x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / block / partition-generic.c
blob0171a2faad6814754a42ed29ec001e9aacdc844d
1 /*
2 * Code extracted from drivers/block/genhd.c
3 * Copyright (C) 1991-1998 Linus Torvalds
4 * Re-organised Feb 1998 Russell King
6 * We now have independent partition support from the
7 * block drivers, which allows all the partition code to
8 * be grouped in one location, and it to be mostly self
9 * contained.
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/ctype.h>
18 #include <linux/genhd.h>
19 #include <linux/dax.h>
20 #include <linux/blktrace_api.h>
22 #include "partitions/check.h"
24 #ifdef CONFIG_BLK_DEV_MD
25 extern void md_autodetect_dev(dev_t dev);
26 #endif
29 * disk_name() is used by partition check code and the genhd driver.
30 * It formats the devicename of the indicated disk into
31 * the supplied buffer (of size at least 32), and returns
32 * a pointer to that same buffer (for convenience).
35 char *disk_name(struct gendisk *hd, int partno, char *buf)
37 if (!partno)
38 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
39 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
40 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
41 else
42 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
44 return buf;
47 const char *bdevname(struct block_device *bdev, char *buf)
49 return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
52 EXPORT_SYMBOL(bdevname);
55 * There's very little reason to use this, you should really
56 * have a struct block_device just about everywhere and use
57 * bdevname() instead.
59 const char *__bdevname(dev_t dev, char *buffer)
61 scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
62 MAJOR(dev), MINOR(dev));
63 return buffer;
66 EXPORT_SYMBOL(__bdevname);
68 static ssize_t part_partition_show(struct device *dev,
69 struct device_attribute *attr, char *buf)
71 struct hd_struct *p = dev_to_part(dev);
73 return sprintf(buf, "%d\n", p->partno);
76 static ssize_t part_start_show(struct device *dev,
77 struct device_attribute *attr, char *buf)
79 struct hd_struct *p = dev_to_part(dev);
81 return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
84 ssize_t part_size_show(struct device *dev,
85 struct device_attribute *attr, char *buf)
87 struct hd_struct *p = dev_to_part(dev);
88 return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
91 static ssize_t part_ro_show(struct device *dev,
92 struct device_attribute *attr, char *buf)
94 struct hd_struct *p = dev_to_part(dev);
95 return sprintf(buf, "%d\n", p->policy ? 1 : 0);
98 static ssize_t part_alignment_offset_show(struct device *dev,
99 struct device_attribute *attr, char *buf)
101 struct hd_struct *p = dev_to_part(dev);
102 return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
105 static ssize_t part_discard_alignment_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
108 struct hd_struct *p = dev_to_part(dev);
109 return sprintf(buf, "%u\n", p->discard_alignment);
112 ssize_t part_stat_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
115 struct hd_struct *p = dev_to_part(dev);
116 int cpu;
118 cpu = part_stat_lock();
119 part_round_stats(cpu, p);
120 part_stat_unlock();
121 return sprintf(buf,
122 "%8lu %8lu %8llu %8u "
123 "%8lu %8lu %8llu %8u "
124 "%8u %8u %8u"
125 "\n",
126 part_stat_read(p, ios[READ]),
127 part_stat_read(p, merges[READ]),
128 (unsigned long long)part_stat_read(p, sectors[READ]),
129 jiffies_to_msecs(part_stat_read(p, ticks[READ])),
130 part_stat_read(p, ios[WRITE]),
131 part_stat_read(p, merges[WRITE]),
132 (unsigned long long)part_stat_read(p, sectors[WRITE]),
133 jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
134 part_in_flight(p),
135 jiffies_to_msecs(part_stat_read(p, io_ticks)),
136 jiffies_to_msecs(part_stat_read(p, time_in_queue)));
139 ssize_t part_inflight_show(struct device *dev,
140 struct device_attribute *attr, char *buf)
142 struct hd_struct *p = dev_to_part(dev);
144 return sprintf(buf, "%8u %8u\n", atomic_read(&p->in_flight[0]),
145 atomic_read(&p->in_flight[1]));
148 #ifdef CONFIG_FAIL_MAKE_REQUEST
149 ssize_t part_fail_show(struct device *dev,
150 struct device_attribute *attr, char *buf)
152 struct hd_struct *p = dev_to_part(dev);
154 return sprintf(buf, "%d\n", p->make_it_fail);
157 ssize_t part_fail_store(struct device *dev,
158 struct device_attribute *attr,
159 const char *buf, size_t count)
161 struct hd_struct *p = dev_to_part(dev);
162 int i;
164 if (count > 0 && sscanf(buf, "%d", &i) > 0)
165 p->make_it_fail = (i == 0) ? 0 : 1;
167 return count;
169 #endif
171 static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
172 static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
173 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
174 static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
175 static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
176 static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
177 NULL);
178 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
179 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
180 #ifdef CONFIG_FAIL_MAKE_REQUEST
181 static struct device_attribute dev_attr_fail =
182 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
183 #endif
185 static struct attribute *part_attrs[] = {
186 &dev_attr_partition.attr,
187 &dev_attr_start.attr,
188 &dev_attr_size.attr,
189 &dev_attr_ro.attr,
190 &dev_attr_alignment_offset.attr,
191 &dev_attr_discard_alignment.attr,
192 &dev_attr_stat.attr,
193 &dev_attr_inflight.attr,
194 #ifdef CONFIG_FAIL_MAKE_REQUEST
195 &dev_attr_fail.attr,
196 #endif
197 NULL
200 static struct attribute_group part_attr_group = {
201 .attrs = part_attrs,
204 static const struct attribute_group *part_attr_groups[] = {
205 &part_attr_group,
206 #ifdef CONFIG_BLK_DEV_IO_TRACE
207 &blk_trace_attr_group,
208 #endif
209 NULL
212 static void part_release(struct device *dev)
214 struct hd_struct *p = dev_to_part(dev);
215 blk_free_devt(dev->devt);
216 hd_free_part(p);
217 kfree(p);
220 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
222 struct hd_struct *part = dev_to_part(dev);
224 add_uevent_var(env, "PARTN=%u", part->partno);
225 if (part->info && part->info->volname[0])
226 add_uevent_var(env, "PARTNAME=%s", part->info->volname);
227 return 0;
230 struct device_type part_type = {
231 .name = "partition",
232 .groups = part_attr_groups,
233 .release = part_release,
234 .uevent = part_uevent,
237 static void delete_partition_rcu_cb(struct rcu_head *head)
239 struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
241 part->start_sect = 0;
242 part->nr_sects = 0;
243 part_stat_set_all(part, 0);
244 put_device(part_to_dev(part));
247 void __delete_partition(struct percpu_ref *ref)
249 struct hd_struct *part = container_of(ref, struct hd_struct, ref);
250 call_rcu(&part->rcu_head, delete_partition_rcu_cb);
253 void delete_partition(struct gendisk *disk, int partno)
255 struct disk_part_tbl *ptbl = disk->part_tbl;
256 struct hd_struct *part;
258 if (partno >= ptbl->len)
259 return;
261 part = ptbl->part[partno];
262 if (!part)
263 return;
265 rcu_assign_pointer(ptbl->part[partno], NULL);
266 rcu_assign_pointer(ptbl->last_lookup, NULL);
267 kobject_put(part->holder_dir);
268 device_del(part_to_dev(part));
270 hd_struct_kill(part);
273 static ssize_t whole_disk_show(struct device *dev,
274 struct device_attribute *attr, char *buf)
276 return 0;
278 static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
279 whole_disk_show, NULL);
281 struct hd_struct *add_partition(struct gendisk *disk, int partno,
282 sector_t start, sector_t len, int flags,
283 struct partition_meta_info *info)
285 struct hd_struct *p;
286 dev_t devt = MKDEV(0, 0);
287 struct device *ddev = disk_to_dev(disk);
288 struct device *pdev;
289 struct disk_part_tbl *ptbl;
290 const char *dname;
291 int err;
293 err = disk_expand_part_tbl(disk, partno);
294 if (err)
295 return ERR_PTR(err);
296 ptbl = disk->part_tbl;
298 if (ptbl->part[partno])
299 return ERR_PTR(-EBUSY);
301 p = kzalloc(sizeof(*p), GFP_KERNEL);
302 if (!p)
303 return ERR_PTR(-EBUSY);
305 if (!init_part_stats(p)) {
306 err = -ENOMEM;
307 goto out_free;
310 seqcount_init(&p->nr_sects_seq);
311 pdev = part_to_dev(p);
313 p->start_sect = start;
314 p->alignment_offset =
315 queue_limit_alignment_offset(&disk->queue->limits, start);
316 p->discard_alignment =
317 queue_limit_discard_alignment(&disk->queue->limits, start);
318 p->nr_sects = len;
319 p->partno = partno;
320 p->policy = get_disk_ro(disk);
322 if (info) {
323 struct partition_meta_info *pinfo = alloc_part_info(disk);
324 if (!pinfo)
325 goto out_free_stats;
326 memcpy(pinfo, info, sizeof(*info));
327 p->info = pinfo;
330 dname = dev_name(ddev);
331 if (isdigit(dname[strlen(dname) - 1]))
332 dev_set_name(pdev, "%sp%d", dname, partno);
333 else
334 dev_set_name(pdev, "%s%d", dname, partno);
336 device_initialize(pdev);
337 pdev->class = &block_class;
338 pdev->type = &part_type;
339 pdev->parent = ddev;
341 err = blk_alloc_devt(p, &devt);
342 if (err)
343 goto out_free_info;
344 pdev->devt = devt;
346 /* delay uevent until 'holders' subdir is created */
347 dev_set_uevent_suppress(pdev, 1);
348 err = device_add(pdev);
349 if (err)
350 goto out_put;
352 err = -ENOMEM;
353 p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
354 if (!p->holder_dir)
355 goto out_del;
357 dev_set_uevent_suppress(pdev, 0);
358 if (flags & ADDPART_FLAG_WHOLEDISK) {
359 err = device_create_file(pdev, &dev_attr_whole_disk);
360 if (err)
361 goto out_del;
364 err = hd_ref_init(p);
365 if (err) {
366 if (flags & ADDPART_FLAG_WHOLEDISK)
367 goto out_remove_file;
368 goto out_del;
371 /* everything is up and running, commence */
372 rcu_assign_pointer(ptbl->part[partno], p);
374 /* suppress uevent if the disk suppresses it */
375 if (!dev_get_uevent_suppress(ddev))
376 kobject_uevent(&pdev->kobj, KOBJ_ADD);
377 return p;
379 out_free_info:
380 free_part_info(p);
381 out_free_stats:
382 free_part_stats(p);
383 out_free:
384 kfree(p);
385 return ERR_PTR(err);
386 out_remove_file:
387 device_remove_file(pdev, &dev_attr_whole_disk);
388 out_del:
389 kobject_put(p->holder_dir);
390 device_del(pdev);
391 out_put:
392 put_device(pdev);
393 blk_free_devt(devt);
394 return ERR_PTR(err);
397 static bool disk_unlock_native_capacity(struct gendisk *disk)
399 const struct block_device_operations *bdops = disk->fops;
401 if (bdops->unlock_native_capacity &&
402 !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
403 printk(KERN_CONT "enabling native capacity\n");
404 bdops->unlock_native_capacity(disk);
405 disk->flags |= GENHD_FL_NATIVE_CAPACITY;
406 return true;
407 } else {
408 printk(KERN_CONT "truncated\n");
409 return false;
413 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
415 struct disk_part_iter piter;
416 struct hd_struct *part;
417 int res;
419 if (bdev->bd_part_count || bdev->bd_super)
420 return -EBUSY;
421 res = invalidate_partition(disk, 0);
422 if (res)
423 return res;
425 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
426 while ((part = disk_part_iter_next(&piter)))
427 delete_partition(disk, part->partno);
428 disk_part_iter_exit(&piter);
430 return 0;
433 static bool part_zone_aligned(struct gendisk *disk,
434 struct block_device *bdev,
435 sector_t from, sector_t size)
437 unsigned int zone_sectors = bdev_zone_sectors(bdev);
440 * If this function is called, then the disk is a zoned block device
441 * (host-aware or host-managed). This can be detected even if the
442 * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
443 * set). In this case, however, only host-aware devices will be seen
444 * as a block device is not created for host-managed devices. Without
445 * zoned block device support, host-aware drives can still be used as
446 * regular block devices (no zone operation) and their zone size will
447 * be reported as 0. Allow this case.
449 if (!zone_sectors)
450 return true;
453 * Check partition start and size alignement. If the drive has a
454 * smaller last runt zone, ignore it and allow the partition to
455 * use it. Check the zone size too: it should be a power of 2 number
456 * of sectors.
458 if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
459 u32 rem;
461 div_u64_rem(from, zone_sectors, &rem);
462 if (rem)
463 return false;
464 if ((from + size) < get_capacity(disk)) {
465 div_u64_rem(size, zone_sectors, &rem);
466 if (rem)
467 return false;
470 } else {
472 if (from & (zone_sectors - 1))
473 return false;
474 if ((from + size) < get_capacity(disk) &&
475 (size & (zone_sectors - 1)))
476 return false;
480 return true;
483 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
485 struct parsed_partitions *state = NULL;
486 struct hd_struct *part;
487 int p, highest, res;
488 rescan:
489 if (state && !IS_ERR(state)) {
490 free_partitions(state);
491 state = NULL;
494 res = drop_partitions(disk, bdev);
495 if (res)
496 return res;
498 if (disk->fops->revalidate_disk)
499 disk->fops->revalidate_disk(disk);
500 check_disk_size_change(disk, bdev);
501 bdev->bd_invalidated = 0;
502 if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
503 return 0;
504 if (IS_ERR(state)) {
506 * I/O error reading the partition table. If any
507 * partition code tried to read beyond EOD, retry
508 * after unlocking native capacity.
510 if (PTR_ERR(state) == -ENOSPC) {
511 printk(KERN_WARNING "%s: partition table beyond EOD, ",
512 disk->disk_name);
513 if (disk_unlock_native_capacity(disk))
514 goto rescan;
516 return -EIO;
519 * If any partition code tried to read beyond EOD, try
520 * unlocking native capacity even if partition table is
521 * successfully read as we could be missing some partitions.
523 if (state->access_beyond_eod) {
524 printk(KERN_WARNING
525 "%s: partition table partially beyond EOD, ",
526 disk->disk_name);
527 if (disk_unlock_native_capacity(disk))
528 goto rescan;
531 /* tell userspace that the media / partition table may have changed */
532 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
534 /* Detect the highest partition number and preallocate
535 * disk->part_tbl. This is an optimization and not strictly
536 * necessary.
538 for (p = 1, highest = 0; p < state->limit; p++)
539 if (state->parts[p].size)
540 highest = p;
542 disk_expand_part_tbl(disk, highest);
544 /* add partitions */
545 for (p = 1; p < state->limit; p++) {
546 sector_t size, from;
548 size = state->parts[p].size;
549 if (!size)
550 continue;
552 from = state->parts[p].from;
553 if (from >= get_capacity(disk)) {
554 printk(KERN_WARNING
555 "%s: p%d start %llu is beyond EOD, ",
556 disk->disk_name, p, (unsigned long long) from);
557 if (disk_unlock_native_capacity(disk))
558 goto rescan;
559 continue;
562 if (from + size > get_capacity(disk)) {
563 printk(KERN_WARNING
564 "%s: p%d size %llu extends beyond EOD, ",
565 disk->disk_name, p, (unsigned long long) size);
567 if (disk_unlock_native_capacity(disk)) {
568 /* free state and restart */
569 goto rescan;
570 } else {
572 * we can not ignore partitions of broken tables
573 * created by for example camera firmware, but
574 * we limit them to the end of the disk to avoid
575 * creating invalid block devices
577 size = get_capacity(disk) - from;
582 * On a zoned block device, partitions should be aligned on the
583 * device zone size (i.e. zone boundary crossing not allowed).
584 * Otherwise, resetting the write pointer of the last zone of
585 * one partition may impact the following partition.
587 if (bdev_is_zoned(bdev) &&
588 !part_zone_aligned(disk, bdev, from, size)) {
589 printk(KERN_WARNING
590 "%s: p%d start %llu+%llu is not zone aligned\n",
591 disk->disk_name, p, (unsigned long long) from,
592 (unsigned long long) size);
593 continue;
596 part = add_partition(disk, p, from, size,
597 state->parts[p].flags,
598 &state->parts[p].info);
599 if (IS_ERR(part)) {
600 printk(KERN_ERR " %s: p%d could not be added: %ld\n",
601 disk->disk_name, p, -PTR_ERR(part));
602 continue;
604 #ifdef CONFIG_BLK_DEV_MD
605 if (state->parts[p].flags & ADDPART_FLAG_RAID)
606 md_autodetect_dev(part_to_dev(part)->devt);
607 #endif
609 free_partitions(state);
610 return 0;
613 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
615 int res;
617 if (!bdev->bd_invalidated)
618 return 0;
620 res = drop_partitions(disk, bdev);
621 if (res)
622 return res;
624 set_capacity(disk, 0);
625 check_disk_size_change(disk, bdev);
626 bdev->bd_invalidated = 0;
627 /* tell userspace that the media / partition table may have changed */
628 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
630 return 0;
633 static struct page *read_pagecache_sector(struct block_device *bdev, sector_t n)
635 struct address_space *mapping = bdev->bd_inode->i_mapping;
637 return read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)),
638 NULL);
641 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
643 struct page *page;
645 /* don't populate page cache for dax capable devices */
646 if (IS_DAX(bdev->bd_inode))
647 page = read_dax_sector(bdev, n);
648 else
649 page = read_pagecache_sector(bdev, n);
651 if (!IS_ERR(page)) {
652 if (PageError(page))
653 goto fail;
654 p->v = page;
655 return (unsigned char *)page_address(page) + ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
656 fail:
657 put_page(page);
659 p->v = NULL;
660 return NULL;
663 EXPORT_SYMBOL(read_dev_sector);