x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / block / blk-mq-tag.c
blob9d97bfc4d4657b586d1a9b4d077a8e673300d79a
1 /*
2 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
3 * fairer distribution of tags between multiple submitters when a shared tag map
4 * is used.
6 * Copyright (C) 2013-2014 Jens Axboe
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/blk-mq.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-tag.h"
16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
18 if (!tags)
19 return true;
21 return sbitmap_any_bit_clear(&tags->bitmap_tags.sb);
25 * If a previously inactive queue goes active, bump the active user count.
27 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
29 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
30 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
31 atomic_inc(&hctx->tags->active_queues);
33 return true;
37 * Wakeup all potentially sleeping on tags
39 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
41 sbitmap_queue_wake_all(&tags->bitmap_tags);
42 if (include_reserve)
43 sbitmap_queue_wake_all(&tags->breserved_tags);
47 * If a previously busy queue goes inactive, potential waiters could now
48 * be allowed to queue. Wake them up and check.
50 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
52 struct blk_mq_tags *tags = hctx->tags;
54 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
55 return;
57 atomic_dec(&tags->active_queues);
59 blk_mq_tag_wakeup_all(tags, false);
63 * For shared tag users, we track the number of currently active users
64 * and attempt to provide a fair share of the tag depth for each of them.
66 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
67 struct sbitmap_queue *bt)
69 unsigned int depth, users;
71 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
72 return true;
73 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
74 return true;
77 * Don't try dividing an ant
79 if (bt->sb.depth == 1)
80 return true;
82 users = atomic_read(&hctx->tags->active_queues);
83 if (!users)
84 return true;
87 * Allow at least some tags
89 depth = max((bt->sb.depth + users - 1) / users, 4U);
90 return atomic_read(&hctx->nr_active) < depth;
93 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
94 struct sbitmap_queue *bt)
96 if (!(data->flags & BLK_MQ_REQ_INTERNAL) &&
97 !hctx_may_queue(data->hctx, bt))
98 return -1;
99 return __sbitmap_queue_get(bt);
102 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
104 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
105 struct sbitmap_queue *bt;
106 struct sbq_wait_state *ws;
107 DEFINE_WAIT(wait);
108 unsigned int tag_offset;
109 bool drop_ctx;
110 int tag;
112 if (data->flags & BLK_MQ_REQ_RESERVED) {
113 if (unlikely(!tags->nr_reserved_tags)) {
114 WARN_ON_ONCE(1);
115 return BLK_MQ_TAG_FAIL;
117 bt = &tags->breserved_tags;
118 tag_offset = 0;
119 } else {
120 bt = &tags->bitmap_tags;
121 tag_offset = tags->nr_reserved_tags;
124 tag = __blk_mq_get_tag(data, bt);
125 if (tag != -1)
126 goto found_tag;
128 if (data->flags & BLK_MQ_REQ_NOWAIT)
129 return BLK_MQ_TAG_FAIL;
131 ws = bt_wait_ptr(bt, data->hctx);
132 drop_ctx = data->ctx == NULL;
133 do {
134 prepare_to_wait(&ws->wait, &wait, TASK_UNINTERRUPTIBLE);
136 tag = __blk_mq_get_tag(data, bt);
137 if (tag != -1)
138 break;
141 * We're out of tags on this hardware queue, kick any
142 * pending IO submits before going to sleep waiting for
143 * some to complete.
145 blk_mq_run_hw_queue(data->hctx, false);
148 * Retry tag allocation after running the hardware queue,
149 * as running the queue may also have found completions.
151 tag = __blk_mq_get_tag(data, bt);
152 if (tag != -1)
153 break;
155 if (data->ctx)
156 blk_mq_put_ctx(data->ctx);
158 io_schedule();
160 data->ctx = blk_mq_get_ctx(data->q);
161 data->hctx = blk_mq_map_queue(data->q, data->ctx->cpu);
162 tags = blk_mq_tags_from_data(data);
163 if (data->flags & BLK_MQ_REQ_RESERVED)
164 bt = &tags->breserved_tags;
165 else
166 bt = &tags->bitmap_tags;
168 finish_wait(&ws->wait, &wait);
169 ws = bt_wait_ptr(bt, data->hctx);
170 } while (1);
172 if (drop_ctx && data->ctx)
173 blk_mq_put_ctx(data->ctx);
175 finish_wait(&ws->wait, &wait);
177 found_tag:
178 return tag + tag_offset;
181 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags,
182 struct blk_mq_ctx *ctx, unsigned int tag)
184 if (!blk_mq_tag_is_reserved(tags, tag)) {
185 const int real_tag = tag - tags->nr_reserved_tags;
187 BUG_ON(real_tag >= tags->nr_tags);
188 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
189 } else {
190 BUG_ON(tag >= tags->nr_reserved_tags);
191 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
195 struct bt_iter_data {
196 struct blk_mq_hw_ctx *hctx;
197 busy_iter_fn *fn;
198 void *data;
199 bool reserved;
202 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
204 struct bt_iter_data *iter_data = data;
205 struct blk_mq_hw_ctx *hctx = iter_data->hctx;
206 struct blk_mq_tags *tags = hctx->tags;
207 bool reserved = iter_data->reserved;
208 struct request *rq;
210 if (!reserved)
211 bitnr += tags->nr_reserved_tags;
212 rq = tags->rqs[bitnr];
214 if (rq->q == hctx->queue)
215 iter_data->fn(hctx, rq, iter_data->data, reserved);
216 return true;
219 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt,
220 busy_iter_fn *fn, void *data, bool reserved)
222 struct bt_iter_data iter_data = {
223 .hctx = hctx,
224 .fn = fn,
225 .data = data,
226 .reserved = reserved,
229 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
232 struct bt_tags_iter_data {
233 struct blk_mq_tags *tags;
234 busy_tag_iter_fn *fn;
235 void *data;
236 bool reserved;
239 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
241 struct bt_tags_iter_data *iter_data = data;
242 struct blk_mq_tags *tags = iter_data->tags;
243 bool reserved = iter_data->reserved;
244 struct request *rq;
246 if (!reserved)
247 bitnr += tags->nr_reserved_tags;
248 rq = tags->rqs[bitnr];
250 iter_data->fn(rq, iter_data->data, reserved);
251 return true;
254 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
255 busy_tag_iter_fn *fn, void *data, bool reserved)
257 struct bt_tags_iter_data iter_data = {
258 .tags = tags,
259 .fn = fn,
260 .data = data,
261 .reserved = reserved,
264 if (tags->rqs)
265 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
268 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags,
269 busy_tag_iter_fn *fn, void *priv)
271 if (tags->nr_reserved_tags)
272 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true);
273 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false);
276 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
277 busy_tag_iter_fn *fn, void *priv)
279 int i;
281 for (i = 0; i < tagset->nr_hw_queues; i++) {
282 if (tagset->tags && tagset->tags[i])
283 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv);
286 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
288 int blk_mq_reinit_tagset(struct blk_mq_tag_set *set)
290 int i, j, ret = 0;
292 if (!set->ops->reinit_request)
293 goto out;
295 for (i = 0; i < set->nr_hw_queues; i++) {
296 struct blk_mq_tags *tags = set->tags[i];
298 if (!tags)
299 continue;
301 for (j = 0; j < tags->nr_tags; j++) {
302 if (!tags->static_rqs[j])
303 continue;
305 ret = set->ops->reinit_request(set->driver_data,
306 tags->static_rqs[j]);
307 if (ret)
308 goto out;
312 out:
313 return ret;
315 EXPORT_SYMBOL_GPL(blk_mq_reinit_tagset);
317 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
318 void *priv)
320 struct blk_mq_hw_ctx *hctx;
321 int i;
324 queue_for_each_hw_ctx(q, hctx, i) {
325 struct blk_mq_tags *tags = hctx->tags;
328 * If not software queues are currently mapped to this
329 * hardware queue, there's nothing to check
331 if (!blk_mq_hw_queue_mapped(hctx))
332 continue;
334 if (tags->nr_reserved_tags)
335 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true);
336 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false);
341 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
342 bool round_robin, int node)
344 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
345 node);
348 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
349 int node, int alloc_policy)
351 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
352 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
354 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
355 goto free_tags;
356 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin,
357 node))
358 goto free_bitmap_tags;
360 return tags;
361 free_bitmap_tags:
362 sbitmap_queue_free(&tags->bitmap_tags);
363 free_tags:
364 kfree(tags);
365 return NULL;
368 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
369 unsigned int reserved_tags,
370 int node, int alloc_policy)
372 struct blk_mq_tags *tags;
374 if (total_tags > BLK_MQ_TAG_MAX) {
375 pr_err("blk-mq: tag depth too large\n");
376 return NULL;
379 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
380 if (!tags)
381 return NULL;
383 tags->nr_tags = total_tags;
384 tags->nr_reserved_tags = reserved_tags;
386 return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
389 void blk_mq_free_tags(struct blk_mq_tags *tags)
391 sbitmap_queue_free(&tags->bitmap_tags);
392 sbitmap_queue_free(&tags->breserved_tags);
393 kfree(tags);
396 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
397 struct blk_mq_tags **tagsptr, unsigned int tdepth,
398 bool can_grow)
400 struct blk_mq_tags *tags = *tagsptr;
402 if (tdepth <= tags->nr_reserved_tags)
403 return -EINVAL;
405 tdepth -= tags->nr_reserved_tags;
408 * If we are allowed to grow beyond the original size, allocate
409 * a new set of tags before freeing the old one.
411 if (tdepth > tags->nr_tags) {
412 struct blk_mq_tag_set *set = hctx->queue->tag_set;
413 struct blk_mq_tags *new;
414 bool ret;
416 if (!can_grow)
417 return -EINVAL;
420 * We need some sort of upper limit, set it high enough that
421 * no valid use cases should require more.
423 if (tdepth > 16 * BLKDEV_MAX_RQ)
424 return -EINVAL;
426 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 0);
427 if (!new)
428 return -ENOMEM;
429 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth);
430 if (ret) {
431 blk_mq_free_rq_map(new);
432 return -ENOMEM;
435 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num);
436 blk_mq_free_rq_map(*tagsptr);
437 *tagsptr = new;
438 } else {
440 * Don't need (or can't) update reserved tags here, they
441 * remain static and should never need resizing.
443 sbitmap_queue_resize(&tags->bitmap_tags, tdepth);
446 return 0;
450 * blk_mq_unique_tag() - return a tag that is unique queue-wide
451 * @rq: request for which to compute a unique tag
453 * The tag field in struct request is unique per hardware queue but not over
454 * all hardware queues. Hence this function that returns a tag with the
455 * hardware context index in the upper bits and the per hardware queue tag in
456 * the lower bits.
458 * Note: When called for a request that is queued on a non-multiqueue request
459 * queue, the hardware context index is set to zero.
461 u32 blk_mq_unique_tag(struct request *rq)
463 struct request_queue *q = rq->q;
464 struct blk_mq_hw_ctx *hctx;
465 int hwq = 0;
467 if (q->mq_ops) {
468 hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
469 hwq = hctx->queue_num;
472 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
473 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
475 EXPORT_SYMBOL(blk_mq_unique_tag);