x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / crypto / mv_cesa.c
blob451fa18c1c7b95e86c05c9ada597b8177e414b9a
1 /*
2 * Support for Marvell's crypto engine which can be found on some Orion5X
3 * boards.
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6 * License: GPLv2
8 */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/genalloc.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/kthread.h>
16 #include <linux/platform_device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/clk.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/sha.h>
23 #include <linux/of.h>
24 #include <linux/of_platform.h>
25 #include <linux/of_irq.h>
27 #include "mv_cesa.h"
29 #define MV_CESA "MV-CESA:"
30 #define MAX_HW_HASH_SIZE 0xFFFF
31 #define MV_CESA_EXPIRE 500 /* msec */
33 #define MV_CESA_DEFAULT_SRAM_SIZE 2048
36 * STM:
37 * /---------------------------------------\
38 * | | request complete
39 * \./ |
40 * IDLE -> new request -> BUSY -> done -> DEQUEUE
41 * /°\ |
42 * | | more scatter entries
43 * \________________/
45 enum engine_status {
46 ENGINE_IDLE,
47 ENGINE_BUSY,
48 ENGINE_W_DEQUEUE,
51 /**
52 * struct req_progress - used for every crypt request
53 * @src_sg_it: sg iterator for src
54 * @dst_sg_it: sg iterator for dst
55 * @sg_src_left: bytes left in src to process (scatter list)
56 * @src_start: offset to add to src start position (scatter list)
57 * @crypt_len: length of current hw crypt/hash process
58 * @hw_nbytes: total bytes to process in hw for this request
59 * @copy_back: whether to copy data back (crypt) or not (hash)
60 * @sg_dst_left: bytes left dst to process in this scatter list
61 * @dst_start: offset to add to dst start position (scatter list)
62 * @hw_processed_bytes: number of bytes processed by hw (request).
64 * sg helper are used to iterate over the scatterlist. Since the size of the
65 * SRAM may be less than the scatter size, this struct struct is used to keep
66 * track of progress within current scatterlist.
68 struct req_progress {
69 struct sg_mapping_iter src_sg_it;
70 struct sg_mapping_iter dst_sg_it;
71 void (*complete) (void);
72 void (*process) (int is_first);
74 /* src mostly */
75 int sg_src_left;
76 int src_start;
77 int crypt_len;
78 int hw_nbytes;
79 /* dst mostly */
80 int copy_back;
81 int sg_dst_left;
82 int dst_start;
83 int hw_processed_bytes;
86 struct crypto_priv {
87 void __iomem *reg;
88 void __iomem *sram;
89 struct gen_pool *sram_pool;
90 dma_addr_t sram_dma;
91 int irq;
92 struct clk *clk;
93 struct task_struct *queue_th;
95 /* the lock protects queue and eng_st */
96 spinlock_t lock;
97 struct crypto_queue queue;
98 enum engine_status eng_st;
99 struct timer_list completion_timer;
100 struct crypto_async_request *cur_req;
101 struct req_progress p;
102 int max_req_size;
103 int sram_size;
104 int has_sha1;
105 int has_hmac_sha1;
108 static struct crypto_priv *cpg;
110 struct mv_ctx {
111 u8 aes_enc_key[AES_KEY_LEN];
112 u32 aes_dec_key[8];
113 int key_len;
114 u32 need_calc_aes_dkey;
117 enum crypto_op {
118 COP_AES_ECB,
119 COP_AES_CBC,
122 struct mv_req_ctx {
123 enum crypto_op op;
124 int decrypt;
127 enum hash_op {
128 COP_SHA1,
129 COP_HMAC_SHA1
132 struct mv_tfm_hash_ctx {
133 struct crypto_shash *fallback;
134 struct crypto_shash *base_hash;
135 u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
136 int count_add;
137 enum hash_op op;
140 struct mv_req_hash_ctx {
141 u64 count;
142 u32 state[SHA1_DIGEST_SIZE / 4];
143 u8 buffer[SHA1_BLOCK_SIZE];
144 int first_hash; /* marks that we don't have previous state */
145 int last_chunk; /* marks that this is the 'final' request */
146 int extra_bytes; /* unprocessed bytes in buffer */
147 enum hash_op op;
148 int count_add;
151 static void mv_completion_timer_callback(unsigned long unused)
153 int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
155 printk(KERN_ERR MV_CESA
156 "completion timer expired (CESA %sactive), cleaning up.\n",
157 active ? "" : "in");
159 del_timer(&cpg->completion_timer);
160 writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
161 while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
162 printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
163 cpg->eng_st = ENGINE_W_DEQUEUE;
164 wake_up_process(cpg->queue_th);
167 static void mv_setup_timer(void)
169 setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
170 mod_timer(&cpg->completion_timer,
171 jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
174 static void compute_aes_dec_key(struct mv_ctx *ctx)
176 struct crypto_aes_ctx gen_aes_key;
177 int key_pos;
179 if (!ctx->need_calc_aes_dkey)
180 return;
182 crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
184 key_pos = ctx->key_len + 24;
185 memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
186 switch (ctx->key_len) {
187 case AES_KEYSIZE_256:
188 key_pos -= 2;
189 /* fall */
190 case AES_KEYSIZE_192:
191 key_pos -= 2;
192 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
193 4 * 4);
194 break;
196 ctx->need_calc_aes_dkey = 0;
199 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
200 unsigned int len)
202 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
203 struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
205 switch (len) {
206 case AES_KEYSIZE_128:
207 case AES_KEYSIZE_192:
208 case AES_KEYSIZE_256:
209 break;
210 default:
211 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
212 return -EINVAL;
214 ctx->key_len = len;
215 ctx->need_calc_aes_dkey = 1;
217 memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
218 return 0;
221 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
223 int ret;
224 void *sbuf;
225 int copy_len;
227 while (len) {
228 if (!p->sg_src_left) {
229 ret = sg_miter_next(&p->src_sg_it);
230 BUG_ON(!ret);
231 p->sg_src_left = p->src_sg_it.length;
232 p->src_start = 0;
235 sbuf = p->src_sg_it.addr + p->src_start;
237 copy_len = min(p->sg_src_left, len);
238 memcpy(dbuf, sbuf, copy_len);
240 p->src_start += copy_len;
241 p->sg_src_left -= copy_len;
243 len -= copy_len;
244 dbuf += copy_len;
248 static void setup_data_in(void)
250 struct req_progress *p = &cpg->p;
251 int data_in_sram =
252 min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
253 copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
254 data_in_sram - p->crypt_len);
255 p->crypt_len = data_in_sram;
258 static void mv_process_current_q(int first_block)
260 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
261 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
262 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
263 struct sec_accel_config op;
265 switch (req_ctx->op) {
266 case COP_AES_ECB:
267 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
268 break;
269 case COP_AES_CBC:
270 default:
271 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
272 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
273 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
274 if (first_block)
275 memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
276 break;
278 if (req_ctx->decrypt) {
279 op.config |= CFG_DIR_DEC;
280 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
281 AES_KEY_LEN);
282 } else {
283 op.config |= CFG_DIR_ENC;
284 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
285 AES_KEY_LEN);
288 switch (ctx->key_len) {
289 case AES_KEYSIZE_128:
290 op.config |= CFG_AES_LEN_128;
291 break;
292 case AES_KEYSIZE_192:
293 op.config |= CFG_AES_LEN_192;
294 break;
295 case AES_KEYSIZE_256:
296 op.config |= CFG_AES_LEN_256;
297 break;
299 op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
300 ENC_P_DST(SRAM_DATA_OUT_START);
301 op.enc_key_p = SRAM_DATA_KEY_P;
303 setup_data_in();
304 op.enc_len = cpg->p.crypt_len;
305 memcpy(cpg->sram + SRAM_CONFIG, &op,
306 sizeof(struct sec_accel_config));
308 /* GO */
309 mv_setup_timer();
310 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
313 static void mv_crypto_algo_completion(void)
315 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
316 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
318 sg_miter_stop(&cpg->p.src_sg_it);
319 sg_miter_stop(&cpg->p.dst_sg_it);
321 if (req_ctx->op != COP_AES_CBC)
322 return ;
324 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
327 static void mv_process_hash_current(int first_block)
329 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
330 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
331 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
332 struct req_progress *p = &cpg->p;
333 struct sec_accel_config op = { 0 };
334 int is_last;
336 switch (req_ctx->op) {
337 case COP_SHA1:
338 default:
339 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
340 break;
341 case COP_HMAC_SHA1:
342 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
343 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
344 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
345 break;
348 op.mac_src_p =
349 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
350 req_ctx->
351 count);
353 setup_data_in();
355 op.mac_digest =
356 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
357 op.mac_iv =
358 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
359 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
361 is_last = req_ctx->last_chunk
362 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
363 && (req_ctx->count <= MAX_HW_HASH_SIZE);
364 if (req_ctx->first_hash) {
365 if (is_last)
366 op.config |= CFG_NOT_FRAG;
367 else
368 op.config |= CFG_FIRST_FRAG;
370 req_ctx->first_hash = 0;
371 } else {
372 if (is_last)
373 op.config |= CFG_LAST_FRAG;
374 else
375 op.config |= CFG_MID_FRAG;
377 if (first_block) {
378 writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
379 writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
380 writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
381 writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
382 writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
386 memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
388 /* GO */
389 mv_setup_timer();
390 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
393 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
394 struct shash_desc *desc)
396 int i;
397 struct sha1_state shash_state;
399 shash_state.count = ctx->count + ctx->count_add;
400 for (i = 0; i < 5; i++)
401 shash_state.state[i] = ctx->state[i];
402 memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
403 return crypto_shash_import(desc, &shash_state);
406 static int mv_hash_final_fallback(struct ahash_request *req)
408 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
409 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
410 SHASH_DESC_ON_STACK(shash, tfm_ctx->fallback);
411 int rc;
413 shash->tfm = tfm_ctx->fallback;
414 shash->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
415 if (unlikely(req_ctx->first_hash)) {
416 crypto_shash_init(shash);
417 crypto_shash_update(shash, req_ctx->buffer,
418 req_ctx->extra_bytes);
419 } else {
420 /* only SHA1 for now....
422 rc = mv_hash_import_sha1_ctx(req_ctx, shash);
423 if (rc)
424 goto out;
426 rc = crypto_shash_final(shash, req->result);
427 out:
428 return rc;
431 static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
433 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
434 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
435 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
436 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
437 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
440 static void mv_hash_algo_completion(void)
442 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
443 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
445 if (ctx->extra_bytes)
446 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
447 sg_miter_stop(&cpg->p.src_sg_it);
449 if (likely(ctx->last_chunk)) {
450 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
451 memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
452 crypto_ahash_digestsize(crypto_ahash_reqtfm
453 (req)));
454 } else {
455 mv_save_digest_state(ctx);
456 mv_hash_final_fallback(req);
458 } else {
459 mv_save_digest_state(ctx);
463 static void dequeue_complete_req(void)
465 struct crypto_async_request *req = cpg->cur_req;
466 void *buf;
467 int ret;
468 cpg->p.hw_processed_bytes += cpg->p.crypt_len;
469 if (cpg->p.copy_back) {
470 int need_copy_len = cpg->p.crypt_len;
471 int sram_offset = 0;
472 do {
473 int dst_copy;
475 if (!cpg->p.sg_dst_left) {
476 ret = sg_miter_next(&cpg->p.dst_sg_it);
477 BUG_ON(!ret);
478 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
479 cpg->p.dst_start = 0;
482 buf = cpg->p.dst_sg_it.addr;
483 buf += cpg->p.dst_start;
485 dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
487 memcpy(buf,
488 cpg->sram + SRAM_DATA_OUT_START + sram_offset,
489 dst_copy);
490 sram_offset += dst_copy;
491 cpg->p.sg_dst_left -= dst_copy;
492 need_copy_len -= dst_copy;
493 cpg->p.dst_start += dst_copy;
494 } while (need_copy_len > 0);
497 cpg->p.crypt_len = 0;
499 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
500 if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
501 /* process next scatter list entry */
502 cpg->eng_st = ENGINE_BUSY;
503 cpg->p.process(0);
504 } else {
505 cpg->p.complete();
506 cpg->eng_st = ENGINE_IDLE;
507 local_bh_disable();
508 req->complete(req, 0);
509 local_bh_enable();
513 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
515 int i = 0;
516 size_t cur_len;
518 while (sl) {
519 cur_len = sl[i].length;
520 ++i;
521 if (total_bytes > cur_len)
522 total_bytes -= cur_len;
523 else
524 break;
527 return i;
530 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
532 struct req_progress *p = &cpg->p;
533 int num_sgs;
535 cpg->cur_req = &req->base;
536 memset(p, 0, sizeof(struct req_progress));
537 p->hw_nbytes = req->nbytes;
538 p->complete = mv_crypto_algo_completion;
539 p->process = mv_process_current_q;
540 p->copy_back = 1;
542 num_sgs = count_sgs(req->src, req->nbytes);
543 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
545 num_sgs = count_sgs(req->dst, req->nbytes);
546 sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
548 mv_process_current_q(1);
551 static void mv_start_new_hash_req(struct ahash_request *req)
553 struct req_progress *p = &cpg->p;
554 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
555 int num_sgs, hw_bytes, old_extra_bytes, rc;
556 cpg->cur_req = &req->base;
557 memset(p, 0, sizeof(struct req_progress));
558 hw_bytes = req->nbytes + ctx->extra_bytes;
559 old_extra_bytes = ctx->extra_bytes;
561 ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
562 if (ctx->extra_bytes != 0
563 && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
564 hw_bytes -= ctx->extra_bytes;
565 else
566 ctx->extra_bytes = 0;
568 num_sgs = count_sgs(req->src, req->nbytes);
569 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
571 if (hw_bytes) {
572 p->hw_nbytes = hw_bytes;
573 p->complete = mv_hash_algo_completion;
574 p->process = mv_process_hash_current;
576 if (unlikely(old_extra_bytes)) {
577 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
578 old_extra_bytes);
579 p->crypt_len = old_extra_bytes;
582 mv_process_hash_current(1);
583 } else {
584 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
585 ctx->extra_bytes - old_extra_bytes);
586 sg_miter_stop(&p->src_sg_it);
587 if (ctx->last_chunk)
588 rc = mv_hash_final_fallback(req);
589 else
590 rc = 0;
591 cpg->eng_st = ENGINE_IDLE;
592 local_bh_disable();
593 req->base.complete(&req->base, rc);
594 local_bh_enable();
598 static int queue_manag(void *data)
600 cpg->eng_st = ENGINE_IDLE;
601 do {
602 struct crypto_async_request *async_req = NULL;
603 struct crypto_async_request *backlog = NULL;
605 __set_current_state(TASK_INTERRUPTIBLE);
607 if (cpg->eng_st == ENGINE_W_DEQUEUE)
608 dequeue_complete_req();
610 spin_lock_irq(&cpg->lock);
611 if (cpg->eng_st == ENGINE_IDLE) {
612 backlog = crypto_get_backlog(&cpg->queue);
613 async_req = crypto_dequeue_request(&cpg->queue);
614 if (async_req) {
615 BUG_ON(cpg->eng_st != ENGINE_IDLE);
616 cpg->eng_st = ENGINE_BUSY;
619 spin_unlock_irq(&cpg->lock);
621 if (backlog) {
622 backlog->complete(backlog, -EINPROGRESS);
623 backlog = NULL;
626 if (async_req) {
627 if (crypto_tfm_alg_type(async_req->tfm) !=
628 CRYPTO_ALG_TYPE_AHASH) {
629 struct ablkcipher_request *req =
630 ablkcipher_request_cast(async_req);
631 mv_start_new_crypt_req(req);
632 } else {
633 struct ahash_request *req =
634 ahash_request_cast(async_req);
635 mv_start_new_hash_req(req);
637 async_req = NULL;
640 schedule();
642 } while (!kthread_should_stop());
643 return 0;
646 static int mv_handle_req(struct crypto_async_request *req)
648 unsigned long flags;
649 int ret;
651 spin_lock_irqsave(&cpg->lock, flags);
652 ret = crypto_enqueue_request(&cpg->queue, req);
653 spin_unlock_irqrestore(&cpg->lock, flags);
654 wake_up_process(cpg->queue_th);
655 return ret;
658 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
660 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
662 req_ctx->op = COP_AES_ECB;
663 req_ctx->decrypt = 0;
665 return mv_handle_req(&req->base);
668 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
670 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
671 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
673 req_ctx->op = COP_AES_ECB;
674 req_ctx->decrypt = 1;
676 compute_aes_dec_key(ctx);
677 return mv_handle_req(&req->base);
680 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
682 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
684 req_ctx->op = COP_AES_CBC;
685 req_ctx->decrypt = 0;
687 return mv_handle_req(&req->base);
690 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
692 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
693 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
695 req_ctx->op = COP_AES_CBC;
696 req_ctx->decrypt = 1;
698 compute_aes_dec_key(ctx);
699 return mv_handle_req(&req->base);
702 static int mv_cra_init(struct crypto_tfm *tfm)
704 tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
705 return 0;
708 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
709 int is_last, unsigned int req_len,
710 int count_add)
712 memset(ctx, 0, sizeof(*ctx));
713 ctx->op = op;
714 ctx->count = req_len;
715 ctx->first_hash = 1;
716 ctx->last_chunk = is_last;
717 ctx->count_add = count_add;
720 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
721 unsigned req_len)
723 ctx->last_chunk = is_last;
724 ctx->count += req_len;
727 static int mv_hash_init(struct ahash_request *req)
729 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
730 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
731 tfm_ctx->count_add);
732 return 0;
735 static int mv_hash_update(struct ahash_request *req)
737 if (!req->nbytes)
738 return 0;
740 mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
741 return mv_handle_req(&req->base);
744 static int mv_hash_final(struct ahash_request *req)
746 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
748 ahash_request_set_crypt(req, NULL, req->result, 0);
749 mv_update_hash_req_ctx(ctx, 1, 0);
750 return mv_handle_req(&req->base);
753 static int mv_hash_finup(struct ahash_request *req)
755 mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
756 return mv_handle_req(&req->base);
759 static int mv_hash_digest(struct ahash_request *req)
761 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
762 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
763 req->nbytes, tfm_ctx->count_add);
764 return mv_handle_req(&req->base);
767 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
768 const void *ostate)
770 const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
771 int i;
772 for (i = 0; i < 5; i++) {
773 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
774 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
778 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
779 unsigned int keylen)
781 int rc;
782 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
783 int bs, ds, ss;
785 if (!ctx->base_hash)
786 return 0;
788 rc = crypto_shash_setkey(ctx->fallback, key, keylen);
789 if (rc)
790 return rc;
792 /* Can't see a way to extract the ipad/opad from the fallback tfm
793 so I'm basically copying code from the hmac module */
794 bs = crypto_shash_blocksize(ctx->base_hash);
795 ds = crypto_shash_digestsize(ctx->base_hash);
796 ss = crypto_shash_statesize(ctx->base_hash);
799 SHASH_DESC_ON_STACK(shash, ctx->base_hash);
801 unsigned int i;
802 char ipad[ss];
803 char opad[ss];
805 shash->tfm = ctx->base_hash;
806 shash->flags = crypto_shash_get_flags(ctx->base_hash) &
807 CRYPTO_TFM_REQ_MAY_SLEEP;
809 if (keylen > bs) {
810 int err;
812 err =
813 crypto_shash_digest(shash, key, keylen, ipad);
814 if (err)
815 return err;
817 keylen = ds;
818 } else
819 memcpy(ipad, key, keylen);
821 memset(ipad + keylen, 0, bs - keylen);
822 memcpy(opad, ipad, bs);
824 for (i = 0; i < bs; i++) {
825 ipad[i] ^= 0x36;
826 opad[i] ^= 0x5c;
829 rc = crypto_shash_init(shash) ? :
830 crypto_shash_update(shash, ipad, bs) ? :
831 crypto_shash_export(shash, ipad) ? :
832 crypto_shash_init(shash) ? :
833 crypto_shash_update(shash, opad, bs) ? :
834 crypto_shash_export(shash, opad);
836 if (rc == 0)
837 mv_hash_init_ivs(ctx, ipad, opad);
839 return rc;
843 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
844 enum hash_op op, int count_add)
846 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
847 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
848 struct crypto_shash *fallback_tfm = NULL;
849 struct crypto_shash *base_hash = NULL;
850 int err = -ENOMEM;
852 ctx->op = op;
853 ctx->count_add = count_add;
855 /* Allocate a fallback and abort if it failed. */
856 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
857 CRYPTO_ALG_NEED_FALLBACK);
858 if (IS_ERR(fallback_tfm)) {
859 printk(KERN_WARNING MV_CESA
860 "Fallback driver '%s' could not be loaded!\n",
861 fallback_driver_name);
862 err = PTR_ERR(fallback_tfm);
863 goto out;
865 ctx->fallback = fallback_tfm;
867 if (base_hash_name) {
868 /* Allocate a hash to compute the ipad/opad of hmac. */
869 base_hash = crypto_alloc_shash(base_hash_name, 0,
870 CRYPTO_ALG_NEED_FALLBACK);
871 if (IS_ERR(base_hash)) {
872 printk(KERN_WARNING MV_CESA
873 "Base driver '%s' could not be loaded!\n",
874 base_hash_name);
875 err = PTR_ERR(base_hash);
876 goto err_bad_base;
879 ctx->base_hash = base_hash;
881 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
882 sizeof(struct mv_req_hash_ctx) +
883 crypto_shash_descsize(ctx->fallback));
884 return 0;
885 err_bad_base:
886 crypto_free_shash(fallback_tfm);
887 out:
888 return err;
891 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
893 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
895 crypto_free_shash(ctx->fallback);
896 if (ctx->base_hash)
897 crypto_free_shash(ctx->base_hash);
900 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
902 return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
905 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
907 return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
910 static irqreturn_t crypto_int(int irq, void *priv)
912 u32 val;
914 val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
915 if (!(val & SEC_INT_ACCEL0_DONE))
916 return IRQ_NONE;
918 if (!del_timer(&cpg->completion_timer)) {
919 printk(KERN_WARNING MV_CESA
920 "got an interrupt but no pending timer?\n");
922 val &= ~SEC_INT_ACCEL0_DONE;
923 writel(val, cpg->reg + FPGA_INT_STATUS);
924 writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
925 BUG_ON(cpg->eng_st != ENGINE_BUSY);
926 cpg->eng_st = ENGINE_W_DEQUEUE;
927 wake_up_process(cpg->queue_th);
928 return IRQ_HANDLED;
931 static struct crypto_alg mv_aes_alg_ecb = {
932 .cra_name = "ecb(aes)",
933 .cra_driver_name = "mv-ecb-aes",
934 .cra_priority = 300,
935 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
936 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
937 .cra_blocksize = 16,
938 .cra_ctxsize = sizeof(struct mv_ctx),
939 .cra_alignmask = 0,
940 .cra_type = &crypto_ablkcipher_type,
941 .cra_module = THIS_MODULE,
942 .cra_init = mv_cra_init,
943 .cra_u = {
944 .ablkcipher = {
945 .min_keysize = AES_MIN_KEY_SIZE,
946 .max_keysize = AES_MAX_KEY_SIZE,
947 .setkey = mv_setkey_aes,
948 .encrypt = mv_enc_aes_ecb,
949 .decrypt = mv_dec_aes_ecb,
954 static struct crypto_alg mv_aes_alg_cbc = {
955 .cra_name = "cbc(aes)",
956 .cra_driver_name = "mv-cbc-aes",
957 .cra_priority = 300,
958 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
959 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
960 .cra_blocksize = AES_BLOCK_SIZE,
961 .cra_ctxsize = sizeof(struct mv_ctx),
962 .cra_alignmask = 0,
963 .cra_type = &crypto_ablkcipher_type,
964 .cra_module = THIS_MODULE,
965 .cra_init = mv_cra_init,
966 .cra_u = {
967 .ablkcipher = {
968 .ivsize = AES_BLOCK_SIZE,
969 .min_keysize = AES_MIN_KEY_SIZE,
970 .max_keysize = AES_MAX_KEY_SIZE,
971 .setkey = mv_setkey_aes,
972 .encrypt = mv_enc_aes_cbc,
973 .decrypt = mv_dec_aes_cbc,
978 static struct ahash_alg mv_sha1_alg = {
979 .init = mv_hash_init,
980 .update = mv_hash_update,
981 .final = mv_hash_final,
982 .finup = mv_hash_finup,
983 .digest = mv_hash_digest,
984 .halg = {
985 .digestsize = SHA1_DIGEST_SIZE,
986 .base = {
987 .cra_name = "sha1",
988 .cra_driver_name = "mv-sha1",
989 .cra_priority = 300,
990 .cra_flags =
991 CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
992 CRYPTO_ALG_NEED_FALLBACK,
993 .cra_blocksize = SHA1_BLOCK_SIZE,
994 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
995 .cra_init = mv_cra_hash_sha1_init,
996 .cra_exit = mv_cra_hash_exit,
997 .cra_module = THIS_MODULE,
1002 static struct ahash_alg mv_hmac_sha1_alg = {
1003 .init = mv_hash_init,
1004 .update = mv_hash_update,
1005 .final = mv_hash_final,
1006 .finup = mv_hash_finup,
1007 .digest = mv_hash_digest,
1008 .setkey = mv_hash_setkey,
1009 .halg = {
1010 .digestsize = SHA1_DIGEST_SIZE,
1011 .base = {
1012 .cra_name = "hmac(sha1)",
1013 .cra_driver_name = "mv-hmac-sha1",
1014 .cra_priority = 300,
1015 .cra_flags =
1016 CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1017 CRYPTO_ALG_NEED_FALLBACK,
1018 .cra_blocksize = SHA1_BLOCK_SIZE,
1019 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1020 .cra_init = mv_cra_hash_hmac_sha1_init,
1021 .cra_exit = mv_cra_hash_exit,
1022 .cra_module = THIS_MODULE,
1027 static int mv_cesa_get_sram(struct platform_device *pdev,
1028 struct crypto_priv *cp)
1030 struct resource *res;
1031 u32 sram_size = MV_CESA_DEFAULT_SRAM_SIZE;
1033 of_property_read_u32(pdev->dev.of_node, "marvell,crypto-sram-size",
1034 &sram_size);
1036 cp->sram_size = sram_size;
1037 cp->sram_pool = of_gen_pool_get(pdev->dev.of_node,
1038 "marvell,crypto-srams", 0);
1039 if (cp->sram_pool) {
1040 cp->sram = gen_pool_dma_alloc(cp->sram_pool, sram_size,
1041 &cp->sram_dma);
1042 if (cp->sram)
1043 return 0;
1045 return -ENOMEM;
1048 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1049 "sram");
1050 if (!res || resource_size(res) < cp->sram_size)
1051 return -EINVAL;
1053 cp->sram = devm_ioremap_resource(&pdev->dev, res);
1054 if (IS_ERR(cp->sram))
1055 return PTR_ERR(cp->sram);
1057 return 0;
1060 static int mv_probe(struct platform_device *pdev)
1062 struct crypto_priv *cp;
1063 struct resource *res;
1064 int irq;
1065 int ret;
1067 if (cpg) {
1068 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1069 return -EEXIST;
1072 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1073 if (!res)
1074 return -ENXIO;
1076 cp = devm_kzalloc(&pdev->dev, sizeof(*cp), GFP_KERNEL);
1077 if (!cp)
1078 return -ENOMEM;
1080 spin_lock_init(&cp->lock);
1081 crypto_init_queue(&cp->queue, 50);
1082 cp->reg = devm_ioremap_resource(&pdev->dev, res);
1083 if (IS_ERR(cp->reg)) {
1084 ret = PTR_ERR(cp->reg);
1085 goto err;
1088 ret = mv_cesa_get_sram(pdev, cp);
1089 if (ret)
1090 goto err;
1092 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1094 irq = platform_get_irq(pdev, 0);
1095 if (irq < 0) {
1096 ret = irq;
1097 goto err;
1099 cp->irq = irq;
1101 platform_set_drvdata(pdev, cp);
1102 cpg = cp;
1104 cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1105 if (IS_ERR(cp->queue_th)) {
1106 ret = PTR_ERR(cp->queue_th);
1107 goto err;
1110 ret = request_irq(irq, crypto_int, 0, dev_name(&pdev->dev),
1111 cp);
1112 if (ret)
1113 goto err_thread;
1115 /* Not all platforms can gate the clock, so it is not
1116 an error if the clock does not exists. */
1117 cp->clk = clk_get(&pdev->dev, NULL);
1118 if (!IS_ERR(cp->clk))
1119 clk_prepare_enable(cp->clk);
1121 writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1122 writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1123 writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1124 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1126 ret = crypto_register_alg(&mv_aes_alg_ecb);
1127 if (ret) {
1128 printk(KERN_WARNING MV_CESA
1129 "Could not register aes-ecb driver\n");
1130 goto err_irq;
1133 ret = crypto_register_alg(&mv_aes_alg_cbc);
1134 if (ret) {
1135 printk(KERN_WARNING MV_CESA
1136 "Could not register aes-cbc driver\n");
1137 goto err_unreg_ecb;
1140 ret = crypto_register_ahash(&mv_sha1_alg);
1141 if (ret == 0)
1142 cpg->has_sha1 = 1;
1143 else
1144 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1146 ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1147 if (ret == 0) {
1148 cpg->has_hmac_sha1 = 1;
1149 } else {
1150 printk(KERN_WARNING MV_CESA
1151 "Could not register hmac-sha1 driver\n");
1154 return 0;
1155 err_unreg_ecb:
1156 crypto_unregister_alg(&mv_aes_alg_ecb);
1157 err_irq:
1158 free_irq(irq, cp);
1159 if (!IS_ERR(cp->clk)) {
1160 clk_disable_unprepare(cp->clk);
1161 clk_put(cp->clk);
1163 err_thread:
1164 kthread_stop(cp->queue_th);
1165 err:
1166 cpg = NULL;
1167 return ret;
1170 static int mv_remove(struct platform_device *pdev)
1172 struct crypto_priv *cp = platform_get_drvdata(pdev);
1174 crypto_unregister_alg(&mv_aes_alg_ecb);
1175 crypto_unregister_alg(&mv_aes_alg_cbc);
1176 if (cp->has_sha1)
1177 crypto_unregister_ahash(&mv_sha1_alg);
1178 if (cp->has_hmac_sha1)
1179 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1180 kthread_stop(cp->queue_th);
1181 free_irq(cp->irq, cp);
1182 memset(cp->sram, 0, cp->sram_size);
1184 if (!IS_ERR(cp->clk)) {
1185 clk_disable_unprepare(cp->clk);
1186 clk_put(cp->clk);
1189 cpg = NULL;
1190 return 0;
1193 static const struct of_device_id mv_cesa_of_match_table[] = {
1194 { .compatible = "marvell,orion-crypto", },
1195 { .compatible = "marvell,kirkwood-crypto", },
1196 { .compatible = "marvell,dove-crypto", },
1199 MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
1201 static struct platform_driver marvell_crypto = {
1202 .probe = mv_probe,
1203 .remove = mv_remove,
1204 .driver = {
1205 .name = "mv_crypto",
1206 .of_match_table = mv_cesa_of_match_table,
1209 MODULE_ALIAS("platform:mv_crypto");
1211 module_platform_driver(marvell_crypto);
1213 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1214 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1215 MODULE_LICENSE("GPL");