x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / block / blk-mq.c
blobc7836a1ded973e23026143edb95e36a4e86ad294
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
43 * Check if any of the ctx's have pending work in this hardware queue
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
53 * Mark this ctx as having pending work in this hardware queue
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
68 void blk_mq_freeze_queue_start(struct request_queue *q)
70 int freeze_depth;
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
74 percpu_ref_kill(&q->q_usage_counter);
75 blk_mq_run_hw_queues(q, false);
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
80 void blk_mq_freeze_queue_wait(struct request_queue *q)
82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
99 void blk_freeze_queue(struct request_queue *q)
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
112 void blk_mq_freeze_queue(struct request_queue *q)
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
118 blk_freeze_queue(q);
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
122 void blk_mq_unfreeze_queue(struct request_queue *q)
124 int freeze_depth;
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
129 percpu_ref_reinit(&q->q_usage_counter);
130 wake_up_all(&q->mq_freeze_wq);
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
143 void blk_mq_quiesce_queue(struct request_queue *q)
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
149 blk_mq_stop_hw_queues(q);
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
157 if (rcu)
158 synchronize_rcu();
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
162 void blk_mq_wake_waiters(struct request_queue *q)
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
176 wake_up_all(&q->mq_freeze_wq);
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
181 return blk_mq_has_free_tags(hctx->tags);
183 EXPORT_SYMBOL(blk_mq_can_queue);
185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
191 rq->mq_ctx = ctx;
192 rq->cmd_flags = op;
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
199 rq->rq_disk = NULL;
200 rq->part = NULL;
201 rq->start_time = jiffies;
202 #ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
204 set_start_time_ns(rq);
205 rq->io_start_time_ns = 0;
206 #endif
207 rq->nr_phys_segments = 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210 #endif
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
214 rq->extra_len = 0;
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
223 ctx->rq_dispatched[op_is_sync(op)]++;
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
230 struct request *rq;
231 unsigned int tag;
233 tag = blk_mq_get_tag(data);
234 if (tag != BLK_MQ_TAG_FAIL) {
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
237 rq = tags->static_rqs[tag];
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
247 rq->tag = tag;
248 rq->internal_tag = -1;
249 data->hctx->tags->rqs[rq->tag] = rq;
252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253 return rq;
256 return NULL;
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
264 struct request *rq;
265 int ret;
267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268 if (ret)
269 return ERR_PTR(ret);
271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
276 if (!rq)
277 return ERR_PTR(-EWOULDBLOCK);
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
282 return rq;
284 EXPORT_SYMBOL(blk_mq_alloc_request);
286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
290 struct request *rq;
291 unsigned int cpu;
292 int ret;
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
324 blk_queue_exit(q);
326 if (!rq)
327 return ERR_PTR(-EWOULDBLOCK);
329 return rq;
331 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
333 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
334 struct request *rq)
336 const int sched_tag = rq->internal_tag;
337 struct request_queue *q = rq->q;
339 if (rq->rq_flags & RQF_MQ_INFLIGHT)
340 atomic_dec(&hctx->nr_active);
342 wbt_done(q->rq_wb, &rq->issue_stat);
343 rq->rq_flags = 0;
345 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
346 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
347 if (rq->tag != -1)
348 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
349 if (sched_tag != -1)
350 blk_mq_sched_completed_request(hctx, rq);
351 blk_mq_sched_restart(hctx);
352 blk_queue_exit(q);
355 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
356 struct request *rq)
358 struct blk_mq_ctx *ctx = rq->mq_ctx;
360 ctx->rq_completed[rq_is_sync(rq)]++;
361 __blk_mq_finish_request(hctx, ctx, rq);
364 void blk_mq_finish_request(struct request *rq)
366 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
369 void blk_mq_free_request(struct request *rq)
371 blk_mq_sched_put_request(rq);
373 EXPORT_SYMBOL_GPL(blk_mq_free_request);
375 inline void __blk_mq_end_request(struct request *rq, int error)
377 blk_account_io_done(rq);
379 if (rq->end_io) {
380 wbt_done(rq->q->rq_wb, &rq->issue_stat);
381 rq->end_io(rq, error);
382 } else {
383 if (unlikely(blk_bidi_rq(rq)))
384 blk_mq_free_request(rq->next_rq);
385 blk_mq_free_request(rq);
388 EXPORT_SYMBOL(__blk_mq_end_request);
390 void blk_mq_end_request(struct request *rq, int error)
392 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
393 BUG();
394 __blk_mq_end_request(rq, error);
396 EXPORT_SYMBOL(blk_mq_end_request);
398 static void __blk_mq_complete_request_remote(void *data)
400 struct request *rq = data;
402 rq->q->softirq_done_fn(rq);
405 static void blk_mq_ipi_complete_request(struct request *rq)
407 struct blk_mq_ctx *ctx = rq->mq_ctx;
408 bool shared = false;
409 int cpu;
411 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
412 rq->q->softirq_done_fn(rq);
413 return;
416 cpu = get_cpu();
417 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
418 shared = cpus_share_cache(cpu, ctx->cpu);
420 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
421 rq->csd.func = __blk_mq_complete_request_remote;
422 rq->csd.info = rq;
423 rq->csd.flags = 0;
424 smp_call_function_single_async(ctx->cpu, &rq->csd);
425 } else {
426 rq->q->softirq_done_fn(rq);
428 put_cpu();
431 static void blk_mq_stat_add(struct request *rq)
433 if (rq->rq_flags & RQF_STATS) {
435 * We could rq->mq_ctx here, but there's less of a risk
436 * of races if we have the completion event add the stats
437 * to the local software queue.
439 struct blk_mq_ctx *ctx;
441 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
442 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
446 static void __blk_mq_complete_request(struct request *rq)
448 struct request_queue *q = rq->q;
450 blk_mq_stat_add(rq);
452 if (!q->softirq_done_fn)
453 blk_mq_end_request(rq, rq->errors);
454 else
455 blk_mq_ipi_complete_request(rq);
459 * blk_mq_complete_request - end I/O on a request
460 * @rq: the request being processed
462 * Description:
463 * Ends all I/O on a request. It does not handle partial completions.
464 * The actual completion happens out-of-order, through a IPI handler.
466 void blk_mq_complete_request(struct request *rq, int error)
468 struct request_queue *q = rq->q;
470 if (unlikely(blk_should_fake_timeout(q)))
471 return;
472 if (!blk_mark_rq_complete(rq)) {
473 rq->errors = error;
474 __blk_mq_complete_request(rq);
477 EXPORT_SYMBOL(blk_mq_complete_request);
479 int blk_mq_request_started(struct request *rq)
481 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
483 EXPORT_SYMBOL_GPL(blk_mq_request_started);
485 void blk_mq_start_request(struct request *rq)
487 struct request_queue *q = rq->q;
489 blk_mq_sched_started_request(rq);
491 trace_block_rq_issue(q, rq);
493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 blk_stat_set_issue_time(&rq->issue_stat);
495 rq->rq_flags |= RQF_STATS;
496 wbt_issue(q->rq_wb, &rq->issue_stat);
499 blk_add_timer(rq);
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
505 smp_mb__before_atomic();
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
524 rq->nr_phys_segments++;
527 EXPORT_SYMBOL(blk_mq_start_request);
529 static void __blk_mq_requeue_request(struct request *rq)
531 struct request_queue *q = rq->q;
533 trace_block_rq_requeue(q, rq);
534 wbt_requeue(q->rq_wb, &rq->issue_stat);
535 blk_mq_sched_requeue_request(rq);
537 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
538 if (q->dma_drain_size && blk_rq_bytes(rq))
539 rq->nr_phys_segments--;
543 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 __blk_mq_requeue_request(rq);
547 BUG_ON(blk_queued_rq(rq));
548 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 EXPORT_SYMBOL(blk_mq_requeue_request);
552 static void blk_mq_requeue_work(struct work_struct *work)
554 struct request_queue *q =
555 container_of(work, struct request_queue, requeue_work.work);
556 LIST_HEAD(rq_list);
557 struct request *rq, *next;
558 unsigned long flags;
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
564 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
565 if (!(rq->rq_flags & RQF_SOFTBARRIER))
566 continue;
568 rq->rq_flags &= ~RQF_SOFTBARRIER;
569 list_del_init(&rq->queuelist);
570 blk_mq_sched_insert_request(rq, true, false, false, true);
573 while (!list_empty(&rq_list)) {
574 rq = list_entry(rq_list.next, struct request, queuelist);
575 list_del_init(&rq->queuelist);
576 blk_mq_sched_insert_request(rq, false, false, false, true);
579 blk_mq_run_hw_queues(q, false);
582 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
583 bool kick_requeue_list)
585 struct request_queue *q = rq->q;
586 unsigned long flags;
589 * We abuse this flag that is otherwise used by the I/O scheduler to
590 * request head insertation from the workqueue.
592 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594 spin_lock_irqsave(&q->requeue_lock, flags);
595 if (at_head) {
596 rq->rq_flags |= RQF_SOFTBARRIER;
597 list_add(&rq->queuelist, &q->requeue_list);
598 } else {
599 list_add_tail(&rq->queuelist, &q->requeue_list);
601 spin_unlock_irqrestore(&q->requeue_lock, flags);
603 if (kick_requeue_list)
604 blk_mq_kick_requeue_list(q);
606 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608 void blk_mq_kick_requeue_list(struct request_queue *q)
610 kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
615 unsigned long msecs)
617 kblockd_schedule_delayed_work(&q->requeue_work,
618 msecs_to_jiffies(msecs));
620 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622 void blk_mq_abort_requeue_list(struct request_queue *q)
624 unsigned long flags;
625 LIST_HEAD(rq_list);
627 spin_lock_irqsave(&q->requeue_lock, flags);
628 list_splice_init(&q->requeue_list, &rq_list);
629 spin_unlock_irqrestore(&q->requeue_lock, flags);
631 while (!list_empty(&rq_list)) {
632 struct request *rq;
634 rq = list_first_entry(&rq_list, struct request, queuelist);
635 list_del_init(&rq->queuelist);
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
640 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 if (tag < tags->nr_tags) {
645 prefetch(tags->rqs[tag]);
646 return tags->rqs[tag];
649 return NULL;
651 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653 struct blk_mq_timeout_data {
654 unsigned long next;
655 unsigned int next_set;
658 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 const struct blk_mq_ops *ops = req->q->mq_ops;
661 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
664 * We know that complete is set at this point. If STARTED isn't set
665 * anymore, then the request isn't active and the "timeout" should
666 * just be ignored. This can happen due to the bitflag ordering.
667 * Timeout first checks if STARTED is set, and if it is, assumes
668 * the request is active. But if we race with completion, then
669 * we both flags will get cleared. So check here again, and ignore
670 * a timeout event with a request that isn't active.
672 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
673 return;
675 if (ops->timeout)
676 ret = ops->timeout(req, reserved);
678 switch (ret) {
679 case BLK_EH_HANDLED:
680 __blk_mq_complete_request(req);
681 break;
682 case BLK_EH_RESET_TIMER:
683 blk_add_timer(req);
684 blk_clear_rq_complete(req);
685 break;
686 case BLK_EH_NOT_HANDLED:
687 break;
688 default:
689 printk(KERN_ERR "block: bad eh return: %d\n", ret);
690 break;
694 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
695 struct request *rq, void *priv, bool reserved)
697 struct blk_mq_timeout_data *data = priv;
699 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
700 return;
702 if (time_after_eq(jiffies, rq->deadline)) {
703 if (!blk_mark_rq_complete(rq))
704 blk_mq_rq_timed_out(rq, reserved);
705 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 data->next = rq->deadline;
707 data->next_set = 1;
711 static void blk_mq_timeout_work(struct work_struct *work)
713 struct request_queue *q =
714 container_of(work, struct request_queue, timeout_work);
715 struct blk_mq_timeout_data data = {
716 .next = 0,
717 .next_set = 0,
719 int i;
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
732 * zero.
734 if (!percpu_ref_tryget(&q->q_usage_counter))
735 return;
737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739 if (data.next_set) {
740 data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 mod_timer(&q->timeout, data.next);
742 } else {
743 struct blk_mq_hw_ctx *hctx;
745 queue_for_each_hw_ctx(q, hctx, i) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx))
748 blk_mq_tag_idle(hctx);
751 blk_queue_exit(q);
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
759 static bool blk_mq_attempt_merge(struct request_queue *q,
760 struct blk_mq_ctx *ctx, struct bio *bio)
762 struct request *rq;
763 int checked = 8;
765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766 bool merged = false;
768 if (!checked--)
769 break;
771 if (!blk_rq_merge_ok(rq, bio))
772 continue;
774 switch (blk_try_merge(rq, bio)) {
775 case ELEVATOR_BACK_MERGE:
776 if (blk_mq_sched_allow_merge(q, rq, bio))
777 merged = bio_attempt_back_merge(q, rq, bio);
778 break;
779 case ELEVATOR_FRONT_MERGE:
780 if (blk_mq_sched_allow_merge(q, rq, bio))
781 merged = bio_attempt_front_merge(q, rq, bio);
782 break;
783 case ELEVATOR_DISCARD_MERGE:
784 merged = bio_attempt_discard_merge(q, rq, bio);
785 break;
786 default:
787 continue;
790 if (merged)
791 ctx->rq_merged++;
792 return merged;
795 return false;
798 struct flush_busy_ctx_data {
799 struct blk_mq_hw_ctx *hctx;
800 struct list_head *list;
803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 struct flush_busy_ctx_data *flush_data = data;
806 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809 sbitmap_clear_bit(sb, bitnr);
810 spin_lock(&ctx->lock);
811 list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 spin_unlock(&ctx->lock);
813 return true;
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 struct flush_busy_ctx_data data = {
823 .hctx = hctx,
824 .list = list,
827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831 static inline unsigned int queued_to_index(unsigned int queued)
833 if (!queued)
834 return 0;
836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 bool wait)
842 struct blk_mq_alloc_data data = {
843 .q = rq->q,
844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
848 if (rq->tag != -1)
849 goto done;
851 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
852 data.flags |= BLK_MQ_REQ_RESERVED;
854 rq->tag = blk_mq_get_tag(&data);
855 if (rq->tag >= 0) {
856 if (blk_mq_tag_busy(data.hctx)) {
857 rq->rq_flags |= RQF_MQ_INFLIGHT;
858 atomic_inc(&data.hctx->nr_active);
860 data.hctx->tags->rqs[rq->tag] = rq;
863 done:
864 if (hctx)
865 *hctx = data.hctx;
866 return rq->tag != -1;
869 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
870 struct request *rq)
872 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
873 rq->tag = -1;
875 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
876 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
877 atomic_dec(&hctx->nr_active);
881 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
882 struct request *rq)
884 if (rq->tag == -1 || rq->internal_tag == -1)
885 return;
887 __blk_mq_put_driver_tag(hctx, rq);
890 static void blk_mq_put_driver_tag(struct request *rq)
892 struct blk_mq_hw_ctx *hctx;
894 if (rq->tag == -1 || rq->internal_tag == -1)
895 return;
897 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
898 __blk_mq_put_driver_tag(hctx, rq);
902 * If we fail getting a driver tag because all the driver tags are already
903 * assigned and on the dispatch list, BUT the first entry does not have a
904 * tag, then we could deadlock. For that case, move entries with assigned
905 * driver tags to the front, leaving the set of tagged requests in the
906 * same order, and the untagged set in the same order.
908 static bool reorder_tags_to_front(struct list_head *list)
910 struct request *rq, *tmp, *first = NULL;
912 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
913 if (rq == first)
914 break;
915 if (rq->tag != -1) {
916 list_move(&rq->queuelist, list);
917 if (!first)
918 first = rq;
922 return first != NULL;
925 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
926 void *key)
928 struct blk_mq_hw_ctx *hctx;
930 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
932 list_del(&wait->task_list);
933 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
934 blk_mq_run_hw_queue(hctx, true);
935 return 1;
938 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
940 struct sbq_wait_state *ws;
943 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
944 * The thread which wins the race to grab this bit adds the hardware
945 * queue to the wait queue.
947 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
948 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
949 return false;
951 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
952 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
955 * As soon as this returns, it's no longer safe to fiddle with
956 * hctx->dispatch_wait, since a completion can wake up the wait queue
957 * and unlock the bit.
959 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
960 return true;
963 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
965 struct blk_mq_hw_ctx *hctx;
966 struct request *rq;
967 LIST_HEAD(driver_list);
968 struct list_head *dptr;
969 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
971 if (list_empty(list))
972 return false;
975 * Start off with dptr being NULL, so we start the first request
976 * immediately, even if we have more pending.
978 dptr = NULL;
981 * Now process all the entries, sending them to the driver.
983 errors = queued = 0;
984 do {
985 struct blk_mq_queue_data bd;
987 rq = list_first_entry(list, struct request, queuelist);
988 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
989 if (!queued && reorder_tags_to_front(list))
990 continue;
993 * The initial allocation attempt failed, so we need to
994 * rerun the hardware queue when a tag is freed.
996 if (blk_mq_dispatch_wait_add(hctx)) {
998 * It's possible that a tag was freed in the
999 * window between the allocation failure and
1000 * adding the hardware queue to the wait queue.
1002 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1003 break;
1004 } else {
1005 break;
1009 list_del_init(&rq->queuelist);
1011 bd.rq = rq;
1012 bd.list = dptr;
1015 * Flag last if we have no more requests, or if we have more
1016 * but can't assign a driver tag to it.
1018 if (list_empty(list))
1019 bd.last = true;
1020 else {
1021 struct request *nxt;
1023 nxt = list_first_entry(list, struct request, queuelist);
1024 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1027 ret = q->mq_ops->queue_rq(hctx, &bd);
1028 switch (ret) {
1029 case BLK_MQ_RQ_QUEUE_OK:
1030 queued++;
1031 break;
1032 case BLK_MQ_RQ_QUEUE_BUSY:
1033 blk_mq_put_driver_tag_hctx(hctx, rq);
1034 list_add(&rq->queuelist, list);
1035 __blk_mq_requeue_request(rq);
1036 break;
1037 default:
1038 pr_err("blk-mq: bad return on queue: %d\n", ret);
1039 case BLK_MQ_RQ_QUEUE_ERROR:
1040 errors++;
1041 rq->errors = -EIO;
1042 blk_mq_end_request(rq, rq->errors);
1043 break;
1046 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1047 break;
1050 * We've done the first request. If we have more than 1
1051 * left in the list, set dptr to defer issue.
1053 if (!dptr && list->next != list->prev)
1054 dptr = &driver_list;
1055 } while (!list_empty(list));
1057 hctx->dispatched[queued_to_index(queued)]++;
1060 * Any items that need requeuing? Stuff them into hctx->dispatch,
1061 * that is where we will continue on next queue run.
1063 if (!list_empty(list)) {
1065 * If we got a driver tag for the next request already,
1066 * free it again.
1068 rq = list_first_entry(list, struct request, queuelist);
1069 blk_mq_put_driver_tag(rq);
1071 spin_lock(&hctx->lock);
1072 list_splice_init(list, &hctx->dispatch);
1073 spin_unlock(&hctx->lock);
1076 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1077 * it's possible the queue is stopped and restarted again
1078 * before this. Queue restart will dispatch requests. And since
1079 * requests in rq_list aren't added into hctx->dispatch yet,
1080 * the requests in rq_list might get lost.
1082 * blk_mq_run_hw_queue() already checks the STOPPED bit
1084 * If RESTART or TAG_WAITING is set, then let completion restart
1085 * the queue instead of potentially looping here.
1087 if (!blk_mq_sched_needs_restart(hctx) &&
1088 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1089 blk_mq_run_hw_queue(hctx, true);
1092 return (queued + errors) != 0;
1095 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1097 int srcu_idx;
1099 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1100 cpu_online(hctx->next_cpu));
1102 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1103 rcu_read_lock();
1104 blk_mq_sched_dispatch_requests(hctx);
1105 rcu_read_unlock();
1106 } else {
1107 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1108 blk_mq_sched_dispatch_requests(hctx);
1109 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1114 * It'd be great if the workqueue API had a way to pass
1115 * in a mask and had some smarts for more clever placement.
1116 * For now we just round-robin here, switching for every
1117 * BLK_MQ_CPU_WORK_BATCH queued items.
1119 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1121 if (hctx->queue->nr_hw_queues == 1)
1122 return WORK_CPU_UNBOUND;
1124 if (--hctx->next_cpu_batch <= 0) {
1125 int next_cpu;
1127 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1128 if (next_cpu >= nr_cpu_ids)
1129 next_cpu = cpumask_first(hctx->cpumask);
1131 hctx->next_cpu = next_cpu;
1132 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1135 return hctx->next_cpu;
1138 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1139 unsigned long msecs)
1141 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1142 !blk_mq_hw_queue_mapped(hctx)))
1143 return;
1145 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1146 int cpu = get_cpu();
1147 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1148 __blk_mq_run_hw_queue(hctx);
1149 put_cpu();
1150 return;
1153 put_cpu();
1156 if (msecs == 0)
1157 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1158 &hctx->run_work);
1159 else
1160 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1161 &hctx->delayed_run_work,
1162 msecs_to_jiffies(msecs));
1165 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1167 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1169 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1171 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1173 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1176 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1178 struct blk_mq_hw_ctx *hctx;
1179 int i;
1181 queue_for_each_hw_ctx(q, hctx, i) {
1182 if (!blk_mq_hctx_has_pending(hctx) ||
1183 blk_mq_hctx_stopped(hctx))
1184 continue;
1186 blk_mq_run_hw_queue(hctx, async);
1189 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1192 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1193 * @q: request queue.
1195 * The caller is responsible for serializing this function against
1196 * blk_mq_{start,stop}_hw_queue().
1198 bool blk_mq_queue_stopped(struct request_queue *q)
1200 struct blk_mq_hw_ctx *hctx;
1201 int i;
1203 queue_for_each_hw_ctx(q, hctx, i)
1204 if (blk_mq_hctx_stopped(hctx))
1205 return true;
1207 return false;
1209 EXPORT_SYMBOL(blk_mq_queue_stopped);
1211 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1213 cancel_work(&hctx->run_work);
1214 cancel_delayed_work(&hctx->delay_work);
1215 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1217 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1219 void blk_mq_stop_hw_queues(struct request_queue *q)
1221 struct blk_mq_hw_ctx *hctx;
1222 int i;
1224 queue_for_each_hw_ctx(q, hctx, i)
1225 blk_mq_stop_hw_queue(hctx);
1227 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1229 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1231 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1233 blk_mq_run_hw_queue(hctx, false);
1235 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1237 void blk_mq_start_hw_queues(struct request_queue *q)
1239 struct blk_mq_hw_ctx *hctx;
1240 int i;
1242 queue_for_each_hw_ctx(q, hctx, i)
1243 blk_mq_start_hw_queue(hctx);
1245 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1247 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1249 if (!blk_mq_hctx_stopped(hctx))
1250 return;
1252 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1253 blk_mq_run_hw_queue(hctx, async);
1255 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1257 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1259 struct blk_mq_hw_ctx *hctx;
1260 int i;
1262 queue_for_each_hw_ctx(q, hctx, i)
1263 blk_mq_start_stopped_hw_queue(hctx, async);
1265 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1267 static void blk_mq_run_work_fn(struct work_struct *work)
1269 struct blk_mq_hw_ctx *hctx;
1271 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1273 __blk_mq_run_hw_queue(hctx);
1276 static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1278 struct blk_mq_hw_ctx *hctx;
1280 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1282 __blk_mq_run_hw_queue(hctx);
1285 static void blk_mq_delay_work_fn(struct work_struct *work)
1287 struct blk_mq_hw_ctx *hctx;
1289 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1291 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1292 __blk_mq_run_hw_queue(hctx);
1295 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1297 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1298 return;
1300 blk_mq_stop_hw_queue(hctx);
1301 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1302 &hctx->delay_work, msecs_to_jiffies(msecs));
1304 EXPORT_SYMBOL(blk_mq_delay_queue);
1306 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1307 struct request *rq,
1308 bool at_head)
1310 struct blk_mq_ctx *ctx = rq->mq_ctx;
1312 trace_block_rq_insert(hctx->queue, rq);
1314 if (at_head)
1315 list_add(&rq->queuelist, &ctx->rq_list);
1316 else
1317 list_add_tail(&rq->queuelist, &ctx->rq_list);
1320 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1321 bool at_head)
1323 struct blk_mq_ctx *ctx = rq->mq_ctx;
1325 __blk_mq_insert_req_list(hctx, rq, at_head);
1326 blk_mq_hctx_mark_pending(hctx, ctx);
1329 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1330 struct list_head *list)
1334 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1335 * offline now
1337 spin_lock(&ctx->lock);
1338 while (!list_empty(list)) {
1339 struct request *rq;
1341 rq = list_first_entry(list, struct request, queuelist);
1342 BUG_ON(rq->mq_ctx != ctx);
1343 list_del_init(&rq->queuelist);
1344 __blk_mq_insert_req_list(hctx, rq, false);
1346 blk_mq_hctx_mark_pending(hctx, ctx);
1347 spin_unlock(&ctx->lock);
1350 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1352 struct request *rqa = container_of(a, struct request, queuelist);
1353 struct request *rqb = container_of(b, struct request, queuelist);
1355 return !(rqa->mq_ctx < rqb->mq_ctx ||
1356 (rqa->mq_ctx == rqb->mq_ctx &&
1357 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1360 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1362 struct blk_mq_ctx *this_ctx;
1363 struct request_queue *this_q;
1364 struct request *rq;
1365 LIST_HEAD(list);
1366 LIST_HEAD(ctx_list);
1367 unsigned int depth;
1369 list_splice_init(&plug->mq_list, &list);
1371 list_sort(NULL, &list, plug_ctx_cmp);
1373 this_q = NULL;
1374 this_ctx = NULL;
1375 depth = 0;
1377 while (!list_empty(&list)) {
1378 rq = list_entry_rq(list.next);
1379 list_del_init(&rq->queuelist);
1380 BUG_ON(!rq->q);
1381 if (rq->mq_ctx != this_ctx) {
1382 if (this_ctx) {
1383 trace_block_unplug(this_q, depth, from_schedule);
1384 blk_mq_sched_insert_requests(this_q, this_ctx,
1385 &ctx_list,
1386 from_schedule);
1389 this_ctx = rq->mq_ctx;
1390 this_q = rq->q;
1391 depth = 0;
1394 depth++;
1395 list_add_tail(&rq->queuelist, &ctx_list);
1399 * If 'this_ctx' is set, we know we have entries to complete
1400 * on 'ctx_list'. Do those.
1402 if (this_ctx) {
1403 trace_block_unplug(this_q, depth, from_schedule);
1404 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1405 from_schedule);
1409 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1411 init_request_from_bio(rq, bio);
1413 blk_account_io_start(rq, true);
1416 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1418 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1419 !blk_queue_nomerges(hctx->queue);
1422 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1423 struct blk_mq_ctx *ctx,
1424 struct request *rq, struct bio *bio)
1426 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1427 blk_mq_bio_to_request(rq, bio);
1428 spin_lock(&ctx->lock);
1429 insert_rq:
1430 __blk_mq_insert_request(hctx, rq, false);
1431 spin_unlock(&ctx->lock);
1432 return false;
1433 } else {
1434 struct request_queue *q = hctx->queue;
1436 spin_lock(&ctx->lock);
1437 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1438 blk_mq_bio_to_request(rq, bio);
1439 goto insert_rq;
1442 spin_unlock(&ctx->lock);
1443 __blk_mq_finish_request(hctx, ctx, rq);
1444 return true;
1448 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1450 if (rq->tag != -1)
1451 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1453 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1456 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1457 bool may_sleep)
1459 struct request_queue *q = rq->q;
1460 struct blk_mq_queue_data bd = {
1461 .rq = rq,
1462 .list = NULL,
1463 .last = 1
1465 struct blk_mq_hw_ctx *hctx;
1466 blk_qc_t new_cookie;
1467 int ret;
1469 if (q->elevator)
1470 goto insert;
1472 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1473 goto insert;
1475 new_cookie = request_to_qc_t(hctx, rq);
1478 * For OK queue, we are done. For error, kill it. Any other
1479 * error (busy), just add it to our list as we previously
1480 * would have done
1482 ret = q->mq_ops->queue_rq(hctx, &bd);
1483 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1484 *cookie = new_cookie;
1485 return;
1488 __blk_mq_requeue_request(rq);
1490 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1491 *cookie = BLK_QC_T_NONE;
1492 rq->errors = -EIO;
1493 blk_mq_end_request(rq, rq->errors);
1494 return;
1497 insert:
1498 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1502 * Multiple hardware queue variant. This will not use per-process plugs,
1503 * but will attempt to bypass the hctx queueing if we can go straight to
1504 * hardware for SYNC IO.
1506 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1508 const int is_sync = op_is_sync(bio->bi_opf);
1509 const int is_flush_fua = op_is_flush(bio->bi_opf);
1510 struct blk_mq_alloc_data data = { .flags = 0 };
1511 struct request *rq;
1512 unsigned int request_count = 0, srcu_idx;
1513 struct blk_plug *plug;
1514 struct request *same_queue_rq = NULL;
1515 blk_qc_t cookie;
1516 unsigned int wb_acct;
1518 blk_queue_bounce(q, &bio);
1520 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1521 bio_io_error(bio);
1522 return BLK_QC_T_NONE;
1525 blk_queue_split(q, &bio, q->bio_split);
1527 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1528 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1529 return BLK_QC_T_NONE;
1531 if (blk_mq_sched_bio_merge(q, bio))
1532 return BLK_QC_T_NONE;
1534 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1536 trace_block_getrq(q, bio, bio->bi_opf);
1538 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1539 if (unlikely(!rq)) {
1540 __wbt_done(q->rq_wb, wb_acct);
1541 return BLK_QC_T_NONE;
1544 wbt_track(&rq->issue_stat, wb_acct);
1546 cookie = request_to_qc_t(data.hctx, rq);
1548 if (unlikely(is_flush_fua)) {
1549 if (q->elevator)
1550 goto elv_insert;
1551 blk_mq_bio_to_request(rq, bio);
1552 blk_insert_flush(rq);
1553 goto run_queue;
1556 plug = current->plug;
1558 * If the driver supports defer issued based on 'last', then
1559 * queue it up like normal since we can potentially save some
1560 * CPU this way.
1562 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1563 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1564 struct request *old_rq = NULL;
1566 blk_mq_bio_to_request(rq, bio);
1569 * We do limited plugging. If the bio can be merged, do that.
1570 * Otherwise the existing request in the plug list will be
1571 * issued. So the plug list will have one request at most
1573 if (plug) {
1575 * The plug list might get flushed before this. If that
1576 * happens, same_queue_rq is invalid and plug list is
1577 * empty
1579 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1580 old_rq = same_queue_rq;
1581 list_del_init(&old_rq->queuelist);
1583 list_add_tail(&rq->queuelist, &plug->mq_list);
1584 } else /* is_sync */
1585 old_rq = rq;
1586 blk_mq_put_ctx(data.ctx);
1587 if (!old_rq)
1588 goto done;
1590 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1591 rcu_read_lock();
1592 blk_mq_try_issue_directly(old_rq, &cookie, false);
1593 rcu_read_unlock();
1594 } else {
1595 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1596 blk_mq_try_issue_directly(old_rq, &cookie, true);
1597 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1599 goto done;
1602 if (q->elevator) {
1603 elv_insert:
1604 blk_mq_put_ctx(data.ctx);
1605 blk_mq_bio_to_request(rq, bio);
1606 blk_mq_sched_insert_request(rq, false, true,
1607 !is_sync || is_flush_fua, true);
1608 goto done;
1610 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1612 * For a SYNC request, send it to the hardware immediately. For
1613 * an ASYNC request, just ensure that we run it later on. The
1614 * latter allows for merging opportunities and more efficient
1615 * dispatching.
1617 run_queue:
1618 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1620 blk_mq_put_ctx(data.ctx);
1621 done:
1622 return cookie;
1626 * Single hardware queue variant. This will attempt to use any per-process
1627 * plug for merging and IO deferral.
1629 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1631 const int is_sync = op_is_sync(bio->bi_opf);
1632 const int is_flush_fua = op_is_flush(bio->bi_opf);
1633 struct blk_plug *plug;
1634 unsigned int request_count = 0;
1635 struct blk_mq_alloc_data data = { .flags = 0 };
1636 struct request *rq;
1637 blk_qc_t cookie;
1638 unsigned int wb_acct;
1640 blk_queue_bounce(q, &bio);
1642 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1643 bio_io_error(bio);
1644 return BLK_QC_T_NONE;
1647 blk_queue_split(q, &bio, q->bio_split);
1649 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1650 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1651 return BLK_QC_T_NONE;
1652 } else
1653 request_count = blk_plug_queued_count(q);
1655 if (blk_mq_sched_bio_merge(q, bio))
1656 return BLK_QC_T_NONE;
1658 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1660 trace_block_getrq(q, bio, bio->bi_opf);
1662 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1663 if (unlikely(!rq)) {
1664 __wbt_done(q->rq_wb, wb_acct);
1665 return BLK_QC_T_NONE;
1668 wbt_track(&rq->issue_stat, wb_acct);
1670 cookie = request_to_qc_t(data.hctx, rq);
1672 if (unlikely(is_flush_fua)) {
1673 if (q->elevator)
1674 goto elv_insert;
1675 blk_mq_bio_to_request(rq, bio);
1676 blk_insert_flush(rq);
1677 goto run_queue;
1681 * A task plug currently exists. Since this is completely lockless,
1682 * utilize that to temporarily store requests until the task is
1683 * either done or scheduled away.
1685 plug = current->plug;
1686 if (plug) {
1687 struct request *last = NULL;
1689 blk_mq_bio_to_request(rq, bio);
1692 * @request_count may become stale because of schedule
1693 * out, so check the list again.
1695 if (list_empty(&plug->mq_list))
1696 request_count = 0;
1697 if (!request_count)
1698 trace_block_plug(q);
1699 else
1700 last = list_entry_rq(plug->mq_list.prev);
1702 blk_mq_put_ctx(data.ctx);
1704 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1705 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1706 blk_flush_plug_list(plug, false);
1707 trace_block_plug(q);
1710 list_add_tail(&rq->queuelist, &plug->mq_list);
1711 return cookie;
1714 if (q->elevator) {
1715 elv_insert:
1716 blk_mq_put_ctx(data.ctx);
1717 blk_mq_bio_to_request(rq, bio);
1718 blk_mq_sched_insert_request(rq, false, true,
1719 !is_sync || is_flush_fua, true);
1720 goto done;
1722 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1724 * For a SYNC request, send it to the hardware immediately. For
1725 * an ASYNC request, just ensure that we run it later on. The
1726 * latter allows for merging opportunities and more efficient
1727 * dispatching.
1729 run_queue:
1730 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1733 blk_mq_put_ctx(data.ctx);
1734 done:
1735 return cookie;
1738 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1739 unsigned int hctx_idx)
1741 struct page *page;
1743 if (tags->rqs && set->ops->exit_request) {
1744 int i;
1746 for (i = 0; i < tags->nr_tags; i++) {
1747 struct request *rq = tags->static_rqs[i];
1749 if (!rq)
1750 continue;
1751 set->ops->exit_request(set->driver_data, rq,
1752 hctx_idx, i);
1753 tags->static_rqs[i] = NULL;
1757 while (!list_empty(&tags->page_list)) {
1758 page = list_first_entry(&tags->page_list, struct page, lru);
1759 list_del_init(&page->lru);
1761 * Remove kmemleak object previously allocated in
1762 * blk_mq_init_rq_map().
1764 kmemleak_free(page_address(page));
1765 __free_pages(page, page->private);
1769 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1771 kfree(tags->rqs);
1772 tags->rqs = NULL;
1773 kfree(tags->static_rqs);
1774 tags->static_rqs = NULL;
1776 blk_mq_free_tags(tags);
1779 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1780 unsigned int hctx_idx,
1781 unsigned int nr_tags,
1782 unsigned int reserved_tags)
1784 struct blk_mq_tags *tags;
1785 int node;
1787 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1788 if (node == NUMA_NO_NODE)
1789 node = set->numa_node;
1791 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1792 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1793 if (!tags)
1794 return NULL;
1796 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1797 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1798 node);
1799 if (!tags->rqs) {
1800 blk_mq_free_tags(tags);
1801 return NULL;
1804 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1805 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1806 node);
1807 if (!tags->static_rqs) {
1808 kfree(tags->rqs);
1809 blk_mq_free_tags(tags);
1810 return NULL;
1813 return tags;
1816 static size_t order_to_size(unsigned int order)
1818 return (size_t)PAGE_SIZE << order;
1821 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1822 unsigned int hctx_idx, unsigned int depth)
1824 unsigned int i, j, entries_per_page, max_order = 4;
1825 size_t rq_size, left;
1826 int node;
1828 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1829 if (node == NUMA_NO_NODE)
1830 node = set->numa_node;
1832 INIT_LIST_HEAD(&tags->page_list);
1835 * rq_size is the size of the request plus driver payload, rounded
1836 * to the cacheline size
1838 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1839 cache_line_size());
1840 left = rq_size * depth;
1842 for (i = 0; i < depth; ) {
1843 int this_order = max_order;
1844 struct page *page;
1845 int to_do;
1846 void *p;
1848 while (this_order && left < order_to_size(this_order - 1))
1849 this_order--;
1851 do {
1852 page = alloc_pages_node(node,
1853 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1854 this_order);
1855 if (page)
1856 break;
1857 if (!this_order--)
1858 break;
1859 if (order_to_size(this_order) < rq_size)
1860 break;
1861 } while (1);
1863 if (!page)
1864 goto fail;
1866 page->private = this_order;
1867 list_add_tail(&page->lru, &tags->page_list);
1869 p = page_address(page);
1871 * Allow kmemleak to scan these pages as they contain pointers
1872 * to additional allocations like via ops->init_request().
1874 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1875 entries_per_page = order_to_size(this_order) / rq_size;
1876 to_do = min(entries_per_page, depth - i);
1877 left -= to_do * rq_size;
1878 for (j = 0; j < to_do; j++) {
1879 struct request *rq = p;
1881 tags->static_rqs[i] = rq;
1882 if (set->ops->init_request) {
1883 if (set->ops->init_request(set->driver_data,
1884 rq, hctx_idx, i,
1885 node)) {
1886 tags->static_rqs[i] = NULL;
1887 goto fail;
1891 p += rq_size;
1892 i++;
1895 return 0;
1897 fail:
1898 blk_mq_free_rqs(set, tags, hctx_idx);
1899 return -ENOMEM;
1903 * 'cpu' is going away. splice any existing rq_list entries from this
1904 * software queue to the hw queue dispatch list, and ensure that it
1905 * gets run.
1907 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1909 struct blk_mq_hw_ctx *hctx;
1910 struct blk_mq_ctx *ctx;
1911 LIST_HEAD(tmp);
1913 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1914 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1916 spin_lock(&ctx->lock);
1917 if (!list_empty(&ctx->rq_list)) {
1918 list_splice_init(&ctx->rq_list, &tmp);
1919 blk_mq_hctx_clear_pending(hctx, ctx);
1921 spin_unlock(&ctx->lock);
1923 if (list_empty(&tmp))
1924 return 0;
1926 spin_lock(&hctx->lock);
1927 list_splice_tail_init(&tmp, &hctx->dispatch);
1928 spin_unlock(&hctx->lock);
1930 blk_mq_run_hw_queue(hctx, true);
1931 return 0;
1934 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1936 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1937 &hctx->cpuhp_dead);
1940 /* hctx->ctxs will be freed in queue's release handler */
1941 static void blk_mq_exit_hctx(struct request_queue *q,
1942 struct blk_mq_tag_set *set,
1943 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1945 unsigned flush_start_tag = set->queue_depth;
1947 blk_mq_tag_idle(hctx);
1949 if (set->ops->exit_request)
1950 set->ops->exit_request(set->driver_data,
1951 hctx->fq->flush_rq, hctx_idx,
1952 flush_start_tag + hctx_idx);
1954 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1956 if (set->ops->exit_hctx)
1957 set->ops->exit_hctx(hctx, hctx_idx);
1959 if (hctx->flags & BLK_MQ_F_BLOCKING)
1960 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1962 blk_mq_remove_cpuhp(hctx);
1963 blk_free_flush_queue(hctx->fq);
1964 sbitmap_free(&hctx->ctx_map);
1967 static void blk_mq_exit_hw_queues(struct request_queue *q,
1968 struct blk_mq_tag_set *set, int nr_queue)
1970 struct blk_mq_hw_ctx *hctx;
1971 unsigned int i;
1973 queue_for_each_hw_ctx(q, hctx, i) {
1974 if (i == nr_queue)
1975 break;
1976 blk_mq_exit_hctx(q, set, hctx, i);
1980 static int blk_mq_init_hctx(struct request_queue *q,
1981 struct blk_mq_tag_set *set,
1982 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1984 int node;
1985 unsigned flush_start_tag = set->queue_depth;
1987 node = hctx->numa_node;
1988 if (node == NUMA_NO_NODE)
1989 node = hctx->numa_node = set->numa_node;
1991 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1992 INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1993 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1994 spin_lock_init(&hctx->lock);
1995 INIT_LIST_HEAD(&hctx->dispatch);
1996 hctx->queue = q;
1997 hctx->queue_num = hctx_idx;
1998 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2000 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2002 hctx->tags = set->tags[hctx_idx];
2005 * Allocate space for all possible cpus to avoid allocation at
2006 * runtime
2008 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2009 GFP_KERNEL, node);
2010 if (!hctx->ctxs)
2011 goto unregister_cpu_notifier;
2013 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2014 node))
2015 goto free_ctxs;
2017 hctx->nr_ctx = 0;
2019 if (set->ops->init_hctx &&
2020 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2021 goto free_bitmap;
2023 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2024 goto exit_hctx;
2026 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2027 if (!hctx->fq)
2028 goto sched_exit_hctx;
2030 if (set->ops->init_request &&
2031 set->ops->init_request(set->driver_data,
2032 hctx->fq->flush_rq, hctx_idx,
2033 flush_start_tag + hctx_idx, node))
2034 goto free_fq;
2036 if (hctx->flags & BLK_MQ_F_BLOCKING)
2037 init_srcu_struct(&hctx->queue_rq_srcu);
2039 return 0;
2041 free_fq:
2042 kfree(hctx->fq);
2043 sched_exit_hctx:
2044 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2045 exit_hctx:
2046 if (set->ops->exit_hctx)
2047 set->ops->exit_hctx(hctx, hctx_idx);
2048 free_bitmap:
2049 sbitmap_free(&hctx->ctx_map);
2050 free_ctxs:
2051 kfree(hctx->ctxs);
2052 unregister_cpu_notifier:
2053 blk_mq_remove_cpuhp(hctx);
2054 return -1;
2057 static void blk_mq_init_cpu_queues(struct request_queue *q,
2058 unsigned int nr_hw_queues)
2060 unsigned int i;
2062 for_each_possible_cpu(i) {
2063 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2064 struct blk_mq_hw_ctx *hctx;
2066 __ctx->cpu = i;
2067 spin_lock_init(&__ctx->lock);
2068 INIT_LIST_HEAD(&__ctx->rq_list);
2069 __ctx->queue = q;
2070 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2071 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2073 /* If the cpu isn't online, the cpu is mapped to first hctx */
2074 if (!cpu_online(i))
2075 continue;
2077 hctx = blk_mq_map_queue(q, i);
2080 * Set local node, IFF we have more than one hw queue. If
2081 * not, we remain on the home node of the device
2083 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2084 hctx->numa_node = local_memory_node(cpu_to_node(i));
2088 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2090 int ret = 0;
2092 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2093 set->queue_depth, set->reserved_tags);
2094 if (!set->tags[hctx_idx])
2095 return false;
2097 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2098 set->queue_depth);
2099 if (!ret)
2100 return true;
2102 blk_mq_free_rq_map(set->tags[hctx_idx]);
2103 set->tags[hctx_idx] = NULL;
2104 return false;
2107 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2108 unsigned int hctx_idx)
2110 if (set->tags[hctx_idx]) {
2111 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2112 blk_mq_free_rq_map(set->tags[hctx_idx]);
2113 set->tags[hctx_idx] = NULL;
2117 static void blk_mq_map_swqueue(struct request_queue *q,
2118 const struct cpumask *online_mask)
2120 unsigned int i, hctx_idx;
2121 struct blk_mq_hw_ctx *hctx;
2122 struct blk_mq_ctx *ctx;
2123 struct blk_mq_tag_set *set = q->tag_set;
2126 * Avoid others reading imcomplete hctx->cpumask through sysfs
2128 mutex_lock(&q->sysfs_lock);
2130 queue_for_each_hw_ctx(q, hctx, i) {
2131 cpumask_clear(hctx->cpumask);
2132 hctx->nr_ctx = 0;
2136 * Map software to hardware queues
2138 for_each_possible_cpu(i) {
2139 /* If the cpu isn't online, the cpu is mapped to first hctx */
2140 if (!cpumask_test_cpu(i, online_mask))
2141 continue;
2143 hctx_idx = q->mq_map[i];
2144 /* unmapped hw queue can be remapped after CPU topo changed */
2145 if (!set->tags[hctx_idx] &&
2146 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2148 * If tags initialization fail for some hctx,
2149 * that hctx won't be brought online. In this
2150 * case, remap the current ctx to hctx[0] which
2151 * is guaranteed to always have tags allocated
2153 q->mq_map[i] = 0;
2156 ctx = per_cpu_ptr(q->queue_ctx, i);
2157 hctx = blk_mq_map_queue(q, i);
2159 cpumask_set_cpu(i, hctx->cpumask);
2160 ctx->index_hw = hctx->nr_ctx;
2161 hctx->ctxs[hctx->nr_ctx++] = ctx;
2164 mutex_unlock(&q->sysfs_lock);
2166 queue_for_each_hw_ctx(q, hctx, i) {
2168 * If no software queues are mapped to this hardware queue,
2169 * disable it and free the request entries.
2171 if (!hctx->nr_ctx) {
2172 /* Never unmap queue 0. We need it as a
2173 * fallback in case of a new remap fails
2174 * allocation
2176 if (i && set->tags[i])
2177 blk_mq_free_map_and_requests(set, i);
2179 hctx->tags = NULL;
2180 continue;
2183 hctx->tags = set->tags[i];
2184 WARN_ON(!hctx->tags);
2187 * Set the map size to the number of mapped software queues.
2188 * This is more accurate and more efficient than looping
2189 * over all possibly mapped software queues.
2191 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2194 * Initialize batch roundrobin counts
2196 hctx->next_cpu = cpumask_first(hctx->cpumask);
2197 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2201 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2203 struct blk_mq_hw_ctx *hctx;
2204 int i;
2206 queue_for_each_hw_ctx(q, hctx, i) {
2207 if (shared)
2208 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2209 else
2210 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2214 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2216 struct request_queue *q;
2218 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2219 blk_mq_freeze_queue(q);
2220 queue_set_hctx_shared(q, shared);
2221 blk_mq_unfreeze_queue(q);
2225 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2227 struct blk_mq_tag_set *set = q->tag_set;
2229 mutex_lock(&set->tag_list_lock);
2230 list_del_init(&q->tag_set_list);
2231 if (list_is_singular(&set->tag_list)) {
2232 /* just transitioned to unshared */
2233 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2234 /* update existing queue */
2235 blk_mq_update_tag_set_depth(set, false);
2237 mutex_unlock(&set->tag_list_lock);
2240 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2241 struct request_queue *q)
2243 q->tag_set = set;
2245 mutex_lock(&set->tag_list_lock);
2247 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2248 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2249 set->flags |= BLK_MQ_F_TAG_SHARED;
2250 /* update existing queue */
2251 blk_mq_update_tag_set_depth(set, true);
2253 if (set->flags & BLK_MQ_F_TAG_SHARED)
2254 queue_set_hctx_shared(q, true);
2255 list_add_tail(&q->tag_set_list, &set->tag_list);
2257 mutex_unlock(&set->tag_list_lock);
2261 * It is the actual release handler for mq, but we do it from
2262 * request queue's release handler for avoiding use-after-free
2263 * and headache because q->mq_kobj shouldn't have been introduced,
2264 * but we can't group ctx/kctx kobj without it.
2266 void blk_mq_release(struct request_queue *q)
2268 struct blk_mq_hw_ctx *hctx;
2269 unsigned int i;
2271 /* hctx kobj stays in hctx */
2272 queue_for_each_hw_ctx(q, hctx, i) {
2273 if (!hctx)
2274 continue;
2275 kobject_put(&hctx->kobj);
2278 q->mq_map = NULL;
2280 kfree(q->queue_hw_ctx);
2283 * release .mq_kobj and sw queue's kobject now because
2284 * both share lifetime with request queue.
2286 blk_mq_sysfs_deinit(q);
2288 free_percpu(q->queue_ctx);
2291 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2293 struct request_queue *uninit_q, *q;
2295 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2296 if (!uninit_q)
2297 return ERR_PTR(-ENOMEM);
2299 q = blk_mq_init_allocated_queue(set, uninit_q);
2300 if (IS_ERR(q))
2301 blk_cleanup_queue(uninit_q);
2303 return q;
2305 EXPORT_SYMBOL(blk_mq_init_queue);
2307 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2308 struct request_queue *q)
2310 int i, j;
2311 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2313 blk_mq_sysfs_unregister(q);
2314 for (i = 0; i < set->nr_hw_queues; i++) {
2315 int node;
2317 if (hctxs[i])
2318 continue;
2320 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2321 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2322 GFP_KERNEL, node);
2323 if (!hctxs[i])
2324 break;
2326 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2327 node)) {
2328 kfree(hctxs[i]);
2329 hctxs[i] = NULL;
2330 break;
2333 atomic_set(&hctxs[i]->nr_active, 0);
2334 hctxs[i]->numa_node = node;
2335 hctxs[i]->queue_num = i;
2337 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2338 free_cpumask_var(hctxs[i]->cpumask);
2339 kfree(hctxs[i]);
2340 hctxs[i] = NULL;
2341 break;
2343 blk_mq_hctx_kobj_init(hctxs[i]);
2345 for (j = i; j < q->nr_hw_queues; j++) {
2346 struct blk_mq_hw_ctx *hctx = hctxs[j];
2348 if (hctx) {
2349 if (hctx->tags)
2350 blk_mq_free_map_and_requests(set, j);
2351 blk_mq_exit_hctx(q, set, hctx, j);
2352 kobject_put(&hctx->kobj);
2353 hctxs[j] = NULL;
2357 q->nr_hw_queues = i;
2358 blk_mq_sysfs_register(q);
2361 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2362 struct request_queue *q)
2364 /* mark the queue as mq asap */
2365 q->mq_ops = set->ops;
2367 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2368 if (!q->queue_ctx)
2369 goto err_exit;
2371 /* init q->mq_kobj and sw queues' kobjects */
2372 blk_mq_sysfs_init(q);
2374 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2375 GFP_KERNEL, set->numa_node);
2376 if (!q->queue_hw_ctx)
2377 goto err_percpu;
2379 q->mq_map = set->mq_map;
2381 blk_mq_realloc_hw_ctxs(set, q);
2382 if (!q->nr_hw_queues)
2383 goto err_hctxs;
2385 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2386 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2388 q->nr_queues = nr_cpu_ids;
2390 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2392 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2393 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2395 q->sg_reserved_size = INT_MAX;
2397 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2398 INIT_LIST_HEAD(&q->requeue_list);
2399 spin_lock_init(&q->requeue_lock);
2401 if (q->nr_hw_queues > 1)
2402 blk_queue_make_request(q, blk_mq_make_request);
2403 else
2404 blk_queue_make_request(q, blk_sq_make_request);
2407 * Do this after blk_queue_make_request() overrides it...
2409 q->nr_requests = set->queue_depth;
2412 * Default to classic polling
2414 q->poll_nsec = -1;
2416 if (set->ops->complete)
2417 blk_queue_softirq_done(q, set->ops->complete);
2419 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2421 get_online_cpus();
2422 mutex_lock(&all_q_mutex);
2424 list_add_tail(&q->all_q_node, &all_q_list);
2425 blk_mq_add_queue_tag_set(set, q);
2426 blk_mq_map_swqueue(q, cpu_online_mask);
2428 mutex_unlock(&all_q_mutex);
2429 put_online_cpus();
2431 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2432 int ret;
2434 ret = blk_mq_sched_init(q);
2435 if (ret)
2436 return ERR_PTR(ret);
2439 return q;
2441 err_hctxs:
2442 kfree(q->queue_hw_ctx);
2443 err_percpu:
2444 free_percpu(q->queue_ctx);
2445 err_exit:
2446 q->mq_ops = NULL;
2447 return ERR_PTR(-ENOMEM);
2449 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2451 void blk_mq_free_queue(struct request_queue *q)
2453 struct blk_mq_tag_set *set = q->tag_set;
2455 mutex_lock(&all_q_mutex);
2456 list_del_init(&q->all_q_node);
2457 mutex_unlock(&all_q_mutex);
2459 wbt_exit(q);
2461 blk_mq_del_queue_tag_set(q);
2463 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2466 /* Basically redo blk_mq_init_queue with queue frozen */
2467 static void blk_mq_queue_reinit(struct request_queue *q,
2468 const struct cpumask *online_mask)
2470 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2472 blk_mq_sysfs_unregister(q);
2475 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2476 * we should change hctx numa_node according to new topology (this
2477 * involves free and re-allocate memory, worthy doing?)
2480 blk_mq_map_swqueue(q, online_mask);
2482 blk_mq_sysfs_register(q);
2486 * New online cpumask which is going to be set in this hotplug event.
2487 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2488 * one-by-one and dynamically allocating this could result in a failure.
2490 static struct cpumask cpuhp_online_new;
2492 static void blk_mq_queue_reinit_work(void)
2494 struct request_queue *q;
2496 mutex_lock(&all_q_mutex);
2498 * We need to freeze and reinit all existing queues. Freezing
2499 * involves synchronous wait for an RCU grace period and doing it
2500 * one by one may take a long time. Start freezing all queues in
2501 * one swoop and then wait for the completions so that freezing can
2502 * take place in parallel.
2504 list_for_each_entry(q, &all_q_list, all_q_node)
2505 blk_mq_freeze_queue_start(q);
2506 list_for_each_entry(q, &all_q_list, all_q_node)
2507 blk_mq_freeze_queue_wait(q);
2509 list_for_each_entry(q, &all_q_list, all_q_node)
2510 blk_mq_queue_reinit(q, &cpuhp_online_new);
2512 list_for_each_entry(q, &all_q_list, all_q_node)
2513 blk_mq_unfreeze_queue(q);
2515 mutex_unlock(&all_q_mutex);
2518 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2520 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2521 blk_mq_queue_reinit_work();
2522 return 0;
2526 * Before hotadded cpu starts handling requests, new mappings must be
2527 * established. Otherwise, these requests in hw queue might never be
2528 * dispatched.
2530 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2531 * for CPU0, and ctx1 for CPU1).
2533 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2534 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2536 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2537 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2538 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2539 * ignored.
2541 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2543 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2544 cpumask_set_cpu(cpu, &cpuhp_online_new);
2545 blk_mq_queue_reinit_work();
2546 return 0;
2549 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2551 int i;
2553 for (i = 0; i < set->nr_hw_queues; i++)
2554 if (!__blk_mq_alloc_rq_map(set, i))
2555 goto out_unwind;
2557 return 0;
2559 out_unwind:
2560 while (--i >= 0)
2561 blk_mq_free_rq_map(set->tags[i]);
2563 return -ENOMEM;
2567 * Allocate the request maps associated with this tag_set. Note that this
2568 * may reduce the depth asked for, if memory is tight. set->queue_depth
2569 * will be updated to reflect the allocated depth.
2571 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2573 unsigned int depth;
2574 int err;
2576 depth = set->queue_depth;
2577 do {
2578 err = __blk_mq_alloc_rq_maps(set);
2579 if (!err)
2580 break;
2582 set->queue_depth >>= 1;
2583 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2584 err = -ENOMEM;
2585 break;
2587 } while (set->queue_depth);
2589 if (!set->queue_depth || err) {
2590 pr_err("blk-mq: failed to allocate request map\n");
2591 return -ENOMEM;
2594 if (depth != set->queue_depth)
2595 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2596 depth, set->queue_depth);
2598 return 0;
2601 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2603 if (set->ops->map_queues)
2604 return set->ops->map_queues(set);
2605 else
2606 return blk_mq_map_queues(set);
2610 * Alloc a tag set to be associated with one or more request queues.
2611 * May fail with EINVAL for various error conditions. May adjust the
2612 * requested depth down, if if it too large. In that case, the set
2613 * value will be stored in set->queue_depth.
2615 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2617 int ret;
2619 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2621 if (!set->nr_hw_queues)
2622 return -EINVAL;
2623 if (!set->queue_depth)
2624 return -EINVAL;
2625 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2626 return -EINVAL;
2628 if (!set->ops->queue_rq)
2629 return -EINVAL;
2631 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2632 pr_info("blk-mq: reduced tag depth to %u\n",
2633 BLK_MQ_MAX_DEPTH);
2634 set->queue_depth = BLK_MQ_MAX_DEPTH;
2638 * If a crashdump is active, then we are potentially in a very
2639 * memory constrained environment. Limit us to 1 queue and
2640 * 64 tags to prevent using too much memory.
2642 if (is_kdump_kernel()) {
2643 set->nr_hw_queues = 1;
2644 set->queue_depth = min(64U, set->queue_depth);
2647 * There is no use for more h/w queues than cpus.
2649 if (set->nr_hw_queues > nr_cpu_ids)
2650 set->nr_hw_queues = nr_cpu_ids;
2652 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2653 GFP_KERNEL, set->numa_node);
2654 if (!set->tags)
2655 return -ENOMEM;
2657 ret = -ENOMEM;
2658 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2659 GFP_KERNEL, set->numa_node);
2660 if (!set->mq_map)
2661 goto out_free_tags;
2663 ret = blk_mq_update_queue_map(set);
2664 if (ret)
2665 goto out_free_mq_map;
2667 ret = blk_mq_alloc_rq_maps(set);
2668 if (ret)
2669 goto out_free_mq_map;
2671 mutex_init(&set->tag_list_lock);
2672 INIT_LIST_HEAD(&set->tag_list);
2674 return 0;
2676 out_free_mq_map:
2677 kfree(set->mq_map);
2678 set->mq_map = NULL;
2679 out_free_tags:
2680 kfree(set->tags);
2681 set->tags = NULL;
2682 return ret;
2684 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2686 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2688 int i;
2690 for (i = 0; i < nr_cpu_ids; i++)
2691 blk_mq_free_map_and_requests(set, i);
2693 kfree(set->mq_map);
2694 set->mq_map = NULL;
2696 kfree(set->tags);
2697 set->tags = NULL;
2699 EXPORT_SYMBOL(blk_mq_free_tag_set);
2701 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2703 struct blk_mq_tag_set *set = q->tag_set;
2704 struct blk_mq_hw_ctx *hctx;
2705 int i, ret;
2707 if (!set)
2708 return -EINVAL;
2710 blk_mq_freeze_queue(q);
2711 blk_mq_quiesce_queue(q);
2713 ret = 0;
2714 queue_for_each_hw_ctx(q, hctx, i) {
2715 if (!hctx->tags)
2716 continue;
2718 * If we're using an MQ scheduler, just update the scheduler
2719 * queue depth. This is similar to what the old code would do.
2721 if (!hctx->sched_tags) {
2722 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2723 min(nr, set->queue_depth),
2724 false);
2725 } else {
2726 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2727 nr, true);
2729 if (ret)
2730 break;
2733 if (!ret)
2734 q->nr_requests = nr;
2736 blk_mq_unfreeze_queue(q);
2737 blk_mq_start_stopped_hw_queues(q, true);
2739 return ret;
2742 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2744 struct request_queue *q;
2746 if (nr_hw_queues > nr_cpu_ids)
2747 nr_hw_queues = nr_cpu_ids;
2748 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2749 return;
2751 list_for_each_entry(q, &set->tag_list, tag_set_list)
2752 blk_mq_freeze_queue(q);
2754 set->nr_hw_queues = nr_hw_queues;
2755 blk_mq_update_queue_map(set);
2756 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2757 blk_mq_realloc_hw_ctxs(set, q);
2760 * Manually set the make_request_fn as blk_queue_make_request
2761 * resets a lot of the queue settings.
2763 if (q->nr_hw_queues > 1)
2764 q->make_request_fn = blk_mq_make_request;
2765 else
2766 q->make_request_fn = blk_sq_make_request;
2768 blk_mq_queue_reinit(q, cpu_online_mask);
2771 list_for_each_entry(q, &set->tag_list, tag_set_list)
2772 blk_mq_unfreeze_queue(q);
2774 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2776 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2777 struct blk_mq_hw_ctx *hctx,
2778 struct request *rq)
2780 struct blk_rq_stat stat[2];
2781 unsigned long ret = 0;
2784 * If stats collection isn't on, don't sleep but turn it on for
2785 * future users
2787 if (!blk_stat_enable(q))
2788 return 0;
2791 * We don't have to do this once per IO, should optimize this
2792 * to just use the current window of stats until it changes
2794 memset(&stat, 0, sizeof(stat));
2795 blk_hctx_stat_get(hctx, stat);
2798 * As an optimistic guess, use half of the mean service time
2799 * for this type of request. We can (and should) make this smarter.
2800 * For instance, if the completion latencies are tight, we can
2801 * get closer than just half the mean. This is especially
2802 * important on devices where the completion latencies are longer
2803 * than ~10 usec.
2805 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2806 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2807 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2808 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2810 return ret;
2813 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2814 struct blk_mq_hw_ctx *hctx,
2815 struct request *rq)
2817 struct hrtimer_sleeper hs;
2818 enum hrtimer_mode mode;
2819 unsigned int nsecs;
2820 ktime_t kt;
2822 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2823 return false;
2826 * poll_nsec can be:
2828 * -1: don't ever hybrid sleep
2829 * 0: use half of prev avg
2830 * >0: use this specific value
2832 if (q->poll_nsec == -1)
2833 return false;
2834 else if (q->poll_nsec > 0)
2835 nsecs = q->poll_nsec;
2836 else
2837 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2839 if (!nsecs)
2840 return false;
2842 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2845 * This will be replaced with the stats tracking code, using
2846 * 'avg_completion_time / 2' as the pre-sleep target.
2848 kt = nsecs;
2850 mode = HRTIMER_MODE_REL;
2851 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2852 hrtimer_set_expires(&hs.timer, kt);
2854 hrtimer_init_sleeper(&hs, current);
2855 do {
2856 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2857 break;
2858 set_current_state(TASK_UNINTERRUPTIBLE);
2859 hrtimer_start_expires(&hs.timer, mode);
2860 if (hs.task)
2861 io_schedule();
2862 hrtimer_cancel(&hs.timer);
2863 mode = HRTIMER_MODE_ABS;
2864 } while (hs.task && !signal_pending(current));
2866 __set_current_state(TASK_RUNNING);
2867 destroy_hrtimer_on_stack(&hs.timer);
2868 return true;
2871 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2873 struct request_queue *q = hctx->queue;
2874 long state;
2877 * If we sleep, have the caller restart the poll loop to reset
2878 * the state. Like for the other success return cases, the
2879 * caller is responsible for checking if the IO completed. If
2880 * the IO isn't complete, we'll get called again and will go
2881 * straight to the busy poll loop.
2883 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2884 return true;
2886 hctx->poll_considered++;
2888 state = current->state;
2889 while (!need_resched()) {
2890 int ret;
2892 hctx->poll_invoked++;
2894 ret = q->mq_ops->poll(hctx, rq->tag);
2895 if (ret > 0) {
2896 hctx->poll_success++;
2897 set_current_state(TASK_RUNNING);
2898 return true;
2901 if (signal_pending_state(state, current))
2902 set_current_state(TASK_RUNNING);
2904 if (current->state == TASK_RUNNING)
2905 return true;
2906 if (ret < 0)
2907 break;
2908 cpu_relax();
2911 return false;
2914 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2916 struct blk_mq_hw_ctx *hctx;
2917 struct blk_plug *plug;
2918 struct request *rq;
2920 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2921 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2922 return false;
2924 plug = current->plug;
2925 if (plug)
2926 blk_flush_plug_list(plug, false);
2928 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2929 if (!blk_qc_t_is_internal(cookie))
2930 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2931 else {
2932 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2934 * With scheduling, if the request has completed, we'll
2935 * get a NULL return here, as we clear the sched tag when
2936 * that happens. The request still remains valid, like always,
2937 * so we should be safe with just the NULL check.
2939 if (!rq)
2940 return false;
2943 return __blk_mq_poll(hctx, rq);
2945 EXPORT_SYMBOL_GPL(blk_mq_poll);
2947 void blk_mq_disable_hotplug(void)
2949 mutex_lock(&all_q_mutex);
2952 void blk_mq_enable_hotplug(void)
2954 mutex_unlock(&all_q_mutex);
2957 static int __init blk_mq_init(void)
2959 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2960 blk_mq_hctx_notify_dead);
2962 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2963 blk_mq_queue_reinit_prepare,
2964 blk_mq_queue_reinit_dead);
2965 return 0;
2967 subsys_initcall(blk_mq_init);