2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
25 /* max queue in one round of service */
26 static const int cfq_quantum
= 8;
27 static const u64 cfq_fifo_expire
[2] = { NSEC_PER_SEC
/ 4, NSEC_PER_SEC
/ 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max
= 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty
= 2;
32 static const u64 cfq_slice_sync
= NSEC_PER_SEC
/ 10;
33 static u64 cfq_slice_async
= NSEC_PER_SEC
/ 25;
34 static const int cfq_slice_async_rq
= 2;
35 static u64 cfq_slice_idle
= NSEC_PER_SEC
/ 125;
36 static u64 cfq_group_idle
= NSEC_PER_SEC
/ 125;
37 static const u64 cfq_target_latency
= (u64
)NSEC_PER_SEC
* 3/10; /* 300 ms */
38 static const int cfq_hist_divisor
= 4;
41 * offset from end of queue service tree for idle class
43 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
44 /* offset from end of group service tree under time slice mode */
45 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
46 /* offset from end of group service under IOPS mode */
47 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
50 * below this threshold, we consider thinktime immediate
52 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
54 #define CFQ_SLICE_SCALE (5)
55 #define CFQ_HW_QUEUE_MIN (5)
56 #define CFQ_SERVICE_SHIFT 12
58 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
59 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
60 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
61 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
63 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
64 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
65 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
67 static struct kmem_cache
*cfq_pool
;
69 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
73 #define sample_valid(samples) ((samples) > 80)
74 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
76 /* blkio-related constants */
77 #define CFQ_WEIGHT_LEGACY_MIN 10
78 #define CFQ_WEIGHT_LEGACY_DFL 500
79 #define CFQ_WEIGHT_LEGACY_MAX 1000
86 unsigned long ttime_samples
;
90 * Most of our rbtree usage is for sorting with min extraction, so
91 * if we cache the leftmost node we don't have to walk down the tree
92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
93 * move this into the elevator for the rq sorting as well.
100 struct cfq_ttime ttime
;
102 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
103 .ttime = {.last_end_request = ktime_get_ns(),},}
106 * Per process-grouping structure
109 /* reference count */
111 /* various state flags, see below */
113 /* parent cfq_data */
114 struct cfq_data
*cfqd
;
115 /* service_tree member */
116 struct rb_node rb_node
;
117 /* service_tree key */
119 /* prio tree member */
120 struct rb_node p_node
;
121 /* prio tree root we belong to, if any */
122 struct rb_root
*p_root
;
123 /* sorted list of pending requests */
124 struct rb_root sort_list
;
125 /* if fifo isn't expired, next request to serve */
126 struct request
*next_rq
;
127 /* requests queued in sort_list */
129 /* currently allocated requests */
131 /* fifo list of requests in sort_list */
132 struct list_head fifo
;
134 /* time when queue got scheduled in to dispatch first request. */
138 /* time when first request from queue completed and slice started. */
143 /* pending priority requests */
145 /* number of requests that are on the dispatch list or inside driver */
148 /* io prio of this group */
149 unsigned short ioprio
, org_ioprio
;
150 unsigned short ioprio_class
, org_ioprio_class
;
155 sector_t last_request_pos
;
157 struct cfq_rb_root
*service_tree
;
158 struct cfq_queue
*new_cfqq
;
159 struct cfq_group
*cfqg
;
160 /* Number of sectors dispatched from queue in single dispatch round */
161 unsigned long nr_sectors
;
165 * First index in the service_trees.
166 * IDLE is handled separately, so it has negative index
176 * Second index in the service_trees.
180 SYNC_NOIDLE_WORKLOAD
= 1,
185 #ifdef CONFIG_CFQ_GROUP_IOSCHED
186 /* number of ios merged */
187 struct blkg_rwstat merged
;
188 /* total time spent on device in ns, may not be accurate w/ queueing */
189 struct blkg_rwstat service_time
;
190 /* total time spent waiting in scheduler queue in ns */
191 struct blkg_rwstat wait_time
;
192 /* number of IOs queued up */
193 struct blkg_rwstat queued
;
194 /* total disk time and nr sectors dispatched by this group */
195 struct blkg_stat time
;
196 #ifdef CONFIG_DEBUG_BLK_CGROUP
197 /* time not charged to this cgroup */
198 struct blkg_stat unaccounted_time
;
199 /* sum of number of ios queued across all samples */
200 struct blkg_stat avg_queue_size_sum
;
201 /* count of samples taken for average */
202 struct blkg_stat avg_queue_size_samples
;
203 /* how many times this group has been removed from service tree */
204 struct blkg_stat dequeue
;
205 /* total time spent waiting for it to be assigned a timeslice. */
206 struct blkg_stat group_wait_time
;
207 /* time spent idling for this blkcg_gq */
208 struct blkg_stat idle_time
;
209 /* total time with empty current active q with other requests queued */
210 struct blkg_stat empty_time
;
211 /* fields after this shouldn't be cleared on stat reset */
212 uint64_t start_group_wait_time
;
213 uint64_t start_idle_time
;
214 uint64_t start_empty_time
;
216 #endif /* CONFIG_DEBUG_BLK_CGROUP */
217 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
220 /* Per-cgroup data */
221 struct cfq_group_data
{
222 /* must be the first member */
223 struct blkcg_policy_data cpd
;
226 unsigned int leaf_weight
;
229 /* This is per cgroup per device grouping structure */
231 /* must be the first member */
232 struct blkg_policy_data pd
;
234 /* group service_tree member */
235 struct rb_node rb_node
;
237 /* group service_tree key */
241 * The number of active cfqgs and sum of their weights under this
242 * cfqg. This covers this cfqg's leaf_weight and all children's
243 * weights, but does not cover weights of further descendants.
245 * If a cfqg is on the service tree, it's active. An active cfqg
246 * also activates its parent and contributes to the children_weight
250 unsigned int children_weight
;
253 * vfraction is the fraction of vdisktime that the tasks in this
254 * cfqg are entitled to. This is determined by compounding the
255 * ratios walking up from this cfqg to the root.
257 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
258 * vfractions on a service tree is approximately 1. The sum may
259 * deviate a bit due to rounding errors and fluctuations caused by
260 * cfqgs entering and leaving the service tree.
262 unsigned int vfraction
;
265 * There are two weights - (internal) weight is the weight of this
266 * cfqg against the sibling cfqgs. leaf_weight is the wight of
267 * this cfqg against the child cfqgs. For the root cfqg, both
268 * weights are kept in sync for backward compatibility.
271 unsigned int new_weight
;
272 unsigned int dev_weight
;
274 unsigned int leaf_weight
;
275 unsigned int new_leaf_weight
;
276 unsigned int dev_leaf_weight
;
278 /* number of cfqq currently on this group */
282 * Per group busy queues average. Useful for workload slice calc. We
283 * create the array for each prio class but at run time it is used
284 * only for RT and BE class and slot for IDLE class remains unused.
285 * This is primarily done to avoid confusion and a gcc warning.
287 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
289 * rr lists of queues with requests. We maintain service trees for
290 * RT and BE classes. These trees are subdivided in subclasses
291 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
292 * class there is no subclassification and all the cfq queues go on
293 * a single tree service_tree_idle.
294 * Counts are embedded in the cfq_rb_root
296 struct cfq_rb_root service_trees
[2][3];
297 struct cfq_rb_root service_tree_idle
;
300 enum wl_type_t saved_wl_type
;
301 enum wl_class_t saved_wl_class
;
303 /* number of requests that are on the dispatch list or inside driver */
305 struct cfq_ttime ttime
;
306 struct cfqg_stats stats
; /* stats for this cfqg */
308 /* async queue for each priority case */
309 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
310 struct cfq_queue
*async_idle_cfqq
;
315 struct io_cq icq
; /* must be the first member */
316 struct cfq_queue
*cfqq
[2];
317 struct cfq_ttime ttime
;
318 int ioprio
; /* the current ioprio */
319 #ifdef CONFIG_CFQ_GROUP_IOSCHED
320 uint64_t blkcg_serial_nr
; /* the current blkcg serial */
325 * Per block device queue structure
328 struct request_queue
*queue
;
329 /* Root service tree for cfq_groups */
330 struct cfq_rb_root grp_service_tree
;
331 struct cfq_group
*root_group
;
334 * The priority currently being served
336 enum wl_class_t serving_wl_class
;
337 enum wl_type_t serving_wl_type
;
338 u64 workload_expires
;
339 struct cfq_group
*serving_group
;
342 * Each priority tree is sorted by next_request position. These
343 * trees are used when determining if two or more queues are
344 * interleaving requests (see cfq_close_cooperator).
346 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
348 unsigned int busy_queues
;
349 unsigned int busy_sync_queues
;
355 * queue-depth detection
361 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
362 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
365 int hw_tag_est_depth
;
366 unsigned int hw_tag_samples
;
369 * idle window management
371 struct hrtimer idle_slice_timer
;
372 struct work_struct unplug_work
;
374 struct cfq_queue
*active_queue
;
375 struct cfq_io_cq
*active_cic
;
377 sector_t last_position
;
380 * tunables, see top of file
382 unsigned int cfq_quantum
;
383 unsigned int cfq_back_penalty
;
384 unsigned int cfq_back_max
;
385 unsigned int cfq_slice_async_rq
;
386 unsigned int cfq_latency
;
387 u64 cfq_fifo_expire
[2];
391 u64 cfq_target_latency
;
394 * Fallback dummy cfqq for extreme OOM conditions
396 struct cfq_queue oom_cfqq
;
398 u64 last_delayed_sync
;
401 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
402 static void cfq_put_queue(struct cfq_queue
*cfqq
);
404 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
405 enum wl_class_t
class,
411 if (class == IDLE_WORKLOAD
)
412 return &cfqg
->service_tree_idle
;
414 return &cfqg
->service_trees
[class][type
];
417 enum cfqq_state_flags
{
418 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
419 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
420 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
421 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
422 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
423 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
424 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
425 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
426 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
427 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
428 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
429 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
430 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
433 #define CFQ_CFQQ_FNS(name) \
434 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
436 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
438 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
440 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
442 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
444 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
448 CFQ_CFQQ_FNS(wait_request
);
449 CFQ_CFQQ_FNS(must_dispatch
);
450 CFQ_CFQQ_FNS(must_alloc_slice
);
451 CFQ_CFQQ_FNS(fifo_expire
);
452 CFQ_CFQQ_FNS(idle_window
);
453 CFQ_CFQQ_FNS(prio_changed
);
454 CFQ_CFQQ_FNS(slice_new
);
457 CFQ_CFQQ_FNS(split_coop
);
459 CFQ_CFQQ_FNS(wait_busy
);
462 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
464 /* cfqg stats flags */
465 enum cfqg_stats_flags
{
466 CFQG_stats_waiting
= 0,
471 #define CFQG_FLAG_FNS(name) \
472 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
474 stats->flags |= (1 << CFQG_stats_##name); \
476 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
478 stats->flags &= ~(1 << CFQG_stats_##name); \
480 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
482 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
485 CFQG_FLAG_FNS(waiting)
486 CFQG_FLAG_FNS(idling
)
490 /* This should be called with the queue_lock held. */
491 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
493 unsigned long long now
;
495 if (!cfqg_stats_waiting(stats
))
499 if (time_after64(now
, stats
->start_group_wait_time
))
500 blkg_stat_add(&stats
->group_wait_time
,
501 now
- stats
->start_group_wait_time
);
502 cfqg_stats_clear_waiting(stats
);
505 /* This should be called with the queue_lock held. */
506 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
507 struct cfq_group
*curr_cfqg
)
509 struct cfqg_stats
*stats
= &cfqg
->stats
;
511 if (cfqg_stats_waiting(stats
))
513 if (cfqg
== curr_cfqg
)
515 stats
->start_group_wait_time
= sched_clock();
516 cfqg_stats_mark_waiting(stats
);
519 /* This should be called with the queue_lock held. */
520 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
522 unsigned long long now
;
524 if (!cfqg_stats_empty(stats
))
528 if (time_after64(now
, stats
->start_empty_time
))
529 blkg_stat_add(&stats
->empty_time
,
530 now
- stats
->start_empty_time
);
531 cfqg_stats_clear_empty(stats
);
534 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
536 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
539 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
541 struct cfqg_stats
*stats
= &cfqg
->stats
;
543 if (blkg_rwstat_total(&stats
->queued
))
547 * group is already marked empty. This can happen if cfqq got new
548 * request in parent group and moved to this group while being added
549 * to service tree. Just ignore the event and move on.
551 if (cfqg_stats_empty(stats
))
554 stats
->start_empty_time
= sched_clock();
555 cfqg_stats_mark_empty(stats
);
558 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
560 struct cfqg_stats
*stats
= &cfqg
->stats
;
562 if (cfqg_stats_idling(stats
)) {
563 unsigned long long now
= sched_clock();
565 if (time_after64(now
, stats
->start_idle_time
))
566 blkg_stat_add(&stats
->idle_time
,
567 now
- stats
->start_idle_time
);
568 cfqg_stats_clear_idling(stats
);
572 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
574 struct cfqg_stats
*stats
= &cfqg
->stats
;
576 BUG_ON(cfqg_stats_idling(stats
));
578 stats
->start_idle_time
= sched_clock();
579 cfqg_stats_mark_idling(stats
);
582 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
584 struct cfqg_stats
*stats
= &cfqg
->stats
;
586 blkg_stat_add(&stats
->avg_queue_size_sum
,
587 blkg_rwstat_total(&stats
->queued
));
588 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
589 cfqg_stats_update_group_wait_time(stats
);
592 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
594 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
595 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
596 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
597 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
598 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
599 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
600 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
602 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
604 #ifdef CONFIG_CFQ_GROUP_IOSCHED
606 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
608 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
611 static struct cfq_group_data
612 *cpd_to_cfqgd(struct blkcg_policy_data
*cpd
)
614 return cpd
? container_of(cpd
, struct cfq_group_data
, cpd
) : NULL
;
617 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
619 return pd_to_blkg(&cfqg
->pd
);
622 static struct blkcg_policy blkcg_policy_cfq
;
624 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
626 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
629 static struct cfq_group_data
*blkcg_to_cfqgd(struct blkcg
*blkcg
)
631 return cpd_to_cfqgd(blkcg_to_cpd(blkcg
, &blkcg_policy_cfq
));
634 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
636 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
638 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
641 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
642 struct cfq_group
*ancestor
)
644 return cgroup_is_descendant(cfqg_to_blkg(cfqg
)->blkcg
->css
.cgroup
,
645 cfqg_to_blkg(ancestor
)->blkcg
->css
.cgroup
);
648 static inline void cfqg_get(struct cfq_group
*cfqg
)
650 return blkg_get(cfqg_to_blkg(cfqg
));
653 static inline void cfqg_put(struct cfq_group
*cfqg
)
655 return blkg_put(cfqg_to_blkg(cfqg
));
658 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
661 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
662 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
668 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
671 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
672 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
675 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
676 struct cfq_group
*curr_cfqg
,
679 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, 1);
680 cfqg_stats_end_empty_time(&cfqg
->stats
);
681 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
684 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
685 uint64_t time
, unsigned long unaccounted_time
)
687 blkg_stat_add(&cfqg
->stats
.time
, time
);
688 #ifdef CONFIG_DEBUG_BLK_CGROUP
689 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
693 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
696 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, -1);
699 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
702 blkg_rwstat_add(&cfqg
->stats
.merged
, op
, 1);
705 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
706 uint64_t start_time
, uint64_t io_start_time
,
709 struct cfqg_stats
*stats
= &cfqg
->stats
;
710 unsigned long long now
= sched_clock();
712 if (time_after64(now
, io_start_time
))
713 blkg_rwstat_add(&stats
->service_time
, op
, now
- io_start_time
);
714 if (time_after64(io_start_time
, start_time
))
715 blkg_rwstat_add(&stats
->wait_time
, op
,
716 io_start_time
- start_time
);
720 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
722 /* queued stats shouldn't be cleared */
723 blkg_rwstat_reset(&stats
->merged
);
724 blkg_rwstat_reset(&stats
->service_time
);
725 blkg_rwstat_reset(&stats
->wait_time
);
726 blkg_stat_reset(&stats
->time
);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats
->unaccounted_time
);
729 blkg_stat_reset(&stats
->avg_queue_size_sum
);
730 blkg_stat_reset(&stats
->avg_queue_size_samples
);
731 blkg_stat_reset(&stats
->dequeue
);
732 blkg_stat_reset(&stats
->group_wait_time
);
733 blkg_stat_reset(&stats
->idle_time
);
734 blkg_stat_reset(&stats
->empty_time
);
739 static void cfqg_stats_add_aux(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_add_aux(&to
->merged
, &from
->merged
);
743 blkg_rwstat_add_aux(&to
->service_time
, &from
->service_time
);
744 blkg_rwstat_add_aux(&to
->wait_time
, &from
->wait_time
);
745 blkg_stat_add_aux(&from
->time
, &from
->time
);
746 #ifdef CONFIG_DEBUG_BLK_CGROUP
747 blkg_stat_add_aux(&to
->unaccounted_time
, &from
->unaccounted_time
);
748 blkg_stat_add_aux(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
749 blkg_stat_add_aux(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
750 blkg_stat_add_aux(&to
->dequeue
, &from
->dequeue
);
751 blkg_stat_add_aux(&to
->group_wait_time
, &from
->group_wait_time
);
752 blkg_stat_add_aux(&to
->idle_time
, &from
->idle_time
);
753 blkg_stat_add_aux(&to
->empty_time
, &from
->empty_time
);
758 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
759 * recursive stats can still account for the amount used by this cfqg after
762 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
764 struct cfq_group
*parent
= cfqg_parent(cfqg
);
766 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
768 if (unlikely(!parent
))
771 cfqg_stats_add_aux(&parent
->stats
, &cfqg
->stats
);
772 cfqg_stats_reset(&cfqg
->stats
);
775 #else /* CONFIG_CFQ_GROUP_IOSCHED */
777 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
778 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
779 struct cfq_group
*ancestor
)
783 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
784 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
786 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
787 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
788 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
789 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
791 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
793 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
794 struct cfq_group
*curr_cfqg
, unsigned int op
) { }
795 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
796 uint64_t time
, unsigned long unaccounted_time
) { }
797 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
799 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
801 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
802 uint64_t start_time
, uint64_t io_start_time
,
805 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
807 #define cfq_log(cfqd, fmt, args...) \
808 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
810 /* Traverses through cfq group service trees */
811 #define for_each_cfqg_st(cfqg, i, j, st) \
812 for (i = 0; i <= IDLE_WORKLOAD; i++) \
813 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
814 : &cfqg->service_tree_idle; \
815 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
816 (i == IDLE_WORKLOAD && j == 0); \
817 j++, st = i < IDLE_WORKLOAD ? \
818 &cfqg->service_trees[i][j]: NULL) \
820 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
821 struct cfq_ttime
*ttime
, bool group_idle
)
824 if (!sample_valid(ttime
->ttime_samples
))
827 slice
= cfqd
->cfq_group_idle
;
829 slice
= cfqd
->cfq_slice_idle
;
830 return ttime
->ttime_mean
> slice
;
833 static inline bool iops_mode(struct cfq_data
*cfqd
)
836 * If we are not idling on queues and it is a NCQ drive, parallel
837 * execution of requests is on and measuring time is not possible
838 * in most of the cases until and unless we drive shallower queue
839 * depths and that becomes a performance bottleneck. In such cases
840 * switch to start providing fairness in terms of number of IOs.
842 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
848 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
850 if (cfq_class_idle(cfqq
))
851 return IDLE_WORKLOAD
;
852 if (cfq_class_rt(cfqq
))
858 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
860 if (!cfq_cfqq_sync(cfqq
))
861 return ASYNC_WORKLOAD
;
862 if (!cfq_cfqq_idle_window(cfqq
))
863 return SYNC_NOIDLE_WORKLOAD
;
864 return SYNC_WORKLOAD
;
867 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
868 struct cfq_data
*cfqd
,
869 struct cfq_group
*cfqg
)
871 if (wl_class
== IDLE_WORKLOAD
)
872 return cfqg
->service_tree_idle
.count
;
874 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
875 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
876 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
879 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
880 struct cfq_group
*cfqg
)
882 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
883 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
886 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
887 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
888 struct cfq_io_cq
*cic
, struct bio
*bio
);
890 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
892 /* cic->icq is the first member, %NULL will convert to %NULL */
893 return container_of(icq
, struct cfq_io_cq
, icq
);
896 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
897 struct io_context
*ioc
)
900 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
904 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
906 return cic
->cfqq
[is_sync
];
909 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
912 cic
->cfqq
[is_sync
] = cfqq
;
915 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
917 return cic
->icq
.q
->elevator
->elevator_data
;
921 * scheduler run of queue, if there are requests pending and no one in the
922 * driver that will restart queueing
924 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
926 if (cfqd
->busy_queues
) {
927 cfq_log(cfqd
, "schedule dispatch");
928 kblockd_schedule_work(&cfqd
->unplug_work
);
933 * Scale schedule slice based on io priority. Use the sync time slice only
934 * if a queue is marked sync and has sync io queued. A sync queue with async
935 * io only, should not get full sync slice length.
937 static inline u64
cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
940 u64 base_slice
= cfqd
->cfq_slice
[sync
];
941 u64 slice
= div_u64(base_slice
, CFQ_SLICE_SCALE
);
943 WARN_ON(prio
>= IOPRIO_BE_NR
);
945 return base_slice
+ (slice
* (4 - prio
));
949 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
951 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
955 * cfqg_scale_charge - scale disk time charge according to cfqg weight
956 * @charge: disk time being charged
957 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
959 * Scale @charge according to @vfraction, which is in range (0, 1]. The
960 * scaling is inversely proportional.
962 * scaled = charge / vfraction
964 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
966 static inline u64
cfqg_scale_charge(u64 charge
,
967 unsigned int vfraction
)
969 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
971 /* charge / vfraction */
972 c
<<= CFQ_SERVICE_SHIFT
;
973 return div_u64(c
, vfraction
);
976 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
978 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
980 min_vdisktime
= vdisktime
;
982 return min_vdisktime
;
985 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
987 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
989 min_vdisktime
= vdisktime
;
991 return min_vdisktime
;
994 static void update_min_vdisktime(struct cfq_rb_root
*st
)
996 struct cfq_group
*cfqg
;
999 cfqg
= rb_entry_cfqg(st
->left
);
1000 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
1006 * get averaged number of queues of RT/BE priority.
1007 * average is updated, with a formula that gives more weight to higher numbers,
1008 * to quickly follows sudden increases and decrease slowly
1011 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
1012 struct cfq_group
*cfqg
, bool rt
)
1014 unsigned min_q
, max_q
;
1015 unsigned mult
= cfq_hist_divisor
- 1;
1016 unsigned round
= cfq_hist_divisor
/ 2;
1017 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1019 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1020 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1021 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1023 return cfqg
->busy_queues_avg
[rt
];
1027 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1029 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1033 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1035 u64 slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1036 if (cfqd
->cfq_latency
) {
1038 * interested queues (we consider only the ones with the same
1039 * priority class in the cfq group)
1041 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1042 cfq_class_rt(cfqq
));
1043 u64 sync_slice
= cfqd
->cfq_slice
[1];
1044 u64 expect_latency
= sync_slice
* iq
;
1045 u64 group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1047 if (expect_latency
> group_slice
) {
1048 u64 base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1051 /* scale low_slice according to IO priority
1052 * and sync vs async */
1053 low_slice
= div64_u64(base_low_slice
*slice
, sync_slice
);
1054 low_slice
= min(slice
, low_slice
);
1055 /* the adapted slice value is scaled to fit all iqs
1056 * into the target latency */
1057 slice
= div64_u64(slice
*group_slice
, expect_latency
);
1058 slice
= max(slice
, low_slice
);
1065 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1067 u64 slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1068 u64 now
= ktime_get_ns();
1070 cfqq
->slice_start
= now
;
1071 cfqq
->slice_end
= now
+ slice
;
1072 cfqq
->allocated_slice
= slice
;
1073 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%llu", cfqq
->slice_end
- now
);
1077 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1078 * isn't valid until the first request from the dispatch is activated
1079 * and the slice time set.
1081 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1083 if (cfq_cfqq_slice_new(cfqq
))
1085 if (ktime_get_ns() < cfqq
->slice_end
)
1092 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1093 * We choose the request that is closest to the head right now. Distance
1094 * behind the head is penalized and only allowed to a certain extent.
1096 static struct request
*
1097 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1099 sector_t s1
, s2
, d1
= 0, d2
= 0;
1100 unsigned long back_max
;
1101 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1102 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1103 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1105 if (rq1
== NULL
|| rq1
== rq2
)
1110 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1111 return rq_is_sync(rq1
) ? rq1
: rq2
;
1113 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1114 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1116 s1
= blk_rq_pos(rq1
);
1117 s2
= blk_rq_pos(rq2
);
1120 * by definition, 1KiB is 2 sectors
1122 back_max
= cfqd
->cfq_back_max
* 2;
1125 * Strict one way elevator _except_ in the case where we allow
1126 * short backward seeks which are biased as twice the cost of a
1127 * similar forward seek.
1131 else if (s1
+ back_max
>= last
)
1132 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1134 wrap
|= CFQ_RQ1_WRAP
;
1138 else if (s2
+ back_max
>= last
)
1139 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1141 wrap
|= CFQ_RQ2_WRAP
;
1143 /* Found required data */
1146 * By doing switch() on the bit mask "wrap" we avoid having to
1147 * check two variables for all permutations: --> faster!
1150 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1166 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1169 * Since both rqs are wrapped,
1170 * start with the one that's further behind head
1171 * (--> only *one* back seek required),
1172 * since back seek takes more time than forward.
1182 * The below is leftmost cache rbtree addon
1184 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1186 /* Service tree is empty */
1191 root
->left
= rb_first(&root
->rb
);
1194 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1199 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1202 root
->left
= rb_first(&root
->rb
);
1205 return rb_entry_cfqg(root
->left
);
1210 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1216 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1218 if (root
->left
== n
)
1220 rb_erase_init(n
, &root
->rb
);
1225 * would be nice to take fifo expire time into account as well
1227 static struct request
*
1228 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1229 struct request
*last
)
1231 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1232 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1233 struct request
*next
= NULL
, *prev
= NULL
;
1235 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1238 prev
= rb_entry_rq(rbprev
);
1241 next
= rb_entry_rq(rbnext
);
1243 rbnext
= rb_first(&cfqq
->sort_list
);
1244 if (rbnext
&& rbnext
!= &last
->rb_node
)
1245 next
= rb_entry_rq(rbnext
);
1248 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1251 static u64
cfq_slice_offset(struct cfq_data
*cfqd
,
1252 struct cfq_queue
*cfqq
)
1255 * just an approximation, should be ok.
1257 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1258 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1262 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1264 return cfqg
->vdisktime
- st
->min_vdisktime
;
1268 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1270 struct rb_node
**node
= &st
->rb
.rb_node
;
1271 struct rb_node
*parent
= NULL
;
1272 struct cfq_group
*__cfqg
;
1273 s64 key
= cfqg_key(st
, cfqg
);
1276 while (*node
!= NULL
) {
1278 __cfqg
= rb_entry_cfqg(parent
);
1280 if (key
< cfqg_key(st
, __cfqg
))
1281 node
= &parent
->rb_left
;
1283 node
= &parent
->rb_right
;
1289 st
->left
= &cfqg
->rb_node
;
1291 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1292 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1296 * This has to be called only on activation of cfqg
1299 cfq_update_group_weight(struct cfq_group
*cfqg
)
1301 if (cfqg
->new_weight
) {
1302 cfqg
->weight
= cfqg
->new_weight
;
1303 cfqg
->new_weight
= 0;
1308 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1310 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1312 if (cfqg
->new_leaf_weight
) {
1313 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1314 cfqg
->new_leaf_weight
= 0;
1319 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1321 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1322 struct cfq_group
*pos
= cfqg
;
1323 struct cfq_group
*parent
;
1326 /* add to the service tree */
1327 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1330 * Update leaf_weight. We cannot update weight at this point
1331 * because cfqg might already have been activated and is
1332 * contributing its current weight to the parent's child_weight.
1334 cfq_update_group_leaf_weight(cfqg
);
1335 __cfq_group_service_tree_add(st
, cfqg
);
1338 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1339 * entitled to. vfraction is calculated by walking the tree
1340 * towards the root calculating the fraction it has at each level.
1341 * The compounded ratio is how much vfraction @cfqg owns.
1343 * Start with the proportion tasks in this cfqg has against active
1344 * children cfqgs - its leaf_weight against children_weight.
1346 propagate
= !pos
->nr_active
++;
1347 pos
->children_weight
+= pos
->leaf_weight
;
1348 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1351 * Compound ->weight walking up the tree. Both activation and
1352 * vfraction calculation are done in the same loop. Propagation
1353 * stops once an already activated node is met. vfraction
1354 * calculation should always continue to the root.
1356 while ((parent
= cfqg_parent(pos
))) {
1358 cfq_update_group_weight(pos
);
1359 propagate
= !parent
->nr_active
++;
1360 parent
->children_weight
+= pos
->weight
;
1362 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1366 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1369 static inline u64
cfq_get_cfqg_vdisktime_delay(struct cfq_data
*cfqd
)
1371 if (!iops_mode(cfqd
))
1372 return CFQ_SLICE_MODE_GROUP_DELAY
;
1374 return CFQ_IOPS_MODE_GROUP_DELAY
;
1378 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1380 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1381 struct cfq_group
*__cfqg
;
1385 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1389 * Currently put the group at the end. Later implement something
1390 * so that groups get lesser vtime based on their weights, so that
1391 * if group does not loose all if it was not continuously backlogged.
1393 n
= rb_last(&st
->rb
);
1395 __cfqg
= rb_entry_cfqg(n
);
1396 cfqg
->vdisktime
= __cfqg
->vdisktime
+
1397 cfq_get_cfqg_vdisktime_delay(cfqd
);
1399 cfqg
->vdisktime
= st
->min_vdisktime
;
1400 cfq_group_service_tree_add(st
, cfqg
);
1404 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1406 struct cfq_group
*pos
= cfqg
;
1410 * Undo activation from cfq_group_service_tree_add(). Deactivate
1411 * @cfqg and propagate deactivation upwards.
1413 propagate
= !--pos
->nr_active
;
1414 pos
->children_weight
-= pos
->leaf_weight
;
1417 struct cfq_group
*parent
= cfqg_parent(pos
);
1419 /* @pos has 0 nr_active at this point */
1420 WARN_ON_ONCE(pos
->children_weight
);
1426 propagate
= !--parent
->nr_active
;
1427 parent
->children_weight
-= pos
->weight
;
1431 /* remove from the service tree */
1432 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1433 cfq_rb_erase(&cfqg
->rb_node
, st
);
1437 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1439 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1441 BUG_ON(cfqg
->nr_cfqq
< 1);
1444 /* If there are other cfq queues under this group, don't delete it */
1448 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1449 cfq_group_service_tree_del(st
, cfqg
);
1450 cfqg
->saved_wl_slice
= 0;
1451 cfqg_stats_update_dequeue(cfqg
);
1454 static inline u64
cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1455 u64
*unaccounted_time
)
1458 u64 now
= ktime_get_ns();
1461 * Queue got expired before even a single request completed or
1462 * got expired immediately after first request completion.
1464 if (!cfqq
->slice_start
|| cfqq
->slice_start
== now
) {
1466 * Also charge the seek time incurred to the group, otherwise
1467 * if there are mutiple queues in the group, each can dispatch
1468 * a single request on seeky media and cause lots of seek time
1469 * and group will never know it.
1471 slice_used
= max_t(u64
, (now
- cfqq
->dispatch_start
),
1472 jiffies_to_nsecs(1));
1474 slice_used
= now
- cfqq
->slice_start
;
1475 if (slice_used
> cfqq
->allocated_slice
) {
1476 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1477 slice_used
= cfqq
->allocated_slice
;
1479 if (cfqq
->slice_start
> cfqq
->dispatch_start
)
1480 *unaccounted_time
+= cfqq
->slice_start
-
1481 cfqq
->dispatch_start
;
1487 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1488 struct cfq_queue
*cfqq
)
1490 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1491 u64 used_sl
, charge
, unaccounted_sl
= 0;
1492 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1493 - cfqg
->service_tree_idle
.count
;
1495 u64 now
= ktime_get_ns();
1497 BUG_ON(nr_sync
< 0);
1498 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1500 if (iops_mode(cfqd
))
1501 charge
= cfqq
->slice_dispatch
;
1502 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1503 charge
= cfqq
->allocated_slice
;
1506 * Can't update vdisktime while on service tree and cfqg->vfraction
1507 * is valid only while on it. Cache vfr, leave the service tree,
1508 * update vdisktime and go back on. The re-addition to the tree
1509 * will also update the weights as necessary.
1511 vfr
= cfqg
->vfraction
;
1512 cfq_group_service_tree_del(st
, cfqg
);
1513 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1514 cfq_group_service_tree_add(st
, cfqg
);
1516 /* This group is being expired. Save the context */
1517 if (cfqd
->workload_expires
> now
) {
1518 cfqg
->saved_wl_slice
= cfqd
->workload_expires
- now
;
1519 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1520 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1522 cfqg
->saved_wl_slice
= 0;
1524 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1526 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1527 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1528 used_sl
, cfqq
->slice_dispatch
, charge
,
1529 iops_mode(cfqd
), cfqq
->nr_sectors
);
1530 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1531 cfqg_stats_set_start_empty_time(cfqg
);
1535 * cfq_init_cfqg_base - initialize base part of a cfq_group
1536 * @cfqg: cfq_group to initialize
1538 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1539 * is enabled or not.
1541 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1543 struct cfq_rb_root
*st
;
1546 for_each_cfqg_st(cfqg
, i
, j
, st
)
1548 RB_CLEAR_NODE(&cfqg
->rb_node
);
1550 cfqg
->ttime
.last_end_request
= ktime_get_ns();
1553 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1554 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1555 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
);
1557 static void cfqg_stats_exit(struct cfqg_stats
*stats
)
1559 blkg_rwstat_exit(&stats
->merged
);
1560 blkg_rwstat_exit(&stats
->service_time
);
1561 blkg_rwstat_exit(&stats
->wait_time
);
1562 blkg_rwstat_exit(&stats
->queued
);
1563 blkg_stat_exit(&stats
->time
);
1564 #ifdef CONFIG_DEBUG_BLK_CGROUP
1565 blkg_stat_exit(&stats
->unaccounted_time
);
1566 blkg_stat_exit(&stats
->avg_queue_size_sum
);
1567 blkg_stat_exit(&stats
->avg_queue_size_samples
);
1568 blkg_stat_exit(&stats
->dequeue
);
1569 blkg_stat_exit(&stats
->group_wait_time
);
1570 blkg_stat_exit(&stats
->idle_time
);
1571 blkg_stat_exit(&stats
->empty_time
);
1575 static int cfqg_stats_init(struct cfqg_stats
*stats
, gfp_t gfp
)
1577 if (blkg_rwstat_init(&stats
->merged
, gfp
) ||
1578 blkg_rwstat_init(&stats
->service_time
, gfp
) ||
1579 blkg_rwstat_init(&stats
->wait_time
, gfp
) ||
1580 blkg_rwstat_init(&stats
->queued
, gfp
) ||
1581 blkg_stat_init(&stats
->time
, gfp
))
1584 #ifdef CONFIG_DEBUG_BLK_CGROUP
1585 if (blkg_stat_init(&stats
->unaccounted_time
, gfp
) ||
1586 blkg_stat_init(&stats
->avg_queue_size_sum
, gfp
) ||
1587 blkg_stat_init(&stats
->avg_queue_size_samples
, gfp
) ||
1588 blkg_stat_init(&stats
->dequeue
, gfp
) ||
1589 blkg_stat_init(&stats
->group_wait_time
, gfp
) ||
1590 blkg_stat_init(&stats
->idle_time
, gfp
) ||
1591 blkg_stat_init(&stats
->empty_time
, gfp
))
1596 cfqg_stats_exit(stats
);
1600 static struct blkcg_policy_data
*cfq_cpd_alloc(gfp_t gfp
)
1602 struct cfq_group_data
*cgd
;
1604 cgd
= kzalloc(sizeof(*cgd
), gfp
);
1610 static void cfq_cpd_init(struct blkcg_policy_data
*cpd
)
1612 struct cfq_group_data
*cgd
= cpd_to_cfqgd(cpd
);
1613 unsigned int weight
= cgroup_subsys_on_dfl(io_cgrp_subsys
) ?
1614 CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1616 if (cpd_to_blkcg(cpd
) == &blkcg_root
)
1619 cgd
->weight
= weight
;
1620 cgd
->leaf_weight
= weight
;
1623 static void cfq_cpd_free(struct blkcg_policy_data
*cpd
)
1625 kfree(cpd_to_cfqgd(cpd
));
1628 static void cfq_cpd_bind(struct blkcg_policy_data
*cpd
)
1630 struct blkcg
*blkcg
= cpd_to_blkcg(cpd
);
1631 bool on_dfl
= cgroup_subsys_on_dfl(io_cgrp_subsys
);
1632 unsigned int weight
= on_dfl
? CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1634 if (blkcg
== &blkcg_root
)
1637 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, false));
1638 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, true));
1641 static struct blkg_policy_data
*cfq_pd_alloc(gfp_t gfp
, int node
)
1643 struct cfq_group
*cfqg
;
1645 cfqg
= kzalloc_node(sizeof(*cfqg
), gfp
, node
);
1649 cfq_init_cfqg_base(cfqg
);
1650 if (cfqg_stats_init(&cfqg
->stats
, gfp
)) {
1658 static void cfq_pd_init(struct blkg_policy_data
*pd
)
1660 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1661 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(pd
->blkg
->blkcg
);
1663 cfqg
->weight
= cgd
->weight
;
1664 cfqg
->leaf_weight
= cgd
->leaf_weight
;
1667 static void cfq_pd_offline(struct blkg_policy_data
*pd
)
1669 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1672 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
1673 if (cfqg
->async_cfqq
[0][i
])
1674 cfq_put_queue(cfqg
->async_cfqq
[0][i
]);
1675 if (cfqg
->async_cfqq
[1][i
])
1676 cfq_put_queue(cfqg
->async_cfqq
[1][i
]);
1679 if (cfqg
->async_idle_cfqq
)
1680 cfq_put_queue(cfqg
->async_idle_cfqq
);
1683 * @blkg is going offline and will be ignored by
1684 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1685 * that they don't get lost. If IOs complete after this point, the
1686 * stats for them will be lost. Oh well...
1688 cfqg_stats_xfer_dead(cfqg
);
1691 static void cfq_pd_free(struct blkg_policy_data
*pd
)
1693 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1695 cfqg_stats_exit(&cfqg
->stats
);
1699 static void cfq_pd_reset_stats(struct blkg_policy_data
*pd
)
1701 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1703 cfqg_stats_reset(&cfqg
->stats
);
1706 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
1707 struct blkcg
*blkcg
)
1709 struct blkcg_gq
*blkg
;
1711 blkg
= blkg_lookup(blkcg
, cfqd
->queue
);
1713 return blkg_to_cfqg(blkg
);
1717 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1720 /* cfqq reference on cfqg */
1724 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1725 struct blkg_policy_data
*pd
, int off
)
1727 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1729 if (!cfqg
->dev_weight
)
1731 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1734 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1736 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1737 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1742 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1743 struct blkg_policy_data
*pd
, int off
)
1745 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1747 if (!cfqg
->dev_leaf_weight
)
1749 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1752 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1754 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1755 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1760 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1762 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1763 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1764 unsigned int val
= 0;
1769 seq_printf(sf
, "%u\n", val
);
1773 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1775 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1776 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1777 unsigned int val
= 0;
1780 val
= cgd
->leaf_weight
;
1782 seq_printf(sf
, "%u\n", val
);
1786 static ssize_t
__cfqg_set_weight_device(struct kernfs_open_file
*of
,
1787 char *buf
, size_t nbytes
, loff_t off
,
1788 bool on_dfl
, bool is_leaf_weight
)
1790 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1791 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1792 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1793 struct blkg_conf_ctx ctx
;
1794 struct cfq_group
*cfqg
;
1795 struct cfq_group_data
*cfqgd
;
1799 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1803 if (sscanf(ctx
.body
, "%llu", &v
) == 1) {
1804 /* require "default" on dfl */
1808 } else if (!strcmp(strim(ctx
.body
), "default")) {
1815 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1816 cfqgd
= blkcg_to_cfqgd(blkcg
);
1819 if (!v
|| (v
>= min
&& v
<= max
)) {
1820 if (!is_leaf_weight
) {
1821 cfqg
->dev_weight
= v
;
1822 cfqg
->new_weight
= v
?: cfqgd
->weight
;
1824 cfqg
->dev_leaf_weight
= v
;
1825 cfqg
->new_leaf_weight
= v
?: cfqgd
->leaf_weight
;
1830 blkg_conf_finish(&ctx
);
1831 return ret
?: nbytes
;
1834 static ssize_t
cfqg_set_weight_device(struct kernfs_open_file
*of
,
1835 char *buf
, size_t nbytes
, loff_t off
)
1837 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, false);
1840 static ssize_t
cfqg_set_leaf_weight_device(struct kernfs_open_file
*of
,
1841 char *buf
, size_t nbytes
, loff_t off
)
1843 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, true);
1846 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1847 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
)
1849 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1850 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1851 struct blkcg
*blkcg
= css_to_blkcg(css
);
1852 struct blkcg_gq
*blkg
;
1853 struct cfq_group_data
*cfqgd
;
1856 if (val
< min
|| val
> max
)
1859 spin_lock_irq(&blkcg
->lock
);
1860 cfqgd
= blkcg_to_cfqgd(blkcg
);
1866 if (!is_leaf_weight
)
1867 cfqgd
->weight
= val
;
1869 cfqgd
->leaf_weight
= val
;
1871 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1872 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1877 if (!is_leaf_weight
) {
1879 cfqg
->dev_weight
= 0;
1880 if (!cfqg
->dev_weight
)
1881 cfqg
->new_weight
= cfqgd
->weight
;
1884 cfqg
->dev_leaf_weight
= 0;
1885 if (!cfqg
->dev_leaf_weight
)
1886 cfqg
->new_leaf_weight
= cfqgd
->leaf_weight
;
1891 spin_unlock_irq(&blkcg
->lock
);
1895 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1898 return __cfq_set_weight(css
, val
, false, false, false);
1901 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1902 struct cftype
*cft
, u64 val
)
1904 return __cfq_set_weight(css
, val
, false, false, true);
1907 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1909 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1910 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1914 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1916 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1917 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1921 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1922 struct blkg_policy_data
*pd
, int off
)
1924 u64 sum
= blkg_stat_recursive_sum(pd_to_blkg(pd
),
1925 &blkcg_policy_cfq
, off
);
1926 return __blkg_prfill_u64(sf
, pd
, sum
);
1929 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1930 struct blkg_policy_data
*pd
, int off
)
1932 struct blkg_rwstat sum
= blkg_rwstat_recursive_sum(pd_to_blkg(pd
),
1933 &blkcg_policy_cfq
, off
);
1934 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1937 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1939 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1940 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1941 seq_cft(sf
)->private, false);
1945 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1947 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1948 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1949 seq_cft(sf
)->private, true);
1953 static u64
cfqg_prfill_sectors(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1956 u64 sum
= blkg_rwstat_total(&pd
->blkg
->stat_bytes
);
1958 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1961 static int cfqg_print_stat_sectors(struct seq_file
*sf
, void *v
)
1963 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1964 cfqg_prfill_sectors
, &blkcg_policy_cfq
, 0, false);
1968 static u64
cfqg_prfill_sectors_recursive(struct seq_file
*sf
,
1969 struct blkg_policy_data
*pd
, int off
)
1971 struct blkg_rwstat tmp
= blkg_rwstat_recursive_sum(pd
->blkg
, NULL
,
1972 offsetof(struct blkcg_gq
, stat_bytes
));
1973 u64 sum
= atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_READ
]) +
1974 atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_WRITE
]);
1976 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1979 static int cfqg_print_stat_sectors_recursive(struct seq_file
*sf
, void *v
)
1981 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1982 cfqg_prfill_sectors_recursive
, &blkcg_policy_cfq
, 0,
1987 #ifdef CONFIG_DEBUG_BLK_CGROUP
1988 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1989 struct blkg_policy_data
*pd
, int off
)
1991 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1992 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1996 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1997 v
= div64_u64(v
, samples
);
1999 __blkg_prfill_u64(sf
, pd
, v
);
2003 /* print avg_queue_size */
2004 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
2006 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
2007 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
2011 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2013 static struct cftype cfq_blkcg_legacy_files
[] = {
2014 /* on root, weight is mapped to leaf_weight */
2016 .name
= "weight_device",
2017 .flags
= CFTYPE_ONLY_ON_ROOT
,
2018 .seq_show
= cfqg_print_leaf_weight_device
,
2019 .write
= cfqg_set_leaf_weight_device
,
2023 .flags
= CFTYPE_ONLY_ON_ROOT
,
2024 .seq_show
= cfq_print_leaf_weight
,
2025 .write_u64
= cfq_set_leaf_weight
,
2028 /* no such mapping necessary for !roots */
2030 .name
= "weight_device",
2031 .flags
= CFTYPE_NOT_ON_ROOT
,
2032 .seq_show
= cfqg_print_weight_device
,
2033 .write
= cfqg_set_weight_device
,
2037 .flags
= CFTYPE_NOT_ON_ROOT
,
2038 .seq_show
= cfq_print_weight
,
2039 .write_u64
= cfq_set_weight
,
2043 .name
= "leaf_weight_device",
2044 .seq_show
= cfqg_print_leaf_weight_device
,
2045 .write
= cfqg_set_leaf_weight_device
,
2048 .name
= "leaf_weight",
2049 .seq_show
= cfq_print_leaf_weight
,
2050 .write_u64
= cfq_set_leaf_weight
,
2053 /* statistics, covers only the tasks in the cfqg */
2056 .private = offsetof(struct cfq_group
, stats
.time
),
2057 .seq_show
= cfqg_print_stat
,
2061 .seq_show
= cfqg_print_stat_sectors
,
2064 .name
= "io_service_bytes",
2065 .private = (unsigned long)&blkcg_policy_cfq
,
2066 .seq_show
= blkg_print_stat_bytes
,
2069 .name
= "io_serviced",
2070 .private = (unsigned long)&blkcg_policy_cfq
,
2071 .seq_show
= blkg_print_stat_ios
,
2074 .name
= "io_service_time",
2075 .private = offsetof(struct cfq_group
, stats
.service_time
),
2076 .seq_show
= cfqg_print_rwstat
,
2079 .name
= "io_wait_time",
2080 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2081 .seq_show
= cfqg_print_rwstat
,
2084 .name
= "io_merged",
2085 .private = offsetof(struct cfq_group
, stats
.merged
),
2086 .seq_show
= cfqg_print_rwstat
,
2089 .name
= "io_queued",
2090 .private = offsetof(struct cfq_group
, stats
.queued
),
2091 .seq_show
= cfqg_print_rwstat
,
2094 /* the same statictics which cover the cfqg and its descendants */
2096 .name
= "time_recursive",
2097 .private = offsetof(struct cfq_group
, stats
.time
),
2098 .seq_show
= cfqg_print_stat_recursive
,
2101 .name
= "sectors_recursive",
2102 .seq_show
= cfqg_print_stat_sectors_recursive
,
2105 .name
= "io_service_bytes_recursive",
2106 .private = (unsigned long)&blkcg_policy_cfq
,
2107 .seq_show
= blkg_print_stat_bytes_recursive
,
2110 .name
= "io_serviced_recursive",
2111 .private = (unsigned long)&blkcg_policy_cfq
,
2112 .seq_show
= blkg_print_stat_ios_recursive
,
2115 .name
= "io_service_time_recursive",
2116 .private = offsetof(struct cfq_group
, stats
.service_time
),
2117 .seq_show
= cfqg_print_rwstat_recursive
,
2120 .name
= "io_wait_time_recursive",
2121 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2122 .seq_show
= cfqg_print_rwstat_recursive
,
2125 .name
= "io_merged_recursive",
2126 .private = offsetof(struct cfq_group
, stats
.merged
),
2127 .seq_show
= cfqg_print_rwstat_recursive
,
2130 .name
= "io_queued_recursive",
2131 .private = offsetof(struct cfq_group
, stats
.queued
),
2132 .seq_show
= cfqg_print_rwstat_recursive
,
2134 #ifdef CONFIG_DEBUG_BLK_CGROUP
2136 .name
= "avg_queue_size",
2137 .seq_show
= cfqg_print_avg_queue_size
,
2140 .name
= "group_wait_time",
2141 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
2142 .seq_show
= cfqg_print_stat
,
2145 .name
= "idle_time",
2146 .private = offsetof(struct cfq_group
, stats
.idle_time
),
2147 .seq_show
= cfqg_print_stat
,
2150 .name
= "empty_time",
2151 .private = offsetof(struct cfq_group
, stats
.empty_time
),
2152 .seq_show
= cfqg_print_stat
,
2156 .private = offsetof(struct cfq_group
, stats
.dequeue
),
2157 .seq_show
= cfqg_print_stat
,
2160 .name
= "unaccounted_time",
2161 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
2162 .seq_show
= cfqg_print_stat
,
2164 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2168 static int cfq_print_weight_on_dfl(struct seq_file
*sf
, void *v
)
2170 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2171 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
2173 seq_printf(sf
, "default %u\n", cgd
->weight
);
2174 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_weight_device
,
2175 &blkcg_policy_cfq
, 0, false);
2179 static ssize_t
cfq_set_weight_on_dfl(struct kernfs_open_file
*of
,
2180 char *buf
, size_t nbytes
, loff_t off
)
2188 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2189 v
= simple_strtoull(buf
, &endp
, 0);
2190 if (*endp
== '\0' || sscanf(buf
, "default %llu", &v
) == 1) {
2191 ret
= __cfq_set_weight(of_css(of
), v
, true, false, false);
2192 return ret
?: nbytes
;
2195 /* "MAJ:MIN WEIGHT" */
2196 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, true, false);
2199 static struct cftype cfq_blkcg_files
[] = {
2202 .flags
= CFTYPE_NOT_ON_ROOT
,
2203 .seq_show
= cfq_print_weight_on_dfl
,
2204 .write
= cfq_set_weight_on_dfl
,
2209 #else /* GROUP_IOSCHED */
2210 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
2211 struct blkcg
*blkcg
)
2213 return cfqd
->root_group
;
2217 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2221 #endif /* GROUP_IOSCHED */
2224 * The cfqd->service_trees holds all pending cfq_queue's that have
2225 * requests waiting to be processed. It is sorted in the order that
2226 * we will service the queues.
2228 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2231 struct rb_node
**p
, *parent
;
2232 struct cfq_queue
*__cfqq
;
2234 struct cfq_rb_root
*st
;
2237 u64 now
= ktime_get_ns();
2239 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2240 if (cfq_class_idle(cfqq
)) {
2241 rb_key
= CFQ_IDLE_DELAY
;
2242 parent
= rb_last(&st
->rb
);
2243 if (parent
&& parent
!= &cfqq
->rb_node
) {
2244 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2245 rb_key
+= __cfqq
->rb_key
;
2248 } else if (!add_front
) {
2250 * Get our rb key offset. Subtract any residual slice
2251 * value carried from last service. A negative resid
2252 * count indicates slice overrun, and this should position
2253 * the next service time further away in the tree.
2255 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + now
;
2256 rb_key
-= cfqq
->slice_resid
;
2257 cfqq
->slice_resid
= 0;
2259 rb_key
= -NSEC_PER_SEC
;
2260 __cfqq
= cfq_rb_first(st
);
2261 rb_key
+= __cfqq
? __cfqq
->rb_key
: now
;
2264 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2267 * same position, nothing more to do
2269 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2272 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2273 cfqq
->service_tree
= NULL
;
2278 cfqq
->service_tree
= st
;
2279 p
= &st
->rb
.rb_node
;
2282 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2285 * sort by key, that represents service time.
2287 if (rb_key
< __cfqq
->rb_key
)
2288 p
= &parent
->rb_left
;
2290 p
= &parent
->rb_right
;
2296 st
->left
= &cfqq
->rb_node
;
2298 cfqq
->rb_key
= rb_key
;
2299 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2300 rb_insert_color(&cfqq
->rb_node
, &st
->rb
);
2302 if (add_front
|| !new_cfqq
)
2304 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2307 static struct cfq_queue
*
2308 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2309 sector_t sector
, struct rb_node
**ret_parent
,
2310 struct rb_node
***rb_link
)
2312 struct rb_node
**p
, *parent
;
2313 struct cfq_queue
*cfqq
= NULL
;
2321 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2324 * Sort strictly based on sector. Smallest to the left,
2325 * largest to the right.
2327 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2328 n
= &(*p
)->rb_right
;
2329 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2337 *ret_parent
= parent
;
2343 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2345 struct rb_node
**p
, *parent
;
2346 struct cfq_queue
*__cfqq
;
2349 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2350 cfqq
->p_root
= NULL
;
2353 if (cfq_class_idle(cfqq
))
2358 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2359 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2360 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2362 rb_link_node(&cfqq
->p_node
, parent
, p
);
2363 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2365 cfqq
->p_root
= NULL
;
2369 * Update cfqq's position in the service tree.
2371 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2374 * Resorting requires the cfqq to be on the RR list already.
2376 if (cfq_cfqq_on_rr(cfqq
)) {
2377 cfq_service_tree_add(cfqd
, cfqq
, 0);
2378 cfq_prio_tree_add(cfqd
, cfqq
);
2383 * add to busy list of queues for service, trying to be fair in ordering
2384 * the pending list according to last request service
2386 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2388 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2389 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2390 cfq_mark_cfqq_on_rr(cfqq
);
2391 cfqd
->busy_queues
++;
2392 if (cfq_cfqq_sync(cfqq
))
2393 cfqd
->busy_sync_queues
++;
2395 cfq_resort_rr_list(cfqd
, cfqq
);
2399 * Called when the cfqq no longer has requests pending, remove it from
2402 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2404 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2405 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2406 cfq_clear_cfqq_on_rr(cfqq
);
2408 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2409 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2410 cfqq
->service_tree
= NULL
;
2413 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2414 cfqq
->p_root
= NULL
;
2417 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2418 BUG_ON(!cfqd
->busy_queues
);
2419 cfqd
->busy_queues
--;
2420 if (cfq_cfqq_sync(cfqq
))
2421 cfqd
->busy_sync_queues
--;
2425 * rb tree support functions
2427 static void cfq_del_rq_rb(struct request
*rq
)
2429 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2430 const int sync
= rq_is_sync(rq
);
2432 BUG_ON(!cfqq
->queued
[sync
]);
2433 cfqq
->queued
[sync
]--;
2435 elv_rb_del(&cfqq
->sort_list
, rq
);
2437 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2439 * Queue will be deleted from service tree when we actually
2440 * expire it later. Right now just remove it from prio tree
2444 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2445 cfqq
->p_root
= NULL
;
2450 static void cfq_add_rq_rb(struct request
*rq
)
2452 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2453 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2454 struct request
*prev
;
2456 cfqq
->queued
[rq_is_sync(rq
)]++;
2458 elv_rb_add(&cfqq
->sort_list
, rq
);
2460 if (!cfq_cfqq_on_rr(cfqq
))
2461 cfq_add_cfqq_rr(cfqd
, cfqq
);
2464 * check if this request is a better next-serve candidate
2466 prev
= cfqq
->next_rq
;
2467 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2470 * adjust priority tree position, if ->next_rq changes
2472 if (prev
!= cfqq
->next_rq
)
2473 cfq_prio_tree_add(cfqd
, cfqq
);
2475 BUG_ON(!cfqq
->next_rq
);
2478 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2480 elv_rb_del(&cfqq
->sort_list
, rq
);
2481 cfqq
->queued
[rq_is_sync(rq
)]--;
2482 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2484 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2488 static struct request
*
2489 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2491 struct task_struct
*tsk
= current
;
2492 struct cfq_io_cq
*cic
;
2493 struct cfq_queue
*cfqq
;
2495 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2499 cfqq
= cic_to_cfqq(cic
, op_is_sync(bio
->bi_opf
));
2501 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2506 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2508 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2510 cfqd
->rq_in_driver
++;
2511 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2512 cfqd
->rq_in_driver
);
2514 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2517 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2519 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2521 WARN_ON(!cfqd
->rq_in_driver
);
2522 cfqd
->rq_in_driver
--;
2523 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2524 cfqd
->rq_in_driver
);
2527 static void cfq_remove_request(struct request
*rq
)
2529 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2531 if (cfqq
->next_rq
== rq
)
2532 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2534 list_del_init(&rq
->queuelist
);
2537 cfqq
->cfqd
->rq_queued
--;
2538 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2539 if (rq
->cmd_flags
& REQ_PRIO
) {
2540 WARN_ON(!cfqq
->prio_pending
);
2541 cfqq
->prio_pending
--;
2545 static enum elv_merge
cfq_merge(struct request_queue
*q
, struct request
**req
,
2548 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2549 struct request
*__rq
;
2551 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2552 if (__rq
&& elv_bio_merge_ok(__rq
, bio
)) {
2554 return ELEVATOR_FRONT_MERGE
;
2557 return ELEVATOR_NO_MERGE
;
2560 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2561 enum elv_merge type
)
2563 if (type
== ELEVATOR_FRONT_MERGE
) {
2564 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2566 cfq_reposition_rq_rb(cfqq
, req
);
2570 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2573 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_opf
);
2577 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2578 struct request
*next
)
2580 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2581 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2584 * reposition in fifo if next is older than rq
2586 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2587 next
->fifo_time
< rq
->fifo_time
&&
2588 cfqq
== RQ_CFQQ(next
)) {
2589 list_move(&rq
->queuelist
, &next
->queuelist
);
2590 rq
->fifo_time
= next
->fifo_time
;
2593 if (cfqq
->next_rq
== next
)
2595 cfq_remove_request(next
);
2596 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
2598 cfqq
= RQ_CFQQ(next
);
2600 * all requests of this queue are merged to other queues, delete it
2601 * from the service tree. If it's the active_queue,
2602 * cfq_dispatch_requests() will choose to expire it or do idle
2604 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2605 cfqq
!= cfqd
->active_queue
)
2606 cfq_del_cfqq_rr(cfqd
, cfqq
);
2609 static int cfq_allow_bio_merge(struct request_queue
*q
, struct request
*rq
,
2612 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2613 bool is_sync
= op_is_sync(bio
->bi_opf
);
2614 struct cfq_io_cq
*cic
;
2615 struct cfq_queue
*cfqq
;
2618 * Disallow merge of a sync bio into an async request.
2620 if (is_sync
&& !rq_is_sync(rq
))
2624 * Lookup the cfqq that this bio will be queued with and allow
2625 * merge only if rq is queued there.
2627 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2631 cfqq
= cic_to_cfqq(cic
, is_sync
);
2632 return cfqq
== RQ_CFQQ(rq
);
2635 static int cfq_allow_rq_merge(struct request_queue
*q
, struct request
*rq
,
2636 struct request
*next
)
2638 return RQ_CFQQ(rq
) == RQ_CFQQ(next
);
2641 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2643 hrtimer_try_to_cancel(&cfqd
->idle_slice_timer
);
2644 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2647 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2648 struct cfq_queue
*cfqq
)
2651 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2652 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2653 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2654 cfqq
->slice_start
= 0;
2655 cfqq
->dispatch_start
= ktime_get_ns();
2656 cfqq
->allocated_slice
= 0;
2657 cfqq
->slice_end
= 0;
2658 cfqq
->slice_dispatch
= 0;
2659 cfqq
->nr_sectors
= 0;
2661 cfq_clear_cfqq_wait_request(cfqq
);
2662 cfq_clear_cfqq_must_dispatch(cfqq
);
2663 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2664 cfq_clear_cfqq_fifo_expire(cfqq
);
2665 cfq_mark_cfqq_slice_new(cfqq
);
2667 cfq_del_timer(cfqd
, cfqq
);
2670 cfqd
->active_queue
= cfqq
;
2674 * current cfqq expired its slice (or was too idle), select new one
2677 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2680 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2682 if (cfq_cfqq_wait_request(cfqq
))
2683 cfq_del_timer(cfqd
, cfqq
);
2685 cfq_clear_cfqq_wait_request(cfqq
);
2686 cfq_clear_cfqq_wait_busy(cfqq
);
2689 * If this cfqq is shared between multiple processes, check to
2690 * make sure that those processes are still issuing I/Os within
2691 * the mean seek distance. If not, it may be time to break the
2692 * queues apart again.
2694 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2695 cfq_mark_cfqq_split_coop(cfqq
);
2698 * store what was left of this slice, if the queue idled/timed out
2701 if (cfq_cfqq_slice_new(cfqq
))
2702 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2704 cfqq
->slice_resid
= cfqq
->slice_end
- ktime_get_ns();
2705 cfq_log_cfqq(cfqd
, cfqq
, "resid=%lld", cfqq
->slice_resid
);
2708 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2710 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2711 cfq_del_cfqq_rr(cfqd
, cfqq
);
2713 cfq_resort_rr_list(cfqd
, cfqq
);
2715 if (cfqq
== cfqd
->active_queue
)
2716 cfqd
->active_queue
= NULL
;
2718 if (cfqd
->active_cic
) {
2719 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2720 cfqd
->active_cic
= NULL
;
2724 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2726 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2729 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2733 * Get next queue for service. Unless we have a queue preemption,
2734 * we'll simply select the first cfqq in the service tree.
2736 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2738 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2739 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2741 if (!cfqd
->rq_queued
)
2744 /* There is nothing to dispatch */
2747 if (RB_EMPTY_ROOT(&st
->rb
))
2749 return cfq_rb_first(st
);
2752 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2754 struct cfq_group
*cfqg
;
2755 struct cfq_queue
*cfqq
;
2757 struct cfq_rb_root
*st
;
2759 if (!cfqd
->rq_queued
)
2762 cfqg
= cfq_get_next_cfqg(cfqd
);
2766 for_each_cfqg_st(cfqg
, i
, j
, st
) {
2767 cfqq
= cfq_rb_first(st
);
2775 * Get and set a new active queue for service.
2777 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2778 struct cfq_queue
*cfqq
)
2781 cfqq
= cfq_get_next_queue(cfqd
);
2783 __cfq_set_active_queue(cfqd
, cfqq
);
2787 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2790 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2791 return blk_rq_pos(rq
) - cfqd
->last_position
;
2793 return cfqd
->last_position
- blk_rq_pos(rq
);
2796 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2799 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2802 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2803 struct cfq_queue
*cur_cfqq
)
2805 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2806 struct rb_node
*parent
, *node
;
2807 struct cfq_queue
*__cfqq
;
2808 sector_t sector
= cfqd
->last_position
;
2810 if (RB_EMPTY_ROOT(root
))
2814 * First, if we find a request starting at the end of the last
2815 * request, choose it.
2817 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2822 * If the exact sector wasn't found, the parent of the NULL leaf
2823 * will contain the closest sector.
2825 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2826 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2829 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2830 node
= rb_next(&__cfqq
->p_node
);
2832 node
= rb_prev(&__cfqq
->p_node
);
2836 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2837 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2845 * cur_cfqq - passed in so that we don't decide that the current queue is
2846 * closely cooperating with itself.
2848 * So, basically we're assuming that that cur_cfqq has dispatched at least
2849 * one request, and that cfqd->last_position reflects a position on the disk
2850 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2853 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2854 struct cfq_queue
*cur_cfqq
)
2856 struct cfq_queue
*cfqq
;
2858 if (cfq_class_idle(cur_cfqq
))
2860 if (!cfq_cfqq_sync(cur_cfqq
))
2862 if (CFQQ_SEEKY(cur_cfqq
))
2866 * Don't search priority tree if it's the only queue in the group.
2868 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2872 * We should notice if some of the queues are cooperating, eg
2873 * working closely on the same area of the disk. In that case,
2874 * we can group them together and don't waste time idling.
2876 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2880 /* If new queue belongs to different cfq_group, don't choose it */
2881 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2885 * It only makes sense to merge sync queues.
2887 if (!cfq_cfqq_sync(cfqq
))
2889 if (CFQQ_SEEKY(cfqq
))
2893 * Do not merge queues of different priority classes
2895 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2902 * Determine whether we should enforce idle window for this queue.
2905 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2907 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2908 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2913 if (!cfqd
->cfq_slice_idle
)
2916 /* We never do for idle class queues. */
2917 if (wl_class
== IDLE_WORKLOAD
)
2920 /* We do for queues that were marked with idle window flag. */
2921 if (cfq_cfqq_idle_window(cfqq
) &&
2922 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2926 * Otherwise, we do only if they are the last ones
2927 * in their service tree.
2929 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2930 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2932 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2936 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2938 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2939 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2940 struct cfq_io_cq
*cic
;
2941 u64 sl
, group_idle
= 0;
2942 u64 now
= ktime_get_ns();
2945 * SSD device without seek penalty, disable idling. But only do so
2946 * for devices that support queuing, otherwise we still have a problem
2947 * with sync vs async workloads.
2949 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2952 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2953 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2956 * idle is disabled, either manually or by past process history
2958 if (!cfq_should_idle(cfqd
, cfqq
)) {
2959 /* no queue idling. Check for group idling */
2960 if (cfqd
->cfq_group_idle
)
2961 group_idle
= cfqd
->cfq_group_idle
;
2967 * still active requests from this queue, don't idle
2969 if (cfqq
->dispatched
)
2973 * task has exited, don't wait
2975 cic
= cfqd
->active_cic
;
2976 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2980 * If our average think time is larger than the remaining time
2981 * slice, then don't idle. This avoids overrunning the allotted
2984 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2985 (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
)) {
2986 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%llu",
2987 cic
->ttime
.ttime_mean
);
2992 * There are other queues in the group or this is the only group and
2993 * it has too big thinktime, don't do group idle.
2996 (cfqq
->cfqg
->nr_cfqq
> 1 ||
2997 cfq_io_thinktime_big(cfqd
, &st
->ttime
, true)))
3000 cfq_mark_cfqq_wait_request(cfqq
);
3003 sl
= cfqd
->cfq_group_idle
;
3005 sl
= cfqd
->cfq_slice_idle
;
3007 hrtimer_start(&cfqd
->idle_slice_timer
, ns_to_ktime(sl
),
3009 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
3010 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %llu group_idle: %d", sl
,
3011 group_idle
? 1 : 0);
3015 * Move request from internal lists to the request queue dispatch list.
3017 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
3019 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3020 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3022 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
3024 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
3025 cfq_remove_request(rq
);
3027 (RQ_CFQG(rq
))->dispatched
++;
3028 elv_dispatch_sort(q
, rq
);
3030 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
3031 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
3035 * return expired entry, or NULL to just start from scratch in rbtree
3037 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
3039 struct request
*rq
= NULL
;
3041 if (cfq_cfqq_fifo_expire(cfqq
))
3044 cfq_mark_cfqq_fifo_expire(cfqq
);
3046 if (list_empty(&cfqq
->fifo
))
3049 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
3050 if (ktime_get_ns() < rq
->fifo_time
)
3057 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3059 const int base_rq
= cfqd
->cfq_slice_async_rq
;
3061 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
3063 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
3067 * Must be called with the queue_lock held.
3069 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
3071 int process_refs
, io_refs
;
3073 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
3074 process_refs
= cfqq
->ref
- io_refs
;
3075 BUG_ON(process_refs
< 0);
3076 return process_refs
;
3079 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
3081 int process_refs
, new_process_refs
;
3082 struct cfq_queue
*__cfqq
;
3085 * If there are no process references on the new_cfqq, then it is
3086 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3087 * chain may have dropped their last reference (not just their
3088 * last process reference).
3090 if (!cfqq_process_refs(new_cfqq
))
3093 /* Avoid a circular list and skip interim queue merges */
3094 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
3100 process_refs
= cfqq_process_refs(cfqq
);
3101 new_process_refs
= cfqq_process_refs(new_cfqq
);
3103 * If the process for the cfqq has gone away, there is no
3104 * sense in merging the queues.
3106 if (process_refs
== 0 || new_process_refs
== 0)
3110 * Merge in the direction of the lesser amount of work.
3112 if (new_process_refs
>= process_refs
) {
3113 cfqq
->new_cfqq
= new_cfqq
;
3114 new_cfqq
->ref
+= process_refs
;
3116 new_cfqq
->new_cfqq
= cfqq
;
3117 cfqq
->ref
+= new_process_refs
;
3121 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
3122 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
3124 struct cfq_queue
*queue
;
3126 bool key_valid
= false;
3128 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
3130 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
3131 /* select the one with lowest rb_key */
3132 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
3134 (!key_valid
|| queue
->rb_key
< lowest_key
)) {
3135 lowest_key
= queue
->rb_key
;
3145 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
3149 struct cfq_rb_root
*st
;
3151 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
3152 u64 now
= ktime_get_ns();
3154 /* Choose next priority. RT > BE > IDLE */
3155 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
3156 cfqd
->serving_wl_class
= RT_WORKLOAD
;
3157 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
3158 cfqd
->serving_wl_class
= BE_WORKLOAD
;
3160 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
3161 cfqd
->workload_expires
= now
+ jiffies_to_nsecs(1);
3165 if (original_class
!= cfqd
->serving_wl_class
)
3169 * For RT and BE, we have to choose also the type
3170 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3173 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3177 * check workload expiration, and that we still have other queues ready
3179 if (count
&& !(now
> cfqd
->workload_expires
))
3183 /* otherwise select new workload type */
3184 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
3185 cfqd
->serving_wl_class
);
3186 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3190 * the workload slice is computed as a fraction of target latency
3191 * proportional to the number of queues in that workload, over
3192 * all the queues in the same priority class
3194 group_slice
= cfq_group_slice(cfqd
, cfqg
);
3196 slice
= div_u64(group_slice
* count
,
3197 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
3198 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
3201 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
3205 * Async queues are currently system wide. Just taking
3206 * proportion of queues with-in same group will lead to higher
3207 * async ratio system wide as generally root group is going
3208 * to have higher weight. A more accurate thing would be to
3209 * calculate system wide asnc/sync ratio.
3211 tmp
= cfqd
->cfq_target_latency
*
3212 cfqg_busy_async_queues(cfqd
, cfqg
);
3213 tmp
= div_u64(tmp
, cfqd
->busy_queues
);
3214 slice
= min_t(u64
, slice
, tmp
);
3216 /* async workload slice is scaled down according to
3217 * the sync/async slice ratio. */
3218 slice
= div64_u64(slice
*cfqd
->cfq_slice
[0], cfqd
->cfq_slice
[1]);
3220 /* sync workload slice is at least 2 * cfq_slice_idle */
3221 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
3223 slice
= max_t(u64
, slice
, CFQ_MIN_TT
);
3224 cfq_log(cfqd
, "workload slice:%llu", slice
);
3225 cfqd
->workload_expires
= now
+ slice
;
3228 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3230 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3231 struct cfq_group
*cfqg
;
3233 if (RB_EMPTY_ROOT(&st
->rb
))
3235 cfqg
= cfq_rb_first_group(st
);
3236 update_min_vdisktime(st
);
3240 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3242 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3243 u64 now
= ktime_get_ns();
3245 cfqd
->serving_group
= cfqg
;
3247 /* Restore the workload type data */
3248 if (cfqg
->saved_wl_slice
) {
3249 cfqd
->workload_expires
= now
+ cfqg
->saved_wl_slice
;
3250 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3251 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3253 cfqd
->workload_expires
= now
- 1;
3255 choose_wl_class_and_type(cfqd
, cfqg
);
3259 * Select a queue for service. If we have a current active queue,
3260 * check whether to continue servicing it, or retrieve and set a new one.
3262 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3264 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3265 u64 now
= ktime_get_ns();
3267 cfqq
= cfqd
->active_queue
;
3271 if (!cfqd
->rq_queued
)
3275 * We were waiting for group to get backlogged. Expire the queue
3277 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3281 * The active queue has run out of time, expire it and select new.
3283 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3285 * If slice had not expired at the completion of last request
3286 * we might not have turned on wait_busy flag. Don't expire
3287 * the queue yet. Allow the group to get backlogged.
3289 * The very fact that we have used the slice, that means we
3290 * have been idling all along on this queue and it should be
3291 * ok to wait for this request to complete.
3293 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3294 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3298 goto check_group_idle
;
3302 * The active queue has requests and isn't expired, allow it to
3305 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3309 * If another queue has a request waiting within our mean seek
3310 * distance, let it run. The expire code will check for close
3311 * cooperators and put the close queue at the front of the service
3312 * tree. If possible, merge the expiring queue with the new cfqq.
3314 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3316 if (!cfqq
->new_cfqq
)
3317 cfq_setup_merge(cfqq
, new_cfqq
);
3322 * No requests pending. If the active queue still has requests in
3323 * flight or is idling for a new request, allow either of these
3324 * conditions to happen (or time out) before selecting a new queue.
3326 if (hrtimer_active(&cfqd
->idle_slice_timer
)) {
3332 * This is a deep seek queue, but the device is much faster than
3333 * the queue can deliver, don't idle
3335 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3336 (cfq_cfqq_slice_new(cfqq
) ||
3337 (cfqq
->slice_end
- now
> now
- cfqq
->slice_start
))) {
3338 cfq_clear_cfqq_deep(cfqq
);
3339 cfq_clear_cfqq_idle_window(cfqq
);
3342 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3348 * If group idle is enabled and there are requests dispatched from
3349 * this group, wait for requests to complete.
3352 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3353 cfqq
->cfqg
->dispatched
&&
3354 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3360 cfq_slice_expired(cfqd
, 0);
3363 * Current queue expired. Check if we have to switch to a new
3367 cfq_choose_cfqg(cfqd
);
3369 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3374 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3378 while (cfqq
->next_rq
) {
3379 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3383 BUG_ON(!list_empty(&cfqq
->fifo
));
3385 /* By default cfqq is not expired if it is empty. Do it explicitly */
3386 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3391 * Drain our current requests. Used for barriers and when switching
3392 * io schedulers on-the-fly.
3394 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3396 struct cfq_queue
*cfqq
;
3399 /* Expire the timeslice of the current active queue first */
3400 cfq_slice_expired(cfqd
, 0);
3401 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3402 __cfq_set_active_queue(cfqd
, cfqq
);
3403 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3406 BUG_ON(cfqd
->busy_queues
);
3408 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3412 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3413 struct cfq_queue
*cfqq
)
3415 u64 now
= ktime_get_ns();
3417 /* the queue hasn't finished any request, can't estimate */
3418 if (cfq_cfqq_slice_new(cfqq
))
3420 if (now
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
> cfqq
->slice_end
)
3426 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3428 unsigned int max_dispatch
;
3430 if (cfq_cfqq_must_dispatch(cfqq
))
3434 * Drain async requests before we start sync IO
3436 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3440 * If this is an async queue and we have sync IO in flight, let it wait
3442 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3445 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3446 if (cfq_class_idle(cfqq
))
3450 * Does this cfqq already have too much IO in flight?
3452 if (cfqq
->dispatched
>= max_dispatch
) {
3453 bool promote_sync
= false;
3455 * idle queue must always only have a single IO in flight
3457 if (cfq_class_idle(cfqq
))
3461 * If there is only one sync queue
3462 * we can ignore async queue here and give the sync
3463 * queue no dispatch limit. The reason is a sync queue can
3464 * preempt async queue, limiting the sync queue doesn't make
3465 * sense. This is useful for aiostress test.
3467 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3468 promote_sync
= true;
3471 * We have other queues, don't allow more IO from this one
3473 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3478 * Sole queue user, no limit
3480 if (cfqd
->busy_queues
== 1 || promote_sync
)
3484 * Normally we start throttling cfqq when cfq_quantum/2
3485 * requests have been dispatched. But we can drive
3486 * deeper queue depths at the beginning of slice
3487 * subjected to upper limit of cfq_quantum.
3489 max_dispatch
= cfqd
->cfq_quantum
;
3493 * Async queues must wait a bit before being allowed dispatch.
3494 * We also ramp up the dispatch depth gradually for async IO,
3495 * based on the last sync IO we serviced
3497 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3498 u64 last_sync
= ktime_get_ns() - cfqd
->last_delayed_sync
;
3501 depth
= div64_u64(last_sync
, cfqd
->cfq_slice
[1]);
3502 if (!depth
&& !cfqq
->dispatched
)
3504 if (depth
< max_dispatch
)
3505 max_dispatch
= depth
;
3509 * If we're below the current max, allow a dispatch
3511 return cfqq
->dispatched
< max_dispatch
;
3515 * Dispatch a request from cfqq, moving them to the request queue
3518 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3522 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3524 rq
= cfq_check_fifo(cfqq
);
3526 cfq_mark_cfqq_must_dispatch(cfqq
);
3528 if (!cfq_may_dispatch(cfqd
, cfqq
))
3532 * follow expired path, else get first next available
3537 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
3540 * insert request into driver dispatch list
3542 cfq_dispatch_insert(cfqd
->queue
, rq
);
3544 if (!cfqd
->active_cic
) {
3545 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3547 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3548 cfqd
->active_cic
= cic
;
3555 * Find the cfqq that we need to service and move a request from that to the
3558 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3560 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3561 struct cfq_queue
*cfqq
;
3563 if (!cfqd
->busy_queues
)
3566 if (unlikely(force
))
3567 return cfq_forced_dispatch(cfqd
);
3569 cfqq
= cfq_select_queue(cfqd
);
3574 * Dispatch a request from this cfqq, if it is allowed
3576 if (!cfq_dispatch_request(cfqd
, cfqq
))
3579 cfqq
->slice_dispatch
++;
3580 cfq_clear_cfqq_must_dispatch(cfqq
);
3583 * expire an async queue immediately if it has used up its slice. idle
3584 * queue always expire after 1 dispatch round.
3586 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3587 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3588 cfq_class_idle(cfqq
))) {
3589 cfqq
->slice_end
= ktime_get_ns() + 1;
3590 cfq_slice_expired(cfqd
, 0);
3593 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3598 * task holds one reference to the queue, dropped when task exits. each rq
3599 * in-flight on this queue also holds a reference, dropped when rq is freed.
3601 * Each cfq queue took a reference on the parent group. Drop it now.
3602 * queue lock must be held here.
3604 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3606 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3607 struct cfq_group
*cfqg
;
3609 BUG_ON(cfqq
->ref
<= 0);
3615 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3616 BUG_ON(rb_first(&cfqq
->sort_list
));
3617 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3620 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3621 __cfq_slice_expired(cfqd
, cfqq
, 0);
3622 cfq_schedule_dispatch(cfqd
);
3625 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3626 kmem_cache_free(cfq_pool
, cfqq
);
3630 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3632 struct cfq_queue
*__cfqq
, *next
;
3635 * If this queue was scheduled to merge with another queue, be
3636 * sure to drop the reference taken on that queue (and others in
3637 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3639 __cfqq
= cfqq
->new_cfqq
;
3641 if (__cfqq
== cfqq
) {
3642 WARN(1, "cfqq->new_cfqq loop detected\n");
3645 next
= __cfqq
->new_cfqq
;
3646 cfq_put_queue(__cfqq
);
3651 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3653 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3654 __cfq_slice_expired(cfqd
, cfqq
, 0);
3655 cfq_schedule_dispatch(cfqd
);
3658 cfq_put_cooperator(cfqq
);
3660 cfq_put_queue(cfqq
);
3663 static void cfq_init_icq(struct io_cq
*icq
)
3665 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3667 cic
->ttime
.last_end_request
= ktime_get_ns();
3670 static void cfq_exit_icq(struct io_cq
*icq
)
3672 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3673 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3675 if (cic_to_cfqq(cic
, false)) {
3676 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, false));
3677 cic_set_cfqq(cic
, NULL
, false);
3680 if (cic_to_cfqq(cic
, true)) {
3681 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, true));
3682 cic_set_cfqq(cic
, NULL
, true);
3686 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3688 struct task_struct
*tsk
= current
;
3691 if (!cfq_cfqq_prio_changed(cfqq
))
3694 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3695 switch (ioprio_class
) {
3697 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3698 case IOPRIO_CLASS_NONE
:
3700 * no prio set, inherit CPU scheduling settings
3702 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3703 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3705 case IOPRIO_CLASS_RT
:
3706 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3707 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3709 case IOPRIO_CLASS_BE
:
3710 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3711 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3713 case IOPRIO_CLASS_IDLE
:
3714 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3716 cfq_clear_cfqq_idle_window(cfqq
);
3721 * keep track of original prio settings in case we have to temporarily
3722 * elevate the priority of this queue
3724 cfqq
->org_ioprio
= cfqq
->ioprio
;
3725 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
3726 cfq_clear_cfqq_prio_changed(cfqq
);
3729 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3731 int ioprio
= cic
->icq
.ioc
->ioprio
;
3732 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3733 struct cfq_queue
*cfqq
;
3736 * Check whether ioprio has changed. The condition may trigger
3737 * spuriously on a newly created cic but there's no harm.
3739 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3742 cfqq
= cic_to_cfqq(cic
, false);
3744 cfq_put_queue(cfqq
);
3745 cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
);
3746 cic_set_cfqq(cic
, cfqq
, false);
3749 cfqq
= cic_to_cfqq(cic
, true);
3751 cfq_mark_cfqq_prio_changed(cfqq
);
3753 cic
->ioprio
= ioprio
;
3756 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3757 pid_t pid
, bool is_sync
)
3759 RB_CLEAR_NODE(&cfqq
->rb_node
);
3760 RB_CLEAR_NODE(&cfqq
->p_node
);
3761 INIT_LIST_HEAD(&cfqq
->fifo
);
3766 cfq_mark_cfqq_prio_changed(cfqq
);
3769 if (!cfq_class_idle(cfqq
))
3770 cfq_mark_cfqq_idle_window(cfqq
);
3771 cfq_mark_cfqq_sync(cfqq
);
3776 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3777 static bool check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3779 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3780 struct cfq_queue
*cfqq
;
3785 serial_nr
= bio_blkcg(bio
)->css
.serial_nr
;
3786 nonroot_cg
= bio_blkcg(bio
) != &blkcg_root
;
3790 * Check whether blkcg has changed. The condition may trigger
3791 * spuriously on a newly created cic but there's no harm.
3793 if (unlikely(!cfqd
) || likely(cic
->blkcg_serial_nr
== serial_nr
))
3797 * Drop reference to queues. New queues will be assigned in new
3798 * group upon arrival of fresh requests.
3800 cfqq
= cic_to_cfqq(cic
, false);
3802 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3803 cic_set_cfqq(cic
, NULL
, false);
3804 cfq_put_queue(cfqq
);
3807 cfqq
= cic_to_cfqq(cic
, true);
3809 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3810 cic_set_cfqq(cic
, NULL
, true);
3811 cfq_put_queue(cfqq
);
3814 cic
->blkcg_serial_nr
= serial_nr
;
3818 static inline bool check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3822 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3824 static struct cfq_queue
**
3825 cfq_async_queue_prio(struct cfq_group
*cfqg
, int ioprio_class
, int ioprio
)
3827 switch (ioprio_class
) {
3828 case IOPRIO_CLASS_RT
:
3829 return &cfqg
->async_cfqq
[0][ioprio
];
3830 case IOPRIO_CLASS_NONE
:
3831 ioprio
= IOPRIO_NORM
;
3833 case IOPRIO_CLASS_BE
:
3834 return &cfqg
->async_cfqq
[1][ioprio
];
3835 case IOPRIO_CLASS_IDLE
:
3836 return &cfqg
->async_idle_cfqq
;
3842 static struct cfq_queue
*
3843 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3846 int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3847 int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3848 struct cfq_queue
**async_cfqq
= NULL
;
3849 struct cfq_queue
*cfqq
;
3850 struct cfq_group
*cfqg
;
3853 cfqg
= cfq_lookup_cfqg(cfqd
, bio_blkcg(bio
));
3855 cfqq
= &cfqd
->oom_cfqq
;
3860 if (!ioprio_valid(cic
->ioprio
)) {
3861 struct task_struct
*tsk
= current
;
3862 ioprio
= task_nice_ioprio(tsk
);
3863 ioprio_class
= task_nice_ioclass(tsk
);
3865 async_cfqq
= cfq_async_queue_prio(cfqg
, ioprio_class
, ioprio
);
3871 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3872 GFP_NOWAIT
| __GFP_ZERO
| __GFP_NOWARN
,
3875 cfqq
= &cfqd
->oom_cfqq
;
3879 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3880 cfqq
->ioprio_class
= IOPRIO_CLASS_NONE
;
3881 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3882 cfq_init_prio_data(cfqq
, cic
);
3883 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3884 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3887 /* a new async queue is created, pin and remember */
3898 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, u64 slice_idle
)
3900 u64 elapsed
= ktime_get_ns() - ttime
->last_end_request
;
3901 elapsed
= min(elapsed
, 2UL * slice_idle
);
3903 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3904 ttime
->ttime_total
= div_u64(7*ttime
->ttime_total
+ 256*elapsed
, 8);
3905 ttime
->ttime_mean
= div64_ul(ttime
->ttime_total
+ 128,
3906 ttime
->ttime_samples
);
3910 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3911 struct cfq_io_cq
*cic
)
3913 if (cfq_cfqq_sync(cfqq
)) {
3914 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3915 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3916 cfqd
->cfq_slice_idle
);
3918 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3919 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3924 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3928 sector_t n_sec
= blk_rq_sectors(rq
);
3929 if (cfqq
->last_request_pos
) {
3930 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3931 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3933 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3936 cfqq
->seek_history
<<= 1;
3937 if (blk_queue_nonrot(cfqd
->queue
))
3938 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3940 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3943 static inline bool req_noidle(struct request
*req
)
3945 return req_op(req
) == REQ_OP_WRITE
&&
3946 (req
->cmd_flags
& (REQ_SYNC
| REQ_IDLE
)) == REQ_SYNC
;
3950 * Disable idle window if the process thinks too long or seeks so much that
3954 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3955 struct cfq_io_cq
*cic
)
3957 int old_idle
, enable_idle
;
3960 * Don't idle for async or idle io prio class
3962 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3965 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3967 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3968 cfq_mark_cfqq_deep(cfqq
);
3970 if (cfqq
->next_rq
&& req_noidle(cfqq
->next_rq
))
3972 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3973 !cfqd
->cfq_slice_idle
||
3974 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3976 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3977 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3983 if (old_idle
!= enable_idle
) {
3984 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3986 cfq_mark_cfqq_idle_window(cfqq
);
3988 cfq_clear_cfqq_idle_window(cfqq
);
3993 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3994 * no or if we aren't sure, a 1 will cause a preempt.
3997 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
4000 struct cfq_queue
*cfqq
;
4002 cfqq
= cfqd
->active_queue
;
4006 if (cfq_class_idle(new_cfqq
))
4009 if (cfq_class_idle(cfqq
))
4013 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
4015 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
4019 * if the new request is sync, but the currently running queue is
4020 * not, let the sync request have priority.
4022 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
4026 * Treat ancestors of current cgroup the same way as current cgroup.
4027 * For anybody else we disallow preemption to guarantee service
4028 * fairness among cgroups.
4030 if (!cfqg_is_descendant(cfqq
->cfqg
, new_cfqq
->cfqg
))
4033 if (cfq_slice_used(cfqq
))
4037 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4039 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
4042 WARN_ON_ONCE(cfqq
->ioprio_class
!= new_cfqq
->ioprio_class
);
4043 /* Allow preemption only if we are idling on sync-noidle tree */
4044 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
4045 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
4046 RB_EMPTY_ROOT(&cfqq
->sort_list
))
4050 * So both queues are sync. Let the new request get disk time if
4051 * it's a metadata request and the current queue is doing regular IO.
4053 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
4056 /* An idle queue should not be idle now for some reason */
4057 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
4060 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
4064 * if this request is as-good as one we would expect from the
4065 * current cfqq, let it preempt
4067 if (cfq_rq_close(cfqd
, cfqq
, rq
))
4074 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4075 * let it have half of its nominal slice.
4077 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4079 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
4081 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
4082 cfq_slice_expired(cfqd
, 1);
4085 * workload type is changed, don't save slice, otherwise preempt
4088 if (old_type
!= cfqq_type(cfqq
))
4089 cfqq
->cfqg
->saved_wl_slice
= 0;
4092 * Put the new queue at the front of the of the current list,
4093 * so we know that it will be selected next.
4095 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
4097 cfq_service_tree_add(cfqd
, cfqq
, 1);
4099 cfqq
->slice_end
= 0;
4100 cfq_mark_cfqq_slice_new(cfqq
);
4104 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4105 * something we should do about it
4108 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
4111 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
4114 if (rq
->cmd_flags
& REQ_PRIO
)
4115 cfqq
->prio_pending
++;
4117 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
4118 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
4119 cfq_update_idle_window(cfqd
, cfqq
, cic
);
4121 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
4123 if (cfqq
== cfqd
->active_queue
) {
4125 * Remember that we saw a request from this process, but
4126 * don't start queuing just yet. Otherwise we risk seeing lots
4127 * of tiny requests, because we disrupt the normal plugging
4128 * and merging. If the request is already larger than a single
4129 * page, let it rip immediately. For that case we assume that
4130 * merging is already done. Ditto for a busy system that
4131 * has other work pending, don't risk delaying until the
4132 * idle timer unplug to continue working.
4134 if (cfq_cfqq_wait_request(cfqq
)) {
4135 if (blk_rq_bytes(rq
) > PAGE_SIZE
||
4136 cfqd
->busy_queues
> 1) {
4137 cfq_del_timer(cfqd
, cfqq
);
4138 cfq_clear_cfqq_wait_request(cfqq
);
4139 __blk_run_queue(cfqd
->queue
);
4141 cfqg_stats_update_idle_time(cfqq
->cfqg
);
4142 cfq_mark_cfqq_must_dispatch(cfqq
);
4145 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
4147 * not the active queue - expire current slice if it is
4148 * idle and has expired it's mean thinktime or this new queue
4149 * has some old slice time left and is of higher priority or
4150 * this new queue is RT and the current one is BE
4152 cfq_preempt_queue(cfqd
, cfqq
);
4153 __blk_run_queue(cfqd
->queue
);
4157 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
4159 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4160 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4162 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
4163 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
4165 rq
->fifo_time
= ktime_get_ns() + cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)];
4166 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
4168 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
4170 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
4174 * Update hw_tag based on peak queue depth over 50 samples under
4177 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
4179 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
4181 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
4182 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
4184 if (cfqd
->hw_tag
== 1)
4187 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
4188 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
4192 * If active queue hasn't enough requests and can idle, cfq might not
4193 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4196 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
4197 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
4198 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
4201 if (cfqd
->hw_tag_samples
++ < 50)
4204 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
4210 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4212 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
4213 u64 now
= ktime_get_ns();
4215 /* If the queue already has requests, don't wait */
4216 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4219 /* If there are other queues in the group, don't wait */
4220 if (cfqq
->cfqg
->nr_cfqq
> 1)
4223 /* the only queue in the group, but think time is big */
4224 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
4227 if (cfq_slice_used(cfqq
))
4230 /* if slice left is less than think time, wait busy */
4231 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4232 && (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
))
4236 * If think times is less than a jiffy than ttime_mean=0 and above
4237 * will not be true. It might happen that slice has not expired yet
4238 * but will expire soon (4-5 ns) during select_queue(). To cover the
4239 * case where think time is less than a jiffy, mark the queue wait
4240 * busy if only 1 jiffy is left in the slice.
4242 if (cfqq
->slice_end
- now
<= jiffies_to_nsecs(1))
4248 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4250 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4251 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4252 const int sync
= rq_is_sync(rq
);
4253 u64 now
= ktime_get_ns();
4255 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", req_noidle(rq
));
4257 cfq_update_hw_tag(cfqd
);
4259 WARN_ON(!cfqd
->rq_in_driver
);
4260 WARN_ON(!cfqq
->dispatched
);
4261 cfqd
->rq_in_driver
--;
4263 (RQ_CFQG(rq
))->dispatched
--;
4264 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
4265 rq_io_start_time_ns(rq
), rq
->cmd_flags
);
4267 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4270 struct cfq_rb_root
*st
;
4272 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4274 if (cfq_cfqq_on_rr(cfqq
))
4275 st
= cfqq
->service_tree
;
4277 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4280 st
->ttime
.last_end_request
= now
;
4282 * We have to do this check in jiffies since start_time is in
4283 * jiffies and it is not trivial to convert to ns. If
4284 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4285 * will become problematic but so far we are fine (the default
4288 if (!time_after(rq
->start_time
+
4289 nsecs_to_jiffies(cfqd
->cfq_fifo_expire
[1]),
4291 cfqd
->last_delayed_sync
= now
;
4294 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4295 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4299 * If this is the active queue, check if it needs to be expired,
4300 * or if we want to idle in case it has no pending requests.
4302 if (cfqd
->active_queue
== cfqq
) {
4303 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4305 if (cfq_cfqq_slice_new(cfqq
)) {
4306 cfq_set_prio_slice(cfqd
, cfqq
);
4307 cfq_clear_cfqq_slice_new(cfqq
);
4311 * Should we wait for next request to come in before we expire
4314 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4315 u64 extend_sl
= cfqd
->cfq_slice_idle
;
4316 if (!cfqd
->cfq_slice_idle
)
4317 extend_sl
= cfqd
->cfq_group_idle
;
4318 cfqq
->slice_end
= now
+ extend_sl
;
4319 cfq_mark_cfqq_wait_busy(cfqq
);
4320 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4324 * Idling is not enabled on:
4326 * - idle-priority queues
4328 * - queues with still some requests queued
4329 * - when there is a close cooperator
4331 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4332 cfq_slice_expired(cfqd
, 1);
4333 else if (sync
&& cfqq_empty
&&
4334 !cfq_close_cooperator(cfqd
, cfqq
)) {
4335 cfq_arm_slice_timer(cfqd
);
4339 if (!cfqd
->rq_in_driver
)
4340 cfq_schedule_dispatch(cfqd
);
4343 static void cfqq_boost_on_prio(struct cfq_queue
*cfqq
, unsigned int op
)
4346 * If REQ_PRIO is set, boost class and prio level, if it's below
4347 * BE/NORM. If prio is not set, restore the potentially boosted
4350 if (!(op
& REQ_PRIO
)) {
4351 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
4352 cfqq
->ioprio
= cfqq
->org_ioprio
;
4354 if (cfq_class_idle(cfqq
))
4355 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
4356 if (cfqq
->ioprio
> IOPRIO_NORM
)
4357 cfqq
->ioprio
= IOPRIO_NORM
;
4361 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4363 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4364 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4365 return ELV_MQUEUE_MUST
;
4368 return ELV_MQUEUE_MAY
;
4371 static int cfq_may_queue(struct request_queue
*q
, unsigned int op
)
4373 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4374 struct task_struct
*tsk
= current
;
4375 struct cfq_io_cq
*cic
;
4376 struct cfq_queue
*cfqq
;
4379 * don't force setup of a queue from here, as a call to may_queue
4380 * does not necessarily imply that a request actually will be queued.
4381 * so just lookup a possibly existing queue, or return 'may queue'
4384 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4386 return ELV_MQUEUE_MAY
;
4388 cfqq
= cic_to_cfqq(cic
, op_is_sync(op
));
4390 cfq_init_prio_data(cfqq
, cic
);
4391 cfqq_boost_on_prio(cfqq
, op
);
4393 return __cfq_may_queue(cfqq
);
4396 return ELV_MQUEUE_MAY
;
4400 * queue lock held here
4402 static void cfq_put_request(struct request
*rq
)
4404 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4407 const int rw
= rq_data_dir(rq
);
4409 BUG_ON(!cfqq
->allocated
[rw
]);
4410 cfqq
->allocated
[rw
]--;
4412 /* Put down rq reference on cfqg */
4413 cfqg_put(RQ_CFQG(rq
));
4414 rq
->elv
.priv
[0] = NULL
;
4415 rq
->elv
.priv
[1] = NULL
;
4417 cfq_put_queue(cfqq
);
4421 static struct cfq_queue
*
4422 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4423 struct cfq_queue
*cfqq
)
4425 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4426 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4427 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4428 cfq_put_queue(cfqq
);
4429 return cic_to_cfqq(cic
, 1);
4433 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4434 * was the last process referring to said cfqq.
4436 static struct cfq_queue
*
4437 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4439 if (cfqq_process_refs(cfqq
) == 1) {
4440 cfqq
->pid
= current
->pid
;
4441 cfq_clear_cfqq_coop(cfqq
);
4442 cfq_clear_cfqq_split_coop(cfqq
);
4446 cic_set_cfqq(cic
, NULL
, 1);
4448 cfq_put_cooperator(cfqq
);
4450 cfq_put_queue(cfqq
);
4454 * Allocate cfq data structures associated with this request.
4457 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4460 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4461 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4462 const int rw
= rq_data_dir(rq
);
4463 const bool is_sync
= rq_is_sync(rq
);
4464 struct cfq_queue
*cfqq
;
4467 spin_lock_irq(q
->queue_lock
);
4469 check_ioprio_changed(cic
, bio
);
4470 disable_wbt
= check_blkcg_changed(cic
, bio
);
4472 cfqq
= cic_to_cfqq(cic
, is_sync
);
4473 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4475 cfq_put_queue(cfqq
);
4476 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
);
4477 cic_set_cfqq(cic
, cfqq
, is_sync
);
4480 * If the queue was seeky for too long, break it apart.
4482 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4483 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4484 cfqq
= split_cfqq(cic
, cfqq
);
4490 * Check to see if this queue is scheduled to merge with
4491 * another, closely cooperating queue. The merging of
4492 * queues happens here as it must be done in process context.
4493 * The reference on new_cfqq was taken in merge_cfqqs.
4496 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4499 cfqq
->allocated
[rw
]++;
4502 cfqg_get(cfqq
->cfqg
);
4503 rq
->elv
.priv
[0] = cfqq
;
4504 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4505 spin_unlock_irq(q
->queue_lock
);
4508 wbt_disable_default(q
);
4513 static void cfq_kick_queue(struct work_struct
*work
)
4515 struct cfq_data
*cfqd
=
4516 container_of(work
, struct cfq_data
, unplug_work
);
4517 struct request_queue
*q
= cfqd
->queue
;
4519 spin_lock_irq(q
->queue_lock
);
4520 __blk_run_queue(cfqd
->queue
);
4521 spin_unlock_irq(q
->queue_lock
);
4525 * Timer running if the active_queue is currently idling inside its time slice
4527 static enum hrtimer_restart
cfq_idle_slice_timer(struct hrtimer
*timer
)
4529 struct cfq_data
*cfqd
= container_of(timer
, struct cfq_data
,
4531 struct cfq_queue
*cfqq
;
4532 unsigned long flags
;
4535 cfq_log(cfqd
, "idle timer fired");
4537 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4539 cfqq
= cfqd
->active_queue
;
4544 * We saw a request before the queue expired, let it through
4546 if (cfq_cfqq_must_dispatch(cfqq
))
4552 if (cfq_slice_used(cfqq
))
4556 * only expire and reinvoke request handler, if there are
4557 * other queues with pending requests
4559 if (!cfqd
->busy_queues
)
4563 * not expired and it has a request pending, let it dispatch
4565 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4569 * Queue depth flag is reset only when the idle didn't succeed
4571 cfq_clear_cfqq_deep(cfqq
);
4574 cfq_slice_expired(cfqd
, timed_out
);
4576 cfq_schedule_dispatch(cfqd
);
4578 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4579 return HRTIMER_NORESTART
;
4582 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4584 hrtimer_cancel(&cfqd
->idle_slice_timer
);
4585 cancel_work_sync(&cfqd
->unplug_work
);
4588 static void cfq_exit_queue(struct elevator_queue
*e
)
4590 struct cfq_data
*cfqd
= e
->elevator_data
;
4591 struct request_queue
*q
= cfqd
->queue
;
4593 cfq_shutdown_timer_wq(cfqd
);
4595 spin_lock_irq(q
->queue_lock
);
4597 if (cfqd
->active_queue
)
4598 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4600 spin_unlock_irq(q
->queue_lock
);
4602 cfq_shutdown_timer_wq(cfqd
);
4604 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4605 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4607 kfree(cfqd
->root_group
);
4612 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4614 struct cfq_data
*cfqd
;
4615 struct blkcg_gq
*blkg __maybe_unused
;
4617 struct elevator_queue
*eq
;
4619 eq
= elevator_alloc(q
, e
);
4623 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4625 kobject_put(&eq
->kobj
);
4628 eq
->elevator_data
= cfqd
;
4631 spin_lock_irq(q
->queue_lock
);
4633 spin_unlock_irq(q
->queue_lock
);
4635 /* Init root service tree */
4636 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4638 /* Init root group and prefer root group over other groups by default */
4639 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4640 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4644 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4647 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4648 GFP_KERNEL
, cfqd
->queue
->node
);
4649 if (!cfqd
->root_group
)
4652 cfq_init_cfqg_base(cfqd
->root_group
);
4653 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4654 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4658 * Not strictly needed (since RB_ROOT just clears the node and we
4659 * zeroed cfqd on alloc), but better be safe in case someone decides
4660 * to add magic to the rb code
4662 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4663 cfqd
->prio_trees
[i
] = RB_ROOT
;
4666 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4667 * Grab a permanent reference to it, so that the normal code flow
4668 * will not attempt to free it. oom_cfqq is linked to root_group
4669 * but shouldn't hold a reference as it'll never be unlinked. Lose
4670 * the reference from linking right away.
4672 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4673 cfqd
->oom_cfqq
.ref
++;
4675 spin_lock_irq(q
->queue_lock
);
4676 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4677 cfqg_put(cfqd
->root_group
);
4678 spin_unlock_irq(q
->queue_lock
);
4680 hrtimer_init(&cfqd
->idle_slice_timer
, CLOCK_MONOTONIC
,
4682 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4684 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4686 cfqd
->cfq_quantum
= cfq_quantum
;
4687 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4688 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4689 cfqd
->cfq_back_max
= cfq_back_max
;
4690 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4691 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4692 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4693 cfqd
->cfq_target_latency
= cfq_target_latency
;
4694 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4695 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4696 cfqd
->cfq_group_idle
= cfq_group_idle
;
4697 cfqd
->cfq_latency
= 1;
4700 * we optimistically start assuming sync ops weren't delayed in last
4701 * second, in order to have larger depth for async operations.
4703 cfqd
->last_delayed_sync
= ktime_get_ns() - NSEC_PER_SEC
;
4708 kobject_put(&eq
->kobj
);
4712 static void cfq_registered_queue(struct request_queue
*q
)
4714 struct elevator_queue
*e
= q
->elevator
;
4715 struct cfq_data
*cfqd
= e
->elevator_data
;
4718 * Default to IOPS mode with no idling for SSDs
4720 if (blk_queue_nonrot(q
))
4721 cfqd
->cfq_slice_idle
= 0;
4725 * sysfs parts below -->
4728 cfq_var_show(unsigned int var
, char *page
)
4730 return sprintf(page
, "%u\n", var
);
4734 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4736 char *p
= (char *) page
;
4738 *var
= simple_strtoul(p
, &p
, 10);
4742 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4743 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4745 struct cfq_data *cfqd = e->elevator_data; \
4746 u64 __data = __VAR; \
4748 __data = div_u64(__data, NSEC_PER_MSEC); \
4749 return cfq_var_show(__data, (page)); \
4751 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4752 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4753 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4754 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4755 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4756 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4757 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4758 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4759 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4760 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4761 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4762 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4763 #undef SHOW_FUNCTION
4765 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4766 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4768 struct cfq_data *cfqd = e->elevator_data; \
4769 u64 __data = __VAR; \
4770 __data = div_u64(__data, NSEC_PER_USEC); \
4771 return cfq_var_show(__data, (page)); \
4773 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show
, cfqd
->cfq_slice_idle
);
4774 USEC_SHOW_FUNCTION(cfq_group_idle_us_show
, cfqd
->cfq_group_idle
);
4775 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show
, cfqd
->cfq_slice
[1]);
4776 USEC_SHOW_FUNCTION(cfq_slice_async_us_show
, cfqd
->cfq_slice
[0]);
4777 USEC_SHOW_FUNCTION(cfq_target_latency_us_show
, cfqd
->cfq_target_latency
);
4778 #undef USEC_SHOW_FUNCTION
4780 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4781 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4783 struct cfq_data *cfqd = e->elevator_data; \
4784 unsigned int __data; \
4785 int ret = cfq_var_store(&__data, (page), count); \
4786 if (__data < (MIN)) \
4788 else if (__data > (MAX)) \
4791 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4793 *(__PTR) = __data; \
4796 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4797 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4799 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4801 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4802 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4804 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4805 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4806 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4807 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4808 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4810 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4811 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4812 #undef STORE_FUNCTION
4814 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4815 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4817 struct cfq_data *cfqd = e->elevator_data; \
4818 unsigned int __data; \
4819 int ret = cfq_var_store(&__data, (page), count); \
4820 if (__data < (MIN)) \
4822 else if (__data > (MAX)) \
4824 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4827 USEC_STORE_FUNCTION(cfq_slice_idle_us_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
);
4828 USEC_STORE_FUNCTION(cfq_group_idle_us_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
);
4829 USEC_STORE_FUNCTION(cfq_slice_sync_us_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
);
4830 USEC_STORE_FUNCTION(cfq_slice_async_us_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
);
4831 USEC_STORE_FUNCTION(cfq_target_latency_us_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
);
4832 #undef USEC_STORE_FUNCTION
4834 #define CFQ_ATTR(name) \
4835 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4837 static struct elv_fs_entry cfq_attrs
[] = {
4839 CFQ_ATTR(fifo_expire_sync
),
4840 CFQ_ATTR(fifo_expire_async
),
4841 CFQ_ATTR(back_seek_max
),
4842 CFQ_ATTR(back_seek_penalty
),
4843 CFQ_ATTR(slice_sync
),
4844 CFQ_ATTR(slice_sync_us
),
4845 CFQ_ATTR(slice_async
),
4846 CFQ_ATTR(slice_async_us
),
4847 CFQ_ATTR(slice_async_rq
),
4848 CFQ_ATTR(slice_idle
),
4849 CFQ_ATTR(slice_idle_us
),
4850 CFQ_ATTR(group_idle
),
4851 CFQ_ATTR(group_idle_us
),
4852 CFQ_ATTR(low_latency
),
4853 CFQ_ATTR(target_latency
),
4854 CFQ_ATTR(target_latency_us
),
4858 static struct elevator_type iosched_cfq
= {
4860 .elevator_merge_fn
= cfq_merge
,
4861 .elevator_merged_fn
= cfq_merged_request
,
4862 .elevator_merge_req_fn
= cfq_merged_requests
,
4863 .elevator_allow_bio_merge_fn
= cfq_allow_bio_merge
,
4864 .elevator_allow_rq_merge_fn
= cfq_allow_rq_merge
,
4865 .elevator_bio_merged_fn
= cfq_bio_merged
,
4866 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4867 .elevator_add_req_fn
= cfq_insert_request
,
4868 .elevator_activate_req_fn
= cfq_activate_request
,
4869 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4870 .elevator_completed_req_fn
= cfq_completed_request
,
4871 .elevator_former_req_fn
= elv_rb_former_request
,
4872 .elevator_latter_req_fn
= elv_rb_latter_request
,
4873 .elevator_init_icq_fn
= cfq_init_icq
,
4874 .elevator_exit_icq_fn
= cfq_exit_icq
,
4875 .elevator_set_req_fn
= cfq_set_request
,
4876 .elevator_put_req_fn
= cfq_put_request
,
4877 .elevator_may_queue_fn
= cfq_may_queue
,
4878 .elevator_init_fn
= cfq_init_queue
,
4879 .elevator_exit_fn
= cfq_exit_queue
,
4880 .elevator_registered_fn
= cfq_registered_queue
,
4882 .icq_size
= sizeof(struct cfq_io_cq
),
4883 .icq_align
= __alignof__(struct cfq_io_cq
),
4884 .elevator_attrs
= cfq_attrs
,
4885 .elevator_name
= "cfq",
4886 .elevator_owner
= THIS_MODULE
,
4889 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4890 static struct blkcg_policy blkcg_policy_cfq
= {
4891 .dfl_cftypes
= cfq_blkcg_files
,
4892 .legacy_cftypes
= cfq_blkcg_legacy_files
,
4894 .cpd_alloc_fn
= cfq_cpd_alloc
,
4895 .cpd_init_fn
= cfq_cpd_init
,
4896 .cpd_free_fn
= cfq_cpd_free
,
4897 .cpd_bind_fn
= cfq_cpd_bind
,
4899 .pd_alloc_fn
= cfq_pd_alloc
,
4900 .pd_init_fn
= cfq_pd_init
,
4901 .pd_offline_fn
= cfq_pd_offline
,
4902 .pd_free_fn
= cfq_pd_free
,
4903 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4907 static int __init
cfq_init(void)
4911 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4912 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4920 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4924 ret
= elv_register(&iosched_cfq
);
4931 kmem_cache_destroy(cfq_pool
);
4933 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4934 blkcg_policy_unregister(&blkcg_policy_cfq
);
4939 static void __exit
cfq_exit(void)
4941 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4942 blkcg_policy_unregister(&blkcg_policy_cfq
);
4944 elv_unregister(&iosched_cfq
);
4945 kmem_cache_destroy(cfq_pool
);
4948 module_init(cfq_init
);
4949 module_exit(cfq_exit
);
4951 MODULE_AUTHOR("Jens Axboe");
4952 MODULE_LICENSE("GPL");
4953 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");