2 * Copyright(c) 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
57 * rvt_driver_mr_init - Init MR resources per driver
58 * @rdi: rvt dev struct
60 * Do any intilization needed when a driver registers with rdmavt.
62 * Return: 0 on success or errno on failure
64 int rvt_driver_mr_init(struct rvt_dev_info
*rdi
)
66 unsigned int lkey_table_size
= rdi
->dparms
.lkey_table_size
;
71 * The top hfi1_lkey_table_size bits are used to index the
72 * table. The lower 8 bits can be owned by the user (copied from
73 * the LKEY). The remaining bits act as a generation number or tag.
78 spin_lock_init(&rdi
->lkey_table
.lock
);
80 /* ensure generation is at least 4 bits */
81 if (lkey_table_size
> RVT_MAX_LKEY_TABLE_BITS
) {
82 rvt_pr_warn(rdi
, "lkey bits %u too large, reduced to %u\n",
83 lkey_table_size
, RVT_MAX_LKEY_TABLE_BITS
);
84 rdi
->dparms
.lkey_table_size
= RVT_MAX_LKEY_TABLE_BITS
;
85 lkey_table_size
= rdi
->dparms
.lkey_table_size
;
87 rdi
->lkey_table
.max
= 1 << lkey_table_size
;
88 rdi
->lkey_table
.shift
= 32 - lkey_table_size
;
89 lk_tab_size
= rdi
->lkey_table
.max
* sizeof(*rdi
->lkey_table
.table
);
90 rdi
->lkey_table
.table
= (struct rvt_mregion __rcu
**)
91 vmalloc_node(lk_tab_size
, rdi
->dparms
.node
);
92 if (!rdi
->lkey_table
.table
)
95 RCU_INIT_POINTER(rdi
->dma_mr
, NULL
);
96 for (i
= 0; i
< rdi
->lkey_table
.max
; i
++)
97 RCU_INIT_POINTER(rdi
->lkey_table
.table
[i
], NULL
);
103 *rvt_mr_exit: clean up MR
104 *@rdi: rvt dev structure
106 * called when drivers have unregistered or perhaps failed to register with us
108 void rvt_mr_exit(struct rvt_dev_info
*rdi
)
111 rvt_pr_err(rdi
, "DMA MR not null!\n");
113 vfree(rdi
->lkey_table
.table
);
116 static void rvt_deinit_mregion(struct rvt_mregion
*mr
)
123 percpu_ref_exit(&mr
->refcount
);
126 static void __rvt_mregion_complete(struct percpu_ref
*ref
)
128 struct rvt_mregion
*mr
= container_of(ref
, struct rvt_mregion
,
134 static int rvt_init_mregion(struct rvt_mregion
*mr
, struct ib_pd
*pd
,
135 int count
, unsigned int percpu_flags
)
138 struct rvt_dev_info
*dev
= ib_to_rvt(pd
->device
);
141 m
= (count
+ RVT_SEGSZ
- 1) / RVT_SEGSZ
;
143 mr
->map
[i
] = kzalloc_node(sizeof(*mr
->map
[0]), GFP_KERNEL
,
149 init_completion(&mr
->comp
);
150 /* count returning the ptr to user */
151 if (percpu_ref_init(&mr
->refcount
, &__rvt_mregion_complete
,
152 percpu_flags
, GFP_KERNEL
))
155 atomic_set(&mr
->lkey_invalid
, 0);
157 mr
->max_segs
= count
;
160 rvt_deinit_mregion(mr
);
165 * rvt_alloc_lkey - allocate an lkey
166 * @mr: memory region that this lkey protects
167 * @dma_region: 0->normal key, 1->restricted DMA key
169 * Returns 0 if successful, otherwise returns -errno.
171 * Increments mr reference count as required.
173 * Sets the lkey field mr for non-dma regions.
176 static int rvt_alloc_lkey(struct rvt_mregion
*mr
, int dma_region
)
182 struct rvt_dev_info
*dev
= ib_to_rvt(mr
->pd
->device
);
183 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
186 spin_lock_irqsave(&rkt
->lock
, flags
);
188 /* special case for dma_mr lkey == 0 */
190 struct rvt_mregion
*tmr
;
192 tmr
= rcu_access_pointer(dev
->dma_mr
);
194 rcu_assign_pointer(dev
->dma_mr
, mr
);
195 mr
->lkey_published
= 1;
201 /* Find the next available LKEY */
205 if (!rcu_access_pointer(rkt
->table
[r
]))
207 r
= (r
+ 1) & (rkt
->max
- 1);
211 rkt
->next
= (r
+ 1) & (rkt
->max
- 1);
213 * Make sure lkey is never zero which is reserved to indicate an
218 * bits are capped to ensure enough bits for generation number
220 mr
->lkey
= (r
<< (32 - dev
->dparms
.lkey_table_size
)) |
221 ((((1 << (24 - dev
->dparms
.lkey_table_size
)) - 1) & rkt
->gen
)
227 rcu_assign_pointer(rkt
->table
[r
], mr
);
228 mr
->lkey_published
= 1;
230 spin_unlock_irqrestore(&rkt
->lock
, flags
);
235 spin_unlock_irqrestore(&rkt
->lock
, flags
);
241 * rvt_free_lkey - free an lkey
242 * @mr: mr to free from tables
244 static void rvt_free_lkey(struct rvt_mregion
*mr
)
249 struct rvt_dev_info
*dev
= ib_to_rvt(mr
->pd
->device
);
250 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
253 spin_lock_irqsave(&rkt
->lock
, flags
);
255 if (mr
->lkey_published
) {
256 RCU_INIT_POINTER(dev
->dma_mr
, NULL
);
260 if (!mr
->lkey_published
)
262 r
= lkey
>> (32 - dev
->dparms
.lkey_table_size
);
263 RCU_INIT_POINTER(rkt
->table
[r
], NULL
);
265 mr
->lkey_published
= 0;
268 spin_unlock_irqrestore(&rkt
->lock
, flags
);
271 percpu_ref_kill(&mr
->refcount
);
275 static struct rvt_mr
*__rvt_alloc_mr(int count
, struct ib_pd
*pd
)
281 /* Allocate struct plus pointers to first level page tables. */
282 m
= (count
+ RVT_SEGSZ
- 1) / RVT_SEGSZ
;
283 mr
= kzalloc(sizeof(*mr
) + m
* sizeof(mr
->mr
.map
[0]), GFP_KERNEL
);
287 rval
= rvt_init_mregion(&mr
->mr
, pd
, count
, 0);
291 * ib_reg_phys_mr() will initialize mr->ibmr except for
294 rval
= rvt_alloc_lkey(&mr
->mr
, 0);
297 mr
->ibmr
.lkey
= mr
->mr
.lkey
;
298 mr
->ibmr
.rkey
= mr
->mr
.lkey
;
303 rvt_deinit_mregion(&mr
->mr
);
310 static void __rvt_free_mr(struct rvt_mr
*mr
)
312 rvt_free_lkey(&mr
->mr
);
313 rvt_deinit_mregion(&mr
->mr
);
318 * rvt_get_dma_mr - get a DMA memory region
319 * @pd: protection domain for this memory region
322 * Return: the memory region on success, otherwise returns an errno.
323 * Note that all DMA addresses should be created via the functions in
324 * struct dma_virt_ops.
326 struct ib_mr
*rvt_get_dma_mr(struct ib_pd
*pd
, int acc
)
332 if (ibpd_to_rvtpd(pd
)->user
)
333 return ERR_PTR(-EPERM
);
335 mr
= kzalloc(sizeof(*mr
), GFP_KERNEL
);
337 ret
= ERR_PTR(-ENOMEM
);
341 rval
= rvt_init_mregion(&mr
->mr
, pd
, 0, 0);
347 rval
= rvt_alloc_lkey(&mr
->mr
, 1);
353 mr
->mr
.access_flags
= acc
;
359 rvt_deinit_mregion(&mr
->mr
);
366 * rvt_reg_user_mr - register a userspace memory region
367 * @pd: protection domain for this memory region
368 * @start: starting userspace address
369 * @length: length of region to register
370 * @mr_access_flags: access flags for this memory region
371 * @udata: unused by the driver
373 * Return: the memory region on success, otherwise returns an errno.
375 struct ib_mr
*rvt_reg_user_mr(struct ib_pd
*pd
, u64 start
, u64 length
,
376 u64 virt_addr
, int mr_access_flags
,
377 struct ib_udata
*udata
)
380 struct ib_umem
*umem
;
381 struct scatterlist
*sg
;
386 return ERR_PTR(-EINVAL
);
388 umem
= ib_umem_get(pd
->uobject
->context
, start
, length
,
395 mr
= __rvt_alloc_mr(n
, pd
);
397 ret
= (struct ib_mr
*)mr
;
401 mr
->mr
.user_base
= start
;
402 mr
->mr
.iova
= virt_addr
;
403 mr
->mr
.length
= length
;
404 mr
->mr
.offset
= ib_umem_offset(umem
);
405 mr
->mr
.access_flags
= mr_access_flags
;
408 if (is_power_of_2(umem
->page_size
))
409 mr
->mr
.page_shift
= ilog2(umem
->page_size
);
412 for_each_sg(umem
->sg_head
.sgl
, sg
, umem
->nmap
, entry
) {
415 vaddr
= page_address(sg_page(sg
));
417 ret
= ERR_PTR(-EINVAL
);
420 mr
->mr
.map
[m
]->segs
[n
].vaddr
= vaddr
;
421 mr
->mr
.map
[m
]->segs
[n
].length
= umem
->page_size
;
422 trace_rvt_mr_user_seg(&mr
->mr
, m
, n
, vaddr
, umem
->page_size
);
424 if (n
== RVT_SEGSZ
) {
435 ib_umem_release(umem
);
441 * rvt_dereg_mr - unregister and free a memory region
442 * @ibmr: the memory region to free
445 * Note that this is called to free MRs created by rvt_get_dma_mr()
446 * or rvt_reg_user_mr().
448 * Returns 0 on success.
450 int rvt_dereg_mr(struct ib_mr
*ibmr
)
452 struct rvt_mr
*mr
= to_imr(ibmr
);
453 struct rvt_dev_info
*rdi
= ib_to_rvt(ibmr
->pd
->device
);
455 unsigned long timeout
;
457 rvt_free_lkey(&mr
->mr
);
459 rvt_put_mr(&mr
->mr
); /* will set completion if last */
460 timeout
= wait_for_completion_timeout(&mr
->mr
.comp
, 5 * HZ
);
463 "rvt_dereg_mr timeout mr %p pd %p\n",
469 rvt_deinit_mregion(&mr
->mr
);
471 ib_umem_release(mr
->umem
);
478 * rvt_alloc_mr - Allocate a memory region usable with the
479 * @pd: protection domain for this memory region
480 * @mr_type: mem region type
481 * @max_num_sg: Max number of segments allowed
483 * Return: the memory region on success, otherwise return an errno.
485 struct ib_mr
*rvt_alloc_mr(struct ib_pd
*pd
,
486 enum ib_mr_type mr_type
,
491 if (mr_type
!= IB_MR_TYPE_MEM_REG
)
492 return ERR_PTR(-EINVAL
);
494 mr
= __rvt_alloc_mr(max_num_sg
, pd
);
496 return (struct ib_mr
*)mr
;
502 * rvt_set_page - page assignment function called by ib_sg_to_pages
503 * @ibmr: memory region
504 * @addr: dma address of mapped page
506 * Return: 0 on success
508 static int rvt_set_page(struct ib_mr
*ibmr
, u64 addr
)
510 struct rvt_mr
*mr
= to_imr(ibmr
);
511 u32 ps
= 1 << mr
->mr
.page_shift
;
512 u32 mapped_segs
= mr
->mr
.length
>> mr
->mr
.page_shift
;
515 if (unlikely(mapped_segs
== mr
->mr
.max_segs
))
518 if (mr
->mr
.length
== 0) {
519 mr
->mr
.user_base
= addr
;
523 m
= mapped_segs
/ RVT_SEGSZ
;
524 n
= mapped_segs
% RVT_SEGSZ
;
525 mr
->mr
.map
[m
]->segs
[n
].vaddr
= (void *)addr
;
526 mr
->mr
.map
[m
]->segs
[n
].length
= ps
;
527 trace_rvt_mr_page_seg(&mr
->mr
, m
, n
, (void *)addr
, ps
);
534 * rvt_map_mr_sg - map sg list and set it the memory region
535 * @ibmr: memory region
536 * @sg: dma mapped scatterlist
537 * @sg_nents: number of entries in sg
538 * @sg_offset: offset in bytes into sg
540 * Return: number of sg elements mapped to the memory region
542 int rvt_map_mr_sg(struct ib_mr
*ibmr
, struct scatterlist
*sg
,
543 int sg_nents
, unsigned int *sg_offset
)
545 struct rvt_mr
*mr
= to_imr(ibmr
);
548 mr
->mr
.page_shift
= PAGE_SHIFT
;
549 return ib_sg_to_pages(ibmr
, sg
, sg_nents
, sg_offset
,
554 * rvt_fast_reg_mr - fast register physical MR
555 * @qp: the queue pair where the work request comes from
556 * @ibmr: the memory region to be registered
557 * @key: updated key for this memory region
558 * @access: access flags for this memory region
560 * Returns 0 on success.
562 int rvt_fast_reg_mr(struct rvt_qp
*qp
, struct ib_mr
*ibmr
, u32 key
,
565 struct rvt_mr
*mr
= to_imr(ibmr
);
567 if (qp
->ibqp
.pd
!= mr
->mr
.pd
)
570 /* not applicable to dma MR or user MR */
571 if (!mr
->mr
.lkey
|| mr
->umem
)
574 if ((key
& 0xFFFFFF00) != (mr
->mr
.lkey
& 0xFFFFFF00))
580 mr
->mr
.access_flags
= access
;
581 atomic_set(&mr
->mr
.lkey_invalid
, 0);
585 EXPORT_SYMBOL(rvt_fast_reg_mr
);
588 * rvt_invalidate_rkey - invalidate an MR rkey
589 * @qp: queue pair associated with the invalidate op
590 * @rkey: rkey to invalidate
592 * Returns 0 on success.
594 int rvt_invalidate_rkey(struct rvt_qp
*qp
, u32 rkey
)
596 struct rvt_dev_info
*dev
= ib_to_rvt(qp
->ibqp
.device
);
597 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
598 struct rvt_mregion
*mr
;
604 mr
= rcu_dereference(
605 rkt
->table
[(rkey
>> (32 - dev
->dparms
.lkey_table_size
))]);
606 if (unlikely(!mr
|| mr
->lkey
!= rkey
|| qp
->ibqp
.pd
!= mr
->pd
))
609 atomic_set(&mr
->lkey_invalid
, 1);
617 EXPORT_SYMBOL(rvt_invalidate_rkey
);
620 * rvt_alloc_fmr - allocate a fast memory region
621 * @pd: the protection domain for this memory region
622 * @mr_access_flags: access flags for this memory region
623 * @fmr_attr: fast memory region attributes
625 * Return: the memory region on success, otherwise returns an errno.
627 struct ib_fmr
*rvt_alloc_fmr(struct ib_pd
*pd
, int mr_access_flags
,
628 struct ib_fmr_attr
*fmr_attr
)
635 /* Allocate struct plus pointers to first level page tables. */
636 m
= (fmr_attr
->max_pages
+ RVT_SEGSZ
- 1) / RVT_SEGSZ
;
637 fmr
= kzalloc(sizeof(*fmr
) + m
* sizeof(fmr
->mr
.map
[0]), GFP_KERNEL
);
641 rval
= rvt_init_mregion(&fmr
->mr
, pd
, fmr_attr
->max_pages
,
642 PERCPU_REF_INIT_ATOMIC
);
647 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
650 rval
= rvt_alloc_lkey(&fmr
->mr
, 0);
653 fmr
->ibfmr
.rkey
= fmr
->mr
.lkey
;
654 fmr
->ibfmr
.lkey
= fmr
->mr
.lkey
;
656 * Resources are allocated but no valid mapping (RKEY can't be
659 fmr
->mr
.access_flags
= mr_access_flags
;
660 fmr
->mr
.max_segs
= fmr_attr
->max_pages
;
661 fmr
->mr
.page_shift
= fmr_attr
->page_shift
;
668 rvt_deinit_mregion(&fmr
->mr
);
676 * rvt_map_phys_fmr - set up a fast memory region
677 * @ibmfr: the fast memory region to set up
678 * @page_list: the list of pages to associate with the fast memory region
679 * @list_len: the number of pages to associate with the fast memory region
680 * @iova: the virtual address of the start of the fast memory region
682 * This may be called from interrupt context.
684 * Return: 0 on success
687 int rvt_map_phys_fmr(struct ib_fmr
*ibfmr
, u64
*page_list
,
688 int list_len
, u64 iova
)
690 struct rvt_fmr
*fmr
= to_ifmr(ibfmr
);
691 struct rvt_lkey_table
*rkt
;
696 struct rvt_dev_info
*rdi
= ib_to_rvt(ibfmr
->device
);
698 i
= atomic_long_read(&fmr
->mr
.refcount
.count
);
702 if (list_len
> fmr
->mr
.max_segs
)
705 rkt
= &rdi
->lkey_table
;
706 spin_lock_irqsave(&rkt
->lock
, flags
);
707 fmr
->mr
.user_base
= iova
;
709 ps
= 1 << fmr
->mr
.page_shift
;
710 fmr
->mr
.length
= list_len
* ps
;
713 for (i
= 0; i
< list_len
; i
++) {
714 fmr
->mr
.map
[m
]->segs
[n
].vaddr
= (void *)page_list
[i
];
715 fmr
->mr
.map
[m
]->segs
[n
].length
= ps
;
716 trace_rvt_mr_fmr_seg(&fmr
->mr
, m
, n
, (void *)page_list
[i
], ps
);
717 if (++n
== RVT_SEGSZ
) {
722 spin_unlock_irqrestore(&rkt
->lock
, flags
);
727 * rvt_unmap_fmr - unmap fast memory regions
728 * @fmr_list: the list of fast memory regions to unmap
730 * Return: 0 on success.
732 int rvt_unmap_fmr(struct list_head
*fmr_list
)
735 struct rvt_lkey_table
*rkt
;
737 struct rvt_dev_info
*rdi
;
739 list_for_each_entry(fmr
, fmr_list
, ibfmr
.list
) {
740 rdi
= ib_to_rvt(fmr
->ibfmr
.device
);
741 rkt
= &rdi
->lkey_table
;
742 spin_lock_irqsave(&rkt
->lock
, flags
);
743 fmr
->mr
.user_base
= 0;
746 spin_unlock_irqrestore(&rkt
->lock
, flags
);
752 * rvt_dealloc_fmr - deallocate a fast memory region
753 * @ibfmr: the fast memory region to deallocate
755 * Return: 0 on success.
757 int rvt_dealloc_fmr(struct ib_fmr
*ibfmr
)
759 struct rvt_fmr
*fmr
= to_ifmr(ibfmr
);
761 unsigned long timeout
;
763 rvt_free_lkey(&fmr
->mr
);
764 rvt_put_mr(&fmr
->mr
); /* will set completion if last */
765 timeout
= wait_for_completion_timeout(&fmr
->mr
.comp
, 5 * HZ
);
767 rvt_get_mr(&fmr
->mr
);
771 rvt_deinit_mregion(&fmr
->mr
);
778 * rvt_lkey_ok - check IB SGE for validity and initialize
779 * @rkt: table containing lkey to check SGE against
780 * @pd: protection domain
781 * @isge: outgoing internal SGE
785 * Check the IB SGE for validity and initialize our internal version
788 * Return: 1 if valid and successful, otherwise returns 0.
790 * increments the reference count upon success
793 int rvt_lkey_ok(struct rvt_lkey_table
*rkt
, struct rvt_pd
*pd
,
794 struct rvt_sge
*isge
, struct ib_sge
*sge
, int acc
)
796 struct rvt_mregion
*mr
;
801 * We use LKEY == zero for kernel virtual addresses
802 * (see rvt_get_dma_mr() and dma_virt_ops).
805 if (sge
->lkey
== 0) {
806 struct rvt_dev_info
*dev
= ib_to_rvt(pd
->ibpd
.device
);
810 mr
= rcu_dereference(dev
->dma_mr
);
817 isge
->vaddr
= (void *)sge
->addr
;
818 isge
->length
= sge
->length
;
819 isge
->sge_length
= sge
->length
;
824 mr
= rcu_dereference(rkt
->table
[sge
->lkey
>> rkt
->shift
]);
825 if (unlikely(!mr
|| atomic_read(&mr
->lkey_invalid
) ||
826 mr
->lkey
!= sge
->lkey
|| mr
->pd
!= &pd
->ibpd
))
829 off
= sge
->addr
- mr
->user_base
;
830 if (unlikely(sge
->addr
< mr
->user_base
||
831 off
+ sge
->length
> mr
->length
||
832 (mr
->access_flags
& acc
) != acc
))
838 if (mr
->page_shift
) {
840 * page sizes are uniform power of 2 so no loop is necessary
841 * entries_spanned_by_off is the number of times the loop below
842 * would have executed.
844 size_t entries_spanned_by_off
;
846 entries_spanned_by_off
= off
>> mr
->page_shift
;
847 off
-= (entries_spanned_by_off
<< mr
->page_shift
);
848 m
= entries_spanned_by_off
/ RVT_SEGSZ
;
849 n
= entries_spanned_by_off
% RVT_SEGSZ
;
853 while (off
>= mr
->map
[m
]->segs
[n
].length
) {
854 off
-= mr
->map
[m
]->segs
[n
].length
;
856 if (n
>= RVT_SEGSZ
) {
863 isge
->vaddr
= mr
->map
[m
]->segs
[n
].vaddr
+ off
;
864 isge
->length
= mr
->map
[m
]->segs
[n
].length
- off
;
865 isge
->sge_length
= sge
->length
;
874 EXPORT_SYMBOL(rvt_lkey_ok
);
877 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
878 * @qp: qp for validation
880 * @len: length of data
881 * @vaddr: virtual address to place data
882 * @rkey: rkey to check
885 * Return: 1 if successful, otherwise 0.
887 * increments the reference count upon success
889 int rvt_rkey_ok(struct rvt_qp
*qp
, struct rvt_sge
*sge
,
890 u32 len
, u64 vaddr
, u32 rkey
, int acc
)
892 struct rvt_dev_info
*dev
= ib_to_rvt(qp
->ibqp
.device
);
893 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
894 struct rvt_mregion
*mr
;
899 * We use RKEY == zero for kernel virtual addresses
900 * (see rvt_get_dma_mr() and dma_virt_ops).
904 struct rvt_pd
*pd
= ibpd_to_rvtpd(qp
->ibqp
.pd
);
905 struct rvt_dev_info
*rdi
= ib_to_rvt(pd
->ibpd
.device
);
909 mr
= rcu_dereference(rdi
->dma_mr
);
916 sge
->vaddr
= (void *)vaddr
;
918 sge
->sge_length
= len
;
924 mr
= rcu_dereference(rkt
->table
[rkey
>> rkt
->shift
]);
925 if (unlikely(!mr
|| atomic_read(&mr
->lkey_invalid
) ||
926 mr
->lkey
!= rkey
|| qp
->ibqp
.pd
!= mr
->pd
))
929 off
= vaddr
- mr
->iova
;
930 if (unlikely(vaddr
< mr
->iova
|| off
+ len
> mr
->length
||
931 (mr
->access_flags
& acc
) == 0))
937 if (mr
->page_shift
) {
939 * page sizes are uniform power of 2 so no loop is necessary
940 * entries_spanned_by_off is the number of times the loop below
941 * would have executed.
943 size_t entries_spanned_by_off
;
945 entries_spanned_by_off
= off
>> mr
->page_shift
;
946 off
-= (entries_spanned_by_off
<< mr
->page_shift
);
947 m
= entries_spanned_by_off
/ RVT_SEGSZ
;
948 n
= entries_spanned_by_off
% RVT_SEGSZ
;
952 while (off
>= mr
->map
[m
]->segs
[n
].length
) {
953 off
-= mr
->map
[m
]->segs
[n
].length
;
955 if (n
>= RVT_SEGSZ
) {
962 sge
->vaddr
= mr
->map
[m
]->segs
[n
].vaddr
+ off
;
963 sge
->length
= mr
->map
[m
]->segs
[n
].length
- off
;
964 sge
->sge_length
= len
;
973 EXPORT_SYMBOL(rvt_rkey_ok
);