2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex
);
45 static LIST_HEAD(mc_devices
);
48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49 * apei/ghes and i7core_edac to be used at the same time.
51 static void const *edac_mc_owner
;
53 static struct bus_type mc_bus
[EDAC_MAX_MCS
];
55 unsigned edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
58 struct mem_ctl_info
*mci
= dimm
->mci
;
62 for (i
= 0; i
< mci
->n_layers
; i
++) {
63 n
= snprintf(p
, len
, "%s %d ",
64 edac_layer_name
[mci
->layers
[i
].type
],
76 #ifdef CONFIG_EDAC_DEBUG
78 static void edac_mc_dump_channel(struct rank_info
*chan
)
80 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
81 edac_dbg(4, " channel = %p\n", chan
);
82 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
83 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
86 static void edac_mc_dump_dimm(struct dimm_info
*dimm
, int number
)
90 edac_dimm_info_location(dimm
, location
, sizeof(location
));
92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93 dimm
->mci
->csbased
? "rank" : "dimm",
94 number
, location
, dimm
->csrow
, dimm
->cschannel
);
95 edac_dbg(4, " dimm = %p\n", dimm
);
96 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
98 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
102 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
105 edac_dbg(4, " csrow = %p\n", csrow
);
106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
110 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
111 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
114 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
116 edac_dbg(3, "\tmci = %p\n", mci
);
117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
120 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 mci
->nr_csrows
, mci
->csrows
);
123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 mci
->tot_dimms
, mci
->dimms
);
125 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 mci
->mod_name
, mci
->ctl_name
);
128 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
131 #endif /* CONFIG_EDAC_DEBUG */
133 const char * const edac_mem_types
[] = {
134 [MEM_EMPTY
] = "Empty csrow",
135 [MEM_RESERVED
] = "Reserved csrow type",
136 [MEM_UNKNOWN
] = "Unknown csrow type",
137 [MEM_FPM
] = "Fast page mode RAM",
138 [MEM_EDO
] = "Extended data out RAM",
139 [MEM_BEDO
] = "Burst Extended data out RAM",
140 [MEM_SDR
] = "Single data rate SDRAM",
141 [MEM_RDR
] = "Registered single data rate SDRAM",
142 [MEM_DDR
] = "Double data rate SDRAM",
143 [MEM_RDDR
] = "Registered Double data rate SDRAM",
144 [MEM_RMBS
] = "Rambus DRAM",
145 [MEM_DDR2
] = "Unbuffered DDR2 RAM",
146 [MEM_FB_DDR2
] = "Fully buffered DDR2",
147 [MEM_RDDR2
] = "Registered DDR2 RAM",
148 [MEM_XDR
] = "Rambus XDR",
149 [MEM_DDR3
] = "Unbuffered DDR3 RAM",
150 [MEM_RDDR3
] = "Registered DDR3 RAM",
151 [MEM_LRDDR3
] = "Load-Reduced DDR3 RAM",
152 [MEM_DDR4
] = "Unbuffered DDR4 RAM",
153 [MEM_RDDR4
] = "Registered DDR4 RAM",
155 EXPORT_SYMBOL_GPL(edac_mem_types
);
158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159 * @p: pointer to a pointer with the memory offset to be used. At
160 * return, this will be incremented to point to the next offset
161 * @size: Size of the data structure to be reserved
162 * @n_elems: Number of elements that should be reserved
164 * If 'size' is a constant, the compiler will optimize this whole function
165 * down to either a no-op or the addition of a constant to the value of '*p'.
167 * The 'p' pointer is absolutely needed to keep the proper advancing
168 * further in memory to the proper offsets when allocating the struct along
169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
170 * above, for example.
172 * At return, the pointer 'p' will be incremented to be used on a next call
175 void *edac_align_ptr(void **p
, unsigned size
, int n_elems
)
180 *p
+= size
* n_elems
;
183 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 * 'size'. Adjust 'p' so that its alignment is at least as
185 * stringent as what the compiler would provide for X and return
186 * the aligned result.
187 * Here we assume that the alignment of a "long long" is the most
188 * stringent alignment that the compiler will ever provide by default.
189 * As far as I know, this is a reasonable assumption.
191 if (size
> sizeof(long))
192 align
= sizeof(long long);
193 else if (size
> sizeof(int))
194 align
= sizeof(long);
195 else if (size
> sizeof(short))
197 else if (size
> sizeof(char))
198 align
= sizeof(short);
202 r
= (unsigned long)p
% align
;
209 return (void *)(((unsigned long)ptr
) + align
- r
);
212 static void _edac_mc_free(struct mem_ctl_info
*mci
)
215 struct csrow_info
*csr
;
216 const unsigned int tot_dimms
= mci
->tot_dimms
;
217 const unsigned int tot_channels
= mci
->num_cschannel
;
218 const unsigned int tot_csrows
= mci
->nr_csrows
;
221 for (i
= 0; i
< tot_dimms
; i
++)
222 kfree(mci
->dimms
[i
]);
226 for (row
= 0; row
< tot_csrows
; row
++) {
227 csr
= mci
->csrows
[row
];
230 for (chn
= 0; chn
< tot_channels
; chn
++)
231 kfree(csr
->channels
[chn
]);
232 kfree(csr
->channels
);
242 struct mem_ctl_info
*edac_mc_alloc(unsigned mc_num
,
244 struct edac_mc_layer
*layers
,
247 struct mem_ctl_info
*mci
;
248 struct edac_mc_layer
*layer
;
249 struct csrow_info
*csr
;
250 struct rank_info
*chan
;
251 struct dimm_info
*dimm
;
252 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
253 unsigned pos
[EDAC_MAX_LAYERS
];
254 unsigned size
, tot_dimms
= 1, count
= 1;
255 unsigned tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
256 void *pvt
, *p
, *ptr
= NULL
;
257 int i
, j
, row
, chn
, n
, len
, off
;
258 bool per_rank
= false;
260 BUG_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0);
262 * Calculate the total amount of dimms and csrows/cschannels while
263 * in the old API emulation mode
265 for (i
= 0; i
< n_layers
; i
++) {
266 tot_dimms
*= layers
[i
].size
;
267 if (layers
[i
].is_virt_csrow
)
268 tot_csrows
*= layers
[i
].size
;
270 tot_channels
*= layers
[i
].size
;
272 if (layers
[i
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
276 /* Figure out the offsets of the various items from the start of an mc
277 * structure. We want the alignment of each item to be at least as
278 * stringent as what the compiler would provide if we could simply
279 * hardcode everything into a single struct.
281 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
282 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
283 for (i
= 0; i
< n_layers
; i
++) {
284 count
*= layers
[i
].size
;
285 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
286 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
287 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
288 tot_errcount
+= 2 * count
;
291 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
292 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
293 size
= ((unsigned long)pvt
) + sz_pvt
;
295 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
298 per_rank
? "ranks" : "dimms",
299 tot_csrows
* tot_channels
);
301 mci
= kzalloc(size
, GFP_KERNEL
);
305 /* Adjust pointers so they point within the memory we just allocated
306 * rather than an imaginary chunk of memory located at address 0.
308 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
309 for (i
= 0; i
< n_layers
; i
++) {
310 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
311 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
313 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
315 /* setup index and various internal pointers */
316 mci
->mc_idx
= mc_num
;
317 mci
->tot_dimms
= tot_dimms
;
319 mci
->n_layers
= n_layers
;
321 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
322 mci
->nr_csrows
= tot_csrows
;
323 mci
->num_cschannel
= tot_channels
;
324 mci
->csbased
= per_rank
;
327 * Alocate and fill the csrow/channels structs
329 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
332 for (row
= 0; row
< tot_csrows
; row
++) {
333 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
336 mci
->csrows
[row
] = csr
;
337 csr
->csrow_idx
= row
;
339 csr
->nr_channels
= tot_channels
;
340 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
345 for (chn
= 0; chn
< tot_channels
; chn
++) {
346 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
349 csr
->channels
[chn
] = chan
;
350 chan
->chan_idx
= chn
;
356 * Allocate and fill the dimm structs
358 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
362 memset(&pos
, 0, sizeof(pos
));
365 for (i
= 0; i
< tot_dimms
; i
++) {
366 chan
= mci
->csrows
[row
]->channels
[chn
];
367 off
= EDAC_DIMM_OFF(layer
, n_layers
, pos
[0], pos
[1], pos
[2]);
368 if (off
< 0 || off
>= tot_dimms
) {
369 edac_mc_printk(mci
, KERN_ERR
, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
373 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
376 mci
->dimms
[off
] = dimm
;
380 * Copy DIMM location and initialize it.
382 len
= sizeof(dimm
->label
);
384 n
= snprintf(p
, len
, "mc#%u", mc_num
);
387 for (j
= 0; j
< n_layers
; j
++) {
388 n
= snprintf(p
, len
, "%s#%u",
389 edac_layer_name
[layers
[j
].type
],
393 dimm
->location
[j
] = pos
[j
];
399 /* Link it to the csrows old API data */
402 dimm
->cschannel
= chn
;
404 /* Increment csrow location */
405 if (layers
[0].is_virt_csrow
) {
407 if (chn
== tot_channels
) {
413 if (row
== tot_csrows
) {
419 /* Increment dimm location */
420 for (j
= n_layers
- 1; j
>= 0; j
--) {
422 if (pos
[j
] < layers
[j
].size
)
428 mci
->op_state
= OP_ALLOC
;
437 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
439 void edac_mc_free(struct mem_ctl_info
*mci
)
443 /* If we're not yet registered with sysfs free only what was allocated
444 * in edac_mc_alloc().
446 if (!device_is_registered(&mci
->dev
)) {
451 /* the mci instance is freed here, when the sysfs object is dropped */
452 edac_unregister_sysfs(mci
);
454 EXPORT_SYMBOL_GPL(edac_mc_free
);
456 bool edac_has_mcs(void)
460 mutex_lock(&mem_ctls_mutex
);
462 ret
= list_empty(&mc_devices
);
464 mutex_unlock(&mem_ctls_mutex
);
468 EXPORT_SYMBOL_GPL(edac_has_mcs
);
470 /* Caller must hold mem_ctls_mutex */
471 static struct mem_ctl_info
*__find_mci_by_dev(struct device
*dev
)
473 struct mem_ctl_info
*mci
;
474 struct list_head
*item
;
478 list_for_each(item
, &mc_devices
) {
479 mci
= list_entry(item
, struct mem_ctl_info
, link
);
481 if (mci
->pdev
== dev
)
491 * scan list of controllers looking for the one that manages
493 * @dev: pointer to a struct device related with the MCI
495 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
497 struct mem_ctl_info
*ret
;
499 mutex_lock(&mem_ctls_mutex
);
500 ret
= __find_mci_by_dev(dev
);
501 mutex_unlock(&mem_ctls_mutex
);
505 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
508 * handler for EDAC to check if NMI type handler has asserted interrupt
510 static int edac_mc_assert_error_check_and_clear(void)
514 if (edac_op_state
== EDAC_OPSTATE_POLL
)
517 old_state
= edac_err_assert
;
524 * edac_mc_workq_function
525 * performs the operation scheduled by a workq request
527 static void edac_mc_workq_function(struct work_struct
*work_req
)
529 struct delayed_work
*d_work
= to_delayed_work(work_req
);
530 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
532 mutex_lock(&mem_ctls_mutex
);
534 if (mci
->op_state
!= OP_RUNNING_POLL
) {
535 mutex_unlock(&mem_ctls_mutex
);
539 if (edac_mc_assert_error_check_and_clear())
540 mci
->edac_check(mci
);
542 mutex_unlock(&mem_ctls_mutex
);
544 /* Queue ourselves again. */
545 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
549 * edac_mc_reset_delay_period(unsigned long value)
551 * user space has updated our poll period value, need to
552 * reset our workq delays
554 void edac_mc_reset_delay_period(unsigned long value
)
556 struct mem_ctl_info
*mci
;
557 struct list_head
*item
;
559 mutex_lock(&mem_ctls_mutex
);
561 list_for_each(item
, &mc_devices
) {
562 mci
= list_entry(item
, struct mem_ctl_info
, link
);
564 if (mci
->op_state
== OP_RUNNING_POLL
)
565 edac_mod_work(&mci
->work
, value
);
567 mutex_unlock(&mem_ctls_mutex
);
572 /* Return 0 on success, 1 on failure.
573 * Before calling this function, caller must
574 * assign a unique value to mci->mc_idx.
578 * called with the mem_ctls_mutex lock held
580 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
582 struct list_head
*item
, *insert_before
;
583 struct mem_ctl_info
*p
;
585 insert_before
= &mc_devices
;
587 p
= __find_mci_by_dev(mci
->pdev
);
588 if (unlikely(p
!= NULL
))
591 list_for_each(item
, &mc_devices
) {
592 p
= list_entry(item
, struct mem_ctl_info
, link
);
594 if (p
->mc_idx
>= mci
->mc_idx
) {
595 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
598 insert_before
= item
;
603 list_add_tail_rcu(&mci
->link
, insert_before
);
604 atomic_inc(&edac_handlers
);
608 edac_printk(KERN_WARNING
, EDAC_MC
,
609 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
610 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
614 edac_printk(KERN_WARNING
, EDAC_MC
,
615 "bug in low-level driver: attempt to assign\n"
616 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
620 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
622 int handlers
= atomic_dec_return(&edac_handlers
);
623 list_del_rcu(&mci
->link
);
625 /* these are for safe removal of devices from global list while
626 * NMI handlers may be traversing list
629 INIT_LIST_HEAD(&mci
->link
);
634 struct mem_ctl_info
*edac_mc_find(int idx
)
636 struct mem_ctl_info
*mci
= NULL
;
637 struct list_head
*item
;
639 mutex_lock(&mem_ctls_mutex
);
641 list_for_each(item
, &mc_devices
) {
642 mci
= list_entry(item
, struct mem_ctl_info
, link
);
644 if (mci
->mc_idx
>= idx
) {
645 if (mci
->mc_idx
== idx
) {
653 mutex_unlock(&mem_ctls_mutex
);
656 EXPORT_SYMBOL(edac_mc_find
);
659 /* FIXME - should a warning be printed if no error detection? correction? */
660 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
661 const struct attribute_group
**groups
)
666 if (mci
->mc_idx
>= EDAC_MAX_MCS
) {
667 pr_warn_once("Too many memory controllers: %d\n", mci
->mc_idx
);
671 #ifdef CONFIG_EDAC_DEBUG
672 if (edac_debug_level
>= 3)
673 edac_mc_dump_mci(mci
);
675 if (edac_debug_level
>= 4) {
678 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
679 struct csrow_info
*csrow
= mci
->csrows
[i
];
683 for (j
= 0; j
< csrow
->nr_channels
; j
++)
684 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
687 edac_mc_dump_csrow(csrow
);
688 for (j
= 0; j
< csrow
->nr_channels
; j
++)
689 if (csrow
->channels
[j
]->dimm
->nr_pages
)
690 edac_mc_dump_channel(csrow
->channels
[j
]);
692 for (i
= 0; i
< mci
->tot_dimms
; i
++)
693 if (mci
->dimms
[i
]->nr_pages
)
694 edac_mc_dump_dimm(mci
->dimms
[i
], i
);
697 mutex_lock(&mem_ctls_mutex
);
699 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
704 if (add_mc_to_global_list(mci
))
707 /* set load time so that error rate can be tracked */
708 mci
->start_time
= jiffies
;
710 mci
->bus
= &mc_bus
[mci
->mc_idx
];
712 if (edac_create_sysfs_mci_device(mci
, groups
)) {
713 edac_mc_printk(mci
, KERN_WARNING
,
714 "failed to create sysfs device\n");
718 if (mci
->edac_check
) {
719 mci
->op_state
= OP_RUNNING_POLL
;
721 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
722 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
725 mci
->op_state
= OP_RUNNING_INTERRUPT
;
728 /* Report action taken */
729 edac_mc_printk(mci
, KERN_INFO
,
730 "Giving out device to module %s controller %s: DEV %s (%s)\n",
731 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
732 edac_op_state_to_string(mci
->op_state
));
734 edac_mc_owner
= mci
->mod_name
;
736 mutex_unlock(&mem_ctls_mutex
);
740 del_mc_from_global_list(mci
);
743 mutex_unlock(&mem_ctls_mutex
);
746 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
748 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
750 struct mem_ctl_info
*mci
;
754 mutex_lock(&mem_ctls_mutex
);
756 /* find the requested mci struct in the global list */
757 mci
= __find_mci_by_dev(dev
);
759 mutex_unlock(&mem_ctls_mutex
);
763 /* mark MCI offline: */
764 mci
->op_state
= OP_OFFLINE
;
766 if (!del_mc_from_global_list(mci
))
767 edac_mc_owner
= NULL
;
769 mutex_unlock(&mem_ctls_mutex
);
772 edac_stop_work(&mci
->work
);
774 /* remove from sysfs */
775 edac_remove_sysfs_mci_device(mci
);
777 edac_printk(KERN_INFO
, EDAC_MC
,
778 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
779 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
783 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
785 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
790 unsigned long flags
= 0;
794 /* ECC error page was not in our memory. Ignore it. */
795 if (!pfn_valid(page
))
798 /* Find the actual page structure then map it and fix */
799 pg
= pfn_to_page(page
);
802 local_irq_save(flags
);
804 virt_addr
= kmap_atomic(pg
);
806 /* Perform architecture specific atomic scrub operation */
807 edac_atomic_scrub(virt_addr
+ offset
, size
);
809 /* Unmap and complete */
810 kunmap_atomic(virt_addr
);
813 local_irq_restore(flags
);
816 /* FIXME - should return -1 */
817 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
819 struct csrow_info
**csrows
= mci
->csrows
;
822 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
825 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
826 struct csrow_info
*csrow
= csrows
[i
];
828 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
829 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
835 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
837 csrow
->first_page
, page
, csrow
->last_page
,
840 if ((page
>= csrow
->first_page
) &&
841 (page
<= csrow
->last_page
) &&
842 ((page
& csrow
->page_mask
) ==
843 (csrow
->first_page
& csrow
->page_mask
))) {
850 edac_mc_printk(mci
, KERN_ERR
,
851 "could not look up page error address %lx\n",
852 (unsigned long)page
);
856 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
858 const char *edac_layer_name
[] = {
859 [EDAC_MC_LAYER_BRANCH
] = "branch",
860 [EDAC_MC_LAYER_CHANNEL
] = "channel",
861 [EDAC_MC_LAYER_SLOT
] = "slot",
862 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
863 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
865 EXPORT_SYMBOL_GPL(edac_layer_name
);
867 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
868 bool enable_per_layer_report
,
869 const int pos
[EDAC_MAX_LAYERS
],
876 if (!enable_per_layer_report
) {
877 mci
->ce_noinfo_count
+= count
;
881 for (i
= 0; i
< mci
->n_layers
; i
++) {
885 mci
->ce_per_layer
[i
][index
] += count
;
887 if (i
< mci
->n_layers
- 1)
888 index
*= mci
->layers
[i
+ 1].size
;
892 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
893 bool enable_per_layer_report
,
894 const int pos
[EDAC_MAX_LAYERS
],
901 if (!enable_per_layer_report
) {
902 mci
->ue_noinfo_count
+= count
;
906 for (i
= 0; i
< mci
->n_layers
; i
++) {
910 mci
->ue_per_layer
[i
][index
] += count
;
912 if (i
< mci
->n_layers
- 1)
913 index
*= mci
->layers
[i
+ 1].size
;
917 static void edac_ce_error(struct mem_ctl_info
*mci
,
918 const u16 error_count
,
919 const int pos
[EDAC_MAX_LAYERS
],
921 const char *location
,
924 const char *other_detail
,
925 const bool enable_per_layer_report
,
926 const unsigned long page_frame_number
,
927 const unsigned long offset_in_page
,
930 unsigned long remapped_page
;
936 if (edac_mc_get_log_ce()) {
937 if (other_detail
&& *other_detail
)
938 edac_mc_printk(mci
, KERN_WARNING
,
939 "%d CE %s%son %s (%s %s - %s)\n",
940 error_count
, msg
, msg_aux
, label
,
941 location
, detail
, other_detail
);
943 edac_mc_printk(mci
, KERN_WARNING
,
944 "%d CE %s%son %s (%s %s)\n",
945 error_count
, msg
, msg_aux
, label
,
948 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
950 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
952 * Some memory controllers (called MCs below) can remap
953 * memory so that it is still available at a different
954 * address when PCI devices map into memory.
955 * MC's that can't do this, lose the memory where PCI
956 * devices are mapped. This mapping is MC-dependent
957 * and so we call back into the MC driver for it to
958 * map the MC page to a physical (CPU) page which can
959 * then be mapped to a virtual page - which can then
962 remapped_page
= mci
->ctl_page_to_phys
?
963 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
966 edac_mc_scrub_block(remapped_page
,
967 offset_in_page
, grain
);
971 static void edac_ue_error(struct mem_ctl_info
*mci
,
972 const u16 error_count
,
973 const int pos
[EDAC_MAX_LAYERS
],
975 const char *location
,
978 const char *other_detail
,
979 const bool enable_per_layer_report
)
986 if (edac_mc_get_log_ue()) {
987 if (other_detail
&& *other_detail
)
988 edac_mc_printk(mci
, KERN_WARNING
,
989 "%d UE %s%son %s (%s %s - %s)\n",
990 error_count
, msg
, msg_aux
, label
,
991 location
, detail
, other_detail
);
993 edac_mc_printk(mci
, KERN_WARNING
,
994 "%d UE %s%son %s (%s %s)\n",
995 error_count
, msg
, msg_aux
, label
,
999 if (edac_mc_get_panic_on_ue()) {
1000 if (other_detail
&& *other_detail
)
1001 panic("UE %s%son %s (%s%s - %s)\n",
1002 msg
, msg_aux
, label
, location
, detail
, other_detail
);
1004 panic("UE %s%son %s (%s%s)\n",
1005 msg
, msg_aux
, label
, location
, detail
);
1008 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
1011 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
1012 struct mem_ctl_info
*mci
,
1013 struct edac_raw_error_desc
*e
)
1016 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1018 /* Memory type dependent details about the error */
1019 if (type
== HW_EVENT_ERR_CORRECTED
) {
1020 snprintf(detail
, sizeof(detail
),
1021 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1022 e
->page_frame_number
, e
->offset_in_page
,
1023 e
->grain
, e
->syndrome
);
1024 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1025 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1026 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1028 snprintf(detail
, sizeof(detail
),
1029 "page:0x%lx offset:0x%lx grain:%ld",
1030 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1032 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1033 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1038 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1040 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1041 struct mem_ctl_info
*mci
,
1042 const u16 error_count
,
1043 const unsigned long page_frame_number
,
1044 const unsigned long offset_in_page
,
1045 const unsigned long syndrome
,
1046 const int top_layer
,
1047 const int mid_layer
,
1048 const int low_layer
,
1050 const char *other_detail
)
1053 int row
= -1, chan
= -1;
1054 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1055 int i
, n_labels
= 0;
1057 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1059 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1061 /* Fills the error report buffer */
1062 memset(e
, 0, sizeof (*e
));
1063 e
->error_count
= error_count
;
1064 e
->top_layer
= top_layer
;
1065 e
->mid_layer
= mid_layer
;
1066 e
->low_layer
= low_layer
;
1067 e
->page_frame_number
= page_frame_number
;
1068 e
->offset_in_page
= offset_in_page
;
1069 e
->syndrome
= syndrome
;
1071 e
->other_detail
= other_detail
;
1074 * Check if the event report is consistent and if the memory
1075 * location is known. If it is known, enable_per_layer_report will be
1076 * true, the DIMM(s) label info will be filled and the per-layer
1077 * error counters will be incremented.
1079 for (i
= 0; i
< mci
->n_layers
; i
++) {
1080 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1082 edac_mc_printk(mci
, KERN_ERR
,
1083 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1084 edac_layer_name
[mci
->layers
[i
].type
],
1085 pos
[i
], mci
->layers
[i
].size
);
1087 * Instead of just returning it, let's use what's
1088 * known about the error. The increment routines and
1089 * the DIMM filter logic will do the right thing by
1090 * pointing the likely damaged DIMMs.
1095 e
->enable_per_layer_report
= true;
1099 * Get the dimm label/grain that applies to the match criteria.
1100 * As the error algorithm may not be able to point to just one memory
1101 * stick, the logic here will get all possible labels that could
1102 * pottentially be affected by the error.
1103 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1104 * to have only the MC channel and the MC dimm (also called "branch")
1105 * but the channel is not known, as the memory is arranged in pairs,
1106 * where each memory belongs to a separate channel within the same
1112 for (i
= 0; i
< mci
->tot_dimms
; i
++) {
1113 struct dimm_info
*dimm
= mci
->dimms
[i
];
1115 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1117 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1119 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1122 /* get the max grain, over the error match range */
1123 if (dimm
->grain
> e
->grain
)
1124 e
->grain
= dimm
->grain
;
1127 * If the error is memory-controller wide, there's no need to
1128 * seek for the affected DIMMs because the whole
1129 * channel/memory controller/... may be affected.
1130 * Also, don't show errors for empty DIMM slots.
1132 if (e
->enable_per_layer_report
&& dimm
->nr_pages
) {
1133 if (n_labels
>= EDAC_MAX_LABELS
) {
1134 e
->enable_per_layer_report
= false;
1138 if (p
!= e
->label
) {
1139 strcpy(p
, OTHER_LABEL
);
1140 p
+= strlen(OTHER_LABEL
);
1142 strcpy(p
, dimm
->label
);
1147 * get csrow/channel of the DIMM, in order to allow
1148 * incrementing the compat API counters
1150 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1151 mci
->csbased
? "rank" : "dimm",
1152 dimm
->csrow
, dimm
->cschannel
);
1155 else if (row
>= 0 && row
!= dimm
->csrow
)
1159 chan
= dimm
->cschannel
;
1160 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1165 if (!e
->enable_per_layer_report
) {
1166 strcpy(e
->label
, "any memory");
1168 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1170 strcpy(e
->label
, "unknown memory");
1171 if (type
== HW_EVENT_ERR_CORRECTED
) {
1173 mci
->csrows
[row
]->ce_count
+= error_count
;
1175 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1179 mci
->csrows
[row
]->ue_count
+= error_count
;
1182 /* Fill the RAM location data */
1185 for (i
= 0; i
< mci
->n_layers
; i
++) {
1189 p
+= sprintf(p
, "%s:%d ",
1190 edac_layer_name
[mci
->layers
[i
].type
],
1193 if (p
> e
->location
)
1196 /* Report the error via the trace interface */
1197 grain_bits
= fls_long(e
->grain
) + 1;
1198 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1199 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
, e
->low_layer
,
1200 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1201 grain_bits
, e
->syndrome
, e
->other_detail
);
1203 edac_raw_mc_handle_error(type
, mci
, e
);
1205 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);