3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
6 #include <asm/fixmap.h>
9 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
12 #define PGALLOC_USER_GFP __GFP_HIGHMEM
14 #define PGALLOC_USER_GFP 0
17 gfp_t __userpte_alloc_gfp
= PGALLOC_GFP
| PGALLOC_USER_GFP
;
19 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
21 return (pte_t
*)__get_free_page(PGALLOC_GFP
& ~__GFP_ACCOUNT
);
24 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
28 pte
= alloc_pages(__userpte_alloc_gfp
, 0);
31 if (!pgtable_page_ctor(pte
)) {
38 static int __init
setup_userpte(char *arg
)
44 * "userpte=nohigh" disables allocation of user pagetables in
47 if (strcmp(arg
, "nohigh") == 0)
48 __userpte_alloc_gfp
&= ~__GFP_HIGHMEM
;
53 early_param("userpte", setup_userpte
);
55 void ___pte_free_tlb(struct mmu_gather
*tlb
, struct page
*pte
)
57 pgtable_page_dtor(pte
);
58 paravirt_release_pte(page_to_pfn(pte
));
59 tlb_remove_page(tlb
, pte
);
62 #if CONFIG_PGTABLE_LEVELS > 2
63 void ___pmd_free_tlb(struct mmu_gather
*tlb
, pmd_t
*pmd
)
65 struct page
*page
= virt_to_page(pmd
);
66 paravirt_release_pmd(__pa(pmd
) >> PAGE_SHIFT
);
68 * NOTE! For PAE, any changes to the top page-directory-pointer-table
69 * entries need a full cr3 reload to flush.
72 tlb
->need_flush_all
= 1;
74 pgtable_pmd_page_dtor(page
);
75 tlb_remove_page(tlb
, page
);
78 #if CONFIG_PGTABLE_LEVELS > 3
79 void ___pud_free_tlb(struct mmu_gather
*tlb
, pud_t
*pud
)
81 paravirt_release_pud(__pa(pud
) >> PAGE_SHIFT
);
82 tlb_remove_page(tlb
, virt_to_page(pud
));
84 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
85 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
87 static inline void pgd_list_add(pgd_t
*pgd
)
89 struct page
*page
= virt_to_page(pgd
);
91 list_add(&page
->lru
, &pgd_list
);
94 static inline void pgd_list_del(pgd_t
*pgd
)
96 struct page
*page
= virt_to_page(pgd
);
101 #define UNSHARED_PTRS_PER_PGD \
102 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
105 static void pgd_set_mm(pgd_t
*pgd
, struct mm_struct
*mm
)
107 BUILD_BUG_ON(sizeof(virt_to_page(pgd
)->index
) < sizeof(mm
));
108 virt_to_page(pgd
)->index
= (pgoff_t
)mm
;
111 struct mm_struct
*pgd_page_get_mm(struct page
*page
)
113 return (struct mm_struct
*)page
->index
;
116 static void pgd_ctor(struct mm_struct
*mm
, pgd_t
*pgd
)
118 /* If the pgd points to a shared pagetable level (either the
119 ptes in non-PAE, or shared PMD in PAE), then just copy the
120 references from swapper_pg_dir. */
121 if (CONFIG_PGTABLE_LEVELS
== 2 ||
122 (CONFIG_PGTABLE_LEVELS
== 3 && SHARED_KERNEL_PMD
) ||
123 CONFIG_PGTABLE_LEVELS
== 4) {
124 clone_pgd_range(pgd
+ KERNEL_PGD_BOUNDARY
,
125 swapper_pg_dir
+ KERNEL_PGD_BOUNDARY
,
129 /* list required to sync kernel mapping updates */
130 if (!SHARED_KERNEL_PMD
) {
136 static void pgd_dtor(pgd_t
*pgd
)
138 if (SHARED_KERNEL_PMD
)
141 spin_lock(&pgd_lock
);
143 spin_unlock(&pgd_lock
);
147 * List of all pgd's needed for non-PAE so it can invalidate entries
148 * in both cached and uncached pgd's; not needed for PAE since the
149 * kernel pmd is shared. If PAE were not to share the pmd a similar
150 * tactic would be needed. This is essentially codepath-based locking
151 * against pageattr.c; it is the unique case in which a valid change
152 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153 * vmalloc faults work because attached pagetables are never freed.
157 #ifdef CONFIG_X86_PAE
159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160 * updating the top-level pagetable entries to guarantee the
161 * processor notices the update. Since this is expensive, and
162 * all 4 top-level entries are used almost immediately in a
163 * new process's life, we just pre-populate them here.
165 * Also, if we're in a paravirt environment where the kernel pmd is
166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167 * and initialize the kernel pmds here.
169 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
171 void pud_populate(struct mm_struct
*mm
, pud_t
*pudp
, pmd_t
*pmd
)
173 paravirt_alloc_pmd(mm
, __pa(pmd
) >> PAGE_SHIFT
);
175 /* Note: almost everything apart from _PAGE_PRESENT is
176 reserved at the pmd (PDPT) level. */
177 set_pud(pudp
, __pud(__pa(pmd
) | _PAGE_PRESENT
));
180 * According to Intel App note "TLBs, Paging-Structure Caches,
181 * and Their Invalidation", April 2007, document 317080-001,
182 * section 8.1: in PAE mode we explicitly have to flush the
183 * TLB via cr3 if the top-level pgd is changed...
187 #else /* !CONFIG_X86_PAE */
189 /* No need to prepopulate any pagetable entries in non-PAE modes. */
190 #define PREALLOCATED_PMDS 0
192 #endif /* CONFIG_X86_PAE */
194 static void free_pmds(struct mm_struct
*mm
, pmd_t
*pmds
[])
198 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++)
200 pgtable_pmd_page_dtor(virt_to_page(pmds
[i
]));
201 free_page((unsigned long)pmds
[i
]);
206 static int preallocate_pmds(struct mm_struct
*mm
, pmd_t
*pmds
[])
210 gfp_t gfp
= PGALLOC_GFP
;
213 gfp
&= ~__GFP_ACCOUNT
;
215 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
216 pmd_t
*pmd
= (pmd_t
*)__get_free_page(gfp
);
219 if (pmd
&& !pgtable_pmd_page_ctor(virt_to_page(pmd
))) {
220 free_page((unsigned long)pmd
);
238 * Mop up any pmd pages which may still be attached to the pgd.
239 * Normally they will be freed by munmap/exit_mmap, but any pmd we
240 * preallocate which never got a corresponding vma will need to be
243 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
247 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
250 if (pgd_val(pgd
) != 0) {
251 pmd_t
*pmd
= (pmd_t
*)pgd_page_vaddr(pgd
);
253 pgdp
[i
] = native_make_pgd(0);
255 paravirt_release_pmd(pgd_val(pgd
) >> PAGE_SHIFT
);
262 static void pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
, pmd_t
*pmds
[])
267 if (PREALLOCATED_PMDS
== 0) /* Work around gcc-3.4.x bug */
270 pud
= pud_offset(pgd
, 0);
272 for (i
= 0; i
< PREALLOCATED_PMDS
; i
++, pud
++) {
273 pmd_t
*pmd
= pmds
[i
];
275 if (i
>= KERNEL_PGD_BOUNDARY
)
276 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(swapper_pg_dir
[i
]),
277 sizeof(pmd_t
) * PTRS_PER_PMD
);
279 pud_populate(mm
, pud
, pmd
);
284 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
285 * assumes that pgd should be in one page.
287 * But kernel with PAE paging that is not running as a Xen domain
288 * only needs to allocate 32 bytes for pgd instead of one page.
290 #ifdef CONFIG_X86_PAE
292 #include <linux/slab.h>
294 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
297 static struct kmem_cache
*pgd_cache
;
299 static int __init
pgd_cache_init(void)
302 * When PAE kernel is running as a Xen domain, it does not use
303 * shared kernel pmd. And this requires a whole page for pgd.
305 if (!SHARED_KERNEL_PMD
)
309 * when PAE kernel is not running as a Xen domain, it uses
310 * shared kernel pmd. Shared kernel pmd does not require a whole
311 * page for pgd. We are able to just allocate a 32-byte for pgd.
312 * During boot time, we create a 32-byte slab for pgd table allocation.
314 pgd_cache
= kmem_cache_create("pgd_cache", PGD_SIZE
, PGD_ALIGN
,
321 core_initcall(pgd_cache_init
);
323 static inline pgd_t
*_pgd_alloc(void)
326 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
327 * We allocate one page for pgd.
329 if (!SHARED_KERNEL_PMD
)
330 return (pgd_t
*)__get_free_page(PGALLOC_GFP
);
333 * Now PAE kernel is not running as a Xen domain. We can allocate
334 * a 32-byte slab for pgd to save memory space.
336 return kmem_cache_alloc(pgd_cache
, PGALLOC_GFP
);
339 static inline void _pgd_free(pgd_t
*pgd
)
341 if (!SHARED_KERNEL_PMD
)
342 free_page((unsigned long)pgd
);
344 kmem_cache_free(pgd_cache
, pgd
);
347 static inline pgd_t
*_pgd_alloc(void)
349 return (pgd_t
*)__get_free_page(PGALLOC_GFP
);
352 static inline void _pgd_free(pgd_t
*pgd
)
354 free_page((unsigned long)pgd
);
356 #endif /* CONFIG_X86_PAE */
358 pgd_t
*pgd_alloc(struct mm_struct
*mm
)
361 pmd_t
*pmds
[PREALLOCATED_PMDS
];
370 if (preallocate_pmds(mm
, pmds
) != 0)
373 if (paravirt_pgd_alloc(mm
) != 0)
377 * Make sure that pre-populating the pmds is atomic with
378 * respect to anything walking the pgd_list, so that they
379 * never see a partially populated pgd.
381 spin_lock(&pgd_lock
);
384 pgd_prepopulate_pmd(mm
, pgd
, pmds
);
386 spin_unlock(&pgd_lock
);
398 void pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
400 pgd_mop_up_pmds(mm
, pgd
);
402 paravirt_pgd_free(mm
, pgd
);
407 * Used to set accessed or dirty bits in the page table entries
408 * on other architectures. On x86, the accessed and dirty bits
409 * are tracked by hardware. However, do_wp_page calls this function
410 * to also make the pte writeable at the same time the dirty bit is
411 * set. In that case we do actually need to write the PTE.
413 int ptep_set_access_flags(struct vm_area_struct
*vma
,
414 unsigned long address
, pte_t
*ptep
,
415 pte_t entry
, int dirty
)
417 int changed
= !pte_same(*ptep
, entry
);
419 if (changed
&& dirty
) {
421 pte_update(vma
->vm_mm
, address
, ptep
);
427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 int pmdp_set_access_flags(struct vm_area_struct
*vma
,
429 unsigned long address
, pmd_t
*pmdp
,
430 pmd_t entry
, int dirty
)
432 int changed
= !pmd_same(*pmdp
, entry
);
434 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
436 if (changed
&& dirty
) {
439 * We had a write-protection fault here and changed the pmd
440 * to to more permissive. No need to flush the TLB for that,
441 * #PF is architecturally guaranteed to do that and in the
442 * worst-case we'll generate a spurious fault.
449 int pudp_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
450 pud_t
*pudp
, pud_t entry
, int dirty
)
452 int changed
= !pud_same(*pudp
, entry
);
454 VM_BUG_ON(address
& ~HPAGE_PUD_MASK
);
456 if (changed
&& dirty
) {
459 * We had a write-protection fault here and changed the pud
460 * to to more permissive. No need to flush the TLB for that,
461 * #PF is architecturally guaranteed to do that and in the
462 * worst-case we'll generate a spurious fault.
470 int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
471 unsigned long addr
, pte_t
*ptep
)
475 if (pte_young(*ptep
))
476 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
477 (unsigned long *) &ptep
->pte
);
480 pte_update(vma
->vm_mm
, addr
, ptep
);
485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
486 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
487 unsigned long addr
, pmd_t
*pmdp
)
491 if (pmd_young(*pmdp
))
492 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
493 (unsigned long *)pmdp
);
497 int pudp_test_and_clear_young(struct vm_area_struct
*vma
,
498 unsigned long addr
, pud_t
*pudp
)
502 if (pud_young(*pudp
))
503 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
504 (unsigned long *)pudp
);
510 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
511 unsigned long address
, pte_t
*ptep
)
514 * On x86 CPUs, clearing the accessed bit without a TLB flush
515 * doesn't cause data corruption. [ It could cause incorrect
516 * page aging and the (mistaken) reclaim of hot pages, but the
517 * chance of that should be relatively low. ]
519 * So as a performance optimization don't flush the TLB when
520 * clearing the accessed bit, it will eventually be flushed by
521 * a context switch or a VM operation anyway. [ In the rare
522 * event of it not getting flushed for a long time the delay
523 * shouldn't really matter because there's no real memory
524 * pressure for swapout to react to. ]
526 return ptep_test_and_clear_young(vma
, address
, ptep
);
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
531 unsigned long address
, pmd_t
*pmdp
)
535 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
537 young
= pmdp_test_and_clear_young(vma
, address
, pmdp
);
539 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
546 * reserve_top_address - reserves a hole in the top of kernel address space
547 * @reserve - size of hole to reserve
549 * Can be used to relocate the fixmap area and poke a hole in the top
550 * of kernel address space to make room for a hypervisor.
552 void __init
reserve_top_address(unsigned long reserve
)
555 BUG_ON(fixmaps_set
> 0);
556 __FIXADDR_TOP
= round_down(-reserve
, 1 << PMD_SHIFT
) - PAGE_SIZE
;
557 printk(KERN_INFO
"Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
558 -reserve
, __FIXADDR_TOP
+ PAGE_SIZE
);
564 void __native_set_fixmap(enum fixed_addresses idx
, pte_t pte
)
566 unsigned long address
= __fix_to_virt(idx
);
568 if (idx
>= __end_of_fixed_addresses
) {
572 set_pte_vaddr(address
, pte
);
576 void native_set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
,
579 __native_set_fixmap(idx
, pfn_pte(phys
>> PAGE_SHIFT
, flags
));
582 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
584 * pud_set_huge - setup kernel PUD mapping
586 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
587 * function sets up a huge page only if any of the following conditions are met:
589 * - MTRRs are disabled, or
591 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
593 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
594 * has no effect on the requested PAT memory type.
596 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
597 * page mapping attempt fails.
599 * Returns 1 on success and 0 on failure.
601 int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
)
605 mtrr
= mtrr_type_lookup(addr
, addr
+ PUD_SIZE
, &uniform
);
606 if ((mtrr
!= MTRR_TYPE_INVALID
) && (!uniform
) &&
607 (mtrr
!= MTRR_TYPE_WRBACK
))
610 prot
= pgprot_4k_2_large(prot
);
612 set_pte((pte_t
*)pud
, pfn_pte(
613 (u64
)addr
>> PAGE_SHIFT
,
614 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
620 * pmd_set_huge - setup kernel PMD mapping
622 * See text over pud_set_huge() above.
624 * Returns 1 on success and 0 on failure.
626 int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
)
630 mtrr
= mtrr_type_lookup(addr
, addr
+ PMD_SIZE
, &uniform
);
631 if ((mtrr
!= MTRR_TYPE_INVALID
) && (!uniform
) &&
632 (mtrr
!= MTRR_TYPE_WRBACK
)) {
633 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
634 __func__
, addr
, addr
+ PMD_SIZE
);
638 prot
= pgprot_4k_2_large(prot
);
640 set_pte((pte_t
*)pmd
, pfn_pte(
641 (u64
)addr
>> PAGE_SHIFT
,
642 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
648 * pud_clear_huge - clear kernel PUD mapping when it is set
650 * Returns 1 on success and 0 on failure (no PUD map is found).
652 int pud_clear_huge(pud_t
*pud
)
654 if (pud_large(*pud
)) {
663 * pmd_clear_huge - clear kernel PMD mapping when it is set
665 * Returns 1 on success and 0 on failure (no PMD map is found).
667 int pmd_clear_huge(pmd_t
*pmd
)
669 if (pmd_large(*pmd
)) {
676 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */