x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / arch / x86 / platform / uv / uv_nmi.c
blobc34bd8233f7c81ddff649e970f79802b9ae7ef27
1 /*
2 * SGI NMI support routines
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Mike Travis
22 #include <linux/cpu.h>
23 #include <linux/delay.h>
24 #include <linux/kdb.h>
25 #include <linux/kexec.h>
26 #include <linux/kgdb.h>
27 #include <linux/moduleparam.h>
28 #include <linux/nmi.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/slab.h>
32 #include <linux/clocksource.h>
34 #include <asm/apic.h>
35 #include <asm/current.h>
36 #include <asm/kdebug.h>
37 #include <asm/local64.h>
38 #include <asm/nmi.h>
39 #include <asm/traps.h>
40 #include <asm/uv/uv.h>
41 #include <asm/uv/uv_hub.h>
42 #include <asm/uv/uv_mmrs.h>
45 * UV handler for NMI
47 * Handle system-wide NMI events generated by the global 'power nmi' command.
49 * Basic operation is to field the NMI interrupt on each CPU and wait
50 * until all CPU's have arrived into the nmi handler. If some CPU's do not
51 * make it into the handler, try and force them in with the IPI(NMI) signal.
53 * We also have to lessen UV Hub MMR accesses as much as possible as this
54 * disrupts the UV Hub's primary mission of directing NumaLink traffic and
55 * can cause system problems to occur.
57 * To do this we register our primary NMI notifier on the NMI_UNKNOWN
58 * chain. This reduces the number of false NMI calls when the perf
59 * tools are running which generate an enormous number of NMIs per
60 * second (~4M/s for 1024 CPU threads). Our secondary NMI handler is
61 * very short as it only checks that if it has been "pinged" with the
62 * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
66 static struct uv_hub_nmi_s **uv_hub_nmi_list;
68 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
70 /* UV hubless values */
71 #define NMI_CONTROL_PORT 0x70
72 #define NMI_DUMMY_PORT 0x71
73 #define PAD_OWN_GPP_D_0 0x2c
74 #define GPI_NMI_STS_GPP_D_0 0x164
75 #define GPI_NMI_ENA_GPP_D_0 0x174
76 #define STS_GPP_D_0_MASK 0x1
77 #define PAD_CFG_DW0_GPP_D_0 0x4c0
78 #define GPIROUTNMI (1ul << 17)
79 #define PCH_PCR_GPIO_1_BASE 0xfdae0000ul
80 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
82 static u64 *pch_base;
83 static unsigned long nmi_mmr;
84 static unsigned long nmi_mmr_clear;
85 static unsigned long nmi_mmr_pending;
87 static atomic_t uv_in_nmi;
88 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
89 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
90 static atomic_t uv_nmi_slave_continue;
91 static cpumask_var_t uv_nmi_cpu_mask;
93 /* Values for uv_nmi_slave_continue */
94 #define SLAVE_CLEAR 0
95 #define SLAVE_CONTINUE 1
96 #define SLAVE_EXIT 2
99 * Default is all stack dumps go to the console and buffer.
100 * Lower level to send to log buffer only.
102 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
103 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
106 * The following values show statistics on how perf events are affecting
107 * this system.
109 static int param_get_local64(char *buffer, const struct kernel_param *kp)
111 return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
114 static int param_set_local64(const char *val, const struct kernel_param *kp)
116 /* Clear on any write */
117 local64_set((local64_t *)kp->arg, 0);
118 return 0;
121 static const struct kernel_param_ops param_ops_local64 = {
122 .get = param_get_local64,
123 .set = param_set_local64,
125 #define param_check_local64(name, p) __param_check(name, p, local64_t)
127 static local64_t uv_nmi_count;
128 module_param_named(nmi_count, uv_nmi_count, local64, 0644);
130 static local64_t uv_nmi_misses;
131 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
133 static local64_t uv_nmi_ping_count;
134 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
136 static local64_t uv_nmi_ping_misses;
137 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
140 * Following values allow tuning for large systems under heavy loading
142 static int uv_nmi_initial_delay = 100;
143 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
145 static int uv_nmi_slave_delay = 100;
146 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
148 static int uv_nmi_loop_delay = 100;
149 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
151 static int uv_nmi_trigger_delay = 10000;
152 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
154 static int uv_nmi_wait_count = 100;
155 module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
157 static int uv_nmi_retry_count = 500;
158 module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
160 static bool uv_pch_intr_enable = true;
161 static bool uv_pch_intr_now_enabled;
162 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
164 static bool uv_pch_init_enable = true;
165 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
167 static int uv_nmi_debug;
168 module_param_named(debug, uv_nmi_debug, int, 0644);
170 #define nmi_debug(fmt, ...) \
171 do { \
172 if (uv_nmi_debug) \
173 pr_info(fmt, ##__VA_ARGS__); \
174 } while (0)
176 /* Valid NMI Actions */
177 #define ACTION_LEN 16
178 static struct nmi_action {
179 char *action;
180 char *desc;
181 } valid_acts[] = {
182 { "kdump", "do kernel crash dump" },
183 { "dump", "dump process stack for each cpu" },
184 { "ips", "dump Inst Ptr info for each cpu" },
185 { "kdb", "enter KDB (needs kgdboc= assignment)" },
186 { "kgdb", "enter KGDB (needs gdb target remote)" },
187 { "health", "check if CPUs respond to NMI" },
189 typedef char action_t[ACTION_LEN];
190 static action_t uv_nmi_action = { "dump" };
192 static int param_get_action(char *buffer, const struct kernel_param *kp)
194 return sprintf(buffer, "%s\n", uv_nmi_action);
197 static int param_set_action(const char *val, const struct kernel_param *kp)
199 int i;
200 int n = ARRAY_SIZE(valid_acts);
201 char arg[ACTION_LEN], *p;
203 /* (remove possible '\n') */
204 strncpy(arg, val, ACTION_LEN - 1);
205 arg[ACTION_LEN - 1] = '\0';
206 p = strchr(arg, '\n');
207 if (p)
208 *p = '\0';
210 for (i = 0; i < n; i++)
211 if (!strcmp(arg, valid_acts[i].action))
212 break;
214 if (i < n) {
215 strcpy(uv_nmi_action, arg);
216 pr_info("UV: New NMI action:%s\n", uv_nmi_action);
217 return 0;
220 pr_err("UV: Invalid NMI action:%s, valid actions are:\n", arg);
221 for (i = 0; i < n; i++)
222 pr_err("UV: %-8s - %s\n",
223 valid_acts[i].action, valid_acts[i].desc);
224 return -EINVAL;
227 static const struct kernel_param_ops param_ops_action = {
228 .get = param_get_action,
229 .set = param_set_action,
231 #define param_check_action(name, p) __param_check(name, p, action_t)
233 module_param_named(action, uv_nmi_action, action, 0644);
235 static inline bool uv_nmi_action_is(const char *action)
237 return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
240 /* Setup which NMI support is present in system */
241 static void uv_nmi_setup_mmrs(void)
243 if (uv_read_local_mmr(UVH_NMI_MMRX_SUPPORTED)) {
244 uv_write_local_mmr(UVH_NMI_MMRX_REQ,
245 1UL << UVH_NMI_MMRX_REQ_SHIFT);
246 nmi_mmr = UVH_NMI_MMRX;
247 nmi_mmr_clear = UVH_NMI_MMRX_CLEAR;
248 nmi_mmr_pending = 1UL << UVH_NMI_MMRX_SHIFT;
249 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMRX_TYPE);
250 } else {
251 nmi_mmr = UVH_NMI_MMR;
252 nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
253 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
254 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
258 /* Read NMI MMR and check if NMI flag was set by BMC. */
259 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
261 hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
262 atomic_inc(&hub_nmi->read_mmr_count);
263 return !!(hub_nmi->nmi_value & nmi_mmr_pending);
266 static inline void uv_local_mmr_clear_nmi(void)
268 uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
272 * UV hubless NMI handler functions
274 static inline void uv_reassert_nmi(void)
276 /* (from arch/x86/include/asm/mach_traps.h) */
277 outb(0x8f, NMI_CONTROL_PORT);
278 inb(NMI_DUMMY_PORT); /* dummy read */
279 outb(0x0f, NMI_CONTROL_PORT);
280 inb(NMI_DUMMY_PORT); /* dummy read */
283 static void uv_init_hubless_pch_io(int offset, int mask, int data)
285 int *addr = PCH_PCR_GPIO_ADDRESS(offset);
286 int readd = readl(addr);
288 if (mask) { /* OR in new data */
289 int writed = (readd & ~mask) | data;
291 nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
292 addr, readd, ~mask, data, writed);
293 writel(writed, addr);
294 } else if (readd & data) { /* clear status bit */
295 nmi_debug("UV:PCH: %p = %x\n", addr, data);
296 writel(data, addr);
299 (void)readl(addr); /* flush write data */
302 static void uv_nmi_setup_hubless_intr(void)
304 uv_pch_intr_now_enabled = uv_pch_intr_enable;
306 uv_init_hubless_pch_io(
307 PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
308 uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
310 nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
311 uv_pch_intr_now_enabled ? "enabled" : "disabled");
314 static struct init_nmi {
315 unsigned int offset;
316 unsigned int mask;
317 unsigned int data;
318 } init_nmi[] = {
319 { /* HOSTSW_OWN_GPP_D_0 */
320 .offset = 0x84,
321 .mask = 0x1,
322 .data = 0x0, /* ACPI Mode */
325 /* Clear status: */
326 { /* GPI_INT_STS_GPP_D_0 */
327 .offset = 0x104,
328 .mask = 0x0,
329 .data = 0x1, /* Clear Status */
331 { /* GPI_GPE_STS_GPP_D_0 */
332 .offset = 0x124,
333 .mask = 0x0,
334 .data = 0x1, /* Clear Status */
336 { /* GPI_SMI_STS_GPP_D_0 */
337 .offset = 0x144,
338 .mask = 0x0,
339 .data = 0x1, /* Clear Status */
341 { /* GPI_NMI_STS_GPP_D_0 */
342 .offset = 0x164,
343 .mask = 0x0,
344 .data = 0x1, /* Clear Status */
347 /* Disable interrupts: */
348 { /* GPI_INT_EN_GPP_D_0 */
349 .offset = 0x114,
350 .mask = 0x1,
351 .data = 0x0, /* Disable interrupt generation */
353 { /* GPI_GPE_EN_GPP_D_0 */
354 .offset = 0x134,
355 .mask = 0x1,
356 .data = 0x0, /* Disable interrupt generation */
358 { /* GPI_SMI_EN_GPP_D_0 */
359 .offset = 0x154,
360 .mask = 0x1,
361 .data = 0x0, /* Disable interrupt generation */
363 { /* GPI_NMI_EN_GPP_D_0 */
364 .offset = 0x174,
365 .mask = 0x1,
366 .data = 0x0, /* Disable interrupt generation */
369 /* Setup GPP_D_0 Pad Config: */
370 { /* PAD_CFG_DW0_GPP_D_0 */
371 .offset = 0x4c0,
372 .mask = 0xffffffff,
373 .data = 0x82020100,
375 * 31:30 Pad Reset Config (PADRSTCFG): = 2h # PLTRST# (default)
377 * 29 RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
378 * from RX buffer (default)
380 * 28 RX Raw Override to '1' (RXRAW1): = 0 # No Override
382 * 26:25 RX Level/Edge Configuration (RXEVCFG):
383 * = 0h # Level
384 * = 1h # Edge
386 * 23 RX Invert (RXINV): = 0 # No Inversion (signal active high)
388 * 20 GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
389 * = 0 # Routing does not cause peripheral IRQ...
390 * # (we want an NMI not an IRQ)
392 * 19 GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
393 * 18 GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
394 * 17 GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
396 * 11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
397 * 9 GPIO RX Disable (GPIORXDIS):
398 * = 0 # Enable the input buffer (active low enable)
400 * 8 GPIO TX Disable (GPIOTXDIS):
401 * = 1 # Disable the output buffer; i.e. Hi-Z
403 * 1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
404 * 0 GPIO TX State (GPIOTXSTATE):
405 * = 0 # (Leave at default)
409 /* Pad Config DW1 */
410 { /* PAD_CFG_DW1_GPP_D_0 */
411 .offset = 0x4c4,
412 .mask = 0x3c00,
413 .data = 0, /* Termination = none (default) */
417 static void uv_init_hubless_pch_d0(void)
419 int i, read;
421 read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
422 if (read != 0) {
423 pr_info("UV: Hubless NMI already configured\n");
424 return;
427 nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
428 for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
429 uv_init_hubless_pch_io(init_nmi[i].offset,
430 init_nmi[i].mask,
431 init_nmi[i].data);
435 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
437 int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
438 int status = *pstat;
440 hub_nmi->nmi_value = status;
441 atomic_inc(&hub_nmi->read_mmr_count);
443 if (!(status & STS_GPP_D_0_MASK)) /* Not a UV external NMI */
444 return 0;
446 *pstat = STS_GPP_D_0_MASK; /* Is a UV NMI: clear GPP_D_0 status */
447 (void)*pstat; /* Flush write */
449 return 1;
452 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
454 if (hub_nmi->hub_present)
455 return uv_nmi_test_mmr(hub_nmi);
457 if (hub_nmi->pch_owner) /* Only PCH owner can check status */
458 return uv_nmi_test_hubless(hub_nmi);
460 return -1;
464 * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
465 * return true. If first CPU in on the system, set global "in_nmi" flag.
467 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
469 int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
471 if (first) {
472 atomic_set(&hub_nmi->cpu_owner, cpu);
473 if (atomic_add_unless(&uv_in_nmi, 1, 1))
474 atomic_set(&uv_nmi_cpu, cpu);
476 atomic_inc(&hub_nmi->nmi_count);
478 return first;
481 /* Check if this is a system NMI event */
482 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
484 int cpu = smp_processor_id();
485 int nmi = 0;
486 int nmi_detected = 0;
488 local64_inc(&uv_nmi_count);
489 this_cpu_inc(uv_cpu_nmi.queries);
491 do {
492 nmi = atomic_read(&hub_nmi->in_nmi);
493 if (nmi)
494 break;
496 if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
497 nmi_detected = uv_test_nmi(hub_nmi);
499 /* Check flag for UV external NMI */
500 if (nmi_detected > 0) {
501 uv_set_in_nmi(cpu, hub_nmi);
502 nmi = 1;
503 break;
506 /* A non-PCH node in a hubless system waits for NMI */
507 else if (nmi_detected < 0)
508 goto slave_wait;
510 /* MMR/PCH NMI flag is clear */
511 raw_spin_unlock(&hub_nmi->nmi_lock);
513 } else {
515 /* Wait a moment for the HUB NMI locker to set flag */
516 slave_wait: cpu_relax();
517 udelay(uv_nmi_slave_delay);
519 /* Re-check hub in_nmi flag */
520 nmi = atomic_read(&hub_nmi->in_nmi);
521 if (nmi)
522 break;
526 * Check if this BMC missed setting the MMR NMI flag (or)
527 * UV hubless system where only PCH owner can check flag
529 if (!nmi) {
530 nmi = atomic_read(&uv_in_nmi);
531 if (nmi)
532 uv_set_in_nmi(cpu, hub_nmi);
535 /* If we're holding the hub lock, release it now */
536 if (nmi_detected < 0)
537 raw_spin_unlock(&hub_nmi->nmi_lock);
539 } while (0);
541 if (!nmi)
542 local64_inc(&uv_nmi_misses);
544 return nmi;
547 /* Need to reset the NMI MMR register, but only once per hub. */
548 static inline void uv_clear_nmi(int cpu)
550 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
552 if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
553 atomic_set(&hub_nmi->cpu_owner, -1);
554 atomic_set(&hub_nmi->in_nmi, 0);
555 if (hub_nmi->hub_present)
556 uv_local_mmr_clear_nmi();
557 else
558 uv_reassert_nmi();
559 raw_spin_unlock(&hub_nmi->nmi_lock);
563 /* Ping non-responding CPU's attemping to force them into the NMI handler */
564 static void uv_nmi_nr_cpus_ping(void)
566 int cpu;
568 for_each_cpu(cpu, uv_nmi_cpu_mask)
569 uv_cpu_nmi_per(cpu).pinging = 1;
571 apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
574 /* Clean up flags for CPU's that ignored both NMI and ping */
575 static void uv_nmi_cleanup_mask(void)
577 int cpu;
579 for_each_cpu(cpu, uv_nmi_cpu_mask) {
580 uv_cpu_nmi_per(cpu).pinging = 0;
581 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
582 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
586 /* Loop waiting as CPU's enter NMI handler */
587 static int uv_nmi_wait_cpus(int first)
589 int i, j, k, n = num_online_cpus();
590 int last_k = 0, waiting = 0;
591 int cpu = smp_processor_id();
593 if (first) {
594 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
595 k = 0;
596 } else {
597 k = n - cpumask_weight(uv_nmi_cpu_mask);
600 /* PCH NMI causes only one CPU to respond */
601 if (first && uv_pch_intr_now_enabled) {
602 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
603 return n - k - 1;
606 udelay(uv_nmi_initial_delay);
607 for (i = 0; i < uv_nmi_retry_count; i++) {
608 int loop_delay = uv_nmi_loop_delay;
610 for_each_cpu(j, uv_nmi_cpu_mask) {
611 if (uv_cpu_nmi_per(j).state) {
612 cpumask_clear_cpu(j, uv_nmi_cpu_mask);
613 if (++k >= n)
614 break;
617 if (k >= n) { /* all in? */
618 k = n;
619 break;
621 if (last_k != k) { /* abort if no new CPU's coming in */
622 last_k = k;
623 waiting = 0;
624 } else if (++waiting > uv_nmi_wait_count)
625 break;
627 /* Extend delay if waiting only for CPU 0: */
628 if (waiting && (n - k) == 1 &&
629 cpumask_test_cpu(0, uv_nmi_cpu_mask))
630 loop_delay *= 100;
632 udelay(loop_delay);
634 atomic_set(&uv_nmi_cpus_in_nmi, k);
635 return n - k;
638 /* Wait until all slave CPU's have entered UV NMI handler */
639 static void uv_nmi_wait(int master)
641 /* Indicate this CPU is in: */
642 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
644 /* If not the first CPU in (the master), then we are a slave CPU */
645 if (!master)
646 return;
648 do {
649 /* Wait for all other CPU's to gather here */
650 if (!uv_nmi_wait_cpus(1))
651 break;
653 /* If not all made it in, send IPI NMI to them */
654 pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
655 cpumask_weight(uv_nmi_cpu_mask),
656 cpumask_pr_args(uv_nmi_cpu_mask));
658 uv_nmi_nr_cpus_ping();
660 /* If all CPU's are in, then done */
661 if (!uv_nmi_wait_cpus(0))
662 break;
664 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
665 cpumask_weight(uv_nmi_cpu_mask),
666 cpumask_pr_args(uv_nmi_cpu_mask));
667 } while (0);
669 pr_alert("UV: %d of %d CPUs in NMI\n",
670 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
673 /* Dump Instruction Pointer header */
674 static void uv_nmi_dump_cpu_ip_hdr(void)
676 pr_info("\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n",
677 "CPU", "PID", "COMMAND", "IP");
680 /* Dump Instruction Pointer info */
681 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
683 pr_info("UV: %4d %6d %-32.32s %pS",
684 cpu, current->pid, current->comm, (void *)regs->ip);
688 * Dump this CPU's state. If action was set to "kdump" and the crash_kexec
689 * failed, then we provide "dump" as an alternate action. Action "dump" now
690 * also includes the show "ips" (instruction pointers) action whereas the
691 * action "ips" only displays instruction pointers for the non-idle CPU's.
692 * This is an abbreviated form of the "ps" command.
694 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
696 const char *dots = " ................................. ";
698 if (cpu == 0)
699 uv_nmi_dump_cpu_ip_hdr();
701 if (current->pid != 0 || !uv_nmi_action_is("ips"))
702 uv_nmi_dump_cpu_ip(cpu, regs);
704 if (uv_nmi_action_is("dump")) {
705 pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
706 show_regs(regs);
709 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
712 /* Trigger a slave CPU to dump it's state */
713 static void uv_nmi_trigger_dump(int cpu)
715 int retry = uv_nmi_trigger_delay;
717 if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
718 return;
720 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
721 do {
722 cpu_relax();
723 udelay(10);
724 if (uv_cpu_nmi_per(cpu).state
725 != UV_NMI_STATE_DUMP)
726 return;
727 } while (--retry > 0);
729 pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
730 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
733 /* Wait until all CPU's ready to exit */
734 static void uv_nmi_sync_exit(int master)
736 atomic_dec(&uv_nmi_cpus_in_nmi);
737 if (master) {
738 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
739 cpu_relax();
740 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
741 } else {
742 while (atomic_read(&uv_nmi_slave_continue))
743 cpu_relax();
747 /* Current "health" check is to check which CPU's are responsive */
748 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
750 if (master) {
751 int in = atomic_read(&uv_nmi_cpus_in_nmi);
752 int out = num_online_cpus() - in;
754 pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
755 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
756 } else {
757 while (!atomic_read(&uv_nmi_slave_continue))
758 cpu_relax();
760 uv_nmi_sync_exit(master);
763 /* Walk through CPU list and dump state of each */
764 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
766 if (master) {
767 int tcpu;
768 int ignored = 0;
769 int saved_console_loglevel = console_loglevel;
771 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
772 uv_nmi_action_is("ips") ? "IPs" : "processes",
773 atomic_read(&uv_nmi_cpus_in_nmi), cpu);
775 console_loglevel = uv_nmi_loglevel;
776 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
777 for_each_online_cpu(tcpu) {
778 if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
779 ignored++;
780 else if (tcpu == cpu)
781 uv_nmi_dump_state_cpu(tcpu, regs);
782 else
783 uv_nmi_trigger_dump(tcpu);
785 if (ignored)
786 pr_alert("UV: %d CPUs ignored NMI\n", ignored);
788 console_loglevel = saved_console_loglevel;
789 pr_alert("UV: process trace complete\n");
790 } else {
791 while (!atomic_read(&uv_nmi_slave_continue))
792 cpu_relax();
793 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
794 cpu_relax();
795 uv_nmi_dump_state_cpu(cpu, regs);
797 uv_nmi_sync_exit(master);
800 static void uv_nmi_touch_watchdogs(void)
802 touch_softlockup_watchdog_sync();
803 clocksource_touch_watchdog();
804 rcu_cpu_stall_reset();
805 touch_nmi_watchdog();
808 static atomic_t uv_nmi_kexec_failed;
810 #if defined(CONFIG_KEXEC_CORE)
811 static void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
813 /* Call crash to dump system state */
814 if (master) {
815 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
816 crash_kexec(regs);
818 pr_emerg("UV: crash_kexec unexpectedly returned, ");
819 atomic_set(&uv_nmi_kexec_failed, 1);
820 if (!kexec_crash_image) {
821 pr_cont("crash kernel not loaded\n");
822 return;
824 pr_cont("kexec busy, stalling cpus while waiting\n");
827 /* If crash exec fails the slaves should return, otherwise stall */
828 while (atomic_read(&uv_nmi_kexec_failed) == 0)
829 mdelay(10);
832 #else /* !CONFIG_KEXEC_CORE */
833 static inline void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
835 if (master)
836 pr_err("UV: NMI kdump: KEXEC not supported in this kernel\n");
837 atomic_set(&uv_nmi_kexec_failed, 1);
839 #endif /* !CONFIG_KEXEC_CORE */
841 #ifdef CONFIG_KGDB
842 #ifdef CONFIG_KGDB_KDB
843 static inline int uv_nmi_kdb_reason(void)
845 return KDB_REASON_SYSTEM_NMI;
847 #else /* !CONFIG_KGDB_KDB */
848 static inline int uv_nmi_kdb_reason(void)
850 /* Ensure user is expecting to attach gdb remote */
851 if (uv_nmi_action_is("kgdb"))
852 return 0;
854 pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
855 return -1;
857 #endif /* CONFIG_KGDB_KDB */
860 * Call KGDB/KDB from NMI handler
862 * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
863 * 'kdb' has no affect on which is used. See the KGDB documention for further
864 * information.
866 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
868 if (master) {
869 int reason = uv_nmi_kdb_reason();
870 int ret;
872 if (reason < 0)
873 return;
875 /* Call KGDB NMI handler as MASTER */
876 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
877 &uv_nmi_slave_continue);
878 if (ret) {
879 pr_alert("KGDB returned error, is kgdboc set?\n");
880 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
882 } else {
883 /* Wait for KGDB signal that it's ready for slaves to enter */
884 int sig;
886 do {
887 cpu_relax();
888 sig = atomic_read(&uv_nmi_slave_continue);
889 } while (!sig);
891 /* Call KGDB as slave */
892 if (sig == SLAVE_CONTINUE)
893 kgdb_nmicallback(cpu, regs);
895 uv_nmi_sync_exit(master);
898 #else /* !CONFIG_KGDB */
899 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
901 pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
903 #endif /* !CONFIG_KGDB */
906 * UV NMI handler
908 int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
910 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
911 int cpu = smp_processor_id();
912 int master = 0;
913 unsigned long flags;
915 local_irq_save(flags);
917 /* If not a UV System NMI, ignore */
918 if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
919 local_irq_restore(flags);
920 return NMI_DONE;
923 /* Indicate we are the first CPU into the NMI handler */
924 master = (atomic_read(&uv_nmi_cpu) == cpu);
926 /* If NMI action is "kdump", then attempt to do it */
927 if (uv_nmi_action_is("kdump")) {
928 uv_nmi_kdump(cpu, master, regs);
930 /* Unexpected return, revert action to "dump" */
931 if (master)
932 strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
935 /* Pause as all CPU's enter the NMI handler */
936 uv_nmi_wait(master);
938 /* Process actions other than "kdump": */
939 if (uv_nmi_action_is("health")) {
940 uv_nmi_action_health(cpu, regs, master);
941 } else if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) {
942 uv_nmi_dump_state(cpu, regs, master);
943 } else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) {
944 uv_call_kgdb_kdb(cpu, regs, master);
945 } else {
946 if (master)
947 pr_alert("UV: unknown NMI action: %s\n", uv_nmi_action);
948 uv_nmi_sync_exit(master);
951 /* Clear per_cpu "in_nmi" flag */
952 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
954 /* Clear MMR NMI flag on each hub */
955 uv_clear_nmi(cpu);
957 /* Clear global flags */
958 if (master) {
959 if (cpumask_weight(uv_nmi_cpu_mask))
960 uv_nmi_cleanup_mask();
961 atomic_set(&uv_nmi_cpus_in_nmi, -1);
962 atomic_set(&uv_nmi_cpu, -1);
963 atomic_set(&uv_in_nmi, 0);
964 atomic_set(&uv_nmi_kexec_failed, 0);
965 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
968 uv_nmi_touch_watchdogs();
969 local_irq_restore(flags);
971 return NMI_HANDLED;
975 * NMI handler for pulling in CPU's when perf events are grabbing our NMI
977 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
979 int ret;
981 this_cpu_inc(uv_cpu_nmi.queries);
982 if (!this_cpu_read(uv_cpu_nmi.pinging)) {
983 local64_inc(&uv_nmi_ping_misses);
984 return NMI_DONE;
987 this_cpu_inc(uv_cpu_nmi.pings);
988 local64_inc(&uv_nmi_ping_count);
989 ret = uv_handle_nmi(reason, regs);
990 this_cpu_write(uv_cpu_nmi.pinging, 0);
991 return ret;
994 static void uv_register_nmi_notifier(void)
996 if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
997 pr_warn("UV: NMI handler failed to register\n");
999 if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1000 pr_warn("UV: PING NMI handler failed to register\n");
1003 void uv_nmi_init(void)
1005 unsigned int value;
1008 * Unmask NMI on all CPU's
1010 value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1011 value &= ~APIC_LVT_MASKED;
1012 apic_write(APIC_LVT1, value);
1015 /* Setup HUB NMI info */
1016 void __init uv_nmi_setup_common(bool hubbed)
1018 int size = sizeof(void *) * (1 << NODES_SHIFT);
1019 int cpu;
1021 uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1022 nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1023 BUG_ON(!uv_hub_nmi_list);
1024 size = sizeof(struct uv_hub_nmi_s);
1025 for_each_present_cpu(cpu) {
1026 int nid = cpu_to_node(cpu);
1027 if (uv_hub_nmi_list[nid] == NULL) {
1028 uv_hub_nmi_list[nid] = kzalloc_node(size,
1029 GFP_KERNEL, nid);
1030 BUG_ON(!uv_hub_nmi_list[nid]);
1031 raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1032 atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1033 uv_hub_nmi_list[nid]->hub_present = hubbed;
1034 uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1036 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1038 BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1041 /* Setup for UV Hub systems */
1042 void __init uv_nmi_setup(void)
1044 uv_nmi_setup_mmrs();
1045 uv_nmi_setup_common(true);
1046 uv_register_nmi_notifier();
1047 pr_info("UV: Hub NMI enabled\n");
1050 /* Setup for UV Hubless systems */
1051 void __init uv_nmi_setup_hubless(void)
1053 uv_nmi_setup_common(false);
1054 pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1055 nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1056 pch_base, PCH_PCR_GPIO_1_BASE);
1057 if (uv_pch_init_enable)
1058 uv_init_hubless_pch_d0();
1059 uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1060 STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1061 uv_nmi_setup_hubless_intr();
1062 /* Ensure NMI enabled in Processor Interface Reg: */
1063 uv_reassert_nmi();
1064 uv_register_nmi_notifier();
1065 pr_info("UV: Hubless NMI enabled\n");