 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2005 static void kvmclock_sync_fn(struct work_struct
*work
)
2007 struct delayed_work
*dwork
= to_delayed_work(work
);
2008 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2009 kvmclock_sync_work
);
2010 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2012 if (!kvmclock_periodic_sync
)
2015 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
2016 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
2017 KVMCLOCK_SYNC_PERIOD
);
2020 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
2022 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2023 unsigned bank_num
= mcg_cap
& 0xff;
2026 case MSR_IA32_MCG_STATUS
:
2027 vcpu
->arch
.mcg_status
= data
;
2029 case MSR_IA32_MCG_CTL
:
2030 if (!(mcg_cap
& MCG_CTL_P
))
2032 if (data
!= 0 && data
!= ~(u64
)0)
2034 vcpu
->arch
.mcg_ctl
= data
;
2037 if (msr
>= MSR_IA32_MC0_CTL
&&
2038 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2039 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2040 /* only 0 or all 1s can be written to IA32_MCi_CTL
2041 * some Linux kernels though clear bit 10 in bank 4 to
2042 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2043 * this to avoid an uncatched #GP in the guest
2045 if ((offset
& 0x3) == 0 &&
2046 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
2048 vcpu
->arch
.mce_banks
[offset
] = data
;
2056 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
2058 struct kvm
*kvm
= vcpu
->kvm
;
2059 int lm
= is_long_mode(vcpu
);
2060 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
2061 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
2062 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
2063 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
2064 u32 page_num
= data
& ~PAGE_MASK
;
2065 u64 page_addr
= data
& PAGE_MASK
;
2070 if (page_num
>= blob_size
)
2073 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
2078 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
2087 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2089 gpa_t gpa
= data
& ~0x3f;
2091 /* Bits 2:5 are reserved, Should be zero */
2095 vcpu
->arch
.apf
.msr_val
= data
;
2097 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2098 kvm_clear_async_pf_completion_queue(vcpu
);
2099 kvm_async_pf_hash_reset(vcpu
);
2103 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2107 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2108 kvm_async_pf_wakeup_all(vcpu
);
2112 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2114 vcpu
->arch
.pv_time_enabled
= false;
2117 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2119 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2122 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2123 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2126 vcpu
->arch
.st
.steal
.preempted
= 0;
2128 if (vcpu
->arch
.st
.steal
.version
& 1)
2129 vcpu
->arch
.st
.steal
.version
+= 1; /* first time write, random junk */
2131 vcpu
->arch
.st
.steal
.version
+= 1;
2133 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2134 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2138 vcpu
->arch
.st
.steal
.steal
+= current
->sched_info
.run_delay
-
2139 vcpu
->arch
.st
.last_steal
;
2140 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2142 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2143 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2147 vcpu
->arch
.st
.steal
.version
+= 1;
2149 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2150 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2153 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2156 u32 msr
= msr_info
->index
;
2157 u64 data
= msr_info
->data
;
2160 case MSR_AMD64_NB_CFG
:
2161 case MSR_IA32_UCODE_REV
:
2162 case MSR_IA32_UCODE_WRITE
:
2163 case MSR_VM_HSAVE_PA
:
2164 case MSR_AMD64_PATCH_LOADER
:
2165 case MSR_AMD64_BU_CFG2
:
2169 return set_efer(vcpu
, data
);
2171 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2172 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2173 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2174 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2176 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2181 case MSR_FAM10H_MMIO_CONF_BASE
:
2183 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2188 case MSR_IA32_DEBUGCTLMSR
:
2190 /* We support the non-activated case already */
2192 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2193 /* Values other than LBR and BTF are vendor-specific,
2194 thus reserved and should throw a #GP */
2197 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2200 case 0x200 ... 0x2ff:
2201 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2202 case MSR_IA32_APICBASE
:
2203 return kvm_set_apic_base(vcpu
, msr_info
);
2204 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2205 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2206 case MSR_IA32_TSCDEADLINE
:
2207 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2209 case MSR_IA32_TSC_ADJUST
:
2210 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2211 if (!msr_info
->host_initiated
) {
2212 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2213 adjust_tsc_offset_guest(vcpu
, adj
);
2215 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2218 case MSR_IA32_MISC_ENABLE
:
2219 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2221 case MSR_IA32_SMBASE
:
2222 if (!msr_info
->host_initiated
)
2224 vcpu
->arch
.smbase
= data
;
2226 case MSR_KVM_WALL_CLOCK_NEW
:
2227 case MSR_KVM_WALL_CLOCK
:
2228 vcpu
->kvm
->arch
.wall_clock
= data
;
2229 kvm_write_wall_clock(vcpu
->kvm
, data
);
2231 case MSR_KVM_SYSTEM_TIME_NEW
:
2232 case MSR_KVM_SYSTEM_TIME
: {
2233 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2235 kvmclock_reset(vcpu
);
2237 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2238 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2240 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2241 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
2244 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2247 vcpu
->arch
.time
= data
;
2248 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2250 /* we verify if the enable bit is set... */
2254 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2255 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2256 sizeof(struct pvclock_vcpu_time_info
)))
2257 vcpu
->arch
.pv_time_enabled
= false;
2259 vcpu
->arch
.pv_time_enabled
= true;
2263 case MSR_KVM_ASYNC_PF_EN
:
2264 if (kvm_pv_enable_async_pf(vcpu
, data
))
2267 case MSR_KVM_STEAL_TIME
:
2269 if (unlikely(!sched_info_on()))
2272 if (data
& KVM_STEAL_RESERVED_MASK
)
2275 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2276 data
& KVM_STEAL_VALID_BITS
,
2277 sizeof(struct kvm_steal_time
)))
2280 vcpu
->arch
.st
.msr_val
= data
;
2282 if (!(data
& KVM_MSR_ENABLED
))
2285 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2288 case MSR_KVM_PV_EOI_EN
:
2289 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2293 case MSR_IA32_MCG_CTL
:
2294 case MSR_IA32_MCG_STATUS
:
2295 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2296 return set_msr_mce(vcpu
, msr
, data
);
2298 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2299 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2300 pr
= true; /* fall through */
2301 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2302 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2303 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2304 return kvm_pmu_set_msr(vcpu
, msr_info
);
2306 if (pr
|| data
!= 0)
2307 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2308 "0x%x data 0x%llx\n", msr
, data
);
2310 case MSR_K7_CLK_CTL
:
2312 * Ignore all writes to this no longer documented MSR.
2313 * Writes are only relevant for old K7 processors,
2314 * all pre-dating SVM, but a recommended workaround from
2315 * AMD for these chips. It is possible to specify the
2316 * affected processor models on the command line, hence
2317 * the need to ignore the workaround.
2320 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2321 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2322 case HV_X64_MSR_CRASH_CTL
:
2323 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2324 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2325 msr_info
->host_initiated
);
2326 case MSR_IA32_BBL_CR_CTL3
:
2327 /* Drop writes to this legacy MSR -- see rdmsr
2328 * counterpart for further detail.
2330 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n", msr
, data
);
2332 case MSR_AMD64_OSVW_ID_LENGTH
:
2333 if (!guest_cpuid_has_osvw(vcpu
))
2335 vcpu
->arch
.osvw
.length
= data
;
2337 case MSR_AMD64_OSVW_STATUS
:
2338 if (!guest_cpuid_has_osvw(vcpu
))
2340 vcpu
->arch
.osvw
.status
= data
;
2343 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2344 return xen_hvm_config(vcpu
, data
);
2345 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2346 return kvm_pmu_set_msr(vcpu
, msr_info
);
2348 vcpu_debug_ratelimited(vcpu
, "unhandled wrmsr: 0x%x data 0x%llx\n",
2352 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n",
2359 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2363 * Reads an msr value (of 'msr_index') into 'pdata'.
2364 * Returns 0 on success, non-0 otherwise.
2365 * Assumes vcpu_load() was already called.
2367 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2369 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2371 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2373 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2376 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2377 unsigned bank_num
= mcg_cap
& 0xff;
2380 case MSR_IA32_P5_MC_ADDR
:
2381 case MSR_IA32_P5_MC_TYPE
:
2384 case MSR_IA32_MCG_CAP
:
2385 data
= vcpu
->arch
.mcg_cap
;
2387 case MSR_IA32_MCG_CTL
:
2388 if (!(mcg_cap
& MCG_CTL_P
))
2390 data
= vcpu
->arch
.mcg_ctl
;
2392 case MSR_IA32_MCG_STATUS
:
2393 data
= vcpu
->arch
.mcg_status
;
2396 if (msr
>= MSR_IA32_MC0_CTL
&&
2397 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2398 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2399 data
= vcpu
->arch
.mce_banks
[offset
];
2408 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2410 switch (msr_info
->index
) {
2411 case MSR_IA32_PLATFORM_ID
:
2412 case MSR_IA32_EBL_CR_POWERON
:
2413 case MSR_IA32_DEBUGCTLMSR
:
2414 case MSR_IA32_LASTBRANCHFROMIP
:
2415 case MSR_IA32_LASTBRANCHTOIP
:
2416 case MSR_IA32_LASTINTFROMIP
:
2417 case MSR_IA32_LASTINTTOIP
:
2419 case MSR_K8_TSEG_ADDR
:
2420 case MSR_K8_TSEG_MASK
:
2422 case MSR_VM_HSAVE_PA
:
2423 case MSR_K8_INT_PENDING_MSG
:
2424 case MSR_AMD64_NB_CFG
:
2425 case MSR_FAM10H_MMIO_CONF_BASE
:
2426 case MSR_AMD64_BU_CFG2
:
2427 case MSR_IA32_PERF_CTL
:
2430 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2431 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2432 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2433 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2434 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2435 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2438 case MSR_IA32_UCODE_REV
:
2439 msr_info
->data
= 0x100000000ULL
;
2442 case 0x200 ... 0x2ff:
2443 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2444 case 0xcd: /* fsb frequency */
2448 * MSR_EBC_FREQUENCY_ID
2449 * Conservative value valid for even the basic CPU models.
2450 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2451 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2452 * and 266MHz for model 3, or 4. Set Core Clock
2453 * Frequency to System Bus Frequency Ratio to 1 (bits
2454 * 31:24) even though these are only valid for CPU
2455 * models > 2, however guests may end up dividing or
2456 * multiplying by zero otherwise.
2458 case MSR_EBC_FREQUENCY_ID
:
2459 msr_info
->data
= 1 << 24;
2461 case MSR_IA32_APICBASE
:
2462 msr_info
->data
= kvm_get_apic_base(vcpu
);
2464 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2465 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2467 case MSR_IA32_TSCDEADLINE
:
2468 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2470 case MSR_IA32_TSC_ADJUST
:
2471 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2473 case MSR_IA32_MISC_ENABLE
:
2474 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2476 case MSR_IA32_SMBASE
:
2477 if (!msr_info
->host_initiated
)
2479 msr_info
->data
= vcpu
->arch
.smbase
;
2481 case MSR_IA32_PERF_STATUS
:
2482 /* TSC increment by tick */
2483 msr_info
->data
= 1000ULL;
2484 /* CPU multiplier */
2485 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2488 msr_info
->data
= vcpu
->arch
.efer
;
2490 case MSR_KVM_WALL_CLOCK
:
2491 case MSR_KVM_WALL_CLOCK_NEW
:
2492 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2494 case MSR_KVM_SYSTEM_TIME
:
2495 case MSR_KVM_SYSTEM_TIME_NEW
:
2496 msr_info
->data
= vcpu
->arch
.time
;
2498 case MSR_KVM_ASYNC_PF_EN
:
2499 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2501 case MSR_KVM_STEAL_TIME
:
2502 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2504 case MSR_KVM_PV_EOI_EN
:
2505 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2507 case MSR_IA32_P5_MC_ADDR
:
2508 case MSR_IA32_P5_MC_TYPE
:
2509 case MSR_IA32_MCG_CAP
:
2510 case MSR_IA32_MCG_CTL
:
2511 case MSR_IA32_MCG_STATUS
:
2512 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2513 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
);
2514 case MSR_K7_CLK_CTL
:
2516 * Provide expected ramp-up count for K7. All other
2517 * are set to zero, indicating minimum divisors for
2520 * This prevents guest kernels on AMD host with CPU
2521 * type 6, model 8 and higher from exploding due to
2522 * the rdmsr failing.
2524 msr_info
->data
= 0x20000000;
2526 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2527 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2528 case HV_X64_MSR_CRASH_CTL
:
2529 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2530 return kvm_hv_get_msr_common(vcpu
,
2531 msr_info
->index
, &msr_info
->data
);
2533 case MSR_IA32_BBL_CR_CTL3
:
2534 /* This legacy MSR exists but isn't fully documented in current
2535 * silicon. It is however accessed by winxp in very narrow
2536 * scenarios where it sets bit #19, itself documented as
2537 * a "reserved" bit. Best effort attempt to source coherent
2538 * read data here should the balance of the register be
2539 * interpreted by the guest:
2541 * L2 cache control register 3: 64GB range, 256KB size,
2542 * enabled, latency 0x1, configured
2544 msr_info
->data
= 0xbe702111;
2546 case MSR_AMD64_OSVW_ID_LENGTH
:
2547 if (!guest_cpuid_has_osvw(vcpu
))
2549 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2551 case MSR_AMD64_OSVW_STATUS
:
2552 if (!guest_cpuid_has_osvw(vcpu
))
2554 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2557 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2558 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2560 vcpu_debug_ratelimited(vcpu
, "unhandled rdmsr: 0x%x\n",
2564 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr_info
->index
);
2571 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2574 * Read or write a bunch of msrs. All parameters are kernel addresses.
2576 * @return number of msrs set successfully.
2578 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2579 struct kvm_msr_entry
*entries
,
2580 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2581 unsigned index
, u64
*data
))
2585 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2586 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2587 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2589 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2595 * Read or write a bunch of msrs. Parameters are user addresses.
2597 * @return number of msrs set successfully.
2599 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2600 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2601 unsigned index
, u64
*data
),
2604 struct kvm_msrs msrs
;
2605 struct kvm_msr_entry
*entries
;
2610 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2614 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2617 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2618 entries
= memdup_user(user_msrs
->entries
, size
);
2619 if (IS_ERR(entries
)) {
2620 r
= PTR_ERR(entries
);
2624 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2629 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2640 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2645 case KVM_CAP_IRQCHIP
:
2647 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2648 case KVM_CAP_SET_TSS_ADDR
:
2649 case KVM_CAP_EXT_CPUID
:
2650 case KVM_CAP_EXT_EMUL_CPUID
:
2651 case KVM_CAP_CLOCKSOURCE
:
2653 case KVM_CAP_NOP_IO_DELAY
:
2654 case KVM_CAP_MP_STATE
:
2655 case KVM_CAP_SYNC_MMU
:
2656 case KVM_CAP_USER_NMI
:
2657 case KVM_CAP_REINJECT_CONTROL
:
2658 case KVM_CAP_IRQ_INJECT_STATUS
:
2659 case KVM_CAP_IOEVENTFD
:
2660 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2662 case KVM_CAP_PIT_STATE2
:
2663 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2664 case KVM_CAP_XEN_HVM
:
2665 case KVM_CAP_VCPU_EVENTS
:
2666 case KVM_CAP_HYPERV
:
2667 case KVM_CAP_HYPERV_VAPIC
:
2668 case KVM_CAP_HYPERV_SPIN
:
2669 case KVM_CAP_HYPERV_SYNIC
:
2670 case KVM_CAP_PCI_SEGMENT
:
2671 case KVM_CAP_DEBUGREGS
:
2672 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2674 case KVM_CAP_ASYNC_PF
:
2675 case KVM_CAP_GET_TSC_KHZ
:
2676 case KVM_CAP_KVMCLOCK_CTRL
:
2677 case KVM_CAP_READONLY_MEM
:
2678 case KVM_CAP_HYPERV_TIME
:
2679 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2680 case KVM_CAP_TSC_DEADLINE_TIMER
:
2681 case KVM_CAP_ENABLE_CAP_VM
:
2682 case KVM_CAP_DISABLE_QUIRKS
:
2683 case KVM_CAP_SET_BOOT_CPU_ID
:
2684 case KVM_CAP_SPLIT_IRQCHIP
:
2685 case KVM_CAP_IMMEDIATE_EXIT
:
2686 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2687 case KVM_CAP_ASSIGN_DEV_IRQ
:
2688 case KVM_CAP_PCI_2_3
:
2692 case KVM_CAP_ADJUST_CLOCK
:
2693 r
= KVM_CLOCK_TSC_STABLE
;
2695 case KVM_CAP_X86_SMM
:
2696 /* SMBASE is usually relocated above 1M on modern chipsets,
2697 * and SMM handlers might indeed rely on 4G segment limits,
2698 * so do not report SMM to be available if real mode is
2699 * emulated via vm86 mode. Still, do not go to great lengths
2700 * to avoid userspace's usage of the feature, because it is a
2701 * fringe case that is not enabled except via specific settings
2702 * of the module parameters.
2704 r
= kvm_x86_ops
->cpu_has_high_real_mode_segbase();
2706 case KVM_CAP_COALESCED_MMIO
:
2707 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2710 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2712 case KVM_CAP_NR_VCPUS
:
2713 r
= KVM_SOFT_MAX_VCPUS
;
2715 case KVM_CAP_MAX_VCPUS
:
2718 case KVM_CAP_NR_MEMSLOTS
:
2719 r
= KVM_USER_MEM_SLOTS
;
2721 case KVM_CAP_PV_MMU
: /* obsolete */
2724 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2726 r
= iommu_present(&pci_bus_type
);
2730 r
= KVM_MAX_MCE_BANKS
;
2733 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
2735 case KVM_CAP_TSC_CONTROL
:
2736 r
= kvm_has_tsc_control
;
2738 case KVM_CAP_X2APIC_API
:
2739 r
= KVM_X2APIC_API_VALID_FLAGS
;
2749 long kvm_arch_dev_ioctl(struct file
*filp
,
2750 unsigned int ioctl
, unsigned long arg
)
2752 void __user
*argp
= (void __user
*)arg
;
2756 case KVM_GET_MSR_INDEX_LIST
: {
2757 struct kvm_msr_list __user
*user_msr_list
= argp
;
2758 struct kvm_msr_list msr_list
;
2762 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2765 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2766 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2769 if (n
< msr_list
.nmsrs
)
2772 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2773 num_msrs_to_save
* sizeof(u32
)))
2775 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2777 num_emulated_msrs
* sizeof(u32
)))
2782 case KVM_GET_SUPPORTED_CPUID
:
2783 case KVM_GET_EMULATED_CPUID
: {
2784 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2785 struct kvm_cpuid2 cpuid
;
2788 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2791 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2797 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2802 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2804 if (copy_to_user(argp
, &kvm_mce_cap_supported
,
2805 sizeof(kvm_mce_cap_supported
)))
2817 static void wbinvd_ipi(void *garbage
)
2822 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2824 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2827 static inline void kvm_migrate_timers(struct kvm_vcpu
*vcpu
)
2829 set_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
);
2832 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2834 /* Address WBINVD may be executed by guest */
2835 if (need_emulate_wbinvd(vcpu
)) {
2836 if (kvm_x86_ops
->has_wbinvd_exit())
2837 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2838 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2839 smp_call_function_single(vcpu
->cpu
,
2840 wbinvd_ipi
, NULL
, 1);
2843 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2845 /* Apply any externally detected TSC adjustments (due to suspend) */
2846 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2847 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2848 vcpu
->arch
.tsc_offset_adjustment
= 0;
2849 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2852 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2853 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2854 rdtsc() - vcpu
->arch
.last_host_tsc
;
2856 mark_tsc_unstable("KVM discovered backwards TSC");
2858 if (check_tsc_unstable()) {
2859 u64 offset
= kvm_compute_tsc_offset(vcpu
,
2860 vcpu
->arch
.last_guest_tsc
);
2861 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
2862 vcpu
->arch
.tsc_catchup
= 1;
2864 if (kvm_lapic_hv_timer_in_use(vcpu
) &&
2865 kvm_x86_ops
->set_hv_timer(vcpu
,
2866 kvm_get_lapic_target_expiration_tsc(vcpu
)))
2867 kvm_lapic_switch_to_sw_timer(vcpu
);
2869 * On a host with synchronized TSC, there is no need to update
2870 * kvmclock on vcpu->cpu migration
2872 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2873 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2874 if (vcpu
->cpu
!= cpu
)
2875 kvm_migrate_timers(vcpu
);
2879 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2882 static void kvm_steal_time_set_preempted(struct kvm_vcpu
*vcpu
)
2884 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2887 vcpu
->arch
.st
.steal
.preempted
= 1;
2889 kvm_write_guest_offset_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2890 &vcpu
->arch
.st
.steal
.preempted
,
2891 offsetof(struct kvm_steal_time
, preempted
),
2892 sizeof(vcpu
->arch
.st
.steal
.preempted
));
2895 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2899 * Disable page faults because we're in atomic context here.
2900 * kvm_write_guest_offset_cached() would call might_fault()
2901 * that relies on pagefault_disable() to tell if there's a
2902 * bug. NOTE: the write to guest memory may not go through if
2903 * during postcopy live migration or if there's heavy guest
2906 pagefault_disable();
2908 * kvm_memslots() will be called by
2909 * kvm_write_guest_offset_cached() so take the srcu lock.
2911 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2912 kvm_steal_time_set_preempted(vcpu
);
2913 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2915 kvm_x86_ops
->vcpu_put(vcpu
);
2916 kvm_put_guest_fpu(vcpu
);
2917 vcpu
->arch
.last_host_tsc
= rdtsc();
2920 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2921 struct kvm_lapic_state
*s
)
2923 if (kvm_x86_ops
->sync_pir_to_irr
&& vcpu
->arch
.apicv_active
)
2924 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2926 return kvm_apic_get_state(vcpu
, s
);
2929 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2930 struct kvm_lapic_state
*s
)
2934 r
= kvm_apic_set_state(vcpu
, s
);
2937 update_cr8_intercept(vcpu
);
2942 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
2944 return (!lapic_in_kernel(vcpu
) ||
2945 kvm_apic_accept_pic_intr(vcpu
));
2949 * if userspace requested an interrupt window, check that the
2950 * interrupt window is open.
2952 * No need to exit to userspace if we already have an interrupt queued.
2954 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
2956 return kvm_arch_interrupt_allowed(vcpu
) &&
2957 !kvm_cpu_has_interrupt(vcpu
) &&
2958 !kvm_event_needs_reinjection(vcpu
) &&
2959 kvm_cpu_accept_dm_intr(vcpu
);
2962 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2963 struct kvm_interrupt
*irq
)
2965 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2968 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2969 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2970 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2975 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2976 * fail for in-kernel 8259.
2978 if (pic_in_kernel(vcpu
->kvm
))
2981 if (vcpu
->arch
.pending_external_vector
!= -1)
2984 vcpu
->arch
.pending_external_vector
= irq
->irq
;
2985 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2989 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2991 kvm_inject_nmi(vcpu
);
2996 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
2998 kvm_make_request(KVM_REQ_SMI
, vcpu
);
3003 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
3004 struct kvm_tpr_access_ctl
*tac
)
3008 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
3012 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
3016 unsigned bank_num
= mcg_cap
& 0xff, bank
;
3019 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
3021 if (mcg_cap
& ~(kvm_mce_cap_supported
| 0xff | 0xff0000))
3024 vcpu
->arch
.mcg_cap
= mcg_cap
;
3025 /* Init IA32_MCG_CTL to all 1s */
3026 if (mcg_cap
& MCG_CTL_P
)
3027 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
3028 /* Init IA32_MCi_CTL to all 1s */
3029 for (bank
= 0; bank
< bank_num
; bank
++)
3030 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
3032 if (kvm_x86_ops
->setup_mce
)
3033 kvm_x86_ops
->setup_mce(vcpu
);
3038 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
3039 struct kvm_x86_mce
*mce
)
3041 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
3042 unsigned bank_num
= mcg_cap
& 0xff;
3043 u64
*banks
= vcpu
->arch
.mce_banks
;
3045 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
3048 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3049 * reporting is disabled
3051 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
3052 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
3054 banks
+= 4 * mce
->bank
;
3056 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3057 * reporting is disabled for the bank
3059 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
3061 if (mce
->status
& MCI_STATUS_UC
) {
3062 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
3063 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
3064 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3067 if (banks
[1] & MCI_STATUS_VAL
)
3068 mce
->status
|= MCI_STATUS_OVER
;
3069 banks
[2] = mce
->addr
;
3070 banks
[3] = mce
->misc
;
3071 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
3072 banks
[1] = mce
->status
;
3073 kvm_queue_exception(vcpu
, MC_VECTOR
);
3074 } else if (!(banks
[1] & MCI_STATUS_VAL
)
3075 || !(banks
[1] & MCI_STATUS_UC
)) {
3076 if (banks
[1] & MCI_STATUS_VAL
)
3077 mce
->status
|= MCI_STATUS_OVER
;
3078 banks
[2] = mce
->addr
;
3079 banks
[3] = mce
->misc
;
3080 banks
[1] = mce
->status
;
3082 banks
[1] |= MCI_STATUS_OVER
;
3086 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3087 struct kvm_vcpu_events
*events
)
3090 events
->exception
.injected
=
3091 vcpu
->arch
.exception
.pending
&&
3092 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
3093 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3094 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3095 events
->exception
.pad
= 0;
3096 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3098 events
->interrupt
.injected
=
3099 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
3100 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3101 events
->interrupt
.soft
= 0;
3102 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3104 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3105 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3106 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3107 events
->nmi
.pad
= 0;
3109 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3111 events
->smi
.smm
= is_smm(vcpu
);
3112 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
3113 events
->smi
.smm_inside_nmi
=
3114 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
3115 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
3117 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3118 | KVM_VCPUEVENT_VALID_SHADOW
3119 | KVM_VCPUEVENT_VALID_SMM
);
3120 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3123 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
);
3125 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3126 struct kvm_vcpu_events
*events
)
3128 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3129 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3130 | KVM_VCPUEVENT_VALID_SHADOW
3131 | KVM_VCPUEVENT_VALID_SMM
))
3134 if (events
->exception
.injected
&&
3135 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
))
3138 /* INITs are latched while in SMM */
3139 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
&&
3140 (events
->smi
.smm
|| events
->smi
.pending
) &&
3141 vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
)
3145 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3146 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3147 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3148 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3150 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3151 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3152 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3153 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3154 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3155 events
->interrupt
.shadow
);
3157 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3158 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3159 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3160 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3162 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3163 lapic_in_kernel(vcpu
))
3164 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3166 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3167 u32 hflags
= vcpu
->arch
.hflags
;
3168 if (events
->smi
.smm
)
3169 hflags
|= HF_SMM_MASK
;
3171 hflags
&= ~HF_SMM_MASK
;
3172 kvm_set_hflags(vcpu
, hflags
);
3174 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3175 if (events
->smi
.smm_inside_nmi
)
3176 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3178 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3179 if (lapic_in_kernel(vcpu
)) {
3180 if (events
->smi
.latched_init
)
3181 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3183 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3187 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3192 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3193 struct kvm_debugregs
*dbgregs
)
3197 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3198 kvm_get_dr(vcpu
, 6, &val
);
3200 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3202 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3205 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3206 struct kvm_debugregs
*dbgregs
)
3211 if (dbgregs
->dr6
& ~0xffffffffull
)
3213 if (dbgregs
->dr7
& ~0xffffffffull
)
3216 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3217 kvm_update_dr0123(vcpu
);
3218 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3219 kvm_update_dr6(vcpu
);
3220 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3221 kvm_update_dr7(vcpu
);
3226 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3228 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3230 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3231 u64 xstate_bv
= xsave
->header
.xfeatures
;
3235 * Copy legacy XSAVE area, to avoid complications with CPUID
3236 * leaves 0 and 1 in the loop below.
3238 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3241 xstate_bv
&= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FPSSE
;
3242 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3245 * Copy each region from the possibly compacted offset to the
3246 * non-compacted offset.
3248 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3250 u64 feature
= valid
& -valid
;
3251 int index
= fls64(feature
) - 1;
3252 void *src
= get_xsave_addr(xsave
, feature
);
3255 u32 size
, offset
, ecx
, edx
;
3256 cpuid_count(XSTATE_CPUID
, index
,
3257 &size
, &offset
, &ecx
, &edx
);
3258 memcpy(dest
+ offset
, src
, size
);
3265 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3267 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3268 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3272 * Copy legacy XSAVE area, to avoid complications with CPUID
3273 * leaves 0 and 1 in the loop below.
3275 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3277 /* Set XSTATE_BV and possibly XCOMP_BV. */
3278 xsave
->header
.xfeatures
= xstate_bv
;
3279 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3280 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3283 * Copy each region from the non-compacted offset to the
3284 * possibly compacted offset.
3286 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3288 u64 feature
= valid
& -valid
;
3289 int index
= fls64(feature
) - 1;
3290 void *dest
= get_xsave_addr(xsave
, feature
);
3293 u32 size
, offset
, ecx
, edx
;
3294 cpuid_count(XSTATE_CPUID
, index
,
3295 &size
, &offset
, &ecx
, &edx
);
3296 memcpy(dest
, src
+ offset
, size
);
3303 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3304 struct kvm_xsave
*guest_xsave
)
3306 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3307 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3308 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3310 memcpy(guest_xsave
->region
,
3311 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3312 sizeof(struct fxregs_state
));
3313 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3314 XFEATURE_MASK_FPSSE
;
3318 #define XSAVE_MXCSR_OFFSET 24
3320 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3321 struct kvm_xsave
*guest_xsave
)
3324 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3325 u32 mxcsr
= *(u32
*)&guest_xsave
->region
[XSAVE_MXCSR_OFFSET
/ sizeof(u32
)];
3327 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3329 * Here we allow setting states that are not present in
3330 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3331 * with old userspace.
3333 if (xstate_bv
& ~kvm_supported_xcr0() ||
3334 mxcsr
& ~mxcsr_feature_mask
)
3336 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3338 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
||
3339 mxcsr
& ~mxcsr_feature_mask
)
3341 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3342 guest_xsave
->region
, sizeof(struct fxregs_state
));
3347 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3348 struct kvm_xcrs
*guest_xcrs
)
3350 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
3351 guest_xcrs
->nr_xcrs
= 0;
3355 guest_xcrs
->nr_xcrs
= 1;
3356 guest_xcrs
->flags
= 0;
3357 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3358 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3361 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3362 struct kvm_xcrs
*guest_xcrs
)
3366 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
3369 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3372 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3373 /* Only support XCR0 currently */
3374 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3375 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3376 guest_xcrs
->xcrs
[i
].value
);
3385 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3386 * stopped by the hypervisor. This function will be called from the host only.
3387 * EINVAL is returned when the host attempts to set the flag for a guest that
3388 * does not support pv clocks.
3390 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3392 if (!vcpu
->arch
.pv_time_enabled
)
3394 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3395 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3399 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
3400 struct kvm_enable_cap
*cap
)
3406 case KVM_CAP_HYPERV_SYNIC
:
3407 if (!irqchip_in_kernel(vcpu
->kvm
))
3409 return kvm_hv_activate_synic(vcpu
);
3415 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3416 unsigned int ioctl
, unsigned long arg
)
3418 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3419 void __user
*argp
= (void __user
*)arg
;
3422 struct kvm_lapic_state
*lapic
;
3423 struct kvm_xsave
*xsave
;
3424 struct kvm_xcrs
*xcrs
;
3430 case KVM_GET_LAPIC
: {
3432 if (!lapic_in_kernel(vcpu
))
3434 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3439 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3443 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3448 case KVM_SET_LAPIC
: {
3450 if (!lapic_in_kernel(vcpu
))
3452 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3453 if (IS_ERR(u
.lapic
))
3454 return PTR_ERR(u
.lapic
);
3456 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3459 case KVM_INTERRUPT
: {
3460 struct kvm_interrupt irq
;
3463 if (copy_from_user(&irq
, argp
, sizeof irq
))
3465 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3469 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3473 r
= kvm_vcpu_ioctl_smi(vcpu
);
3476 case KVM_SET_CPUID
: {
3477 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3478 struct kvm_cpuid cpuid
;
3481 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3483 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3486 case KVM_SET_CPUID2
: {
3487 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3488 struct kvm_cpuid2 cpuid
;
3491 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3493 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3494 cpuid_arg
->entries
);
3497 case KVM_GET_CPUID2
: {
3498 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3499 struct kvm_cpuid2 cpuid
;
3502 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3504 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3505 cpuid_arg
->entries
);
3509 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3515 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3518 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3520 case KVM_TPR_ACCESS_REPORTING
: {
3521 struct kvm_tpr_access_ctl tac
;
3524 if (copy_from_user(&tac
, argp
, sizeof tac
))
3526 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3530 if (copy_to_user(argp
, &tac
, sizeof tac
))
3535 case KVM_SET_VAPIC_ADDR
: {
3536 struct kvm_vapic_addr va
;
3540 if (!lapic_in_kernel(vcpu
))
3543 if (copy_from_user(&va
, argp
, sizeof va
))
3545 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3546 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3547 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3550 case KVM_X86_SETUP_MCE
: {
3554 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3556 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3559 case KVM_X86_SET_MCE
: {
3560 struct kvm_x86_mce mce
;
3563 if (copy_from_user(&mce
, argp
, sizeof mce
))
3565 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3568 case KVM_GET_VCPU_EVENTS
: {
3569 struct kvm_vcpu_events events
;
3571 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3574 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3579 case KVM_SET_VCPU_EVENTS
: {
3580 struct kvm_vcpu_events events
;
3583 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3586 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3589 case KVM_GET_DEBUGREGS
: {
3590 struct kvm_debugregs dbgregs
;
3592 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3595 if (copy_to_user(argp
, &dbgregs
,
3596 sizeof(struct kvm_debugregs
)))
3601 case KVM_SET_DEBUGREGS
: {
3602 struct kvm_debugregs dbgregs
;
3605 if (copy_from_user(&dbgregs
, argp
,
3606 sizeof(struct kvm_debugregs
)))
3609 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3612 case KVM_GET_XSAVE
: {
3613 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3618 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3621 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3626 case KVM_SET_XSAVE
: {
3627 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3628 if (IS_ERR(u
.xsave
))
3629 return PTR_ERR(u
.xsave
);
3631 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3634 case KVM_GET_XCRS
: {
3635 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3640 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3643 if (copy_to_user(argp
, u
.xcrs
,
3644 sizeof(struct kvm_xcrs
)))
3649 case KVM_SET_XCRS
: {
3650 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3652 return PTR_ERR(u
.xcrs
);
3654 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3657 case KVM_SET_TSC_KHZ
: {
3661 user_tsc_khz
= (u32
)arg
;
3663 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3666 if (user_tsc_khz
== 0)
3667 user_tsc_khz
= tsc_khz
;
3669 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
3674 case KVM_GET_TSC_KHZ
: {
3675 r
= vcpu
->arch
.virtual_tsc_khz
;
3678 case KVM_KVMCLOCK_CTRL
: {
3679 r
= kvm_set_guest_paused(vcpu
);
3682 case KVM_ENABLE_CAP
: {
3683 struct kvm_enable_cap cap
;
3686 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3688 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
3699 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3701 return VM_FAULT_SIGBUS
;
3704 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3708 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3710 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3714 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3717 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3721 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3722 u32 kvm_nr_mmu_pages
)
3724 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3727 mutex_lock(&kvm
->slots_lock
);
3729 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3730 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3732 mutex_unlock(&kvm
->slots_lock
);
3736 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3738 return kvm
->arch
.n_max_mmu_pages
;
3741 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3746 switch (chip
->chip_id
) {
3747 case KVM_IRQCHIP_PIC_MASTER
:
3748 memcpy(&chip
->chip
.pic
,
3749 &pic_irqchip(kvm
)->pics
[0],
3750 sizeof(struct kvm_pic_state
));
3752 case KVM_IRQCHIP_PIC_SLAVE
:
3753 memcpy(&chip
->chip
.pic
,
3754 &pic_irqchip(kvm
)->pics
[1],
3755 sizeof(struct kvm_pic_state
));
3757 case KVM_IRQCHIP_IOAPIC
:
3758 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3767 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3772 switch (chip
->chip_id
) {
3773 case KVM_IRQCHIP_PIC_MASTER
:
3774 spin_lock(&pic_irqchip(kvm
)->lock
);
3775 memcpy(&pic_irqchip(kvm
)->pics
[0],
3777 sizeof(struct kvm_pic_state
));
3778 spin_unlock(&pic_irqchip(kvm
)->lock
);
3780 case KVM_IRQCHIP_PIC_SLAVE
:
3781 spin_lock(&pic_irqchip(kvm
)->lock
);
3782 memcpy(&pic_irqchip(kvm
)->pics
[1],
3784 sizeof(struct kvm_pic_state
));
3785 spin_unlock(&pic_irqchip(kvm
)->lock
);
3787 case KVM_IRQCHIP_IOAPIC
:
3788 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3794 kvm_pic_update_irq(pic_irqchip(kvm
));
3798 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3800 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
3802 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
3804 mutex_lock(&kps
->lock
);
3805 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
3806 mutex_unlock(&kps
->lock
);
3810 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3813 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3815 mutex_lock(&pit
->pit_state
.lock
);
3816 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
3817 for (i
= 0; i
< 3; i
++)
3818 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
3819 mutex_unlock(&pit
->pit_state
.lock
);
3823 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3825 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3826 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3827 sizeof(ps
->channels
));
3828 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3829 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3830 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3834 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3838 u32 prev_legacy
, cur_legacy
;
3839 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3841 mutex_lock(&pit
->pit_state
.lock
);
3842 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3843 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3844 if (!prev_legacy
&& cur_legacy
)
3846 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
3847 sizeof(pit
->pit_state
.channels
));
3848 pit
->pit_state
.flags
= ps
->flags
;
3849 for (i
= 0; i
< 3; i
++)
3850 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
3852 mutex_unlock(&pit
->pit_state
.lock
);
3856 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3857 struct kvm_reinject_control
*control
)
3859 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3864 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3865 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3866 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3868 mutex_lock(&pit
->pit_state
.lock
);
3869 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
3870 mutex_unlock(&pit
->pit_state
.lock
);
3876 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3877 * @kvm: kvm instance
3878 * @log: slot id and address to which we copy the log
3880 * Steps 1-4 below provide general overview of dirty page logging. See
3881 * kvm_get_dirty_log_protect() function description for additional details.
3883 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3884 * always flush the TLB (step 4) even if previous step failed and the dirty
3885 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3886 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3887 * writes will be marked dirty for next log read.
3889 * 1. Take a snapshot of the bit and clear it if needed.
3890 * 2. Write protect the corresponding page.
3891 * 3. Copy the snapshot to the userspace.
3892 * 4. Flush TLB's if needed.
3894 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3896 bool is_dirty
= false;
3899 mutex_lock(&kvm
->slots_lock
);
3902 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3904 if (kvm_x86_ops
->flush_log_dirty
)
3905 kvm_x86_ops
->flush_log_dirty(kvm
);
3907 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
3910 * All the TLBs can be flushed out of mmu lock, see the comments in
3911 * kvm_mmu_slot_remove_write_access().
3913 lockdep_assert_held(&kvm
->slots_lock
);
3915 kvm_flush_remote_tlbs(kvm
);
3917 mutex_unlock(&kvm
->slots_lock
);
3921 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3924 if (!irqchip_in_kernel(kvm
))
3927 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3928 irq_event
->irq
, irq_event
->level
,
3933 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3934 struct kvm_enable_cap
*cap
)
3942 case KVM_CAP_DISABLE_QUIRKS
:
3943 kvm
->arch
.disabled_quirks
= cap
->args
[0];
3946 case KVM_CAP_SPLIT_IRQCHIP
: {
3947 mutex_lock(&kvm
->lock
);
3949 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
3950 goto split_irqchip_unlock
;
3952 if (irqchip_in_kernel(kvm
))
3953 goto split_irqchip_unlock
;
3954 if (kvm
->created_vcpus
)
3955 goto split_irqchip_unlock
;
3956 r
= kvm_setup_empty_irq_routing(kvm
);
3958 goto split_irqchip_unlock
;
3959 /* Pairs with irqchip_in_kernel. */
3961 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_SPLIT
;
3962 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
3964 split_irqchip_unlock
:
3965 mutex_unlock(&kvm
->lock
);
3968 case KVM_CAP_X2APIC_API
:
3970 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
3973 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
3974 kvm
->arch
.x2apic_format
= true;
3975 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
3976 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
3987 long kvm_arch_vm_ioctl(struct file
*filp
,
3988 unsigned int ioctl
, unsigned long arg
)
3990 struct kvm
*kvm
= filp
->private_data
;
3991 void __user
*argp
= (void __user
*)arg
;
3994 * This union makes it completely explicit to gcc-3.x
3995 * that these two variables' stack usage should be
3996 * combined, not added together.
3999 struct kvm_pit_state ps
;
4000 struct kvm_pit_state2 ps2
;
4001 struct kvm_pit_config pit_config
;
4005 case KVM_SET_TSS_ADDR
:
4006 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
4008 case KVM_SET_IDENTITY_MAP_ADDR
: {
4012 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
4014 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
4017 case KVM_SET_NR_MMU_PAGES
:
4018 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
4020 case KVM_GET_NR_MMU_PAGES
:
4021 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
4023 case KVM_CREATE_IRQCHIP
: {
4024 mutex_lock(&kvm
->lock
);
4027 if (irqchip_in_kernel(kvm
))
4028 goto create_irqchip_unlock
;
4031 if (kvm
->created_vcpus
)
4032 goto create_irqchip_unlock
;
4034 r
= kvm_pic_init(kvm
);
4036 goto create_irqchip_unlock
;
4038 r
= kvm_ioapic_init(kvm
);
4040 mutex_lock(&kvm
->slots_lock
);
4041 kvm_pic_destroy(kvm
);
4042 mutex_unlock(&kvm
->slots_lock
);
4043 goto create_irqchip_unlock
;
4046 r
= kvm_setup_default_irq_routing(kvm
);
4048 mutex_lock(&kvm
->slots_lock
);
4049 mutex_lock(&kvm
->irq_lock
);
4050 kvm_ioapic_destroy(kvm
);
4051 kvm_pic_destroy(kvm
);
4052 mutex_unlock(&kvm
->irq_lock
);
4053 mutex_unlock(&kvm
->slots_lock
);
4054 goto create_irqchip_unlock
;
4056 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4058 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_KERNEL
;
4059 create_irqchip_unlock
:
4060 mutex_unlock(&kvm
->lock
);
4063 case KVM_CREATE_PIT
:
4064 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
4066 case KVM_CREATE_PIT2
:
4068 if (copy_from_user(&u
.pit_config
, argp
,
4069 sizeof(struct kvm_pit_config
)))
4072 mutex_lock(&kvm
->lock
);
4075 goto create_pit_unlock
;
4077 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
4081 mutex_unlock(&kvm
->lock
);
4083 case KVM_GET_IRQCHIP
: {
4084 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4085 struct kvm_irqchip
*chip
;
4087 chip
= memdup_user(argp
, sizeof(*chip
));
4094 if (!irqchip_kernel(kvm
))
4095 goto get_irqchip_out
;
4096 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
4098 goto get_irqchip_out
;
4100 if (copy_to_user(argp
, chip
, sizeof *chip
))
4101 goto get_irqchip_out
;
4107 case KVM_SET_IRQCHIP
: {
4108 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4109 struct kvm_irqchip
*chip
;
4111 chip
= memdup_user(argp
, sizeof(*chip
));
4118 if (!irqchip_kernel(kvm
))
4119 goto set_irqchip_out
;
4120 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
4122 goto set_irqchip_out
;
4130 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
4133 if (!kvm
->arch
.vpit
)
4135 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
4139 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
4146 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
4149 if (!kvm
->arch
.vpit
)
4151 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
4154 case KVM_GET_PIT2
: {
4156 if (!kvm
->arch
.vpit
)
4158 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
4162 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4167 case KVM_SET_PIT2
: {
4169 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4172 if (!kvm
->arch
.vpit
)
4174 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4177 case KVM_REINJECT_CONTROL
: {
4178 struct kvm_reinject_control control
;
4180 if (copy_from_user(&control
, argp
, sizeof(control
)))
4182 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4185 case KVM_SET_BOOT_CPU_ID
:
4187 mutex_lock(&kvm
->lock
);
4188 if (kvm
->created_vcpus
)
4191 kvm
->arch
.bsp_vcpu_id
= arg
;
4192 mutex_unlock(&kvm
->lock
);
4194 case KVM_XEN_HVM_CONFIG
: {
4196 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
4197 sizeof(struct kvm_xen_hvm_config
)))
4200 if (kvm
->arch
.xen_hvm_config
.flags
)
4205 case KVM_SET_CLOCK
: {
4206 struct kvm_clock_data user_ns
;
4210 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4218 local_irq_disable();
4219 now_ns
= __get_kvmclock_ns(kvm
);
4220 kvm
->arch
.kvmclock_offset
+= user_ns
.clock
- now_ns
;
4222 kvm_gen_update_masterclock(kvm
);
4225 case KVM_GET_CLOCK
: {
4226 struct kvm_clock_data user_ns
;
4229 local_irq_disable();
4230 now_ns
= __get_kvmclock_ns(kvm
);
4231 user_ns
.clock
= now_ns
;
4232 user_ns
.flags
= kvm
->arch
.use_master_clock
? KVM_CLOCK_TSC_STABLE
: 0;
4234 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4237 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4242 case KVM_ENABLE_CAP
: {
4243 struct kvm_enable_cap cap
;
4246 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4248 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4252 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
4258 static void kvm_init_msr_list(void)
4263 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4264 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4268 * Even MSRs that are valid in the host may not be exposed
4269 * to the guests in some cases.
4271 switch (msrs_to_save
[i
]) {
4272 case MSR_IA32_BNDCFGS
:
4273 if (!kvm_x86_ops
->mpx_supported())
4277 if (!kvm_x86_ops
->rdtscp_supported())
4285 msrs_to_save
[j
] = msrs_to_save
[i
];
4288 num_msrs_to_save
= j
;
4290 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4291 switch (emulated_msrs
[i
]) {
4292 case MSR_IA32_SMBASE
:
4293 if (!kvm_x86_ops
->cpu_has_high_real_mode_segbase())
4301 emulated_msrs
[j
] = emulated_msrs
[i
];
4304 num_emulated_msrs
= j
;
4307 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4315 if (!(lapic_in_kernel(vcpu
) &&
4316 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4317 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4328 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4335 if (!(lapic_in_kernel(vcpu
) &&
4336 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4338 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4340 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4350 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4351 struct kvm_segment
*var
, int seg
)
4353 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4356 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4357 struct kvm_segment
*var
, int seg
)
4359 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4362 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4363 struct x86_exception
*exception
)
4367 BUG_ON(!mmu_is_nested(vcpu
));
4369 /* NPT walks are always user-walks */
4370 access
|= PFERR_USER_MASK
;
4371 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4376 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4377 struct x86_exception
*exception
)
4379 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4380 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4383 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4384 struct x86_exception
*exception
)
4386 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4387 access
|= PFERR_FETCH_MASK
;
4388 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4391 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4392 struct x86_exception
*exception
)
4394 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4395 access
|= PFERR_WRITE_MASK
;
4396 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4399 /* uses this to access any guest's mapped memory without checking CPL */
4400 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4401 struct x86_exception
*exception
)
4403 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4406 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4407 struct kvm_vcpu
*vcpu
, u32 access
,
4408 struct x86_exception
*exception
)
4411 int r
= X86EMUL_CONTINUE
;
4414 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4416 unsigned offset
= addr
& (PAGE_SIZE
-1);
4417 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4420 if (gpa
== UNMAPPED_GVA
)
4421 return X86EMUL_PROPAGATE_FAULT
;
4422 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4425 r
= X86EMUL_IO_NEEDED
;
4437 /* used for instruction fetching */
4438 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4439 gva_t addr
, void *val
, unsigned int bytes
,
4440 struct x86_exception
*exception
)
4442 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4443 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4447 /* Inline kvm_read_guest_virt_helper for speed. */
4448 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4450 if (unlikely(gpa
== UNMAPPED_GVA
))
4451 return X86EMUL_PROPAGATE_FAULT
;
4453 offset
= addr
& (PAGE_SIZE
-1);
4454 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4455 bytes
= (unsigned)PAGE_SIZE
- offset
;
4456 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4458 if (unlikely(ret
< 0))
4459 return X86EMUL_IO_NEEDED
;
4461 return X86EMUL_CONTINUE
;
4464 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4465 gva_t addr
, void *val
, unsigned int bytes
,
4466 struct x86_exception
*exception
)
4468 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4469 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4471 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4474 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4476 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4477 gva_t addr
, void *val
, unsigned int bytes
,
4478 struct x86_exception
*exception
)
4480 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4481 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4484 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
4485 unsigned long addr
, void *val
, unsigned int bytes
)
4487 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4488 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
4490 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
4493 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4494 gva_t addr
, void *val
,
4496 struct x86_exception
*exception
)
4498 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4500 int r
= X86EMUL_CONTINUE
;
4503 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4506 unsigned offset
= addr
& (PAGE_SIZE
-1);
4507 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4510 if (gpa
== UNMAPPED_GVA
)
4511 return X86EMUL_PROPAGATE_FAULT
;
4512 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4514 r
= X86EMUL_IO_NEEDED
;
4525 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4527 static int vcpu_is_mmio_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4528 gpa_t gpa
, bool write
)
4530 /* For APIC access vmexit */
4531 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4534 if (vcpu_match_mmio_gpa(vcpu
, gpa
)) {
4535 trace_vcpu_match_mmio(gva
, gpa
, write
, true);
4542 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4543 gpa_t
*gpa
, struct x86_exception
*exception
,
4546 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4547 | (write
? PFERR_WRITE_MASK
: 0);
4550 * currently PKRU is only applied to ept enabled guest so
4551 * there is no pkey in EPT page table for L1 guest or EPT
4552 * shadow page table for L2 guest.
4554 if (vcpu_match_mmio_gva(vcpu
, gva
)
4555 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4556 vcpu
->arch
.access
, 0, access
)) {
4557 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4558 (gva
& (PAGE_SIZE
- 1));
4559 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4563 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4565 if (*gpa
== UNMAPPED_GVA
)
4568 return vcpu_is_mmio_gpa(vcpu
, gva
, *gpa
, write
);
4571 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4572 const void *val
, int bytes
)
4576 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4579 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
4583 struct read_write_emulator_ops
{
4584 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4586 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4587 void *val
, int bytes
);
4588 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4589 int bytes
, void *val
);
4590 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4591 void *val
, int bytes
);
4595 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4597 if (vcpu
->mmio_read_completed
) {
4598 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4599 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4600 vcpu
->mmio_read_completed
= 0;
4607 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4608 void *val
, int bytes
)
4610 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
4613 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4614 void *val
, int bytes
)
4616 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4619 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4621 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4622 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4625 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4626 void *val
, int bytes
)
4628 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4629 return X86EMUL_IO_NEEDED
;
4632 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4633 void *val
, int bytes
)
4635 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4637 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4638 return X86EMUL_CONTINUE
;
4641 static const struct read_write_emulator_ops read_emultor
= {
4642 .read_write_prepare
= read_prepare
,
4643 .read_write_emulate
= read_emulate
,
4644 .read_write_mmio
= vcpu_mmio_read
,
4645 .read_write_exit_mmio
= read_exit_mmio
,
4648 static const struct read_write_emulator_ops write_emultor
= {
4649 .read_write_emulate
= write_emulate
,
4650 .read_write_mmio
= write_mmio
,
4651 .read_write_exit_mmio
= write_exit_mmio
,
4655 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4657 struct x86_exception
*exception
,
4658 struct kvm_vcpu
*vcpu
,
4659 const struct read_write_emulator_ops
*ops
)
4663 bool write
= ops
->write
;
4664 struct kvm_mmio_fragment
*frag
;
4665 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4668 * If the exit was due to a NPF we may already have a GPA.
4669 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4670 * Note, this cannot be used on string operations since string
4671 * operation using rep will only have the initial GPA from the NPF
4674 if (vcpu
->arch
.gpa_available
&&
4675 emulator_can_use_gpa(ctxt
) &&
4676 vcpu_is_mmio_gpa(vcpu
, addr
, exception
->address
, write
) &&
4677 (addr
& ~PAGE_MASK
) == (exception
->address
& ~PAGE_MASK
)) {
4678 gpa
= exception
->address
;
4682 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4685 return X86EMUL_PROPAGATE_FAULT
;
4687 /* For APIC access vmexit */
4691 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4692 return X86EMUL_CONTINUE
;
4696 * Is this MMIO handled locally?
4698 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4699 if (handled
== bytes
)
4700 return X86EMUL_CONTINUE
;
4706 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4707 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4711 return X86EMUL_CONTINUE
;
4714 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4716 void *val
, unsigned int bytes
,
4717 struct x86_exception
*exception
,
4718 const struct read_write_emulator_ops
*ops
)
4720 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4724 if (ops
->read_write_prepare
&&
4725 ops
->read_write_prepare(vcpu
, val
, bytes
))
4726 return X86EMUL_CONTINUE
;
4728 vcpu
->mmio_nr_fragments
= 0;
4730 /* Crossing a page boundary? */
4731 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4734 now
= -addr
& ~PAGE_MASK
;
4735 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4738 if (rc
!= X86EMUL_CONTINUE
)
4741 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4747 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4749 if (rc
!= X86EMUL_CONTINUE
)
4752 if (!vcpu
->mmio_nr_fragments
)
4755 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4757 vcpu
->mmio_needed
= 1;
4758 vcpu
->mmio_cur_fragment
= 0;
4760 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4761 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4762 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4763 vcpu
->run
->mmio
.phys_addr
= gpa
;
4765 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4768 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4772 struct x86_exception
*exception
)
4774 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4775 exception
, &read_emultor
);
4778 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4782 struct x86_exception
*exception
)
4784 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4785 exception
, &write_emultor
);
4788 #define CMPXCHG_TYPE(t, ptr, old, new) \
4789 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4791 #ifdef CONFIG_X86_64
4792 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4794 # define CMPXCHG64(ptr, old, new) \
4795 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4798 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4803 struct x86_exception
*exception
)
4805 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4811 /* guests cmpxchg8b have to be emulated atomically */
4812 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4815 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4817 if (gpa
== UNMAPPED_GVA
||
4818 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4821 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4824 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
4825 if (is_error_page(page
))
4828 kaddr
= kmap_atomic(page
);
4829 kaddr
+= offset_in_page(gpa
);
4832 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4835 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4838 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4841 exchanged
= CMPXCHG64(kaddr
, old
, new);
4846 kunmap_atomic(kaddr
);
4847 kvm_release_page_dirty(page
);
4850 return X86EMUL_CMPXCHG_FAILED
;
4852 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
4853 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
4855 return X86EMUL_CONTINUE
;
4858 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4860 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4863 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4867 for (i
= 0; i
< vcpu
->arch
.pio
.count
; i
++) {
4868 if (vcpu
->arch
.pio
.in
)
4869 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4870 vcpu
->arch
.pio
.size
, pd
);
4872 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
4873 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4877 pd
+= vcpu
->arch
.pio
.size
;
4882 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4883 unsigned short port
, void *val
,
4884 unsigned int count
, bool in
)
4886 vcpu
->arch
.pio
.port
= port
;
4887 vcpu
->arch
.pio
.in
= in
;
4888 vcpu
->arch
.pio
.count
= count
;
4889 vcpu
->arch
.pio
.size
= size
;
4891 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4892 vcpu
->arch
.pio
.count
= 0;
4896 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4897 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4898 vcpu
->run
->io
.size
= size
;
4899 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4900 vcpu
->run
->io
.count
= count
;
4901 vcpu
->run
->io
.port
= port
;
4906 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4907 int size
, unsigned short port
, void *val
,
4910 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4913 if (vcpu
->arch
.pio
.count
)
4916 memset(vcpu
->arch
.pio_data
, 0, size
* count
);
4918 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4921 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4922 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4923 vcpu
->arch
.pio
.count
= 0;
4930 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4931 int size
, unsigned short port
,
4932 const void *val
, unsigned int count
)
4934 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4936 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4937 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4938 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4941 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4943 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4946 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4948 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4951 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
4953 if (!need_emulate_wbinvd(vcpu
))
4954 return X86EMUL_CONTINUE
;
4956 if (kvm_x86_ops
->has_wbinvd_exit()) {
4957 int cpu
= get_cpu();
4959 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4960 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4961 wbinvd_ipi
, NULL
, 1);
4963 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4966 return X86EMUL_CONTINUE
;
4969 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4971 kvm_emulate_wbinvd_noskip(vcpu
);
4972 return kvm_skip_emulated_instruction(vcpu
);
4974 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4978 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4980 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
4983 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4984 unsigned long *dest
)
4986 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4989 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4990 unsigned long value
)
4993 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4996 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4998 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
5001 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
5003 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5004 unsigned long value
;
5008 value
= kvm_read_cr0(vcpu
);
5011 value
= vcpu
->arch
.cr2
;
5014 value
= kvm_read_cr3(vcpu
);
5017 value
= kvm_read_cr4(vcpu
);
5020 value
= kvm_get_cr8(vcpu
);
5023 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5030 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
5032 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5037 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
5040 vcpu
->arch
.cr2
= val
;
5043 res
= kvm_set_cr3(vcpu
, val
);
5046 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
5049 res
= kvm_set_cr8(vcpu
, val
);
5052 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5059 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
5061 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
5064 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5066 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
5069 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5071 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
5074 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5076 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
5079 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5081 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
5084 static unsigned long emulator_get_cached_segment_base(
5085 struct x86_emulate_ctxt
*ctxt
, int seg
)
5087 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
5090 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
5091 struct desc_struct
*desc
, u32
*base3
,
5094 struct kvm_segment var
;
5096 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
5097 *selector
= var
.selector
;
5100 memset(desc
, 0, sizeof(*desc
));
5108 set_desc_limit(desc
, var
.limit
);
5109 set_desc_base(desc
, (unsigned long)var
.base
);
5110 #ifdef CONFIG_X86_64
5112 *base3
= var
.base
>> 32;
5114 desc
->type
= var
.type
;
5116 desc
->dpl
= var
.dpl
;
5117 desc
->p
= var
.present
;
5118 desc
->avl
= var
.avl
;
5126 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
5127 struct desc_struct
*desc
, u32 base3
,
5130 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5131 struct kvm_segment var
;
5133 var
.selector
= selector
;
5134 var
.base
= get_desc_base(desc
);
5135 #ifdef CONFIG_X86_64
5136 var
.base
|= ((u64
)base3
) << 32;
5138 var
.limit
= get_desc_limit(desc
);
5140 var
.limit
= (var
.limit
<< 12) | 0xfff;
5141 var
.type
= desc
->type
;
5142 var
.dpl
= desc
->dpl
;
5147 var
.avl
= desc
->avl
;
5148 var
.present
= desc
->p
;
5149 var
.unusable
= !var
.present
;
5152 kvm_set_segment(vcpu
, &var
, seg
);
5156 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
5157 u32 msr_index
, u64
*pdata
)
5159 struct msr_data msr
;
5162 msr
.index
= msr_index
;
5163 msr
.host_initiated
= false;
5164 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
5172 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
5173 u32 msr_index
, u64 data
)
5175 struct msr_data msr
;
5178 msr
.index
= msr_index
;
5179 msr
.host_initiated
= false;
5180 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
5183 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
5185 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5187 return vcpu
->arch
.smbase
;
5190 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5192 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5194 vcpu
->arch
.smbase
= smbase
;
5197 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
5200 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
5203 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
5204 u32 pmc
, u64
*pdata
)
5206 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
5209 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
5211 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
5214 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
5217 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
5220 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
5225 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
5226 struct x86_instruction_info
*info
,
5227 enum x86_intercept_stage stage
)
5229 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5232 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5233 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
5235 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
5238 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5240 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5243 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5245 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5248 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5250 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5253 static unsigned emulator_get_hflags(struct x86_emulate_ctxt
*ctxt
)
5255 return emul_to_vcpu(ctxt
)->arch
.hflags
;
5258 static void emulator_set_hflags(struct x86_emulate_ctxt
*ctxt
, unsigned emul_flags
)
5260 kvm_set_hflags(emul_to_vcpu(ctxt
), emul_flags
);
5263 static const struct x86_emulate_ops emulate_ops
= {
5264 .read_gpr
= emulator_read_gpr
,
5265 .write_gpr
= emulator_write_gpr
,
5266 .read_std
= kvm_read_guest_virt_system
,
5267 .write_std
= kvm_write_guest_virt_system
,
5268 .read_phys
= kvm_read_guest_phys_system
,
5269 .fetch
= kvm_fetch_guest_virt
,
5270 .read_emulated
= emulator_read_emulated
,
5271 .write_emulated
= emulator_write_emulated
,
5272 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5273 .invlpg
= emulator_invlpg
,
5274 .pio_in_emulated
= emulator_pio_in_emulated
,
5275 .pio_out_emulated
= emulator_pio_out_emulated
,
5276 .get_segment
= emulator_get_segment
,
5277 .set_segment
= emulator_set_segment
,
5278 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5279 .get_gdt
= emulator_get_gdt
,
5280 .get_idt
= emulator_get_idt
,
5281 .set_gdt
= emulator_set_gdt
,
5282 .set_idt
= emulator_set_idt
,
5283 .get_cr
= emulator_get_cr
,
5284 .set_cr
= emulator_set_cr
,
5285 .cpl
= emulator_get_cpl
,
5286 .get_dr
= emulator_get_dr
,
5287 .set_dr
= emulator_set_dr
,
5288 .get_smbase
= emulator_get_smbase
,
5289 .set_smbase
= emulator_set_smbase
,
5290 .set_msr
= emulator_set_msr
,
5291 .get_msr
= emulator_get_msr
,
5292 .check_pmc
= emulator_check_pmc
,
5293 .read_pmc
= emulator_read_pmc
,
5294 .halt
= emulator_halt
,
5295 .wbinvd
= emulator_wbinvd
,
5296 .fix_hypercall
= emulator_fix_hypercall
,
5297 .get_fpu
= emulator_get_fpu
,
5298 .put_fpu
= emulator_put_fpu
,
5299 .intercept
= emulator_intercept
,
5300 .get_cpuid
= emulator_get_cpuid
,
5301 .set_nmi_mask
= emulator_set_nmi_mask
,
5302 .get_hflags
= emulator_get_hflags
,
5303 .set_hflags
= emulator_set_hflags
,
5306 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5308 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5310 * an sti; sti; sequence only disable interrupts for the first
5311 * instruction. So, if the last instruction, be it emulated or
5312 * not, left the system with the INT_STI flag enabled, it
5313 * means that the last instruction is an sti. We should not
5314 * leave the flag on in this case. The same goes for mov ss
5316 if (int_shadow
& mask
)
5318 if (unlikely(int_shadow
|| mask
)) {
5319 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5321 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5325 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5327 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5328 if (ctxt
->exception
.vector
== PF_VECTOR
)
5329 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5331 if (ctxt
->exception
.error_code_valid
)
5332 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5333 ctxt
->exception
.error_code
);
5335 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5339 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5341 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5344 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5346 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5347 ctxt
->tf
= (ctxt
->eflags
& X86_EFLAGS_TF
) != 0;
5349 ctxt
->eip
= kvm_rip_read(vcpu
);
5350 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5351 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5352 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5353 cs_db
? X86EMUL_MODE_PROT32
:
5354 X86EMUL_MODE_PROT16
;
5355 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5356 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5357 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5359 init_decode_cache(ctxt
);
5360 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5363 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5365 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5368 init_emulate_ctxt(vcpu
);
5372 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5373 ret
= emulate_int_real(ctxt
, irq
);
5375 if (ret
!= X86EMUL_CONTINUE
)
5376 return EMULATE_FAIL
;
5378 ctxt
->eip
= ctxt
->_eip
;
5379 kvm_rip_write(vcpu
, ctxt
->eip
);
5380 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5382 if (irq
== NMI_VECTOR
)
5383 vcpu
->arch
.nmi_pending
= 0;
5385 vcpu
->arch
.interrupt
.pending
= false;
5387 return EMULATE_DONE
;
5389 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5391 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5393 int r
= EMULATE_DONE
;
5395 ++vcpu
->stat
.insn_emulation_fail
;
5396 trace_kvm_emulate_insn_failed(vcpu
);
5397 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5398 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5399 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5400 vcpu
->run
->internal
.ndata
= 0;
5403 kvm_queue_exception(vcpu
, UD_VECTOR
);
5408 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5409 bool write_fault_to_shadow_pgtable
,
5415 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5418 if (!vcpu
->arch
.mmu
.direct_map
) {
5420 * Write permission should be allowed since only
5421 * write access need to be emulated.
5423 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5426 * If the mapping is invalid in guest, let cpu retry
5427 * it to generate fault.
5429 if (gpa
== UNMAPPED_GVA
)
5434 * Do not retry the unhandleable instruction if it faults on the
5435 * readonly host memory, otherwise it will goto a infinite loop:
5436 * retry instruction -> write #PF -> emulation fail -> retry
5437 * instruction -> ...
5439 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5442 * If the instruction failed on the error pfn, it can not be fixed,
5443 * report the error to userspace.
5445 if (is_error_noslot_pfn(pfn
))
5448 kvm_release_pfn_clean(pfn
);
5450 /* The instructions are well-emulated on direct mmu. */
5451 if (vcpu
->arch
.mmu
.direct_map
) {
5452 unsigned int indirect_shadow_pages
;
5454 spin_lock(&vcpu
->kvm
->mmu_lock
);
5455 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5456 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5458 if (indirect_shadow_pages
)
5459 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5465 * if emulation was due to access to shadowed page table
5466 * and it failed try to unshadow page and re-enter the
5467 * guest to let CPU execute the instruction.
5469 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5472 * If the access faults on its page table, it can not
5473 * be fixed by unprotecting shadow page and it should
5474 * be reported to userspace.
5476 return !write_fault_to_shadow_pgtable
;
5479 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5480 unsigned long cr2
, int emulation_type
)
5482 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5483 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5485 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5486 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5489 * If the emulation is caused by #PF and it is non-page_table
5490 * writing instruction, it means the VM-EXIT is caused by shadow
5491 * page protected, we can zap the shadow page and retry this
5492 * instruction directly.
5494 * Note: if the guest uses a non-page-table modifying instruction
5495 * on the PDE that points to the instruction, then we will unmap
5496 * the instruction and go to an infinite loop. So, we cache the
5497 * last retried eip and the last fault address, if we meet the eip
5498 * and the address again, we can break out of the potential infinite
5501 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5503 if (!(emulation_type
& EMULTYPE_RETRY
))
5506 if (x86_page_table_writing_insn(ctxt
))
5509 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5512 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5513 vcpu
->arch
.last_retry_addr
= cr2
;
5515 if (!vcpu
->arch
.mmu
.direct_map
)
5516 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5518 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5523 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5524 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5526 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5528 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5529 /* This is a good place to trace that we are exiting SMM. */
5530 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5532 /* Process a latched INIT or SMI, if any. */
5533 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5536 kvm_mmu_reset_context(vcpu
);
5539 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5541 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5543 vcpu
->arch
.hflags
= emul_flags
;
5545 if (changed
& HF_SMM_MASK
)
5546 kvm_smm_changed(vcpu
);
5549 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5558 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5559 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5564 static void kvm_vcpu_do_singlestep(struct kvm_vcpu
*vcpu
, int *r
)
5566 struct kvm_run
*kvm_run
= vcpu
->run
;
5568 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5569 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
| DR6_RTM
;
5570 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5571 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5572 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5573 *r
= EMULATE_USER_EXIT
;
5576 * "Certain debug exceptions may clear bit 0-3. The
5577 * remaining contents of the DR6 register are never
5578 * cleared by the processor".
5580 vcpu
->arch
.dr6
&= ~15;
5581 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5582 kvm_queue_exception(vcpu
, DB_VECTOR
);
5586 int kvm_skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
5588 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5589 int r
= EMULATE_DONE
;
5591 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5594 * rflags is the old, "raw" value of the flags. The new value has
5595 * not been saved yet.
5597 * This is correct even for TF set by the guest, because "the
5598 * processor will not generate this exception after the instruction
5599 * that sets the TF flag".
5601 if (unlikely(rflags
& X86_EFLAGS_TF
))
5602 kvm_vcpu_do_singlestep(vcpu
, &r
);
5603 return r
== EMULATE_DONE
;
5605 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction
);
5607 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5609 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5610 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5611 struct kvm_run
*kvm_run
= vcpu
->run
;
5612 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5613 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5614 vcpu
->arch
.guest_debug_dr7
,
5618 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5619 kvm_run
->debug
.arch
.pc
= eip
;
5620 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5621 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5622 *r
= EMULATE_USER_EXIT
;
5627 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5628 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5629 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5630 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5635 vcpu
->arch
.dr6
&= ~15;
5636 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5637 kvm_queue_exception(vcpu
, DB_VECTOR
);
5646 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5653 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5654 bool writeback
= true;
5655 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5658 * Clear write_fault_to_shadow_pgtable here to ensure it is
5661 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5662 kvm_clear_exception_queue(vcpu
);
5664 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5665 init_emulate_ctxt(vcpu
);
5668 * We will reenter on the same instruction since
5669 * we do not set complete_userspace_io. This does not
5670 * handle watchpoints yet, those would be handled in
5673 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5676 ctxt
->interruptibility
= 0;
5677 ctxt
->have_exception
= false;
5678 ctxt
->exception
.vector
= -1;
5679 ctxt
->perm_ok
= false;
5681 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5683 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5685 trace_kvm_emulate_insn_start(vcpu
);
5686 ++vcpu
->stat
.insn_emulation
;
5687 if (r
!= EMULATION_OK
) {
5688 if (emulation_type
& EMULTYPE_TRAP_UD
)
5689 return EMULATE_FAIL
;
5690 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5692 return EMULATE_DONE
;
5693 if (emulation_type
& EMULTYPE_SKIP
)
5694 return EMULATE_FAIL
;
5695 return handle_emulation_failure(vcpu
);
5699 if (emulation_type
& EMULTYPE_SKIP
) {
5700 kvm_rip_write(vcpu
, ctxt
->_eip
);
5701 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5702 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5703 return EMULATE_DONE
;
5706 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5707 return EMULATE_DONE
;
5709 /* this is needed for vmware backdoor interface to work since it
5710 changes registers values during IO operation */
5711 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5712 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5713 emulator_invalidate_register_cache(ctxt
);
5717 /* Save the faulting GPA (cr2) in the address field */
5718 ctxt
->exception
.address
= cr2
;
5720 r
= x86_emulate_insn(ctxt
);
5722 if (r
== EMULATION_INTERCEPTED
)
5723 return EMULATE_DONE
;
5725 if (r
== EMULATION_FAILED
) {
5726 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5728 return EMULATE_DONE
;
5730 return handle_emulation_failure(vcpu
);
5733 if (ctxt
->have_exception
) {
5735 if (inject_emulated_exception(vcpu
))
5737 } else if (vcpu
->arch
.pio
.count
) {
5738 if (!vcpu
->arch
.pio
.in
) {
5739 /* FIXME: return into emulator if single-stepping. */
5740 vcpu
->arch
.pio
.count
= 0;
5743 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5745 r
= EMULATE_USER_EXIT
;
5746 } else if (vcpu
->mmio_needed
) {
5747 if (!vcpu
->mmio_is_write
)
5749 r
= EMULATE_USER_EXIT
;
5750 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5751 } else if (r
== EMULATION_RESTART
)
5757 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5758 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5759 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5760 kvm_rip_write(vcpu
, ctxt
->eip
);
5761 if (r
== EMULATE_DONE
&&
5762 (ctxt
->tf
|| (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)))
5763 kvm_vcpu_do_singlestep(vcpu
, &r
);
5764 if (!ctxt
->have_exception
||
5765 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5766 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5769 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5770 * do nothing, and it will be requested again as soon as
5771 * the shadow expires. But we still need to check here,
5772 * because POPF has no interrupt shadow.
5774 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5775 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5777 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5781 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5783 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5785 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5786 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5787 size
, port
, &val
, 1);
5788 /* do not return to emulator after return from userspace */
5789 vcpu
->arch
.pio
.count
= 0;
5792 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5794 static int complete_fast_pio_in(struct kvm_vcpu
*vcpu
)
5798 /* We should only ever be called with arch.pio.count equal to 1 */
5799 BUG_ON(vcpu
->arch
.pio
.count
!= 1);
5801 /* For size less than 4 we merge, else we zero extend */
5802 val
= (vcpu
->arch
.pio
.size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
)
5806 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5807 * the copy and tracing
5809 emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, vcpu
->arch
.pio
.size
,
5810 vcpu
->arch
.pio
.port
, &val
, 1);
5811 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
5816 int kvm_fast_pio_in(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5821 /* For size less than 4 we merge, else we zero extend */
5822 val
= (size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
) : 0;
5824 ret
= emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, size
, port
,
5827 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
5831 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_in
;
5835 EXPORT_SYMBOL_GPL(kvm_fast_pio_in
);
5837 static int kvmclock_cpu_down_prep(unsigned int cpu
)
5839 __this_cpu_write(cpu_tsc_khz
, 0);
5843 static void tsc_khz_changed(void *data
)
5845 struct cpufreq_freqs
*freq
= data
;
5846 unsigned long khz
= 0;
5850 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5851 khz
= cpufreq_quick_get(raw_smp_processor_id());
5854 __this_cpu_write(cpu_tsc_khz
, khz
);
5857 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5860 struct cpufreq_freqs
*freq
= data
;
5862 struct kvm_vcpu
*vcpu
;
5863 int i
, send_ipi
= 0;
5866 * We allow guests to temporarily run on slowing clocks,
5867 * provided we notify them after, or to run on accelerating
5868 * clocks, provided we notify them before. Thus time never
5871 * However, we have a problem. We can't atomically update
5872 * the frequency of a given CPU from this function; it is
5873 * merely a notifier, which can be called from any CPU.
5874 * Changing the TSC frequency at arbitrary points in time
5875 * requires a recomputation of local variables related to
5876 * the TSC for each VCPU. We must flag these local variables
5877 * to be updated and be sure the update takes place with the
5878 * new frequency before any guests proceed.
5880 * Unfortunately, the combination of hotplug CPU and frequency
5881 * change creates an intractable locking scenario; the order
5882 * of when these callouts happen is undefined with respect to
5883 * CPU hotplug, and they can race with each other. As such,
5884 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5885 * undefined; you can actually have a CPU frequency change take
5886 * place in between the computation of X and the setting of the
5887 * variable. To protect against this problem, all updates of
5888 * the per_cpu tsc_khz variable are done in an interrupt
5889 * protected IPI, and all callers wishing to update the value
5890 * must wait for a synchronous IPI to complete (which is trivial
5891 * if the caller is on the CPU already). This establishes the
5892 * necessary total order on variable updates.
5894 * Note that because a guest time update may take place
5895 * anytime after the setting of the VCPU's request bit, the
5896 * correct TSC value must be set before the request. However,
5897 * to ensure the update actually makes it to any guest which
5898 * starts running in hardware virtualization between the set
5899 * and the acquisition of the spinlock, we must also ping the
5900 * CPU after setting the request bit.
5904 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5906 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5909 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5911 spin_lock(&kvm_lock
);
5912 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5913 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5914 if (vcpu
->cpu
!= freq
->cpu
)
5916 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5917 if (vcpu
->cpu
!= smp_processor_id())
5921 spin_unlock(&kvm_lock
);
5923 if (freq
->old
< freq
->new && send_ipi
) {
5925 * We upscale the frequency. Must make the guest
5926 * doesn't see old kvmclock values while running with
5927 * the new frequency, otherwise we risk the guest sees
5928 * time go backwards.
5930 * In case we update the frequency for another cpu
5931 * (which might be in guest context) send an interrupt
5932 * to kick the cpu out of guest context. Next time
5933 * guest context is entered kvmclock will be updated,
5934 * so the guest will not see stale values.
5936 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5941 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5942 .notifier_call
= kvmclock_cpufreq_notifier
5945 static int kvmclock_cpu_online(unsigned int cpu
)
5947 tsc_khz_changed(NULL
);
5951 static void kvm_timer_init(void)
5953 max_tsc_khz
= tsc_khz
;
5955 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5956 #ifdef CONFIG_CPU_FREQ
5957 struct cpufreq_policy policy
;
5960 memset(&policy
, 0, sizeof(policy
));
5962 cpufreq_get_policy(&policy
, cpu
);
5963 if (policy
.cpuinfo
.max_freq
)
5964 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5967 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5968 CPUFREQ_TRANSITION_NOTIFIER
);
5970 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5972 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "x86/kvm/clk:online",
5973 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
5976 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5978 int kvm_is_in_guest(void)
5980 return __this_cpu_read(current_vcpu
) != NULL
;
5983 static int kvm_is_user_mode(void)
5987 if (__this_cpu_read(current_vcpu
))
5988 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5990 return user_mode
!= 0;
5993 static unsigned long kvm_get_guest_ip(void)
5995 unsigned long ip
= 0;
5997 if (__this_cpu_read(current_vcpu
))
5998 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
6003 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
6004 .is_in_guest
= kvm_is_in_guest
,
6005 .is_user_mode
= kvm_is_user_mode
,
6006 .get_guest_ip
= kvm_get_guest_ip
,
6009 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
6011 __this_cpu_write(current_vcpu
, vcpu
);
6013 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
6015 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
6017 __this_cpu_write(current_vcpu
, NULL
);
6019 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
6021 static void kvm_set_mmio_spte_mask(void)
6024 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
6027 * Set the reserved bits and the present bit of an paging-structure
6028 * entry to generate page fault with PFER.RSV = 1.
6030 /* Mask the reserved physical address bits. */
6031 mask
= rsvd_bits(maxphyaddr
, 51);
6033 /* Set the present bit. */
6036 #ifdef CONFIG_X86_64
6038 * If reserved bit is not supported, clear the present bit to disable
6041 if (maxphyaddr
== 52)
6045 kvm_mmu_set_mmio_spte_mask(mask
);
6048 #ifdef CONFIG_X86_64
6049 static void pvclock_gtod_update_fn(struct work_struct
*work
)
6053 struct kvm_vcpu
*vcpu
;
6056 spin_lock(&kvm_lock
);
6057 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6058 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6059 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
6060 atomic_set(&kvm_guest_has_master_clock
, 0);
6061 spin_unlock(&kvm_lock
);
6064 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
6067 * Notification about pvclock gtod data update.
6069 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
6072 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
6073 struct timekeeper
*tk
= priv
;
6075 update_pvclock_gtod(tk
);
6077 /* disable master clock if host does not trust, or does not
6078 * use, TSC clocksource
6080 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
6081 atomic_read(&kvm_guest_has_master_clock
) != 0)
6082 queue_work(system_long_wq
, &pvclock_gtod_work
);
6087 static struct notifier_block pvclock_gtod_notifier
= {
6088 .notifier_call
= pvclock_gtod_notify
,
6092 int kvm_arch_init(void *opaque
)
6095 struct kvm_x86_ops
*ops
= opaque
;
6098 printk(KERN_ERR
"kvm: already loaded the other module\n");
6103 if (!ops
->cpu_has_kvm_support()) {
6104 printk(KERN_ERR
"kvm: no hardware support\n");
6108 if (ops
->disabled_by_bios()) {
6109 printk(KERN_ERR
"kvm: disabled by bios\n");
6115 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
6117 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
6121 r
= kvm_mmu_module_init();
6123 goto out_free_percpu
;
6125 kvm_set_mmio_spte_mask();
6129 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
6130 PT_DIRTY_MASK
, PT64_NX_MASK
, 0,
6131 PT_PRESENT_MASK
, 0);
6134 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
6136 if (boot_cpu_has(X86_FEATURE_XSAVE
))
6137 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
6140 #ifdef CONFIG_X86_64
6141 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
6147 free_percpu(shared_msrs
);
6152 void kvm_arch_exit(void)
6155 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
6157 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6158 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
6159 CPUFREQ_TRANSITION_NOTIFIER
);
6160 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
6161 #ifdef CONFIG_X86_64
6162 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
6165 kvm_mmu_module_exit();
6166 free_percpu(shared_msrs
);
6169 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
6171 ++vcpu
->stat
.halt_exits
;
6172 if (lapic_in_kernel(vcpu
)) {
6173 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
6176 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
6180 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
6182 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
6184 int ret
= kvm_skip_emulated_instruction(vcpu
);
6186 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6187 * KVM_EXIT_DEBUG here.
6189 return kvm_vcpu_halt(vcpu
) && ret
;
6191 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
6193 #ifdef CONFIG_X86_64
6194 static int kvm_pv_clock_pairing(struct kvm_vcpu
*vcpu
, gpa_t paddr
,
6195 unsigned long clock_type
)
6197 struct kvm_clock_pairing clock_pairing
;
6202 if (clock_type
!= KVM_CLOCK_PAIRING_WALLCLOCK
)
6203 return -KVM_EOPNOTSUPP
;
6205 if (kvm_get_walltime_and_clockread(&ts
, &cycle
) == false)
6206 return -KVM_EOPNOTSUPP
;
6208 clock_pairing
.sec
= ts
.tv_sec
;
6209 clock_pairing
.nsec
= ts
.tv_nsec
;
6210 clock_pairing
.tsc
= kvm_read_l1_tsc(vcpu
, cycle
);
6211 clock_pairing
.flags
= 0;
6214 if (kvm_write_guest(vcpu
->kvm
, paddr
, &clock_pairing
,
6215 sizeof(struct kvm_clock_pairing
)))
6223 * kvm_pv_kick_cpu_op: Kick a vcpu.
6225 * @apicid - apicid of vcpu to be kicked.
6227 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
6229 struct kvm_lapic_irq lapic_irq
;
6231 lapic_irq
.shorthand
= 0;
6232 lapic_irq
.dest_mode
= 0;
6233 lapic_irq
.dest_id
= apicid
;
6234 lapic_irq
.msi_redir_hint
= false;
6236 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
6237 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
6240 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
6242 vcpu
->arch
.apicv_active
= false;
6243 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
6246 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
6248 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
6251 r
= kvm_skip_emulated_instruction(vcpu
);
6253 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
6254 return kvm_hv_hypercall(vcpu
);
6256 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6257 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6258 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6259 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6260 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6262 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
6264 op_64_bit
= is_64_bit_mode(vcpu
);
6273 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
6279 case KVM_HC_VAPIC_POLL_IRQ
:
6282 case KVM_HC_KICK_CPU
:
6283 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6286 #ifdef CONFIG_X86_64
6287 case KVM_HC_CLOCK_PAIRING
:
6288 ret
= kvm_pv_clock_pairing(vcpu
, a0
, a1
);
6298 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
6299 ++vcpu
->stat
.hypercalls
;
6302 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
6304 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
6306 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6307 char instruction
[3];
6308 unsigned long rip
= kvm_rip_read(vcpu
);
6310 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6312 return emulator_write_emulated(ctxt
, rip
, instruction
, 3,
6316 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6318 return vcpu
->run
->request_interrupt_window
&&
6319 likely(!pic_in_kernel(vcpu
->kvm
));
6322 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6324 struct kvm_run
*kvm_run
= vcpu
->run
;
6326 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6327 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
6328 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6329 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6330 kvm_run
->ready_for_interrupt_injection
=
6331 pic_in_kernel(vcpu
->kvm
) ||
6332 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
6335 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6339 if (!kvm_x86_ops
->update_cr8_intercept
)
6342 if (!lapic_in_kernel(vcpu
))
6345 if (vcpu
->arch
.apicv_active
)
6348 if (!vcpu
->arch
.apic
->vapic_addr
)
6349 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6356 tpr
= kvm_lapic_get_cr8(vcpu
);
6358 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6361 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6365 /* try to reinject previous events if any */
6366 if (vcpu
->arch
.exception
.pending
) {
6367 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6368 vcpu
->arch
.exception
.has_error_code
,
6369 vcpu
->arch
.exception
.error_code
);
6371 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6372 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6375 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6376 (vcpu
->arch
.dr7
& DR7_GD
)) {
6377 vcpu
->arch
.dr7
&= ~DR7_GD
;
6378 kvm_update_dr7(vcpu
);
6381 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
6382 vcpu
->arch
.exception
.has_error_code
,
6383 vcpu
->arch
.exception
.error_code
,
6384 vcpu
->arch
.exception
.reinject
);
6388 if (vcpu
->arch
.nmi_injected
) {
6389 kvm_x86_ops
->set_nmi(vcpu
);
6393 if (vcpu
->arch
.interrupt
.pending
) {
6394 kvm_x86_ops
->set_irq(vcpu
);
6398 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6399 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6404 /* try to inject new event if pending */
6405 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)) {
6406 vcpu
->arch
.smi_pending
= false;
6408 } else if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
6409 --vcpu
->arch
.nmi_pending
;
6410 vcpu
->arch
.nmi_injected
= true;
6411 kvm_x86_ops
->set_nmi(vcpu
);
6412 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6414 * Because interrupts can be injected asynchronously, we are
6415 * calling check_nested_events again here to avoid a race condition.
6416 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6417 * proposal and current concerns. Perhaps we should be setting
6418 * KVM_REQ_EVENT only on certain events and not unconditionally?
6420 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6421 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6425 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6426 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6428 kvm_x86_ops
->set_irq(vcpu
);
6435 static void process_nmi(struct kvm_vcpu
*vcpu
)
6440 * x86 is limited to one NMI running, and one NMI pending after it.
6441 * If an NMI is already in progress, limit further NMIs to just one.
6442 * Otherwise, allow two (and we'll inject the first one immediately).
6444 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6447 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6448 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6449 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6452 #define put_smstate(type, buf, offset, val) \
6453 *(type *)((buf) + (offset) - 0x7e00) = val
6455 static u32
enter_smm_get_segment_flags(struct kvm_segment
*seg
)
6458 flags
|= seg
->g
<< 23;
6459 flags
|= seg
->db
<< 22;
6460 flags
|= seg
->l
<< 21;
6461 flags
|= seg
->avl
<< 20;
6462 flags
|= seg
->present
<< 15;
6463 flags
|= seg
->dpl
<< 13;
6464 flags
|= seg
->s
<< 12;
6465 flags
|= seg
->type
<< 8;
6469 static void enter_smm_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6471 struct kvm_segment seg
;
6474 kvm_get_segment(vcpu
, &seg
, n
);
6475 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6478 offset
= 0x7f84 + n
* 12;
6480 offset
= 0x7f2c + (n
- 3) * 12;
6482 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
6483 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6484 put_smstate(u32
, buf
, offset
, enter_smm_get_segment_flags(&seg
));
6487 #ifdef CONFIG_X86_64
6488 static void enter_smm_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6490 struct kvm_segment seg
;
6494 kvm_get_segment(vcpu
, &seg
, n
);
6495 offset
= 0x7e00 + n
* 16;
6497 flags
= enter_smm_get_segment_flags(&seg
) >> 8;
6498 put_smstate(u16
, buf
, offset
, seg
.selector
);
6499 put_smstate(u16
, buf
, offset
+ 2, flags
);
6500 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6501 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
6505 static void enter_smm_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
6508 struct kvm_segment seg
;
6512 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
6513 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
6514 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
6515 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
6517 for (i
= 0; i
< 8; i
++)
6518 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
6520 kvm_get_dr(vcpu
, 6, &val
);
6521 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
6522 kvm_get_dr(vcpu
, 7, &val
);
6523 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
6525 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6526 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
6527 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
6528 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
6529 put_smstate(u32
, buf
, 0x7f5c, enter_smm_get_segment_flags(&seg
));
6531 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6532 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
6533 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
6534 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
6535 put_smstate(u32
, buf
, 0x7f78, enter_smm_get_segment_flags(&seg
));
6537 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6538 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
6539 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
6541 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6542 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
6543 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
6545 for (i
= 0; i
< 6; i
++)
6546 enter_smm_save_seg_32(vcpu
, buf
, i
);
6548 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
6551 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
6552 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
6555 static void enter_smm_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
6557 #ifdef CONFIG_X86_64
6559 struct kvm_segment seg
;
6563 for (i
= 0; i
< 16; i
++)
6564 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
6566 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
6567 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
6569 kvm_get_dr(vcpu
, 6, &val
);
6570 put_smstate(u64
, buf
, 0x7f68, val
);
6571 kvm_get_dr(vcpu
, 7, &val
);
6572 put_smstate(u64
, buf
, 0x7f60, val
);
6574 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
6575 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
6576 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
6578 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
6581 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
6583 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
6585 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6586 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
6587 put_smstate(u16
, buf
, 0x7e92, enter_smm_get_segment_flags(&seg
) >> 8);
6588 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
6589 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
6591 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6592 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
6593 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
6595 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6596 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
6597 put_smstate(u16
, buf
, 0x7e72, enter_smm_get_segment_flags(&seg
) >> 8);
6598 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
6599 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
6601 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6602 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
6603 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
6605 for (i
= 0; i
< 6; i
++)
6606 enter_smm_save_seg_64(vcpu
, buf
, i
);
6612 static void enter_smm(struct kvm_vcpu
*vcpu
)
6614 struct kvm_segment cs
, ds
;
6619 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
6620 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6621 memset(buf
, 0, 512);
6622 if (guest_cpuid_has_longmode(vcpu
))
6623 enter_smm_save_state_64(vcpu
, buf
);
6625 enter_smm_save_state_32(vcpu
, buf
);
6627 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
6629 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
6630 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
6632 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
6634 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6635 kvm_rip_write(vcpu
, 0x8000);
6637 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
6638 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
6639 vcpu
->arch
.cr0
= cr0
;
6641 kvm_x86_ops
->set_cr4(vcpu
, 0);
6643 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6644 dt
.address
= dt
.size
= 0;
6645 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6647 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
6649 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
6650 cs
.base
= vcpu
->arch
.smbase
;
6655 cs
.limit
= ds
.limit
= 0xffffffff;
6656 cs
.type
= ds
.type
= 0x3;
6657 cs
.dpl
= ds
.dpl
= 0;
6662 cs
.avl
= ds
.avl
= 0;
6663 cs
.present
= ds
.present
= 1;
6664 cs
.unusable
= ds
.unusable
= 0;
6665 cs
.padding
= ds
.padding
= 0;
6667 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6668 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
6669 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
6670 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
6671 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
6672 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
6674 if (guest_cpuid_has_longmode(vcpu
))
6675 kvm_x86_ops
->set_efer(vcpu
, 0);
6677 kvm_update_cpuid(vcpu
);
6678 kvm_mmu_reset_context(vcpu
);
6681 static void process_smi(struct kvm_vcpu
*vcpu
)
6683 vcpu
->arch
.smi_pending
= true;
6684 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6687 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
6689 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
6692 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6694 u64 eoi_exit_bitmap
[4];
6696 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6699 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
6701 if (irqchip_split(vcpu
->kvm
))
6702 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6704 if (kvm_x86_ops
->sync_pir_to_irr
&& vcpu
->arch
.apicv_active
)
6705 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6706 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6708 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
6709 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
6710 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6713 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6715 ++vcpu
->stat
.tlb_flush
;
6716 kvm_x86_ops
->tlb_flush(vcpu
);
6719 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6721 struct page
*page
= NULL
;
6723 if (!lapic_in_kernel(vcpu
))
6726 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6729 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6730 if (is_error_page(page
))
6732 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6735 * Do not pin apic access page in memory, the MMU notifier
6736 * will call us again if it is migrated or swapped out.
6740 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6742 void kvm_arch_mmu_notifier_invalidate_page(struct kvm
*kvm
,
6743 unsigned long address
)
6746 * The physical address of apic access page is stored in the VMCS.
6747 * Update it when it becomes invalid.
6749 if (address
== gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
))
6750 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6754 * Returns 1 to let vcpu_run() continue the guest execution loop without
6755 * exiting to the userspace. Otherwise, the value will be returned to the
6758 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6762 dm_request_for_irq_injection(vcpu
) &&
6763 kvm_cpu_accept_dm_intr(vcpu
);
6765 bool req_immediate_exit
= false;
6767 if (vcpu
->requests
) {
6768 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6769 kvm_mmu_unload(vcpu
);
6770 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6771 __kvm_migrate_timers(vcpu
);
6772 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6773 kvm_gen_update_masterclock(vcpu
->kvm
);
6774 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6775 kvm_gen_kvmclock_update(vcpu
);
6776 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6777 r
= kvm_guest_time_update(vcpu
);
6781 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6782 kvm_mmu_sync_roots(vcpu
);
6783 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6784 kvm_vcpu_flush_tlb(vcpu
);
6785 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6786 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6790 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6791 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6795 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6796 /* Page is swapped out. Do synthetic halt */
6797 vcpu
->arch
.apf
.halted
= true;
6801 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6802 record_steal_time(vcpu
);
6803 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
6805 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6807 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6808 kvm_pmu_handle_event(vcpu
);
6809 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6810 kvm_pmu_deliver_pmi(vcpu
);
6811 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
6812 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
6813 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
6814 vcpu
->arch
.ioapic_handled_vectors
)) {
6815 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
6816 vcpu
->run
->eoi
.vector
=
6817 vcpu
->arch
.pending_ioapic_eoi
;
6822 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6823 vcpu_scan_ioapic(vcpu
);
6824 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6825 kvm_vcpu_reload_apic_access_page(vcpu
);
6826 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
6827 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6828 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
6832 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
6833 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6834 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
6838 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
6839 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
6840 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
6846 * KVM_REQ_HV_STIMER has to be processed after
6847 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6848 * depend on the guest clock being up-to-date
6850 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
6851 kvm_hv_process_stimers(vcpu
);
6854 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6855 ++vcpu
->stat
.req_event
;
6856 kvm_apic_accept_events(vcpu
);
6857 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6862 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6863 req_immediate_exit
= true;
6865 /* Enable NMI/IRQ window open exits if needed.
6867 * SMIs have two cases: 1) they can be nested, and
6868 * then there is nothing to do here because RSM will
6869 * cause a vmexit anyway; 2) or the SMI can be pending
6870 * because inject_pending_event has completed the
6871 * injection of an IRQ or NMI from the previous vmexit,
6872 * and then we request an immediate exit to inject the SMI.
6874 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
))
6875 req_immediate_exit
= true;
6876 if (vcpu
->arch
.nmi_pending
)
6877 kvm_x86_ops
->enable_nmi_window(vcpu
);
6878 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6879 kvm_x86_ops
->enable_irq_window(vcpu
);
6882 if (kvm_lapic_enabled(vcpu
)) {
6883 update_cr8_intercept(vcpu
);
6884 kvm_lapic_sync_to_vapic(vcpu
);
6888 r
= kvm_mmu_reload(vcpu
);
6890 goto cancel_injection
;
6895 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6896 kvm_load_guest_fpu(vcpu
);
6899 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6900 * IPI are then delayed after guest entry, which ensures that they
6901 * result in virtual interrupt delivery.
6903 local_irq_disable();
6904 vcpu
->mode
= IN_GUEST_MODE
;
6906 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6909 * 1) We should set ->mode before checking ->requests. Please see
6910 * the comment in kvm_make_all_cpus_request.
6912 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6913 * pairs with the memory barrier implicit in pi_test_and_set_on
6914 * (see vmx_deliver_posted_interrupt).
6916 * 3) This also orders the write to mode from any reads to the page
6917 * tables done while the VCPU is running. Please see the comment
6918 * in kvm_flush_remote_tlbs.
6920 smp_mb__after_srcu_read_unlock();
6923 * This handles the case where a posted interrupt was
6924 * notified with kvm_vcpu_kick.
6926 if (kvm_lapic_enabled(vcpu
)) {
6927 if (kvm_x86_ops
->sync_pir_to_irr
&& vcpu
->arch
.apicv_active
)
6928 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6931 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6932 || need_resched() || signal_pending(current
)) {
6933 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6937 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6939 goto cancel_injection
;
6942 kvm_load_guest_xcr0(vcpu
);
6944 if (req_immediate_exit
) {
6945 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6946 smp_send_reschedule(vcpu
->cpu
);
6949 trace_kvm_entry(vcpu
->vcpu_id
);
6950 wait_lapic_expire(vcpu
);
6951 guest_enter_irqoff();
6953 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6955 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6956 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6957 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6958 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6959 set_debugreg(vcpu
->arch
.dr6
, 6);
6960 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6963 kvm_x86_ops
->run(vcpu
);
6966 * Do this here before restoring debug registers on the host. And
6967 * since we do this before handling the vmexit, a DR access vmexit
6968 * can (a) read the correct value of the debug registers, (b) set
6969 * KVM_DEBUGREG_WONT_EXIT again.
6971 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6972 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6973 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6974 kvm_update_dr0123(vcpu
);
6975 kvm_update_dr6(vcpu
);
6976 kvm_update_dr7(vcpu
);
6977 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6981 * If the guest has used debug registers, at least dr7
6982 * will be disabled while returning to the host.
6983 * If we don't have active breakpoints in the host, we don't
6984 * care about the messed up debug address registers. But if
6985 * we have some of them active, restore the old state.
6987 if (hw_breakpoint_active())
6988 hw_breakpoint_restore();
6990 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
6992 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6995 kvm_put_guest_xcr0(vcpu
);
6997 kvm_x86_ops
->handle_external_intr(vcpu
);
7001 guest_exit_irqoff();
7006 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7009 * Profile KVM exit RIPs:
7011 if (unlikely(prof_on
== KVM_PROFILING
)) {
7012 unsigned long rip
= kvm_rip_read(vcpu
);
7013 profile_hit(KVM_PROFILING
, (void *)rip
);
7016 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
7017 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7019 if (vcpu
->arch
.apic_attention
)
7020 kvm_lapic_sync_from_vapic(vcpu
);
7022 r
= kvm_x86_ops
->handle_exit(vcpu
);
7026 kvm_x86_ops
->cancel_injection(vcpu
);
7027 if (unlikely(vcpu
->arch
.apic_attention
))
7028 kvm_lapic_sync_from_vapic(vcpu
);
7033 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
7035 if (!kvm_arch_vcpu_runnable(vcpu
) &&
7036 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
7037 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7038 kvm_vcpu_block(vcpu
);
7039 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7041 if (kvm_x86_ops
->post_block
)
7042 kvm_x86_ops
->post_block(vcpu
);
7044 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
7048 kvm_apic_accept_events(vcpu
);
7049 switch(vcpu
->arch
.mp_state
) {
7050 case KVM_MP_STATE_HALTED
:
7051 vcpu
->arch
.pv
.pv_unhalted
= false;
7052 vcpu
->arch
.mp_state
=
7053 KVM_MP_STATE_RUNNABLE
;
7054 case KVM_MP_STATE_RUNNABLE
:
7055 vcpu
->arch
.apf
.halted
= false;
7057 case KVM_MP_STATE_INIT_RECEIVED
:
7066 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
7068 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
7069 kvm_x86_ops
->check_nested_events(vcpu
, false);
7071 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7072 !vcpu
->arch
.apf
.halted
);
7075 static int vcpu_run(struct kvm_vcpu
*vcpu
)
7078 struct kvm
*kvm
= vcpu
->kvm
;
7080 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7083 if (kvm_vcpu_running(vcpu
)) {
7084 r
= vcpu_enter_guest(vcpu
);
7086 r
= vcpu_block(kvm
, vcpu
);
7092 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
7093 if (kvm_cpu_has_pending_timer(vcpu
))
7094 kvm_inject_pending_timer_irqs(vcpu
);
7096 if (dm_request_for_irq_injection(vcpu
) &&
7097 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
7099 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
7100 ++vcpu
->stat
.request_irq_exits
;
7104 kvm_check_async_pf_completion(vcpu
);
7106 if (signal_pending(current
)) {
7108 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
7109 ++vcpu
->stat
.signal_exits
;
7112 if (need_resched()) {
7113 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7115 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7119 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7124 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
7127 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7128 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
7129 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
7130 if (r
!= EMULATE_DONE
)
7135 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
7137 BUG_ON(!vcpu
->arch
.pio
.count
);
7139 return complete_emulated_io(vcpu
);
7143 * Implements the following, as a state machine:
7147 * for each mmio piece in the fragment
7155 * for each mmio piece in the fragment
7160 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
7162 struct kvm_run
*run
= vcpu
->run
;
7163 struct kvm_mmio_fragment
*frag
;
7166 BUG_ON(!vcpu
->mmio_needed
);
7168 /* Complete previous fragment */
7169 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
7170 len
= min(8u, frag
->len
);
7171 if (!vcpu
->mmio_is_write
)
7172 memcpy(frag
->data
, run
->mmio
.data
, len
);
7174 if (frag
->len
<= 8) {
7175 /* Switch to the next fragment. */
7177 vcpu
->mmio_cur_fragment
++;
7179 /* Go forward to the next mmio piece. */
7185 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
7186 vcpu
->mmio_needed
= 0;
7188 /* FIXME: return into emulator if single-stepping. */
7189 if (vcpu
->mmio_is_write
)
7191 vcpu
->mmio_read_completed
= 1;
7192 return complete_emulated_io(vcpu
);
7195 run
->exit_reason
= KVM_EXIT_MMIO
;
7196 run
->mmio
.phys_addr
= frag
->gpa
;
7197 if (vcpu
->mmio_is_write
)
7198 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
7199 run
->mmio
.len
= min(8u, frag
->len
);
7200 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
7201 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
7206 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
7208 struct fpu
*fpu
= ¤t
->thread
.fpu
;
7212 fpu__activate_curr(fpu
);
7214 if (vcpu
->sigset_active
)
7215 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
7217 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
7218 kvm_vcpu_block(vcpu
);
7219 kvm_apic_accept_events(vcpu
);
7220 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
7225 /* re-sync apic's tpr */
7226 if (!lapic_in_kernel(vcpu
)) {
7227 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
7233 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
7234 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
7235 vcpu
->arch
.complete_userspace_io
= NULL
;
7240 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
7242 if (kvm_run
->immediate_exit
)
7248 post_kvm_run_save(vcpu
);
7249 if (vcpu
->sigset_active
)
7250 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
7255 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7257 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
7259 * We are here if userspace calls get_regs() in the middle of
7260 * instruction emulation. Registers state needs to be copied
7261 * back from emulation context to vcpu. Userspace shouldn't do
7262 * that usually, but some bad designed PV devices (vmware
7263 * backdoor interface) need this to work
7265 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
7266 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7268 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
7269 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
7270 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
7271 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
7272 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
7273 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
7274 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
7275 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
7276 #ifdef CONFIG_X86_64
7277 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
7278 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
7279 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
7280 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
7281 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
7282 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
7283 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
7284 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
7287 regs
->rip
= kvm_rip_read(vcpu
);
7288 regs
->rflags
= kvm_get_rflags(vcpu
);
7293 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7295 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
7296 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7298 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
7299 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
7300 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
7301 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
7302 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
7303 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
7304 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
7305 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
7306 #ifdef CONFIG_X86_64
7307 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
7308 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
7309 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
7310 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
7311 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
7312 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
7313 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
7314 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
7317 kvm_rip_write(vcpu
, regs
->rip
);
7318 kvm_set_rflags(vcpu
, regs
->rflags
);
7320 vcpu
->arch
.exception
.pending
= false;
7322 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7327 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
7329 struct kvm_segment cs
;
7331 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7335 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
7337 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
7338 struct kvm_sregs
*sregs
)
7342 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7343 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7344 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7345 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7346 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7347 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7349 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7350 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7352 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7353 sregs
->idt
.limit
= dt
.size
;
7354 sregs
->idt
.base
= dt
.address
;
7355 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7356 sregs
->gdt
.limit
= dt
.size
;
7357 sregs
->gdt
.base
= dt
.address
;
7359 sregs
->cr0
= kvm_read_cr0(vcpu
);
7360 sregs
->cr2
= vcpu
->arch
.cr2
;
7361 sregs
->cr3
= kvm_read_cr3(vcpu
);
7362 sregs
->cr4
= kvm_read_cr4(vcpu
);
7363 sregs
->cr8
= kvm_get_cr8(vcpu
);
7364 sregs
->efer
= vcpu
->arch
.efer
;
7365 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
7367 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
7369 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
7370 set_bit(vcpu
->arch
.interrupt
.nr
,
7371 (unsigned long *)sregs
->interrupt_bitmap
);
7376 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
7377 struct kvm_mp_state
*mp_state
)
7379 kvm_apic_accept_events(vcpu
);
7380 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
7381 vcpu
->arch
.pv
.pv_unhalted
)
7382 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
7384 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
7389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
7390 struct kvm_mp_state
*mp_state
)
7392 if (!lapic_in_kernel(vcpu
) &&
7393 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
7396 /* INITs are latched while in SMM */
7397 if ((is_smm(vcpu
) || vcpu
->arch
.smi_pending
) &&
7398 (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
||
7399 mp_state
->mp_state
== KVM_MP_STATE_INIT_RECEIVED
))
7402 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
7403 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
7404 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
7406 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
7407 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7411 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
7412 int reason
, bool has_error_code
, u32 error_code
)
7414 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
7417 init_emulate_ctxt(vcpu
);
7419 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
7420 has_error_code
, error_code
);
7423 return EMULATE_FAIL
;
7425 kvm_rip_write(vcpu
, ctxt
->eip
);
7426 kvm_set_rflags(vcpu
, ctxt
->eflags
);
7427 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7428 return EMULATE_DONE
;
7430 EXPORT_SYMBOL_GPL(kvm_task_switch
);
7432 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
7433 struct kvm_sregs
*sregs
)
7435 struct msr_data apic_base_msr
;
7436 int mmu_reset_needed
= 0;
7437 int pending_vec
, max_bits
, idx
;
7440 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
7443 dt
.size
= sregs
->idt
.limit
;
7444 dt
.address
= sregs
->idt
.base
;
7445 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7446 dt
.size
= sregs
->gdt
.limit
;
7447 dt
.address
= sregs
->gdt
.base
;
7448 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
7450 vcpu
->arch
.cr2
= sregs
->cr2
;
7451 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
7452 vcpu
->arch
.cr3
= sregs
->cr3
;
7453 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
7455 kvm_set_cr8(vcpu
, sregs
->cr8
);
7457 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
7458 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
7459 apic_base_msr
.data
= sregs
->apic_base
;
7460 apic_base_msr
.host_initiated
= true;
7461 kvm_set_apic_base(vcpu
, &apic_base_msr
);
7463 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
7464 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
7465 vcpu
->arch
.cr0
= sregs
->cr0
;
7467 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
7468 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
7469 if (sregs
->cr4
& (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
7470 kvm_update_cpuid(vcpu
);
7472 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7473 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
7474 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
7475 mmu_reset_needed
= 1;
7477 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7479 if (mmu_reset_needed
)
7480 kvm_mmu_reset_context(vcpu
);
7482 max_bits
= KVM_NR_INTERRUPTS
;
7483 pending_vec
= find_first_bit(
7484 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
7485 if (pending_vec
< max_bits
) {
7486 kvm_queue_interrupt(vcpu
, pending_vec
, false);
7487 pr_debug("Set back pending irq %d\n", pending_vec
);
7490 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7491 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7492 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7493 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7494 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7495 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7497 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7498 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7500 update_cr8_intercept(vcpu
);
7502 /* Older userspace won't unhalt the vcpu on reset. */
7503 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
7504 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
7506 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7508 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7513 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
7514 struct kvm_guest_debug
*dbg
)
7516 unsigned long rflags
;
7519 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
7521 if (vcpu
->arch
.exception
.pending
)
7523 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
7524 kvm_queue_exception(vcpu
, DB_VECTOR
);
7526 kvm_queue_exception(vcpu
, BP_VECTOR
);
7530 * Read rflags as long as potentially injected trace flags are still
7533 rflags
= kvm_get_rflags(vcpu
);
7535 vcpu
->guest_debug
= dbg
->control
;
7536 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
7537 vcpu
->guest_debug
= 0;
7539 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7540 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
7541 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
7542 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
7544 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
7545 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
7547 kvm_update_dr7(vcpu
);
7549 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7550 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
7551 get_segment_base(vcpu
, VCPU_SREG_CS
);
7554 * Trigger an rflags update that will inject or remove the trace
7557 kvm_set_rflags(vcpu
, rflags
);
7559 kvm_x86_ops
->update_bp_intercept(vcpu
);
7569 * Translate a guest virtual address to a guest physical address.
7571 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
7572 struct kvm_translation
*tr
)
7574 unsigned long vaddr
= tr
->linear_address
;
7578 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7579 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
7580 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7581 tr
->physical_address
= gpa
;
7582 tr
->valid
= gpa
!= UNMAPPED_GVA
;
7589 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7591 struct fxregs_state
*fxsave
=
7592 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7594 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
7595 fpu
->fcw
= fxsave
->cwd
;
7596 fpu
->fsw
= fxsave
->swd
;
7597 fpu
->ftwx
= fxsave
->twd
;
7598 fpu
->last_opcode
= fxsave
->fop
;
7599 fpu
->last_ip
= fxsave
->rip
;
7600 fpu
->last_dp
= fxsave
->rdp
;
7601 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
7606 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7608 struct fxregs_state
*fxsave
=
7609 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7611 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
7612 fxsave
->cwd
= fpu
->fcw
;
7613 fxsave
->swd
= fpu
->fsw
;
7614 fxsave
->twd
= fpu
->ftwx
;
7615 fxsave
->fop
= fpu
->last_opcode
;
7616 fxsave
->rip
= fpu
->last_ip
;
7617 fxsave
->rdp
= fpu
->last_dp
;
7618 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7623 static void fx_init(struct kvm_vcpu
*vcpu
)
7625 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
7626 if (boot_cpu_has(X86_FEATURE_XSAVES
))
7627 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
7628 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7631 * Ensure guest xcr0 is valid for loading
7633 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
7635 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7638 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7640 if (vcpu
->guest_fpu_loaded
)
7644 * Restore all possible states in the guest,
7645 * and assume host would use all available bits.
7646 * Guest xcr0 would be loaded later.
7648 vcpu
->guest_fpu_loaded
= 1;
7649 __kernel_fpu_begin();
7650 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
);
7654 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7656 if (!vcpu
->guest_fpu_loaded
)
7659 vcpu
->guest_fpu_loaded
= 0;
7660 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
7662 ++vcpu
->stat
.fpu_reload
;
7666 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7668 void *wbinvd_dirty_mask
= vcpu
->arch
.wbinvd_dirty_mask
;
7670 kvmclock_reset(vcpu
);
7672 kvm_x86_ops
->vcpu_free(vcpu
);
7673 free_cpumask_var(wbinvd_dirty_mask
);
7676 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7679 struct kvm_vcpu
*vcpu
;
7681 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7682 printk_once(KERN_WARNING
7683 "kvm: SMP vm created on host with unstable TSC; "
7684 "guest TSC will not be reliable\n");
7686 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7691 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7695 kvm_vcpu_mtrr_init(vcpu
);
7696 r
= vcpu_load(vcpu
);
7699 kvm_vcpu_reset(vcpu
, false);
7700 kvm_mmu_setup(vcpu
);
7705 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7707 struct msr_data msr
;
7708 struct kvm
*kvm
= vcpu
->kvm
;
7710 if (vcpu_load(vcpu
))
7713 msr
.index
= MSR_IA32_TSC
;
7714 msr
.host_initiated
= true;
7715 kvm_write_tsc(vcpu
, &msr
);
7718 if (!kvmclock_periodic_sync
)
7721 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7722 KVMCLOCK_SYNC_PERIOD
);
7725 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7728 vcpu
->arch
.apf
.msr_val
= 0;
7730 r
= vcpu_load(vcpu
);
7732 kvm_mmu_unload(vcpu
);
7735 kvm_x86_ops
->vcpu_free(vcpu
);
7738 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
7740 vcpu
->arch
.hflags
= 0;
7742 vcpu
->arch
.smi_pending
= 0;
7743 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7744 vcpu
->arch
.nmi_pending
= 0;
7745 vcpu
->arch
.nmi_injected
= false;
7746 kvm_clear_interrupt_queue(vcpu
);
7747 kvm_clear_exception_queue(vcpu
);
7749 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7750 kvm_update_dr0123(vcpu
);
7751 vcpu
->arch
.dr6
= DR6_INIT
;
7752 kvm_update_dr6(vcpu
);
7753 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7754 kvm_update_dr7(vcpu
);
7758 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7759 vcpu
->arch
.apf
.msr_val
= 0;
7760 vcpu
->arch
.st
.msr_val
= 0;
7762 kvmclock_reset(vcpu
);
7764 kvm_clear_async_pf_completion_queue(vcpu
);
7765 kvm_async_pf_hash_reset(vcpu
);
7766 vcpu
->arch
.apf
.halted
= false;
7769 kvm_pmu_reset(vcpu
);
7770 vcpu
->arch
.smbase
= 0x30000;
7773 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7774 vcpu
->arch
.regs_avail
= ~0;
7775 vcpu
->arch
.regs_dirty
= ~0;
7777 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
7780 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7782 struct kvm_segment cs
;
7784 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7785 cs
.selector
= vector
<< 8;
7786 cs
.base
= vector
<< 12;
7787 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7788 kvm_rip_write(vcpu
, 0);
7791 int kvm_arch_hardware_enable(void)
7794 struct kvm_vcpu
*vcpu
;
7799 bool stable
, backwards_tsc
= false;
7801 kvm_shared_msr_cpu_online();
7802 ret
= kvm_x86_ops
->hardware_enable();
7806 local_tsc
= rdtsc();
7807 stable
= !check_tsc_unstable();
7808 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7809 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7810 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7811 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7812 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7813 backwards_tsc
= true;
7814 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7815 max_tsc
= vcpu
->arch
.last_host_tsc
;
7821 * Sometimes, even reliable TSCs go backwards. This happens on
7822 * platforms that reset TSC during suspend or hibernate actions, but
7823 * maintain synchronization. We must compensate. Fortunately, we can
7824 * detect that condition here, which happens early in CPU bringup,
7825 * before any KVM threads can be running. Unfortunately, we can't
7826 * bring the TSCs fully up to date with real time, as we aren't yet far
7827 * enough into CPU bringup that we know how much real time has actually
7828 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7829 * variables that haven't been updated yet.
7831 * So we simply find the maximum observed TSC above, then record the
7832 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7833 * the adjustment will be applied. Note that we accumulate
7834 * adjustments, in case multiple suspend cycles happen before some VCPU
7835 * gets a chance to run again. In the event that no KVM threads get a
7836 * chance to run, we will miss the entire elapsed period, as we'll have
7837 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7838 * loose cycle time. This isn't too big a deal, since the loss will be
7839 * uniform across all VCPUs (not to mention the scenario is extremely
7840 * unlikely). It is possible that a second hibernate recovery happens
7841 * much faster than a first, causing the observed TSC here to be
7842 * smaller; this would require additional padding adjustment, which is
7843 * why we set last_host_tsc to the local tsc observed here.
7845 * N.B. - this code below runs only on platforms with reliable TSC,
7846 * as that is the only way backwards_tsc is set above. Also note
7847 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7848 * have the same delta_cyc adjustment applied if backwards_tsc
7849 * is detected. Note further, this adjustment is only done once,
7850 * as we reset last_host_tsc on all VCPUs to stop this from being
7851 * called multiple times (one for each physical CPU bringup).
7853 * Platforms with unreliable TSCs don't have to deal with this, they
7854 * will be compensated by the logic in vcpu_load, which sets the TSC to
7855 * catchup mode. This will catchup all VCPUs to real time, but cannot
7856 * guarantee that they stay in perfect synchronization.
7858 if (backwards_tsc
) {
7859 u64 delta_cyc
= max_tsc
- local_tsc
;
7860 backwards_tsc_observed
= true;
7861 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7862 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7863 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7864 vcpu
->arch
.last_host_tsc
= local_tsc
;
7865 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7869 * We have to disable TSC offset matching.. if you were
7870 * booting a VM while issuing an S4 host suspend....
7871 * you may have some problem. Solving this issue is
7872 * left as an exercise to the reader.
7874 kvm
->arch
.last_tsc_nsec
= 0;
7875 kvm
->arch
.last_tsc_write
= 0;
7882 void kvm_arch_hardware_disable(void)
7884 kvm_x86_ops
->hardware_disable();
7885 drop_user_return_notifiers();
7888 int kvm_arch_hardware_setup(void)
7892 r
= kvm_x86_ops
->hardware_setup();
7896 if (kvm_has_tsc_control
) {
7898 * Make sure the user can only configure tsc_khz values that
7899 * fit into a signed integer.
7900 * A min value is not calculated needed because it will always
7901 * be 1 on all machines.
7903 u64 max
= min(0x7fffffffULL
,
7904 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
7905 kvm_max_guest_tsc_khz
= max
;
7907 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
7910 kvm_init_msr_list();
7914 void kvm_arch_hardware_unsetup(void)
7916 kvm_x86_ops
->hardware_unsetup();
7919 void kvm_arch_check_processor_compat(void *rtn
)
7921 kvm_x86_ops
->check_processor_compatibility(rtn
);
7924 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
7926 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
7928 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
7930 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
7932 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
7935 struct static_key kvm_no_apic_vcpu __read_mostly
;
7936 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
7938 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7944 BUG_ON(vcpu
->kvm
== NULL
);
7947 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv();
7948 vcpu
->arch
.pv
.pv_unhalted
= false;
7949 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7950 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
7951 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7953 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7955 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7960 vcpu
->arch
.pio_data
= page_address(page
);
7962 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7964 r
= kvm_mmu_create(vcpu
);
7966 goto fail_free_pio_data
;
7968 if (irqchip_in_kernel(kvm
)) {
7969 r
= kvm_create_lapic(vcpu
);
7971 goto fail_mmu_destroy
;
7973 static_key_slow_inc(&kvm_no_apic_vcpu
);
7975 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7977 if (!vcpu
->arch
.mce_banks
) {
7979 goto fail_free_lapic
;
7981 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7983 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7985 goto fail_free_mce_banks
;
7990 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7991 vcpu
->arch
.pv_time_enabled
= false;
7993 vcpu
->arch
.guest_supported_xcr0
= 0;
7994 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7996 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
7998 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
8000 kvm_async_pf_hash_reset(vcpu
);
8003 vcpu
->arch
.pending_external_vector
= -1;
8005 kvm_hv_vcpu_init(vcpu
);
8009 fail_free_mce_banks
:
8010 kfree(vcpu
->arch
.mce_banks
);
8012 kvm_free_lapic(vcpu
);
8014 kvm_mmu_destroy(vcpu
);
8016 free_page((unsigned long)vcpu
->arch
.pio_data
);
8021 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
8025 kvm_hv_vcpu_uninit(vcpu
);
8026 kvm_pmu_destroy(vcpu
);
8027 kfree(vcpu
->arch
.mce_banks
);
8028 kvm_free_lapic(vcpu
);
8029 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8030 kvm_mmu_destroy(vcpu
);
8031 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8032 free_page((unsigned long)vcpu
->arch
.pio_data
);
8033 if (!lapic_in_kernel(vcpu
))
8034 static_key_slow_dec(&kvm_no_apic_vcpu
);
8037 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
8039 kvm_x86_ops
->sched_in(vcpu
, cpu
);
8042 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
8047 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
8048 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
8049 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
8050 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
8051 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
8053 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8054 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
8055 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8056 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
8057 &kvm
->arch
.irq_sources_bitmap
);
8059 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
8060 mutex_init(&kvm
->arch
.apic_map_lock
);
8061 mutex_init(&kvm
->arch
.hyperv
.hv_lock
);
8062 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
8064 kvm
->arch
.kvmclock_offset
= -ktime_get_boot_ns();
8065 pvclock_update_vm_gtod_copy(kvm
);
8067 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
8068 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
8070 kvm_page_track_init(kvm
);
8071 kvm_mmu_init_vm(kvm
);
8073 if (kvm_x86_ops
->vm_init
)
8074 return kvm_x86_ops
->vm_init(kvm
);
8079 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
8082 r
= vcpu_load(vcpu
);
8084 kvm_mmu_unload(vcpu
);
8088 static void kvm_free_vcpus(struct kvm
*kvm
)
8091 struct kvm_vcpu
*vcpu
;
8094 * Unpin any mmu pages first.
8096 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8097 kvm_clear_async_pf_completion_queue(vcpu
);
8098 kvm_unload_vcpu_mmu(vcpu
);
8100 kvm_for_each_vcpu(i
, vcpu
, kvm
)
8101 kvm_arch_vcpu_free(vcpu
);
8103 mutex_lock(&kvm
->lock
);
8104 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
8105 kvm
->vcpus
[i
] = NULL
;
8107 atomic_set(&kvm
->online_vcpus
, 0);
8108 mutex_unlock(&kvm
->lock
);
8111 void kvm_arch_sync_events(struct kvm
*kvm
)
8113 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
8114 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
8115 kvm_free_all_assigned_devices(kvm
);
8119 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
8123 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
8124 struct kvm_memory_slot
*slot
, old
;
8126 /* Called with kvm->slots_lock held. */
8127 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
8130 slot
= id_to_memslot(slots
, id
);
8136 * MAP_SHARED to prevent internal slot pages from being moved
8139 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
8140 MAP_SHARED
| MAP_ANONYMOUS
, 0);
8141 if (IS_ERR((void *)hva
))
8142 return PTR_ERR((void *)hva
);
8151 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
8152 struct kvm_userspace_memory_region m
;
8154 m
.slot
= id
| (i
<< 16);
8156 m
.guest_phys_addr
= gpa
;
8157 m
.userspace_addr
= hva
;
8158 m
.memory_size
= size
;
8159 r
= __kvm_set_memory_region(kvm
, &m
);
8165 r
= vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
8171 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
8173 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
8177 mutex_lock(&kvm
->slots_lock
);
8178 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
8179 mutex_unlock(&kvm
->slots_lock
);
8183 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
8185 void kvm_arch_destroy_vm(struct kvm
*kvm
)
8187 if (current
->mm
== kvm
->mm
) {
8189 * Free memory regions allocated on behalf of userspace,
8190 * unless the the memory map has changed due to process exit
8193 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
8194 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
8195 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
8197 if (kvm_x86_ops
->vm_destroy
)
8198 kvm_x86_ops
->vm_destroy(kvm
);
8199 kvm_iommu_unmap_guest(kvm
);
8200 kvm_pic_destroy(kvm
);
8201 kvm_ioapic_destroy(kvm
);
8202 kvm_free_vcpus(kvm
);
8203 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
8204 kvm_mmu_uninit_vm(kvm
);
8205 kvm_page_track_cleanup(kvm
);
8208 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
8209 struct kvm_memory_slot
*dont
)
8213 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8214 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
8215 kvfree(free
->arch
.rmap
[i
]);
8216 free
->arch
.rmap
[i
] = NULL
;
8221 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
8222 dont
->arch
.lpage_info
[i
- 1]) {
8223 kvfree(free
->arch
.lpage_info
[i
- 1]);
8224 free
->arch
.lpage_info
[i
- 1] = NULL
;
8228 kvm_page_track_free_memslot(free
, dont
);
8231 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
8232 unsigned long npages
)
8236 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8237 struct kvm_lpage_info
*linfo
;
8242 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
8243 slot
->base_gfn
, level
) + 1;
8245 slot
->arch
.rmap
[i
] =
8246 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
8247 if (!slot
->arch
.rmap
[i
])
8252 linfo
= kvm_kvzalloc(lpages
* sizeof(*linfo
));
8256 slot
->arch
.lpage_info
[i
- 1] = linfo
;
8258 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
8259 linfo
[0].disallow_lpage
= 1;
8260 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
8261 linfo
[lpages
- 1].disallow_lpage
= 1;
8262 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
8264 * If the gfn and userspace address are not aligned wrt each
8265 * other, or if explicitly asked to, disable large page
8266 * support for this slot
8268 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
8269 !kvm_largepages_enabled()) {
8272 for (j
= 0; j
< lpages
; ++j
)
8273 linfo
[j
].disallow_lpage
= 1;
8277 if (kvm_page_track_create_memslot(slot
, npages
))
8283 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8284 kvfree(slot
->arch
.rmap
[i
]);
8285 slot
->arch
.rmap
[i
] = NULL
;
8289 kvfree(slot
->arch
.lpage_info
[i
- 1]);
8290 slot
->arch
.lpage_info
[i
- 1] = NULL
;
8295 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
8298 * memslots->generation has been incremented.
8299 * mmio generation may have reached its maximum value.
8301 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
8304 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
8305 struct kvm_memory_slot
*memslot
,
8306 const struct kvm_userspace_memory_region
*mem
,
8307 enum kvm_mr_change change
)
8312 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
8313 struct kvm_memory_slot
*new)
8315 /* Still write protect RO slot */
8316 if (new->flags
& KVM_MEM_READONLY
) {
8317 kvm_mmu_slot_remove_write_access(kvm
, new);
8322 * Call kvm_x86_ops dirty logging hooks when they are valid.
8324 * kvm_x86_ops->slot_disable_log_dirty is called when:
8326 * - KVM_MR_CREATE with dirty logging is disabled
8327 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8329 * The reason is, in case of PML, we need to set D-bit for any slots
8330 * with dirty logging disabled in order to eliminate unnecessary GPA
8331 * logging in PML buffer (and potential PML buffer full VMEXT). This
8332 * guarantees leaving PML enabled during guest's lifetime won't have
8333 * any additonal overhead from PML when guest is running with dirty
8334 * logging disabled for memory slots.
8336 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8337 * to dirty logging mode.
8339 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8341 * In case of write protect:
8343 * Write protect all pages for dirty logging.
8345 * All the sptes including the large sptes which point to this
8346 * slot are set to readonly. We can not create any new large
8347 * spte on this slot until the end of the logging.
8349 * See the comments in fast_page_fault().
8351 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
8352 if (kvm_x86_ops
->slot_enable_log_dirty
)
8353 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
8355 kvm_mmu_slot_remove_write_access(kvm
, new);
8357 if (kvm_x86_ops
->slot_disable_log_dirty
)
8358 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
8362 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
8363 const struct kvm_userspace_memory_region
*mem
,
8364 const struct kvm_memory_slot
*old
,
8365 const struct kvm_memory_slot
*new,
8366 enum kvm_mr_change change
)
8368 int nr_mmu_pages
= 0;
8370 if (!kvm
->arch
.n_requested_mmu_pages
)
8371 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
8374 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
8377 * Dirty logging tracks sptes in 4k granularity, meaning that large
8378 * sptes have to be split. If live migration is successful, the guest
8379 * in the source machine will be destroyed and large sptes will be
8380 * created in the destination. However, if the guest continues to run
8381 * in the source machine (for example if live migration fails), small
8382 * sptes will remain around and cause bad performance.
8384 * Scan sptes if dirty logging has been stopped, dropping those
8385 * which can be collapsed into a single large-page spte. Later
8386 * page faults will create the large-page sptes.
8388 if ((change
!= KVM_MR_DELETE
) &&
8389 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
8390 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
8391 kvm_mmu_zap_collapsible_sptes(kvm
, new);
8394 * Set up write protection and/or dirty logging for the new slot.
8396 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8397 * been zapped so no dirty logging staff is needed for old slot. For
8398 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8399 * new and it's also covered when dealing with the new slot.
8401 * FIXME: const-ify all uses of struct kvm_memory_slot.
8403 if (change
!= KVM_MR_DELETE
)
8404 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
8407 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
8409 kvm_mmu_invalidate_zap_all_pages(kvm
);
8412 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
8413 struct kvm_memory_slot
*slot
)
8415 kvm_page_track_flush_slot(kvm
, slot
);
8418 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
8420 if (!list_empty_careful(&vcpu
->async_pf
.done
))
8423 if (kvm_apic_has_events(vcpu
))
8426 if (vcpu
->arch
.pv
.pv_unhalted
)
8429 if (atomic_read(&vcpu
->arch
.nmi_queued
))
8432 if (test_bit(KVM_REQ_SMI
, &vcpu
->requests
))
8435 if (kvm_arch_interrupt_allowed(vcpu
) &&
8436 kvm_cpu_has_interrupt(vcpu
))
8439 if (kvm_hv_has_stimer_pending(vcpu
))
8445 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
8447 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
8450 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
8452 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
8455 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
8457 return kvm_x86_ops
->interrupt_allowed(vcpu
);
8460 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
8462 if (is_64_bit_mode(vcpu
))
8463 return kvm_rip_read(vcpu
);
8464 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
8465 kvm_rip_read(vcpu
));
8467 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
8469 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
8471 return kvm_get_linear_rip(vcpu
) == linear_rip
;
8473 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
8475 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
8477 unsigned long rflags
;
8479 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
8480 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8481 rflags
&= ~X86_EFLAGS_TF
;
8484 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
8486 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8488 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
8489 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
8490 rflags
|= X86_EFLAGS_TF
;
8491 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
8494 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8496 __kvm_set_rflags(vcpu
, rflags
);
8497 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8499 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
8501 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
8505 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
8509 r
= kvm_mmu_reload(vcpu
);
8513 if (!vcpu
->arch
.mmu
.direct_map
&&
8514 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
8517 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
8520 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
8522 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
8525 static inline u32
kvm_async_pf_next_probe(u32 key
)
8527 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
8530 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8532 u32 key
= kvm_async_pf_hash_fn(gfn
);
8534 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
8535 key
= kvm_async_pf_next_probe(key
);
8537 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
8540 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8543 u32 key
= kvm_async_pf_hash_fn(gfn
);
8545 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
8546 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
8547 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
8548 key
= kvm_async_pf_next_probe(key
);
8553 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8555 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
8558 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8562 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
8564 vcpu
->arch
.apf
.gfns
[i
] = ~0;
8566 j
= kvm_async_pf_next_probe(j
);
8567 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
8569 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
8571 * k lies cyclically in ]i,j]
8573 * |....j i.k.| or |.k..j i...|
8575 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
8576 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
8581 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
8584 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
8588 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
8589 struct kvm_async_pf
*work
)
8591 struct x86_exception fault
;
8593 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
8594 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8596 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
8597 (vcpu
->arch
.apf
.send_user_only
&&
8598 kvm_x86_ops
->get_cpl(vcpu
) == 0))
8599 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
8600 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
8601 fault
.vector
= PF_VECTOR
;
8602 fault
.error_code_valid
= true;
8603 fault
.error_code
= 0;
8604 fault
.nested_page_fault
= false;
8605 fault
.address
= work
->arch
.token
;
8606 kvm_inject_page_fault(vcpu
, &fault
);
8610 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
8611 struct kvm_async_pf
*work
)
8613 struct x86_exception fault
;
8615 if (work
->wakeup_all
)
8616 work
->arch
.token
= ~0; /* broadcast wakeup */
8618 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8619 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
8621 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
8622 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
8623 fault
.vector
= PF_VECTOR
;
8624 fault
.error_code_valid
= true;
8625 fault
.error_code
= 0;
8626 fault
.nested_page_fault
= false;
8627 fault
.address
= work
->arch
.token
;
8628 kvm_inject_page_fault(vcpu
, &fault
);
8630 vcpu
->arch
.apf
.halted
= false;
8631 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8634 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
8636 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
8639 return kvm_can_do_async_pf(vcpu
);
8642 void kvm_arch_start_assignment(struct kvm
*kvm
)
8644 atomic_inc(&kvm
->arch
.assigned_device_count
);
8646 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
8648 void kvm_arch_end_assignment(struct kvm
*kvm
)
8650 atomic_dec(&kvm
->arch
.assigned_device_count
);
8652 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
8654 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
8656 return atomic_read(&kvm
->arch
.assigned_device_count
);
8658 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
8660 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
8662 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
8664 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
8666 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
8668 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
8670 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
8672 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
8674 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
8676 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
8678 bool kvm_arch_has_irq_bypass(void)
8680 return kvm_x86_ops
->update_pi_irte
!= NULL
;
8683 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
8684 struct irq_bypass_producer
*prod
)
8686 struct kvm_kernel_irqfd
*irqfd
=
8687 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8689 irqfd
->producer
= prod
;
8691 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
8692 prod
->irq
, irqfd
->gsi
, 1);
8695 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
8696 struct irq_bypass_producer
*prod
)
8699 struct kvm_kernel_irqfd
*irqfd
=
8700 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8702 WARN_ON(irqfd
->producer
!= prod
);
8703 irqfd
->producer
= NULL
;
8706 * When producer of consumer is unregistered, we change back to
8707 * remapped mode, so we can re-use the current implementation
8708 * when the irq is masked/disabled or the consumer side (KVM
8709 * int this case doesn't want to receive the interrupts.
8711 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
8713 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
8714 " fails: %d\n", irqfd
->consumer
.token
, ret
);
8717 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
8718 uint32_t guest_irq
, bool set
)
8720 if (!kvm_x86_ops
->update_pi_irte
)
8723 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
8726 bool kvm_vector_hashing_enabled(void)
8728 return vector_hashing
;
8730 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled
);
8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
8738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
8739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
8740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
8741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
8742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
8743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
8744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
8745 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
8746 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
8747 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
8748 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
8749 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
8750 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);