x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / x86 / mm / tlb.c
blob75fb01109f9453a8fbf66105ff2c0c9d9789722c
1 #include <linux/init.h>
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
18 * Smarter SMP flushing macros.
19 * c/o Linus Torvalds.
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
26 * More scalable flush, from Andi Kleen
28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
31 #ifdef CONFIG_SMP
33 struct flush_tlb_info {
34 struct mm_struct *flush_mm;
35 unsigned long flush_start;
36 unsigned long flush_end;
40 * We cannot call mmdrop() because we are in interrupt context,
41 * instead update mm->cpu_vm_mask.
43 void leave_mm(int cpu)
45 struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
46 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47 BUG();
48 if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
49 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
50 load_cr3(swapper_pg_dir);
52 * This gets called in the idle path where RCU
53 * functions differently. Tracing normally
54 * uses RCU, so we have to call the tracepoint
55 * specially here.
57 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
60 EXPORT_SYMBOL_GPL(leave_mm);
62 #endif /* CONFIG_SMP */
64 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
65 struct task_struct *tsk)
67 unsigned long flags;
69 local_irq_save(flags);
70 switch_mm_irqs_off(prev, next, tsk);
71 local_irq_restore(flags);
74 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
75 struct task_struct *tsk)
77 unsigned cpu = smp_processor_id();
79 if (likely(prev != next)) {
80 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
82 * If our current stack is in vmalloc space and isn't
83 * mapped in the new pgd, we'll double-fault. Forcibly
84 * map it.
86 unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
88 pgd_t *pgd = next->pgd + stack_pgd_index;
90 if (unlikely(pgd_none(*pgd)))
91 set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
94 #ifdef CONFIG_SMP
95 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
96 this_cpu_write(cpu_tlbstate.active_mm, next);
97 #endif
99 cpumask_set_cpu(cpu, mm_cpumask(next));
102 * Re-load page tables.
104 * This logic has an ordering constraint:
106 * CPU 0: Write to a PTE for 'next'
107 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
108 * CPU 1: set bit 1 in next's mm_cpumask
109 * CPU 1: load from the PTE that CPU 0 writes (implicit)
111 * We need to prevent an outcome in which CPU 1 observes
112 * the new PTE value and CPU 0 observes bit 1 clear in
113 * mm_cpumask. (If that occurs, then the IPI will never
114 * be sent, and CPU 0's TLB will contain a stale entry.)
116 * The bad outcome can occur if either CPU's load is
117 * reordered before that CPU's store, so both CPUs must
118 * execute full barriers to prevent this from happening.
120 * Thus, switch_mm needs a full barrier between the
121 * store to mm_cpumask and any operation that could load
122 * from next->pgd. TLB fills are special and can happen
123 * due to instruction fetches or for no reason at all,
124 * and neither LOCK nor MFENCE orders them.
125 * Fortunately, load_cr3() is serializing and gives the
126 * ordering guarantee we need.
129 load_cr3(next->pgd);
131 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
133 /* Stop flush ipis for the previous mm */
134 cpumask_clear_cpu(cpu, mm_cpumask(prev));
136 /* Load per-mm CR4 state */
137 load_mm_cr4(next);
139 #ifdef CONFIG_MODIFY_LDT_SYSCALL
141 * Load the LDT, if the LDT is different.
143 * It's possible that prev->context.ldt doesn't match
144 * the LDT register. This can happen if leave_mm(prev)
145 * was called and then modify_ldt changed
146 * prev->context.ldt but suppressed an IPI to this CPU.
147 * In this case, prev->context.ldt != NULL, because we
148 * never set context.ldt to NULL while the mm still
149 * exists. That means that next->context.ldt !=
150 * prev->context.ldt, because mms never share an LDT.
152 if (unlikely(prev->context.ldt != next->context.ldt))
153 load_mm_ldt(next);
154 #endif
156 #ifdef CONFIG_SMP
157 else {
158 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
159 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
161 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
163 * On established mms, the mm_cpumask is only changed
164 * from irq context, from ptep_clear_flush() while in
165 * lazy tlb mode, and here. Irqs are blocked during
166 * schedule, protecting us from simultaneous changes.
168 cpumask_set_cpu(cpu, mm_cpumask(next));
171 * We were in lazy tlb mode and leave_mm disabled
172 * tlb flush IPI delivery. We must reload CR3
173 * to make sure to use no freed page tables.
175 * As above, load_cr3() is serializing and orders TLB
176 * fills with respect to the mm_cpumask write.
178 load_cr3(next->pgd);
179 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
180 load_mm_cr4(next);
181 load_mm_ldt(next);
184 #endif
187 #ifdef CONFIG_SMP
190 * The flush IPI assumes that a thread switch happens in this order:
191 * [cpu0: the cpu that switches]
192 * 1) switch_mm() either 1a) or 1b)
193 * 1a) thread switch to a different mm
194 * 1a1) set cpu_tlbstate to TLBSTATE_OK
195 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
196 * if cpu0 was in lazy tlb mode.
197 * 1a2) update cpu active_mm
198 * Now cpu0 accepts tlb flushes for the new mm.
199 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
200 * Now the other cpus will send tlb flush ipis.
201 * 1a4) change cr3.
202 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
203 * Stop ipi delivery for the old mm. This is not synchronized with
204 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
205 * mm, and in the worst case we perform a superfluous tlb flush.
206 * 1b) thread switch without mm change
207 * cpu active_mm is correct, cpu0 already handles flush ipis.
208 * 1b1) set cpu_tlbstate to TLBSTATE_OK
209 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
210 * Atomically set the bit [other cpus will start sending flush ipis],
211 * and test the bit.
212 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
213 * 2) switch %%esp, ie current
215 * The interrupt must handle 2 special cases:
216 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
217 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
218 * runs in kernel space, the cpu could load tlb entries for user space
219 * pages.
221 * The good news is that cpu_tlbstate is local to each cpu, no
222 * write/read ordering problems.
226 * TLB flush funcation:
227 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
228 * 2) Leave the mm if we are in the lazy tlb mode.
230 static void flush_tlb_func(void *info)
232 struct flush_tlb_info *f = info;
234 inc_irq_stat(irq_tlb_count);
236 if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
237 return;
239 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
240 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
241 if (f->flush_end == TLB_FLUSH_ALL) {
242 local_flush_tlb();
243 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
244 } else {
245 unsigned long addr;
246 unsigned long nr_pages =
247 (f->flush_end - f->flush_start) / PAGE_SIZE;
248 addr = f->flush_start;
249 while (addr < f->flush_end) {
250 __flush_tlb_single(addr);
251 addr += PAGE_SIZE;
253 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
255 } else
256 leave_mm(smp_processor_id());
260 void native_flush_tlb_others(const struct cpumask *cpumask,
261 struct mm_struct *mm, unsigned long start,
262 unsigned long end)
264 struct flush_tlb_info info;
266 info.flush_mm = mm;
267 info.flush_start = start;
268 info.flush_end = end;
270 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
271 if (end == TLB_FLUSH_ALL)
272 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
273 else
274 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
275 (end - start) >> PAGE_SHIFT);
277 if (is_uv_system()) {
278 unsigned int cpu;
280 cpu = smp_processor_id();
281 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
282 if (cpumask)
283 smp_call_function_many(cpumask, flush_tlb_func,
284 &info, 1);
285 return;
287 smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
290 void flush_tlb_current_task(void)
292 struct mm_struct *mm = current->mm;
294 preempt_disable();
296 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
298 /* This is an implicit full barrier that synchronizes with switch_mm. */
299 local_flush_tlb();
301 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
302 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
303 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
304 preempt_enable();
308 * See Documentation/x86/tlb.txt for details. We choose 33
309 * because it is large enough to cover the vast majority (at
310 * least 95%) of allocations, and is small enough that we are
311 * confident it will not cause too much overhead. Each single
312 * flush is about 100 ns, so this caps the maximum overhead at
313 * _about_ 3,000 ns.
315 * This is in units of pages.
317 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
319 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
320 unsigned long end, unsigned long vmflag)
322 unsigned long addr;
323 /* do a global flush by default */
324 unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
326 preempt_disable();
327 if (current->active_mm != mm) {
328 /* Synchronize with switch_mm. */
329 smp_mb();
331 goto out;
334 if (!current->mm) {
335 leave_mm(smp_processor_id());
337 /* Synchronize with switch_mm. */
338 smp_mb();
340 goto out;
343 if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
344 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
347 * Both branches below are implicit full barriers (MOV to CR or
348 * INVLPG) that synchronize with switch_mm.
350 if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
351 base_pages_to_flush = TLB_FLUSH_ALL;
352 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
353 local_flush_tlb();
354 } else {
355 /* flush range by one by one 'invlpg' */
356 for (addr = start; addr < end; addr += PAGE_SIZE) {
357 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
358 __flush_tlb_single(addr);
361 trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
362 out:
363 if (base_pages_to_flush == TLB_FLUSH_ALL) {
364 start = 0UL;
365 end = TLB_FLUSH_ALL;
367 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
368 flush_tlb_others(mm_cpumask(mm), mm, start, end);
369 preempt_enable();
372 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
374 struct mm_struct *mm = vma->vm_mm;
376 preempt_disable();
378 if (current->active_mm == mm) {
379 if (current->mm) {
381 * Implicit full barrier (INVLPG) that synchronizes
382 * with switch_mm.
384 __flush_tlb_one(start);
385 } else {
386 leave_mm(smp_processor_id());
388 /* Synchronize with switch_mm. */
389 smp_mb();
393 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
394 flush_tlb_others(mm_cpumask(mm), mm, start, start + PAGE_SIZE);
396 preempt_enable();
399 static void do_flush_tlb_all(void *info)
401 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
402 __flush_tlb_all();
403 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
404 leave_mm(smp_processor_id());
407 void flush_tlb_all(void)
409 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
410 on_each_cpu(do_flush_tlb_all, NULL, 1);
413 static void do_kernel_range_flush(void *info)
415 struct flush_tlb_info *f = info;
416 unsigned long addr;
418 /* flush range by one by one 'invlpg' */
419 for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
420 __flush_tlb_single(addr);
423 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
426 /* Balance as user space task's flush, a bit conservative */
427 if (end == TLB_FLUSH_ALL ||
428 (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
429 on_each_cpu(do_flush_tlb_all, NULL, 1);
430 } else {
431 struct flush_tlb_info info;
432 info.flush_start = start;
433 info.flush_end = end;
434 on_each_cpu(do_kernel_range_flush, &info, 1);
438 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
439 size_t count, loff_t *ppos)
441 char buf[32];
442 unsigned int len;
444 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
445 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
448 static ssize_t tlbflush_write_file(struct file *file,
449 const char __user *user_buf, size_t count, loff_t *ppos)
451 char buf[32];
452 ssize_t len;
453 int ceiling;
455 len = min(count, sizeof(buf) - 1);
456 if (copy_from_user(buf, user_buf, len))
457 return -EFAULT;
459 buf[len] = '\0';
460 if (kstrtoint(buf, 0, &ceiling))
461 return -EINVAL;
463 if (ceiling < 0)
464 return -EINVAL;
466 tlb_single_page_flush_ceiling = ceiling;
467 return count;
470 static const struct file_operations fops_tlbflush = {
471 .read = tlbflush_read_file,
472 .write = tlbflush_write_file,
473 .llseek = default_llseek,
476 static int __init create_tlb_single_page_flush_ceiling(void)
478 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
479 arch_debugfs_dir, NULL, &fops_tlbflush);
480 return 0;
482 late_initcall(create_tlb_single_page_flush_ceiling);
484 #endif /* CONFIG_SMP */