2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-tag.h"
37 #include "blk-mq-sched.h"
39 static DEFINE_MUTEX(all_q_mutex
);
40 static LIST_HEAD(all_q_list
);
43 * Check if any of the ctx's have pending work in this hardware queue
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
47 return sbitmap_any_bit_set(&hctx
->ctx_map
) ||
48 !list_empty_careful(&hctx
->dispatch
) ||
49 blk_mq_sched_has_work(hctx
);
53 * Mark this ctx as having pending work in this hardware queue
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
56 struct blk_mq_ctx
*ctx
)
58 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
59 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
63 struct blk_mq_ctx
*ctx
)
65 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
68 void blk_mq_freeze_queue_start(struct request_queue
*q
)
72 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
73 if (freeze_depth
== 1) {
74 percpu_ref_kill(&q
->q_usage_counter
);
75 blk_mq_run_hw_queues(q
, false);
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
80 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
82 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
87 unsigned long timeout
)
89 return wait_event_timeout(q
->mq_freeze_wq
,
90 percpu_ref_is_zero(&q
->q_usage_counter
),
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
99 void blk_freeze_queue(struct request_queue
*q
)
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
108 blk_mq_freeze_queue_start(q
);
109 blk_mq_freeze_queue_wait(q
);
112 void blk_mq_freeze_queue(struct request_queue
*q
)
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
122 void blk_mq_unfreeze_queue(struct request_queue
*q
)
126 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
127 WARN_ON_ONCE(freeze_depth
< 0);
129 percpu_ref_reinit(&q
->q_usage_counter
);
130 wake_up_all(&q
->mq_freeze_wq
);
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
143 void blk_mq_quiesce_queue(struct request_queue
*q
)
145 struct blk_mq_hw_ctx
*hctx
;
149 blk_mq_stop_hw_queues(q
);
151 queue_for_each_hw_ctx(q
, hctx
, i
) {
152 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
153 synchronize_srcu(&hctx
->queue_rq_srcu
);
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
162 void blk_mq_wake_waiters(struct request_queue
*q
)
164 struct blk_mq_hw_ctx
*hctx
;
167 queue_for_each_hw_ctx(q
, hctx
, i
)
168 if (blk_mq_hw_queue_mapped(hctx
))
169 blk_mq_tag_wakeup_all(hctx
->tags
, true);
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
176 wake_up_all(&q
->mq_freeze_wq
);
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
181 return blk_mq_has_free_tags(hctx
->tags
);
183 EXPORT_SYMBOL(blk_mq_can_queue
);
185 void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
186 struct request
*rq
, unsigned int op
)
188 INIT_LIST_HEAD(&rq
->queuelist
);
189 /* csd/requeue_work/fifo_time is initialized before use */
193 if (blk_queue_io_stat(q
))
194 rq
->rq_flags
|= RQF_IO_STAT
;
195 /* do not touch atomic flags, it needs atomic ops against the timer */
197 INIT_HLIST_NODE(&rq
->hash
);
198 RB_CLEAR_NODE(&rq
->rb_node
);
201 rq
->start_time
= jiffies
;
202 #ifdef CONFIG_BLK_CGROUP
204 set_start_time_ns(rq
);
205 rq
->io_start_time_ns
= 0;
207 rq
->nr_phys_segments
= 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq
->nr_integrity_segments
= 0;
212 /* tag was already set */
216 INIT_LIST_HEAD(&rq
->timeout_list
);
220 rq
->end_io_data
= NULL
;
223 ctx
->rq_dispatched
[op_is_sync(op
)]++;
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init
);
227 struct request
*__blk_mq_alloc_request(struct blk_mq_alloc_data
*data
,
233 tag
= blk_mq_get_tag(data
);
234 if (tag
!= BLK_MQ_TAG_FAIL
) {
235 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
237 rq
= tags
->static_rqs
[tag
];
239 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
241 rq
->internal_tag
= tag
;
243 if (blk_mq_tag_busy(data
->hctx
)) {
244 rq
->rq_flags
= RQF_MQ_INFLIGHT
;
245 atomic_inc(&data
->hctx
->nr_active
);
248 rq
->internal_tag
= -1;
249 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
252 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, op
);
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request
);
260 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
,
263 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
267 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
271 rq
= blk_mq_sched_get_request(q
, NULL
, rw
, &alloc_data
);
273 blk_mq_put_ctx(alloc_data
.ctx
);
277 return ERR_PTR(-EWOULDBLOCK
);
280 rq
->__sector
= (sector_t
) -1;
281 rq
->bio
= rq
->biotail
= NULL
;
284 EXPORT_SYMBOL(blk_mq_alloc_request
);
286 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
, int rw
,
287 unsigned int flags
, unsigned int hctx_idx
)
289 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
300 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
301 return ERR_PTR(-EINVAL
);
303 if (hctx_idx
>= q
->nr_hw_queues
)
304 return ERR_PTR(-EIO
);
306 ret
= blk_queue_enter(q
, true);
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
314 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
315 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
317 return ERR_PTR(-EXDEV
);
319 cpu
= cpumask_first(alloc_data
.hctx
->cpumask
);
320 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
322 rq
= blk_mq_sched_get_request(q
, NULL
, rw
, &alloc_data
);
327 return ERR_PTR(-EWOULDBLOCK
);
331 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
333 void __blk_mq_finish_request(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
336 const int sched_tag
= rq
->internal_tag
;
337 struct request_queue
*q
= rq
->q
;
339 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
340 atomic_dec(&hctx
->nr_active
);
342 wbt_done(q
->rq_wb
, &rq
->issue_stat
);
345 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
346 clear_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
348 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
350 blk_mq_sched_completed_request(hctx
, rq
);
351 blk_mq_sched_restart(hctx
);
355 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx
*hctx
,
358 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
360 ctx
->rq_completed
[rq_is_sync(rq
)]++;
361 __blk_mq_finish_request(hctx
, ctx
, rq
);
364 void blk_mq_finish_request(struct request
*rq
)
366 blk_mq_finish_hctx_request(blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
), rq
);
369 void blk_mq_free_request(struct request
*rq
)
371 blk_mq_sched_put_request(rq
);
373 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
375 inline void __blk_mq_end_request(struct request
*rq
, int error
)
377 blk_account_io_done(rq
);
380 wbt_done(rq
->q
->rq_wb
, &rq
->issue_stat
);
381 rq
->end_io(rq
, error
);
383 if (unlikely(blk_bidi_rq(rq
)))
384 blk_mq_free_request(rq
->next_rq
);
385 blk_mq_free_request(rq
);
388 EXPORT_SYMBOL(__blk_mq_end_request
);
390 void blk_mq_end_request(struct request
*rq
, int error
)
392 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
394 __blk_mq_end_request(rq
, error
);
396 EXPORT_SYMBOL(blk_mq_end_request
);
398 static void __blk_mq_complete_request_remote(void *data
)
400 struct request
*rq
= data
;
402 rq
->q
->softirq_done_fn(rq
);
405 static void blk_mq_ipi_complete_request(struct request
*rq
)
407 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
411 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
412 rq
->q
->softirq_done_fn(rq
);
417 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
418 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
420 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
421 rq
->csd
.func
= __blk_mq_complete_request_remote
;
424 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
426 rq
->q
->softirq_done_fn(rq
);
431 static void blk_mq_stat_add(struct request
*rq
)
433 if (rq
->rq_flags
& RQF_STATS
) {
435 * We could rq->mq_ctx here, but there's less of a risk
436 * of races if we have the completion event add the stats
437 * to the local software queue.
439 struct blk_mq_ctx
*ctx
;
441 ctx
= __blk_mq_get_ctx(rq
->q
, raw_smp_processor_id());
442 blk_stat_add(&ctx
->stat
[rq_data_dir(rq
)], rq
);
446 static void __blk_mq_complete_request(struct request
*rq
)
448 struct request_queue
*q
= rq
->q
;
452 if (!q
->softirq_done_fn
)
453 blk_mq_end_request(rq
, rq
->errors
);
455 blk_mq_ipi_complete_request(rq
);
459 * blk_mq_complete_request - end I/O on a request
460 * @rq: the request being processed
463 * Ends all I/O on a request. It does not handle partial completions.
464 * The actual completion happens out-of-order, through a IPI handler.
466 void blk_mq_complete_request(struct request
*rq
, int error
)
468 struct request_queue
*q
= rq
->q
;
470 if (unlikely(blk_should_fake_timeout(q
)))
472 if (!blk_mark_rq_complete(rq
)) {
474 __blk_mq_complete_request(rq
);
477 EXPORT_SYMBOL(blk_mq_complete_request
);
479 int blk_mq_request_started(struct request
*rq
)
481 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
483 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
485 void blk_mq_start_request(struct request
*rq
)
487 struct request_queue
*q
= rq
->q
;
489 blk_mq_sched_started_request(rq
);
491 trace_block_rq_issue(q
, rq
);
493 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
494 blk_stat_set_issue_time(&rq
->issue_stat
);
495 rq
->rq_flags
|= RQF_STATS
;
496 wbt_issue(q
->rq_wb
, &rq
->issue_stat
);
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
505 smp_mb__before_atomic();
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
513 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
514 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
515 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
516 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
518 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
524 rq
->nr_phys_segments
++;
527 EXPORT_SYMBOL(blk_mq_start_request
);
529 static void __blk_mq_requeue_request(struct request
*rq
)
531 struct request_queue
*q
= rq
->q
;
533 trace_block_rq_requeue(q
, rq
);
534 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
535 blk_mq_sched_requeue_request(rq
);
537 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
538 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
539 rq
->nr_phys_segments
--;
543 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
545 __blk_mq_requeue_request(rq
);
547 BUG_ON(blk_queued_rq(rq
));
548 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
550 EXPORT_SYMBOL(blk_mq_requeue_request
);
552 static void blk_mq_requeue_work(struct work_struct
*work
)
554 struct request_queue
*q
=
555 container_of(work
, struct request_queue
, requeue_work
.work
);
557 struct request
*rq
, *next
;
560 spin_lock_irqsave(&q
->requeue_lock
, flags
);
561 list_splice_init(&q
->requeue_list
, &rq_list
);
562 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
564 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
565 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
568 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
569 list_del_init(&rq
->queuelist
);
570 blk_mq_sched_insert_request(rq
, true, false, false, true);
573 while (!list_empty(&rq_list
)) {
574 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
575 list_del_init(&rq
->queuelist
);
576 blk_mq_sched_insert_request(rq
, false, false, false, true);
579 blk_mq_run_hw_queues(q
, false);
582 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
583 bool kick_requeue_list
)
585 struct request_queue
*q
= rq
->q
;
589 * We abuse this flag that is otherwise used by the I/O scheduler to
590 * request head insertation from the workqueue.
592 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
594 spin_lock_irqsave(&q
->requeue_lock
, flags
);
596 rq
->rq_flags
|= RQF_SOFTBARRIER
;
597 list_add(&rq
->queuelist
, &q
->requeue_list
);
599 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
601 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
603 if (kick_requeue_list
)
604 blk_mq_kick_requeue_list(q
);
606 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
608 void blk_mq_kick_requeue_list(struct request_queue
*q
)
610 kblockd_schedule_delayed_work(&q
->requeue_work
, 0);
612 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
614 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
617 kblockd_schedule_delayed_work(&q
->requeue_work
,
618 msecs_to_jiffies(msecs
));
620 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
622 void blk_mq_abort_requeue_list(struct request_queue
*q
)
627 spin_lock_irqsave(&q
->requeue_lock
, flags
);
628 list_splice_init(&q
->requeue_list
, &rq_list
);
629 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
631 while (!list_empty(&rq_list
)) {
634 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
635 list_del_init(&rq
->queuelist
);
637 blk_mq_end_request(rq
, rq
->errors
);
640 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
642 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
644 if (tag
< tags
->nr_tags
) {
645 prefetch(tags
->rqs
[tag
]);
646 return tags
->rqs
[tag
];
651 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
653 struct blk_mq_timeout_data
{
655 unsigned int next_set
;
658 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
660 const struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
661 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
664 * We know that complete is set at this point. If STARTED isn't set
665 * anymore, then the request isn't active and the "timeout" should
666 * just be ignored. This can happen due to the bitflag ordering.
667 * Timeout first checks if STARTED is set, and if it is, assumes
668 * the request is active. But if we race with completion, then
669 * we both flags will get cleared. So check here again, and ignore
670 * a timeout event with a request that isn't active.
672 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
676 ret
= ops
->timeout(req
, reserved
);
680 __blk_mq_complete_request(req
);
682 case BLK_EH_RESET_TIMER
:
684 blk_clear_rq_complete(req
);
686 case BLK_EH_NOT_HANDLED
:
689 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
694 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
695 struct request
*rq
, void *priv
, bool reserved
)
697 struct blk_mq_timeout_data
*data
= priv
;
699 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
702 if (time_after_eq(jiffies
, rq
->deadline
)) {
703 if (!blk_mark_rq_complete(rq
))
704 blk_mq_rq_timed_out(rq
, reserved
);
705 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
706 data
->next
= rq
->deadline
;
711 static void blk_mq_timeout_work(struct work_struct
*work
)
713 struct request_queue
*q
=
714 container_of(work
, struct request_queue
, timeout_work
);
715 struct blk_mq_timeout_data data
= {
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
734 if (!percpu_ref_tryget(&q
->q_usage_counter
))
737 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
740 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
741 mod_timer(&q
->timeout
, data
.next
);
743 struct blk_mq_hw_ctx
*hctx
;
745 queue_for_each_hw_ctx(q
, hctx
, i
) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx
))
748 blk_mq_tag_idle(hctx
);
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
759 static bool blk_mq_attempt_merge(struct request_queue
*q
,
760 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
765 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
771 if (!blk_rq_merge_ok(rq
, bio
))
774 switch (blk_try_merge(rq
, bio
)) {
775 case ELEVATOR_BACK_MERGE
:
776 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
777 merged
= bio_attempt_back_merge(q
, rq
, bio
);
779 case ELEVATOR_FRONT_MERGE
:
780 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
781 merged
= bio_attempt_front_merge(q
, rq
, bio
);
783 case ELEVATOR_DISCARD_MERGE
:
784 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
798 struct flush_busy_ctx_data
{
799 struct blk_mq_hw_ctx
*hctx
;
800 struct list_head
*list
;
803 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
805 struct flush_busy_ctx_data
*flush_data
= data
;
806 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
807 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
809 sbitmap_clear_bit(sb
, bitnr
);
810 spin_lock(&ctx
->lock
);
811 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
812 spin_unlock(&ctx
->lock
);
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
822 struct flush_busy_ctx_data data
= {
827 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
831 static inline unsigned int queued_to_index(unsigned int queued
)
836 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
839 bool blk_mq_get_driver_tag(struct request
*rq
, struct blk_mq_hw_ctx
**hctx
,
842 struct blk_mq_alloc_data data
= {
844 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
845 .flags
= wait
? 0 : BLK_MQ_REQ_NOWAIT
,
851 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
852 data
.flags
|= BLK_MQ_REQ_RESERVED
;
854 rq
->tag
= blk_mq_get_tag(&data
);
856 if (blk_mq_tag_busy(data
.hctx
)) {
857 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
858 atomic_inc(&data
.hctx
->nr_active
);
860 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
866 return rq
->tag
!= -1;
869 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx
*hctx
,
872 blk_mq_put_tag(hctx
, hctx
->tags
, rq
->mq_ctx
, rq
->tag
);
875 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
) {
876 rq
->rq_flags
&= ~RQF_MQ_INFLIGHT
;
877 atomic_dec(&hctx
->nr_active
);
881 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx
*hctx
,
884 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
887 __blk_mq_put_driver_tag(hctx
, rq
);
890 static void blk_mq_put_driver_tag(struct request
*rq
)
892 struct blk_mq_hw_ctx
*hctx
;
894 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
897 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
898 __blk_mq_put_driver_tag(hctx
, rq
);
902 * If we fail getting a driver tag because all the driver tags are already
903 * assigned and on the dispatch list, BUT the first entry does not have a
904 * tag, then we could deadlock. For that case, move entries with assigned
905 * driver tags to the front, leaving the set of tagged requests in the
906 * same order, and the untagged set in the same order.
908 static bool reorder_tags_to_front(struct list_head
*list
)
910 struct request
*rq
, *tmp
, *first
= NULL
;
912 list_for_each_entry_safe_reverse(rq
, tmp
, list
, queuelist
) {
916 list_move(&rq
->queuelist
, list
);
922 return first
!= NULL
;
925 static int blk_mq_dispatch_wake(wait_queue_t
*wait
, unsigned mode
, int flags
,
928 struct blk_mq_hw_ctx
*hctx
;
930 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
932 list_del(&wait
->task_list
);
933 clear_bit_unlock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
);
934 blk_mq_run_hw_queue(hctx
, true);
938 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx
*hctx
)
940 struct sbq_wait_state
*ws
;
943 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
944 * The thread which wins the race to grab this bit adds the hardware
945 * queue to the wait queue.
947 if (test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
) ||
948 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
951 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
952 ws
= bt_wait_ptr(&hctx
->tags
->bitmap_tags
, hctx
);
955 * As soon as this returns, it's no longer safe to fiddle with
956 * hctx->dispatch_wait, since a completion can wake up the wait queue
957 * and unlock the bit.
959 add_wait_queue(&ws
->wait
, &hctx
->dispatch_wait
);
963 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
)
965 struct blk_mq_hw_ctx
*hctx
;
967 LIST_HEAD(driver_list
);
968 struct list_head
*dptr
;
969 int errors
, queued
, ret
= BLK_MQ_RQ_QUEUE_OK
;
971 if (list_empty(list
))
975 * Start off with dptr being NULL, so we start the first request
976 * immediately, even if we have more pending.
981 * Now process all the entries, sending them to the driver.
985 struct blk_mq_queue_data bd
;
987 rq
= list_first_entry(list
, struct request
, queuelist
);
988 if (!blk_mq_get_driver_tag(rq
, &hctx
, false)) {
989 if (!queued
&& reorder_tags_to_front(list
))
993 * The initial allocation attempt failed, so we need to
994 * rerun the hardware queue when a tag is freed.
996 if (blk_mq_dispatch_wait_add(hctx
)) {
998 * It's possible that a tag was freed in the
999 * window between the allocation failure and
1000 * adding the hardware queue to the wait queue.
1002 if (!blk_mq_get_driver_tag(rq
, &hctx
, false))
1009 list_del_init(&rq
->queuelist
);
1015 * Flag last if we have no more requests, or if we have more
1016 * but can't assign a driver tag to it.
1018 if (list_empty(list
))
1021 struct request
*nxt
;
1023 nxt
= list_first_entry(list
, struct request
, queuelist
);
1024 bd
.last
= !blk_mq_get_driver_tag(nxt
, NULL
, false);
1027 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1029 case BLK_MQ_RQ_QUEUE_OK
:
1032 case BLK_MQ_RQ_QUEUE_BUSY
:
1033 blk_mq_put_driver_tag_hctx(hctx
, rq
);
1034 list_add(&rq
->queuelist
, list
);
1035 __blk_mq_requeue_request(rq
);
1038 pr_err("blk-mq: bad return on queue: %d\n", ret
);
1039 case BLK_MQ_RQ_QUEUE_ERROR
:
1042 blk_mq_end_request(rq
, rq
->errors
);
1046 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
1050 * We've done the first request. If we have more than 1
1051 * left in the list, set dptr to defer issue.
1053 if (!dptr
&& list
->next
!= list
->prev
)
1054 dptr
= &driver_list
;
1055 } while (!list_empty(list
));
1057 hctx
->dispatched
[queued_to_index(queued
)]++;
1060 * Any items that need requeuing? Stuff them into hctx->dispatch,
1061 * that is where we will continue on next queue run.
1063 if (!list_empty(list
)) {
1065 * If we got a driver tag for the next request already,
1068 rq
= list_first_entry(list
, struct request
, queuelist
);
1069 blk_mq_put_driver_tag(rq
);
1071 spin_lock(&hctx
->lock
);
1072 list_splice_init(list
, &hctx
->dispatch
);
1073 spin_unlock(&hctx
->lock
);
1076 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1077 * it's possible the queue is stopped and restarted again
1078 * before this. Queue restart will dispatch requests. And since
1079 * requests in rq_list aren't added into hctx->dispatch yet,
1080 * the requests in rq_list might get lost.
1082 * blk_mq_run_hw_queue() already checks the STOPPED bit
1084 * If RESTART or TAG_WAITING is set, then let completion restart
1085 * the queue instead of potentially looping here.
1087 if (!blk_mq_sched_needs_restart(hctx
) &&
1088 !test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
1089 blk_mq_run_hw_queue(hctx
, true);
1092 return (queued
+ errors
) != 0;
1095 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1099 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1100 cpu_online(hctx
->next_cpu
));
1102 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1104 blk_mq_sched_dispatch_requests(hctx
);
1107 srcu_idx
= srcu_read_lock(&hctx
->queue_rq_srcu
);
1108 blk_mq_sched_dispatch_requests(hctx
);
1109 srcu_read_unlock(&hctx
->queue_rq_srcu
, srcu_idx
);
1114 * It'd be great if the workqueue API had a way to pass
1115 * in a mask and had some smarts for more clever placement.
1116 * For now we just round-robin here, switching for every
1117 * BLK_MQ_CPU_WORK_BATCH queued items.
1119 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1121 if (hctx
->queue
->nr_hw_queues
== 1)
1122 return WORK_CPU_UNBOUND
;
1124 if (--hctx
->next_cpu_batch
<= 0) {
1127 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
1128 if (next_cpu
>= nr_cpu_ids
)
1129 next_cpu
= cpumask_first(hctx
->cpumask
);
1131 hctx
->next_cpu
= next_cpu
;
1132 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1135 return hctx
->next_cpu
;
1138 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1139 unsigned long msecs
)
1141 if (unlikely(blk_mq_hctx_stopped(hctx
) ||
1142 !blk_mq_hw_queue_mapped(hctx
)))
1145 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1146 int cpu
= get_cpu();
1147 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1148 __blk_mq_run_hw_queue(hctx
);
1157 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx
),
1160 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1161 &hctx
->delayed_run_work
,
1162 msecs_to_jiffies(msecs
));
1165 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1167 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1169 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1171 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1173 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1176 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1178 struct blk_mq_hw_ctx
*hctx
;
1181 queue_for_each_hw_ctx(q
, hctx
, i
) {
1182 if (!blk_mq_hctx_has_pending(hctx
) ||
1183 blk_mq_hctx_stopped(hctx
))
1186 blk_mq_run_hw_queue(hctx
, async
);
1189 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1192 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1193 * @q: request queue.
1195 * The caller is responsible for serializing this function against
1196 * blk_mq_{start,stop}_hw_queue().
1198 bool blk_mq_queue_stopped(struct request_queue
*q
)
1200 struct blk_mq_hw_ctx
*hctx
;
1203 queue_for_each_hw_ctx(q
, hctx
, i
)
1204 if (blk_mq_hctx_stopped(hctx
))
1209 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1211 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1213 cancel_work(&hctx
->run_work
);
1214 cancel_delayed_work(&hctx
->delay_work
);
1215 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1217 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1219 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1221 struct blk_mq_hw_ctx
*hctx
;
1224 queue_for_each_hw_ctx(q
, hctx
, i
)
1225 blk_mq_stop_hw_queue(hctx
);
1227 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1229 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1231 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1233 blk_mq_run_hw_queue(hctx
, false);
1235 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1237 void blk_mq_start_hw_queues(struct request_queue
*q
)
1239 struct blk_mq_hw_ctx
*hctx
;
1242 queue_for_each_hw_ctx(q
, hctx
, i
)
1243 blk_mq_start_hw_queue(hctx
);
1245 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1247 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1249 if (!blk_mq_hctx_stopped(hctx
))
1252 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1253 blk_mq_run_hw_queue(hctx
, async
);
1255 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1257 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1259 struct blk_mq_hw_ctx
*hctx
;
1262 queue_for_each_hw_ctx(q
, hctx
, i
)
1263 blk_mq_start_stopped_hw_queue(hctx
, async
);
1265 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1267 static void blk_mq_run_work_fn(struct work_struct
*work
)
1269 struct blk_mq_hw_ctx
*hctx
;
1271 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
);
1273 __blk_mq_run_hw_queue(hctx
);
1276 static void blk_mq_delayed_run_work_fn(struct work_struct
*work
)
1278 struct blk_mq_hw_ctx
*hctx
;
1280 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delayed_run_work
.work
);
1282 __blk_mq_run_hw_queue(hctx
);
1285 static void blk_mq_delay_work_fn(struct work_struct
*work
)
1287 struct blk_mq_hw_ctx
*hctx
;
1289 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
1291 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1292 __blk_mq_run_hw_queue(hctx
);
1295 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1297 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
1300 blk_mq_stop_hw_queue(hctx
);
1301 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1302 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
1304 EXPORT_SYMBOL(blk_mq_delay_queue
);
1306 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1310 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1312 trace_block_rq_insert(hctx
->queue
, rq
);
1315 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1317 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1320 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1323 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1325 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1326 blk_mq_hctx_mark_pending(hctx
, ctx
);
1329 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1330 struct list_head
*list
)
1334 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1337 spin_lock(&ctx
->lock
);
1338 while (!list_empty(list
)) {
1341 rq
= list_first_entry(list
, struct request
, queuelist
);
1342 BUG_ON(rq
->mq_ctx
!= ctx
);
1343 list_del_init(&rq
->queuelist
);
1344 __blk_mq_insert_req_list(hctx
, rq
, false);
1346 blk_mq_hctx_mark_pending(hctx
, ctx
);
1347 spin_unlock(&ctx
->lock
);
1350 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1352 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1353 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1355 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1356 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1357 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1360 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1362 struct blk_mq_ctx
*this_ctx
;
1363 struct request_queue
*this_q
;
1366 LIST_HEAD(ctx_list
);
1369 list_splice_init(&plug
->mq_list
, &list
);
1371 list_sort(NULL
, &list
, plug_ctx_cmp
);
1377 while (!list_empty(&list
)) {
1378 rq
= list_entry_rq(list
.next
);
1379 list_del_init(&rq
->queuelist
);
1381 if (rq
->mq_ctx
!= this_ctx
) {
1383 trace_block_unplug(this_q
, depth
, from_schedule
);
1384 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1389 this_ctx
= rq
->mq_ctx
;
1395 list_add_tail(&rq
->queuelist
, &ctx_list
);
1399 * If 'this_ctx' is set, we know we have entries to complete
1400 * on 'ctx_list'. Do those.
1403 trace_block_unplug(this_q
, depth
, from_schedule
);
1404 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1409 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1411 init_request_from_bio(rq
, bio
);
1413 blk_account_io_start(rq
, true);
1416 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1418 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1419 !blk_queue_nomerges(hctx
->queue
);
1422 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1423 struct blk_mq_ctx
*ctx
,
1424 struct request
*rq
, struct bio
*bio
)
1426 if (!hctx_allow_merges(hctx
) || !bio_mergeable(bio
)) {
1427 blk_mq_bio_to_request(rq
, bio
);
1428 spin_lock(&ctx
->lock
);
1430 __blk_mq_insert_request(hctx
, rq
, false);
1431 spin_unlock(&ctx
->lock
);
1434 struct request_queue
*q
= hctx
->queue
;
1436 spin_lock(&ctx
->lock
);
1437 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1438 blk_mq_bio_to_request(rq
, bio
);
1442 spin_unlock(&ctx
->lock
);
1443 __blk_mq_finish_request(hctx
, ctx
, rq
);
1448 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1451 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1453 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1456 static void blk_mq_try_issue_directly(struct request
*rq
, blk_qc_t
*cookie
,
1459 struct request_queue
*q
= rq
->q
;
1460 struct blk_mq_queue_data bd
= {
1465 struct blk_mq_hw_ctx
*hctx
;
1466 blk_qc_t new_cookie
;
1472 if (!blk_mq_get_driver_tag(rq
, &hctx
, false))
1475 new_cookie
= request_to_qc_t(hctx
, rq
);
1478 * For OK queue, we are done. For error, kill it. Any other
1479 * error (busy), just add it to our list as we previously
1482 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1483 if (ret
== BLK_MQ_RQ_QUEUE_OK
) {
1484 *cookie
= new_cookie
;
1488 __blk_mq_requeue_request(rq
);
1490 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1491 *cookie
= BLK_QC_T_NONE
;
1493 blk_mq_end_request(rq
, rq
->errors
);
1498 blk_mq_sched_insert_request(rq
, false, true, false, may_sleep
);
1502 * Multiple hardware queue variant. This will not use per-process plugs,
1503 * but will attempt to bypass the hctx queueing if we can go straight to
1504 * hardware for SYNC IO.
1506 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1508 const int is_sync
= op_is_sync(bio
->bi_opf
);
1509 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1510 struct blk_mq_alloc_data data
= { .flags
= 0 };
1512 unsigned int request_count
= 0, srcu_idx
;
1513 struct blk_plug
*plug
;
1514 struct request
*same_queue_rq
= NULL
;
1516 unsigned int wb_acct
;
1518 blk_queue_bounce(q
, &bio
);
1520 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1522 return BLK_QC_T_NONE
;
1525 blk_queue_split(q
, &bio
, q
->bio_split
);
1527 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1528 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1529 return BLK_QC_T_NONE
;
1531 if (blk_mq_sched_bio_merge(q
, bio
))
1532 return BLK_QC_T_NONE
;
1534 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1536 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1538 rq
= blk_mq_sched_get_request(q
, bio
, bio
->bi_opf
, &data
);
1539 if (unlikely(!rq
)) {
1540 __wbt_done(q
->rq_wb
, wb_acct
);
1541 return BLK_QC_T_NONE
;
1544 wbt_track(&rq
->issue_stat
, wb_acct
);
1546 cookie
= request_to_qc_t(data
.hctx
, rq
);
1548 if (unlikely(is_flush_fua
)) {
1551 blk_mq_bio_to_request(rq
, bio
);
1552 blk_insert_flush(rq
);
1556 plug
= current
->plug
;
1558 * If the driver supports defer issued based on 'last', then
1559 * queue it up like normal since we can potentially save some
1562 if (((plug
&& !blk_queue_nomerges(q
)) || is_sync
) &&
1563 !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1564 struct request
*old_rq
= NULL
;
1566 blk_mq_bio_to_request(rq
, bio
);
1569 * We do limited plugging. If the bio can be merged, do that.
1570 * Otherwise the existing request in the plug list will be
1571 * issued. So the plug list will have one request at most
1575 * The plug list might get flushed before this. If that
1576 * happens, same_queue_rq is invalid and plug list is
1579 if (same_queue_rq
&& !list_empty(&plug
->mq_list
)) {
1580 old_rq
= same_queue_rq
;
1581 list_del_init(&old_rq
->queuelist
);
1583 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1584 } else /* is_sync */
1586 blk_mq_put_ctx(data
.ctx
);
1590 if (!(data
.hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1592 blk_mq_try_issue_directly(old_rq
, &cookie
, false);
1595 srcu_idx
= srcu_read_lock(&data
.hctx
->queue_rq_srcu
);
1596 blk_mq_try_issue_directly(old_rq
, &cookie
, true);
1597 srcu_read_unlock(&data
.hctx
->queue_rq_srcu
, srcu_idx
);
1604 blk_mq_put_ctx(data
.ctx
);
1605 blk_mq_bio_to_request(rq
, bio
);
1606 blk_mq_sched_insert_request(rq
, false, true,
1607 !is_sync
|| is_flush_fua
, true);
1610 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1612 * For a SYNC request, send it to the hardware immediately. For
1613 * an ASYNC request, just ensure that we run it later on. The
1614 * latter allows for merging opportunities and more efficient
1618 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1620 blk_mq_put_ctx(data
.ctx
);
1626 * Single hardware queue variant. This will attempt to use any per-process
1627 * plug for merging and IO deferral.
1629 static blk_qc_t
blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1631 const int is_sync
= op_is_sync(bio
->bi_opf
);
1632 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1633 struct blk_plug
*plug
;
1634 unsigned int request_count
= 0;
1635 struct blk_mq_alloc_data data
= { .flags
= 0 };
1638 unsigned int wb_acct
;
1640 blk_queue_bounce(q
, &bio
);
1642 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1644 return BLK_QC_T_NONE
;
1647 blk_queue_split(q
, &bio
, q
->bio_split
);
1649 if (!is_flush_fua
&& !blk_queue_nomerges(q
)) {
1650 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1651 return BLK_QC_T_NONE
;
1653 request_count
= blk_plug_queued_count(q
);
1655 if (blk_mq_sched_bio_merge(q
, bio
))
1656 return BLK_QC_T_NONE
;
1658 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1660 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1662 rq
= blk_mq_sched_get_request(q
, bio
, bio
->bi_opf
, &data
);
1663 if (unlikely(!rq
)) {
1664 __wbt_done(q
->rq_wb
, wb_acct
);
1665 return BLK_QC_T_NONE
;
1668 wbt_track(&rq
->issue_stat
, wb_acct
);
1670 cookie
= request_to_qc_t(data
.hctx
, rq
);
1672 if (unlikely(is_flush_fua
)) {
1675 blk_mq_bio_to_request(rq
, bio
);
1676 blk_insert_flush(rq
);
1681 * A task plug currently exists. Since this is completely lockless,
1682 * utilize that to temporarily store requests until the task is
1683 * either done or scheduled away.
1685 plug
= current
->plug
;
1687 struct request
*last
= NULL
;
1689 blk_mq_bio_to_request(rq
, bio
);
1692 * @request_count may become stale because of schedule
1693 * out, so check the list again.
1695 if (list_empty(&plug
->mq_list
))
1698 trace_block_plug(q
);
1700 last
= list_entry_rq(plug
->mq_list
.prev
);
1702 blk_mq_put_ctx(data
.ctx
);
1704 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1705 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1706 blk_flush_plug_list(plug
, false);
1707 trace_block_plug(q
);
1710 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1716 blk_mq_put_ctx(data
.ctx
);
1717 blk_mq_bio_to_request(rq
, bio
);
1718 blk_mq_sched_insert_request(rq
, false, true,
1719 !is_sync
|| is_flush_fua
, true);
1722 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1724 * For a SYNC request, send it to the hardware immediately. For
1725 * an ASYNC request, just ensure that we run it later on. The
1726 * latter allows for merging opportunities and more efficient
1730 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1733 blk_mq_put_ctx(data
.ctx
);
1738 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1739 unsigned int hctx_idx
)
1743 if (tags
->rqs
&& set
->ops
->exit_request
) {
1746 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1747 struct request
*rq
= tags
->static_rqs
[i
];
1751 set
->ops
->exit_request(set
->driver_data
, rq
,
1753 tags
->static_rqs
[i
] = NULL
;
1757 while (!list_empty(&tags
->page_list
)) {
1758 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1759 list_del_init(&page
->lru
);
1761 * Remove kmemleak object previously allocated in
1762 * blk_mq_init_rq_map().
1764 kmemleak_free(page_address(page
));
1765 __free_pages(page
, page
->private);
1769 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1773 kfree(tags
->static_rqs
);
1774 tags
->static_rqs
= NULL
;
1776 blk_mq_free_tags(tags
);
1779 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1780 unsigned int hctx_idx
,
1781 unsigned int nr_tags
,
1782 unsigned int reserved_tags
)
1784 struct blk_mq_tags
*tags
;
1787 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1788 if (node
== NUMA_NO_NODE
)
1789 node
= set
->numa_node
;
1791 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1792 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1796 tags
->rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1797 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1800 blk_mq_free_tags(tags
);
1804 tags
->static_rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1805 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1807 if (!tags
->static_rqs
) {
1809 blk_mq_free_tags(tags
);
1816 static size_t order_to_size(unsigned int order
)
1818 return (size_t)PAGE_SIZE
<< order
;
1821 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1822 unsigned int hctx_idx
, unsigned int depth
)
1824 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1825 size_t rq_size
, left
;
1828 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1829 if (node
== NUMA_NO_NODE
)
1830 node
= set
->numa_node
;
1832 INIT_LIST_HEAD(&tags
->page_list
);
1835 * rq_size is the size of the request plus driver payload, rounded
1836 * to the cacheline size
1838 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1840 left
= rq_size
* depth
;
1842 for (i
= 0; i
< depth
; ) {
1843 int this_order
= max_order
;
1848 while (this_order
&& left
< order_to_size(this_order
- 1))
1852 page
= alloc_pages_node(node
,
1853 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1859 if (order_to_size(this_order
) < rq_size
)
1866 page
->private = this_order
;
1867 list_add_tail(&page
->lru
, &tags
->page_list
);
1869 p
= page_address(page
);
1871 * Allow kmemleak to scan these pages as they contain pointers
1872 * to additional allocations like via ops->init_request().
1874 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1875 entries_per_page
= order_to_size(this_order
) / rq_size
;
1876 to_do
= min(entries_per_page
, depth
- i
);
1877 left
-= to_do
* rq_size
;
1878 for (j
= 0; j
< to_do
; j
++) {
1879 struct request
*rq
= p
;
1881 tags
->static_rqs
[i
] = rq
;
1882 if (set
->ops
->init_request
) {
1883 if (set
->ops
->init_request(set
->driver_data
,
1886 tags
->static_rqs
[i
] = NULL
;
1898 blk_mq_free_rqs(set
, tags
, hctx_idx
);
1903 * 'cpu' is going away. splice any existing rq_list entries from this
1904 * software queue to the hw queue dispatch list, and ensure that it
1907 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
1909 struct blk_mq_hw_ctx
*hctx
;
1910 struct blk_mq_ctx
*ctx
;
1913 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
1914 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1916 spin_lock(&ctx
->lock
);
1917 if (!list_empty(&ctx
->rq_list
)) {
1918 list_splice_init(&ctx
->rq_list
, &tmp
);
1919 blk_mq_hctx_clear_pending(hctx
, ctx
);
1921 spin_unlock(&ctx
->lock
);
1923 if (list_empty(&tmp
))
1926 spin_lock(&hctx
->lock
);
1927 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1928 spin_unlock(&hctx
->lock
);
1930 blk_mq_run_hw_queue(hctx
, true);
1934 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
1936 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
1940 /* hctx->ctxs will be freed in queue's release handler */
1941 static void blk_mq_exit_hctx(struct request_queue
*q
,
1942 struct blk_mq_tag_set
*set
,
1943 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1945 unsigned flush_start_tag
= set
->queue_depth
;
1947 blk_mq_tag_idle(hctx
);
1949 if (set
->ops
->exit_request
)
1950 set
->ops
->exit_request(set
->driver_data
,
1951 hctx
->fq
->flush_rq
, hctx_idx
,
1952 flush_start_tag
+ hctx_idx
);
1954 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
1956 if (set
->ops
->exit_hctx
)
1957 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1959 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1960 cleanup_srcu_struct(&hctx
->queue_rq_srcu
);
1962 blk_mq_remove_cpuhp(hctx
);
1963 blk_free_flush_queue(hctx
->fq
);
1964 sbitmap_free(&hctx
->ctx_map
);
1967 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1968 struct blk_mq_tag_set
*set
, int nr_queue
)
1970 struct blk_mq_hw_ctx
*hctx
;
1973 queue_for_each_hw_ctx(q
, hctx
, i
) {
1976 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1980 static int blk_mq_init_hctx(struct request_queue
*q
,
1981 struct blk_mq_tag_set
*set
,
1982 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1985 unsigned flush_start_tag
= set
->queue_depth
;
1987 node
= hctx
->numa_node
;
1988 if (node
== NUMA_NO_NODE
)
1989 node
= hctx
->numa_node
= set
->numa_node
;
1991 INIT_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1992 INIT_DELAYED_WORK(&hctx
->delayed_run_work
, blk_mq_delayed_run_work_fn
);
1993 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1994 spin_lock_init(&hctx
->lock
);
1995 INIT_LIST_HEAD(&hctx
->dispatch
);
1997 hctx
->queue_num
= hctx_idx
;
1998 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2000 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2002 hctx
->tags
= set
->tags
[hctx_idx
];
2005 * Allocate space for all possible cpus to avoid allocation at
2008 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
2011 goto unregister_cpu_notifier
;
2013 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
2019 if (set
->ops
->init_hctx
&&
2020 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2023 if (blk_mq_sched_init_hctx(q
, hctx
, hctx_idx
))
2026 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
2028 goto sched_exit_hctx
;
2030 if (set
->ops
->init_request
&&
2031 set
->ops
->init_request(set
->driver_data
,
2032 hctx
->fq
->flush_rq
, hctx_idx
,
2033 flush_start_tag
+ hctx_idx
, node
))
2036 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2037 init_srcu_struct(&hctx
->queue_rq_srcu
);
2044 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
2046 if (set
->ops
->exit_hctx
)
2047 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2049 sbitmap_free(&hctx
->ctx_map
);
2052 unregister_cpu_notifier
:
2053 blk_mq_remove_cpuhp(hctx
);
2057 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2058 unsigned int nr_hw_queues
)
2062 for_each_possible_cpu(i
) {
2063 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2064 struct blk_mq_hw_ctx
*hctx
;
2067 spin_lock_init(&__ctx
->lock
);
2068 INIT_LIST_HEAD(&__ctx
->rq_list
);
2070 blk_stat_init(&__ctx
->stat
[BLK_STAT_READ
]);
2071 blk_stat_init(&__ctx
->stat
[BLK_STAT_WRITE
]);
2073 /* If the cpu isn't online, the cpu is mapped to first hctx */
2077 hctx
= blk_mq_map_queue(q
, i
);
2080 * Set local node, IFF we have more than one hw queue. If
2081 * not, we remain on the home node of the device
2083 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2084 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2088 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2092 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2093 set
->queue_depth
, set
->reserved_tags
);
2094 if (!set
->tags
[hctx_idx
])
2097 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2102 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2103 set
->tags
[hctx_idx
] = NULL
;
2107 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2108 unsigned int hctx_idx
)
2110 if (set
->tags
[hctx_idx
]) {
2111 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2112 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2113 set
->tags
[hctx_idx
] = NULL
;
2117 static void blk_mq_map_swqueue(struct request_queue
*q
,
2118 const struct cpumask
*online_mask
)
2120 unsigned int i
, hctx_idx
;
2121 struct blk_mq_hw_ctx
*hctx
;
2122 struct blk_mq_ctx
*ctx
;
2123 struct blk_mq_tag_set
*set
= q
->tag_set
;
2126 * Avoid others reading imcomplete hctx->cpumask through sysfs
2128 mutex_lock(&q
->sysfs_lock
);
2130 queue_for_each_hw_ctx(q
, hctx
, i
) {
2131 cpumask_clear(hctx
->cpumask
);
2136 * Map software to hardware queues
2138 for_each_possible_cpu(i
) {
2139 /* If the cpu isn't online, the cpu is mapped to first hctx */
2140 if (!cpumask_test_cpu(i
, online_mask
))
2143 hctx_idx
= q
->mq_map
[i
];
2144 /* unmapped hw queue can be remapped after CPU topo changed */
2145 if (!set
->tags
[hctx_idx
] &&
2146 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2148 * If tags initialization fail for some hctx,
2149 * that hctx won't be brought online. In this
2150 * case, remap the current ctx to hctx[0] which
2151 * is guaranteed to always have tags allocated
2156 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2157 hctx
= blk_mq_map_queue(q
, i
);
2159 cpumask_set_cpu(i
, hctx
->cpumask
);
2160 ctx
->index_hw
= hctx
->nr_ctx
;
2161 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2164 mutex_unlock(&q
->sysfs_lock
);
2166 queue_for_each_hw_ctx(q
, hctx
, i
) {
2168 * If no software queues are mapped to this hardware queue,
2169 * disable it and free the request entries.
2171 if (!hctx
->nr_ctx
) {
2172 /* Never unmap queue 0. We need it as a
2173 * fallback in case of a new remap fails
2176 if (i
&& set
->tags
[i
])
2177 blk_mq_free_map_and_requests(set
, i
);
2183 hctx
->tags
= set
->tags
[i
];
2184 WARN_ON(!hctx
->tags
);
2187 * Set the map size to the number of mapped software queues.
2188 * This is more accurate and more efficient than looping
2189 * over all possibly mapped software queues.
2191 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2194 * Initialize batch roundrobin counts
2196 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
2197 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2201 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2203 struct blk_mq_hw_ctx
*hctx
;
2206 queue_for_each_hw_ctx(q
, hctx
, i
) {
2208 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2210 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2214 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
, bool shared
)
2216 struct request_queue
*q
;
2218 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2219 blk_mq_freeze_queue(q
);
2220 queue_set_hctx_shared(q
, shared
);
2221 blk_mq_unfreeze_queue(q
);
2225 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2227 struct blk_mq_tag_set
*set
= q
->tag_set
;
2229 mutex_lock(&set
->tag_list_lock
);
2230 list_del_init(&q
->tag_set_list
);
2231 if (list_is_singular(&set
->tag_list
)) {
2232 /* just transitioned to unshared */
2233 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2234 /* update existing queue */
2235 blk_mq_update_tag_set_depth(set
, false);
2237 mutex_unlock(&set
->tag_list_lock
);
2240 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2241 struct request_queue
*q
)
2245 mutex_lock(&set
->tag_list_lock
);
2247 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2248 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2249 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2250 /* update existing queue */
2251 blk_mq_update_tag_set_depth(set
, true);
2253 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2254 queue_set_hctx_shared(q
, true);
2255 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
2257 mutex_unlock(&set
->tag_list_lock
);
2261 * It is the actual release handler for mq, but we do it from
2262 * request queue's release handler for avoiding use-after-free
2263 * and headache because q->mq_kobj shouldn't have been introduced,
2264 * but we can't group ctx/kctx kobj without it.
2266 void blk_mq_release(struct request_queue
*q
)
2268 struct blk_mq_hw_ctx
*hctx
;
2271 /* hctx kobj stays in hctx */
2272 queue_for_each_hw_ctx(q
, hctx
, i
) {
2275 kobject_put(&hctx
->kobj
);
2280 kfree(q
->queue_hw_ctx
);
2283 * release .mq_kobj and sw queue's kobject now because
2284 * both share lifetime with request queue.
2286 blk_mq_sysfs_deinit(q
);
2288 free_percpu(q
->queue_ctx
);
2291 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2293 struct request_queue
*uninit_q
, *q
;
2295 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2297 return ERR_PTR(-ENOMEM
);
2299 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2301 blk_cleanup_queue(uninit_q
);
2305 EXPORT_SYMBOL(blk_mq_init_queue
);
2307 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2308 struct request_queue
*q
)
2311 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2313 blk_mq_sysfs_unregister(q
);
2314 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2320 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2321 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
2326 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2333 atomic_set(&hctxs
[i
]->nr_active
, 0);
2334 hctxs
[i
]->numa_node
= node
;
2335 hctxs
[i
]->queue_num
= i
;
2337 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2338 free_cpumask_var(hctxs
[i
]->cpumask
);
2343 blk_mq_hctx_kobj_init(hctxs
[i
]);
2345 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2346 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2350 blk_mq_free_map_and_requests(set
, j
);
2351 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2352 kobject_put(&hctx
->kobj
);
2357 q
->nr_hw_queues
= i
;
2358 blk_mq_sysfs_register(q
);
2361 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2362 struct request_queue
*q
)
2364 /* mark the queue as mq asap */
2365 q
->mq_ops
= set
->ops
;
2367 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2371 /* init q->mq_kobj and sw queues' kobjects */
2372 blk_mq_sysfs_init(q
);
2374 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2375 GFP_KERNEL
, set
->numa_node
);
2376 if (!q
->queue_hw_ctx
)
2379 q
->mq_map
= set
->mq_map
;
2381 blk_mq_realloc_hw_ctxs(set
, q
);
2382 if (!q
->nr_hw_queues
)
2385 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2386 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2388 q
->nr_queues
= nr_cpu_ids
;
2390 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2392 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2393 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2395 q
->sg_reserved_size
= INT_MAX
;
2397 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2398 INIT_LIST_HEAD(&q
->requeue_list
);
2399 spin_lock_init(&q
->requeue_lock
);
2401 if (q
->nr_hw_queues
> 1)
2402 blk_queue_make_request(q
, blk_mq_make_request
);
2404 blk_queue_make_request(q
, blk_sq_make_request
);
2407 * Do this after blk_queue_make_request() overrides it...
2409 q
->nr_requests
= set
->queue_depth
;
2412 * Default to classic polling
2416 if (set
->ops
->complete
)
2417 blk_queue_softirq_done(q
, set
->ops
->complete
);
2419 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2422 mutex_lock(&all_q_mutex
);
2424 list_add_tail(&q
->all_q_node
, &all_q_list
);
2425 blk_mq_add_queue_tag_set(set
, q
);
2426 blk_mq_map_swqueue(q
, cpu_online_mask
);
2428 mutex_unlock(&all_q_mutex
);
2431 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2434 ret
= blk_mq_sched_init(q
);
2436 return ERR_PTR(ret
);
2442 kfree(q
->queue_hw_ctx
);
2444 free_percpu(q
->queue_ctx
);
2447 return ERR_PTR(-ENOMEM
);
2449 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2451 void blk_mq_free_queue(struct request_queue
*q
)
2453 struct blk_mq_tag_set
*set
= q
->tag_set
;
2455 mutex_lock(&all_q_mutex
);
2456 list_del_init(&q
->all_q_node
);
2457 mutex_unlock(&all_q_mutex
);
2461 blk_mq_del_queue_tag_set(q
);
2463 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2466 /* Basically redo blk_mq_init_queue with queue frozen */
2467 static void blk_mq_queue_reinit(struct request_queue
*q
,
2468 const struct cpumask
*online_mask
)
2470 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2472 blk_mq_sysfs_unregister(q
);
2475 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2476 * we should change hctx numa_node according to new topology (this
2477 * involves free and re-allocate memory, worthy doing?)
2480 blk_mq_map_swqueue(q
, online_mask
);
2482 blk_mq_sysfs_register(q
);
2486 * New online cpumask which is going to be set in this hotplug event.
2487 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2488 * one-by-one and dynamically allocating this could result in a failure.
2490 static struct cpumask cpuhp_online_new
;
2492 static void blk_mq_queue_reinit_work(void)
2494 struct request_queue
*q
;
2496 mutex_lock(&all_q_mutex
);
2498 * We need to freeze and reinit all existing queues. Freezing
2499 * involves synchronous wait for an RCU grace period and doing it
2500 * one by one may take a long time. Start freezing all queues in
2501 * one swoop and then wait for the completions so that freezing can
2502 * take place in parallel.
2504 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2505 blk_mq_freeze_queue_start(q
);
2506 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2507 blk_mq_freeze_queue_wait(q
);
2509 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2510 blk_mq_queue_reinit(q
, &cpuhp_online_new
);
2512 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2513 blk_mq_unfreeze_queue(q
);
2515 mutex_unlock(&all_q_mutex
);
2518 static int blk_mq_queue_reinit_dead(unsigned int cpu
)
2520 cpumask_copy(&cpuhp_online_new
, cpu_online_mask
);
2521 blk_mq_queue_reinit_work();
2526 * Before hotadded cpu starts handling requests, new mappings must be
2527 * established. Otherwise, these requests in hw queue might never be
2530 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2531 * for CPU0, and ctx1 for CPU1).
2533 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2534 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2536 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2537 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2538 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2541 static int blk_mq_queue_reinit_prepare(unsigned int cpu
)
2543 cpumask_copy(&cpuhp_online_new
, cpu_online_mask
);
2544 cpumask_set_cpu(cpu
, &cpuhp_online_new
);
2545 blk_mq_queue_reinit_work();
2549 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2553 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2554 if (!__blk_mq_alloc_rq_map(set
, i
))
2561 blk_mq_free_rq_map(set
->tags
[i
]);
2567 * Allocate the request maps associated with this tag_set. Note that this
2568 * may reduce the depth asked for, if memory is tight. set->queue_depth
2569 * will be updated to reflect the allocated depth.
2571 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2576 depth
= set
->queue_depth
;
2578 err
= __blk_mq_alloc_rq_maps(set
);
2582 set
->queue_depth
>>= 1;
2583 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2587 } while (set
->queue_depth
);
2589 if (!set
->queue_depth
|| err
) {
2590 pr_err("blk-mq: failed to allocate request map\n");
2594 if (depth
!= set
->queue_depth
)
2595 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2596 depth
, set
->queue_depth
);
2601 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2603 if (set
->ops
->map_queues
)
2604 return set
->ops
->map_queues(set
);
2606 return blk_mq_map_queues(set
);
2610 * Alloc a tag set to be associated with one or more request queues.
2611 * May fail with EINVAL for various error conditions. May adjust the
2612 * requested depth down, if if it too large. In that case, the set
2613 * value will be stored in set->queue_depth.
2615 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2619 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2621 if (!set
->nr_hw_queues
)
2623 if (!set
->queue_depth
)
2625 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2628 if (!set
->ops
->queue_rq
)
2631 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2632 pr_info("blk-mq: reduced tag depth to %u\n",
2634 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2638 * If a crashdump is active, then we are potentially in a very
2639 * memory constrained environment. Limit us to 1 queue and
2640 * 64 tags to prevent using too much memory.
2642 if (is_kdump_kernel()) {
2643 set
->nr_hw_queues
= 1;
2644 set
->queue_depth
= min(64U, set
->queue_depth
);
2647 * There is no use for more h/w queues than cpus.
2649 if (set
->nr_hw_queues
> nr_cpu_ids
)
2650 set
->nr_hw_queues
= nr_cpu_ids
;
2652 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2653 GFP_KERNEL
, set
->numa_node
);
2658 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2659 GFP_KERNEL
, set
->numa_node
);
2663 ret
= blk_mq_update_queue_map(set
);
2665 goto out_free_mq_map
;
2667 ret
= blk_mq_alloc_rq_maps(set
);
2669 goto out_free_mq_map
;
2671 mutex_init(&set
->tag_list_lock
);
2672 INIT_LIST_HEAD(&set
->tag_list
);
2684 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2686 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2690 for (i
= 0; i
< nr_cpu_ids
; i
++)
2691 blk_mq_free_map_and_requests(set
, i
);
2699 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2701 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2703 struct blk_mq_tag_set
*set
= q
->tag_set
;
2704 struct blk_mq_hw_ctx
*hctx
;
2710 blk_mq_freeze_queue(q
);
2711 blk_mq_quiesce_queue(q
);
2714 queue_for_each_hw_ctx(q
, hctx
, i
) {
2718 * If we're using an MQ scheduler, just update the scheduler
2719 * queue depth. This is similar to what the old code would do.
2721 if (!hctx
->sched_tags
) {
2722 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
,
2723 min(nr
, set
->queue_depth
),
2726 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2734 q
->nr_requests
= nr
;
2736 blk_mq_unfreeze_queue(q
);
2737 blk_mq_start_stopped_hw_queues(q
, true);
2742 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2744 struct request_queue
*q
;
2746 if (nr_hw_queues
> nr_cpu_ids
)
2747 nr_hw_queues
= nr_cpu_ids
;
2748 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2751 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2752 blk_mq_freeze_queue(q
);
2754 set
->nr_hw_queues
= nr_hw_queues
;
2755 blk_mq_update_queue_map(set
);
2756 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2757 blk_mq_realloc_hw_ctxs(set
, q
);
2760 * Manually set the make_request_fn as blk_queue_make_request
2761 * resets a lot of the queue settings.
2763 if (q
->nr_hw_queues
> 1)
2764 q
->make_request_fn
= blk_mq_make_request
;
2766 q
->make_request_fn
= blk_sq_make_request
;
2768 blk_mq_queue_reinit(q
, cpu_online_mask
);
2771 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2772 blk_mq_unfreeze_queue(q
);
2774 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2776 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
2777 struct blk_mq_hw_ctx
*hctx
,
2780 struct blk_rq_stat stat
[2];
2781 unsigned long ret
= 0;
2784 * If stats collection isn't on, don't sleep but turn it on for
2787 if (!blk_stat_enable(q
))
2791 * We don't have to do this once per IO, should optimize this
2792 * to just use the current window of stats until it changes
2794 memset(&stat
, 0, sizeof(stat
));
2795 blk_hctx_stat_get(hctx
, stat
);
2798 * As an optimistic guess, use half of the mean service time
2799 * for this type of request. We can (and should) make this smarter.
2800 * For instance, if the completion latencies are tight, we can
2801 * get closer than just half the mean. This is especially
2802 * important on devices where the completion latencies are longer
2805 if (req_op(rq
) == REQ_OP_READ
&& stat
[BLK_STAT_READ
].nr_samples
)
2806 ret
= (stat
[BLK_STAT_READ
].mean
+ 1) / 2;
2807 else if (req_op(rq
) == REQ_OP_WRITE
&& stat
[BLK_STAT_WRITE
].nr_samples
)
2808 ret
= (stat
[BLK_STAT_WRITE
].mean
+ 1) / 2;
2813 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
2814 struct blk_mq_hw_ctx
*hctx
,
2817 struct hrtimer_sleeper hs
;
2818 enum hrtimer_mode mode
;
2822 if (test_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
))
2828 * -1: don't ever hybrid sleep
2829 * 0: use half of prev avg
2830 * >0: use this specific value
2832 if (q
->poll_nsec
== -1)
2834 else if (q
->poll_nsec
> 0)
2835 nsecs
= q
->poll_nsec
;
2837 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
2842 set_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
2845 * This will be replaced with the stats tracking code, using
2846 * 'avg_completion_time / 2' as the pre-sleep target.
2850 mode
= HRTIMER_MODE_REL
;
2851 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
2852 hrtimer_set_expires(&hs
.timer
, kt
);
2854 hrtimer_init_sleeper(&hs
, current
);
2856 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
2858 set_current_state(TASK_UNINTERRUPTIBLE
);
2859 hrtimer_start_expires(&hs
.timer
, mode
);
2862 hrtimer_cancel(&hs
.timer
);
2863 mode
= HRTIMER_MODE_ABS
;
2864 } while (hs
.task
&& !signal_pending(current
));
2866 __set_current_state(TASK_RUNNING
);
2867 destroy_hrtimer_on_stack(&hs
.timer
);
2871 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
2873 struct request_queue
*q
= hctx
->queue
;
2877 * If we sleep, have the caller restart the poll loop to reset
2878 * the state. Like for the other success return cases, the
2879 * caller is responsible for checking if the IO completed. If
2880 * the IO isn't complete, we'll get called again and will go
2881 * straight to the busy poll loop.
2883 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
2886 hctx
->poll_considered
++;
2888 state
= current
->state
;
2889 while (!need_resched()) {
2892 hctx
->poll_invoked
++;
2894 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
2896 hctx
->poll_success
++;
2897 set_current_state(TASK_RUNNING
);
2901 if (signal_pending_state(state
, current
))
2902 set_current_state(TASK_RUNNING
);
2904 if (current
->state
== TASK_RUNNING
)
2914 bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
2916 struct blk_mq_hw_ctx
*hctx
;
2917 struct blk_plug
*plug
;
2920 if (!q
->mq_ops
|| !q
->mq_ops
->poll
|| !blk_qc_t_valid(cookie
) ||
2921 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
2924 plug
= current
->plug
;
2926 blk_flush_plug_list(plug
, false);
2928 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
2929 if (!blk_qc_t_is_internal(cookie
))
2930 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
2932 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
2934 * With scheduling, if the request has completed, we'll
2935 * get a NULL return here, as we clear the sched tag when
2936 * that happens. The request still remains valid, like always,
2937 * so we should be safe with just the NULL check.
2943 return __blk_mq_poll(hctx
, rq
);
2945 EXPORT_SYMBOL_GPL(blk_mq_poll
);
2947 void blk_mq_disable_hotplug(void)
2949 mutex_lock(&all_q_mutex
);
2952 void blk_mq_enable_hotplug(void)
2954 mutex_unlock(&all_q_mutex
);
2957 static int __init
blk_mq_init(void)
2959 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
2960 blk_mq_hctx_notify_dead
);
2962 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE
, "block/mq:prepare",
2963 blk_mq_queue_reinit_prepare
,
2964 blk_mq_queue_reinit_dead
);
2967 subsys_initcall(blk_mq_init
);