x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / md / dm-bufio.c
blob2ac24180505f5aa8ac118faa22eded65c7b5a742
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
7 */
9 #include "dm-bufio.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
22 #define DM_MSG_PREFIX "bufio"
25 * Memory management policy:
26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30 * dirty buffers.
32 #define DM_BUFIO_MIN_BUFFERS 8
34 #define DM_BUFIO_MEMORY_PERCENT 2
35 #define DM_BUFIO_VMALLOC_PERCENT 25
36 #define DM_BUFIO_WRITEBACK_PERCENT 75
39 * Check buffer ages in this interval (seconds)
41 #define DM_BUFIO_WORK_TIMER_SECS 30
44 * Free buffers when they are older than this (seconds)
46 #define DM_BUFIO_DEFAULT_AGE_SECS 300
49 * The nr of bytes of cached data to keep around.
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
54 * The number of bvec entries that are embedded directly in the buffer.
55 * If the chunk size is larger, dm-io is used to do the io.
57 #define DM_BUFIO_INLINE_VECS 16
60 * Don't try to use kmem_cache_alloc for blocks larger than this.
61 * For explanation, see alloc_buffer_data below.
63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
67 * dm_buffer->list_mode
69 #define LIST_CLEAN 0
70 #define LIST_DIRTY 1
71 #define LIST_SIZE 2
74 * Linking of buffers:
75 * All buffers are linked to cache_hash with their hash_list field.
77 * Clean buffers that are not being written (B_WRITING not set)
78 * are linked to lru[LIST_CLEAN] with their lru_list field.
80 * Dirty and clean buffers that are being written are linked to
81 * lru[LIST_DIRTY] with their lru_list field. When the write
82 * finishes, the buffer cannot be relinked immediately (because we
83 * are in an interrupt context and relinking requires process
84 * context), so some clean-not-writing buffers can be held on
85 * dirty_lru too. They are later added to lru in the process
86 * context.
88 struct dm_bufio_client {
89 struct mutex lock;
91 struct list_head lru[LIST_SIZE];
92 unsigned long n_buffers[LIST_SIZE];
94 struct block_device *bdev;
95 unsigned block_size;
96 unsigned char sectors_per_block_bits;
97 unsigned char pages_per_block_bits;
98 unsigned char blocks_per_page_bits;
99 unsigned aux_size;
100 void (*alloc_callback)(struct dm_buffer *);
101 void (*write_callback)(struct dm_buffer *);
103 struct dm_io_client *dm_io;
105 struct list_head reserved_buffers;
106 unsigned need_reserved_buffers;
108 unsigned minimum_buffers;
110 struct rb_root buffer_tree;
111 wait_queue_head_t free_buffer_wait;
113 int async_write_error;
115 struct list_head client_list;
116 struct shrinker shrinker;
120 * Buffer state bits.
122 #define B_READING 0
123 #define B_WRITING 1
124 #define B_DIRTY 2
127 * Describes how the block was allocated:
128 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
129 * See the comment at alloc_buffer_data.
131 enum data_mode {
132 DATA_MODE_SLAB = 0,
133 DATA_MODE_GET_FREE_PAGES = 1,
134 DATA_MODE_VMALLOC = 2,
135 DATA_MODE_LIMIT = 3
138 struct dm_buffer {
139 struct rb_node node;
140 struct list_head lru_list;
141 sector_t block;
142 void *data;
143 enum data_mode data_mode;
144 unsigned char list_mode; /* LIST_* */
145 unsigned hold_count;
146 int read_error;
147 int write_error;
148 unsigned long state;
149 unsigned long last_accessed;
150 struct dm_bufio_client *c;
151 struct list_head write_list;
152 struct bio bio;
153 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
154 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
155 #define MAX_STACK 10
156 struct stack_trace stack_trace;
157 unsigned long stack_entries[MAX_STACK];
158 #endif
161 /*----------------------------------------------------------------*/
163 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
164 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
166 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
168 unsigned ret = c->blocks_per_page_bits - 1;
170 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
172 return ret;
175 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
176 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
178 #define dm_bufio_in_request() (!!current->bio_list)
180 static void dm_bufio_lock(struct dm_bufio_client *c)
182 mutex_lock_nested(&c->lock, dm_bufio_in_request());
185 static int dm_bufio_trylock(struct dm_bufio_client *c)
187 return mutex_trylock(&c->lock);
190 static void dm_bufio_unlock(struct dm_bufio_client *c)
192 mutex_unlock(&c->lock);
195 /*----------------------------------------------------------------*/
198 * Default cache size: available memory divided by the ratio.
200 static unsigned long dm_bufio_default_cache_size;
203 * Total cache size set by the user.
205 static unsigned long dm_bufio_cache_size;
208 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
209 * at any time. If it disagrees, the user has changed cache size.
211 static unsigned long dm_bufio_cache_size_latch;
213 static DEFINE_SPINLOCK(param_spinlock);
216 * Buffers are freed after this timeout
218 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
219 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
221 static unsigned long dm_bufio_peak_allocated;
222 static unsigned long dm_bufio_allocated_kmem_cache;
223 static unsigned long dm_bufio_allocated_get_free_pages;
224 static unsigned long dm_bufio_allocated_vmalloc;
225 static unsigned long dm_bufio_current_allocated;
227 /*----------------------------------------------------------------*/
230 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
232 static unsigned long dm_bufio_cache_size_per_client;
235 * The current number of clients.
237 static int dm_bufio_client_count;
240 * The list of all clients.
242 static LIST_HEAD(dm_bufio_all_clients);
245 * This mutex protects dm_bufio_cache_size_latch,
246 * dm_bufio_cache_size_per_client and dm_bufio_client_count
248 static DEFINE_MUTEX(dm_bufio_clients_lock);
250 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
251 static void buffer_record_stack(struct dm_buffer *b)
253 b->stack_trace.nr_entries = 0;
254 b->stack_trace.max_entries = MAX_STACK;
255 b->stack_trace.entries = b->stack_entries;
256 b->stack_trace.skip = 2;
257 save_stack_trace(&b->stack_trace);
259 #endif
261 /*----------------------------------------------------------------
262 * A red/black tree acts as an index for all the buffers.
263 *--------------------------------------------------------------*/
264 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
266 struct rb_node *n = c->buffer_tree.rb_node;
267 struct dm_buffer *b;
269 while (n) {
270 b = container_of(n, struct dm_buffer, node);
272 if (b->block == block)
273 return b;
275 n = (b->block < block) ? n->rb_left : n->rb_right;
278 return NULL;
281 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
283 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
284 struct dm_buffer *found;
286 while (*new) {
287 found = container_of(*new, struct dm_buffer, node);
289 if (found->block == b->block) {
290 BUG_ON(found != b);
291 return;
294 parent = *new;
295 new = (found->block < b->block) ?
296 &((*new)->rb_left) : &((*new)->rb_right);
299 rb_link_node(&b->node, parent, new);
300 rb_insert_color(&b->node, &c->buffer_tree);
303 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
305 rb_erase(&b->node, &c->buffer_tree);
308 /*----------------------------------------------------------------*/
310 static void adjust_total_allocated(enum data_mode data_mode, long diff)
312 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
313 &dm_bufio_allocated_kmem_cache,
314 &dm_bufio_allocated_get_free_pages,
315 &dm_bufio_allocated_vmalloc,
318 spin_lock(&param_spinlock);
320 *class_ptr[data_mode] += diff;
322 dm_bufio_current_allocated += diff;
324 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
325 dm_bufio_peak_allocated = dm_bufio_current_allocated;
327 spin_unlock(&param_spinlock);
331 * Change the number of clients and recalculate per-client limit.
333 static void __cache_size_refresh(void)
335 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
336 BUG_ON(dm_bufio_client_count < 0);
338 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
341 * Use default if set to 0 and report the actual cache size used.
343 if (!dm_bufio_cache_size_latch) {
344 (void)cmpxchg(&dm_bufio_cache_size, 0,
345 dm_bufio_default_cache_size);
346 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
349 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
350 (dm_bufio_client_count ? : 1);
354 * Allocating buffer data.
356 * Small buffers are allocated with kmem_cache, to use space optimally.
358 * For large buffers, we choose between get_free_pages and vmalloc.
359 * Each has advantages and disadvantages.
361 * __get_free_pages can randomly fail if the memory is fragmented.
362 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
363 * as low as 128M) so using it for caching is not appropriate.
365 * If the allocation may fail we use __get_free_pages. Memory fragmentation
366 * won't have a fatal effect here, but it just causes flushes of some other
367 * buffers and more I/O will be performed. Don't use __get_free_pages if it
368 * always fails (i.e. order >= MAX_ORDER).
370 * If the allocation shouldn't fail we use __vmalloc. This is only for the
371 * initial reserve allocation, so there's no risk of wasting all vmalloc
372 * space.
374 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
375 enum data_mode *data_mode)
377 unsigned noio_flag;
378 void *ptr;
380 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
381 *data_mode = DATA_MODE_SLAB;
382 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
385 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
386 gfp_mask & __GFP_NORETRY) {
387 *data_mode = DATA_MODE_GET_FREE_PAGES;
388 return (void *)__get_free_pages(gfp_mask,
389 c->pages_per_block_bits);
392 *data_mode = DATA_MODE_VMALLOC;
395 * __vmalloc allocates the data pages and auxiliary structures with
396 * gfp_flags that were specified, but pagetables are always allocated
397 * with GFP_KERNEL, no matter what was specified as gfp_mask.
399 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
400 * all allocations done by this process (including pagetables) are done
401 * as if GFP_NOIO was specified.
404 if (gfp_mask & __GFP_NORETRY)
405 noio_flag = memalloc_noio_save();
407 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
409 if (gfp_mask & __GFP_NORETRY)
410 memalloc_noio_restore(noio_flag);
412 return ptr;
416 * Free buffer's data.
418 static void free_buffer_data(struct dm_bufio_client *c,
419 void *data, enum data_mode data_mode)
421 switch (data_mode) {
422 case DATA_MODE_SLAB:
423 kmem_cache_free(DM_BUFIO_CACHE(c), data);
424 break;
426 case DATA_MODE_GET_FREE_PAGES:
427 free_pages((unsigned long)data, c->pages_per_block_bits);
428 break;
430 case DATA_MODE_VMALLOC:
431 vfree(data);
432 break;
434 default:
435 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
436 data_mode);
437 BUG();
442 * Allocate buffer and its data.
444 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
446 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
447 gfp_mask);
449 if (!b)
450 return NULL;
452 b->c = c;
454 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
455 if (!b->data) {
456 kfree(b);
457 return NULL;
460 adjust_total_allocated(b->data_mode, (long)c->block_size);
462 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
463 memset(&b->stack_trace, 0, sizeof(b->stack_trace));
464 #endif
465 return b;
469 * Free buffer and its data.
471 static void free_buffer(struct dm_buffer *b)
473 struct dm_bufio_client *c = b->c;
475 adjust_total_allocated(b->data_mode, -(long)c->block_size);
477 free_buffer_data(c, b->data, b->data_mode);
478 kfree(b);
482 * Link buffer to the hash list and clean or dirty queue.
484 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
486 struct dm_bufio_client *c = b->c;
488 c->n_buffers[dirty]++;
489 b->block = block;
490 b->list_mode = dirty;
491 list_add(&b->lru_list, &c->lru[dirty]);
492 __insert(b->c, b);
493 b->last_accessed = jiffies;
497 * Unlink buffer from the hash list and dirty or clean queue.
499 static void __unlink_buffer(struct dm_buffer *b)
501 struct dm_bufio_client *c = b->c;
503 BUG_ON(!c->n_buffers[b->list_mode]);
505 c->n_buffers[b->list_mode]--;
506 __remove(b->c, b);
507 list_del(&b->lru_list);
511 * Place the buffer to the head of dirty or clean LRU queue.
513 static void __relink_lru(struct dm_buffer *b, int dirty)
515 struct dm_bufio_client *c = b->c;
517 BUG_ON(!c->n_buffers[b->list_mode]);
519 c->n_buffers[b->list_mode]--;
520 c->n_buffers[dirty]++;
521 b->list_mode = dirty;
522 list_move(&b->lru_list, &c->lru[dirty]);
523 b->last_accessed = jiffies;
526 /*----------------------------------------------------------------
527 * Submit I/O on the buffer.
529 * Bio interface is faster but it has some problems:
530 * the vector list is limited (increasing this limit increases
531 * memory-consumption per buffer, so it is not viable);
533 * the memory must be direct-mapped, not vmalloced;
535 * the I/O driver can reject requests spuriously if it thinks that
536 * the requests are too big for the device or if they cross a
537 * controller-defined memory boundary.
539 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
540 * it is not vmalloced, try using the bio interface.
542 * If the buffer is big, if it is vmalloced or if the underlying device
543 * rejects the bio because it is too large, use dm-io layer to do the I/O.
544 * The dm-io layer splits the I/O into multiple requests, avoiding the above
545 * shortcomings.
546 *--------------------------------------------------------------*/
549 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
550 * that the request was handled directly with bio interface.
552 static void dmio_complete(unsigned long error, void *context)
554 struct dm_buffer *b = context;
556 b->bio.bi_error = error ? -EIO : 0;
557 b->bio.bi_end_io(&b->bio);
560 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
561 bio_end_io_t *end_io)
563 int r;
564 struct dm_io_request io_req = {
565 .bi_op = rw,
566 .bi_op_flags = 0,
567 .notify.fn = dmio_complete,
568 .notify.context = b,
569 .client = b->c->dm_io,
571 struct dm_io_region region = {
572 .bdev = b->c->bdev,
573 .sector = block << b->c->sectors_per_block_bits,
574 .count = b->c->block_size >> SECTOR_SHIFT,
577 if (b->data_mode != DATA_MODE_VMALLOC) {
578 io_req.mem.type = DM_IO_KMEM;
579 io_req.mem.ptr.addr = b->data;
580 } else {
581 io_req.mem.type = DM_IO_VMA;
582 io_req.mem.ptr.vma = b->data;
585 b->bio.bi_end_io = end_io;
587 r = dm_io(&io_req, 1, &region, NULL);
588 if (r) {
589 b->bio.bi_error = r;
590 end_io(&b->bio);
594 static void inline_endio(struct bio *bio)
596 bio_end_io_t *end_fn = bio->bi_private;
597 int error = bio->bi_error;
600 * Reset the bio to free any attached resources
601 * (e.g. bio integrity profiles).
603 bio_reset(bio);
605 bio->bi_error = error;
606 end_fn(bio);
609 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
610 bio_end_io_t *end_io)
612 char *ptr;
613 int len;
615 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
616 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
617 b->bio.bi_bdev = b->c->bdev;
618 b->bio.bi_end_io = inline_endio;
620 * Use of .bi_private isn't a problem here because
621 * the dm_buffer's inline bio is local to bufio.
623 b->bio.bi_private = end_io;
624 bio_set_op_attrs(&b->bio, rw, 0);
627 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
628 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
630 ptr = b->data;
631 len = b->c->block_size;
633 if (len >= PAGE_SIZE)
634 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
635 else
636 BUG_ON((unsigned long)ptr & (len - 1));
638 do {
639 if (!bio_add_page(&b->bio, virt_to_page(ptr),
640 len < PAGE_SIZE ? len : PAGE_SIZE,
641 offset_in_page(ptr))) {
642 BUG_ON(b->c->block_size <= PAGE_SIZE);
643 use_dmio(b, rw, block, end_io);
644 return;
647 len -= PAGE_SIZE;
648 ptr += PAGE_SIZE;
649 } while (len > 0);
651 submit_bio(&b->bio);
654 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
655 bio_end_io_t *end_io)
657 if (rw == WRITE && b->c->write_callback)
658 b->c->write_callback(b);
660 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
661 b->data_mode != DATA_MODE_VMALLOC)
662 use_inline_bio(b, rw, block, end_io);
663 else
664 use_dmio(b, rw, block, end_io);
667 /*----------------------------------------------------------------
668 * Writing dirty buffers
669 *--------------------------------------------------------------*/
672 * The endio routine for write.
674 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
675 * it.
677 static void write_endio(struct bio *bio)
679 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
681 b->write_error = bio->bi_error;
682 if (unlikely(bio->bi_error)) {
683 struct dm_bufio_client *c = b->c;
684 int error = bio->bi_error;
685 (void)cmpxchg(&c->async_write_error, 0, error);
688 BUG_ON(!test_bit(B_WRITING, &b->state));
690 smp_mb__before_atomic();
691 clear_bit(B_WRITING, &b->state);
692 smp_mb__after_atomic();
694 wake_up_bit(&b->state, B_WRITING);
698 * Initiate a write on a dirty buffer, but don't wait for it.
700 * - If the buffer is not dirty, exit.
701 * - If there some previous write going on, wait for it to finish (we can't
702 * have two writes on the same buffer simultaneously).
703 * - Submit our write and don't wait on it. We set B_WRITING indicating
704 * that there is a write in progress.
706 static void __write_dirty_buffer(struct dm_buffer *b,
707 struct list_head *write_list)
709 if (!test_bit(B_DIRTY, &b->state))
710 return;
712 clear_bit(B_DIRTY, &b->state);
713 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
715 if (!write_list)
716 submit_io(b, WRITE, b->block, write_endio);
717 else
718 list_add_tail(&b->write_list, write_list);
721 static void __flush_write_list(struct list_head *write_list)
723 struct blk_plug plug;
724 blk_start_plug(&plug);
725 while (!list_empty(write_list)) {
726 struct dm_buffer *b =
727 list_entry(write_list->next, struct dm_buffer, write_list);
728 list_del(&b->write_list);
729 submit_io(b, WRITE, b->block, write_endio);
730 cond_resched();
732 blk_finish_plug(&plug);
736 * Wait until any activity on the buffer finishes. Possibly write the
737 * buffer if it is dirty. When this function finishes, there is no I/O
738 * running on the buffer and the buffer is not dirty.
740 static void __make_buffer_clean(struct dm_buffer *b)
742 BUG_ON(b->hold_count);
744 if (!b->state) /* fast case */
745 return;
747 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
748 __write_dirty_buffer(b, NULL);
749 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
753 * Find some buffer that is not held by anybody, clean it, unlink it and
754 * return it.
756 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
758 struct dm_buffer *b;
760 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
761 BUG_ON(test_bit(B_WRITING, &b->state));
762 BUG_ON(test_bit(B_DIRTY, &b->state));
764 if (!b->hold_count) {
765 __make_buffer_clean(b);
766 __unlink_buffer(b);
767 return b;
769 cond_resched();
772 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
773 BUG_ON(test_bit(B_READING, &b->state));
775 if (!b->hold_count) {
776 __make_buffer_clean(b);
777 __unlink_buffer(b);
778 return b;
780 cond_resched();
783 return NULL;
787 * Wait until some other threads free some buffer or release hold count on
788 * some buffer.
790 * This function is entered with c->lock held, drops it and regains it
791 * before exiting.
793 static void __wait_for_free_buffer(struct dm_bufio_client *c)
795 DECLARE_WAITQUEUE(wait, current);
797 add_wait_queue(&c->free_buffer_wait, &wait);
798 set_current_state(TASK_UNINTERRUPTIBLE);
799 dm_bufio_unlock(c);
801 io_schedule();
803 remove_wait_queue(&c->free_buffer_wait, &wait);
805 dm_bufio_lock(c);
808 enum new_flag {
809 NF_FRESH = 0,
810 NF_READ = 1,
811 NF_GET = 2,
812 NF_PREFETCH = 3
816 * Allocate a new buffer. If the allocation is not possible, wait until
817 * some other thread frees a buffer.
819 * May drop the lock and regain it.
821 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
823 struct dm_buffer *b;
824 bool tried_noio_alloc = false;
827 * dm-bufio is resistant to allocation failures (it just keeps
828 * one buffer reserved in cases all the allocations fail).
829 * So set flags to not try too hard:
830 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
831 * mutex and wait ourselves.
832 * __GFP_NORETRY: don't retry and rather return failure
833 * __GFP_NOMEMALLOC: don't use emergency reserves
834 * __GFP_NOWARN: don't print a warning in case of failure
836 * For debugging, if we set the cache size to 1, no new buffers will
837 * be allocated.
839 while (1) {
840 if (dm_bufio_cache_size_latch != 1) {
841 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
842 if (b)
843 return b;
846 if (nf == NF_PREFETCH)
847 return NULL;
849 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
850 dm_bufio_unlock(c);
851 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
852 dm_bufio_lock(c);
853 if (b)
854 return b;
855 tried_noio_alloc = true;
858 if (!list_empty(&c->reserved_buffers)) {
859 b = list_entry(c->reserved_buffers.next,
860 struct dm_buffer, lru_list);
861 list_del(&b->lru_list);
862 c->need_reserved_buffers++;
864 return b;
867 b = __get_unclaimed_buffer(c);
868 if (b)
869 return b;
871 __wait_for_free_buffer(c);
875 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
877 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
879 if (!b)
880 return NULL;
882 if (c->alloc_callback)
883 c->alloc_callback(b);
885 return b;
889 * Free a buffer and wake other threads waiting for free buffers.
891 static void __free_buffer_wake(struct dm_buffer *b)
893 struct dm_bufio_client *c = b->c;
895 if (!c->need_reserved_buffers)
896 free_buffer(b);
897 else {
898 list_add(&b->lru_list, &c->reserved_buffers);
899 c->need_reserved_buffers--;
902 wake_up(&c->free_buffer_wait);
905 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
906 struct list_head *write_list)
908 struct dm_buffer *b, *tmp;
910 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
911 BUG_ON(test_bit(B_READING, &b->state));
913 if (!test_bit(B_DIRTY, &b->state) &&
914 !test_bit(B_WRITING, &b->state)) {
915 __relink_lru(b, LIST_CLEAN);
916 continue;
919 if (no_wait && test_bit(B_WRITING, &b->state))
920 return;
922 __write_dirty_buffer(b, write_list);
923 cond_resched();
928 * Get writeback threshold and buffer limit for a given client.
930 static void __get_memory_limit(struct dm_bufio_client *c,
931 unsigned long *threshold_buffers,
932 unsigned long *limit_buffers)
934 unsigned long buffers;
936 if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
937 if (mutex_trylock(&dm_bufio_clients_lock)) {
938 __cache_size_refresh();
939 mutex_unlock(&dm_bufio_clients_lock);
943 buffers = dm_bufio_cache_size_per_client >>
944 (c->sectors_per_block_bits + SECTOR_SHIFT);
946 if (buffers < c->minimum_buffers)
947 buffers = c->minimum_buffers;
949 *limit_buffers = buffers;
950 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
954 * Check if we're over watermark.
955 * If we are over threshold_buffers, start freeing buffers.
956 * If we're over "limit_buffers", block until we get under the limit.
958 static void __check_watermark(struct dm_bufio_client *c,
959 struct list_head *write_list)
961 unsigned long threshold_buffers, limit_buffers;
963 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
965 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
966 limit_buffers) {
968 struct dm_buffer *b = __get_unclaimed_buffer(c);
970 if (!b)
971 return;
973 __free_buffer_wake(b);
974 cond_resched();
977 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
978 __write_dirty_buffers_async(c, 1, write_list);
981 /*----------------------------------------------------------------
982 * Getting a buffer
983 *--------------------------------------------------------------*/
985 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
986 enum new_flag nf, int *need_submit,
987 struct list_head *write_list)
989 struct dm_buffer *b, *new_b = NULL;
991 *need_submit = 0;
993 b = __find(c, block);
994 if (b)
995 goto found_buffer;
997 if (nf == NF_GET)
998 return NULL;
1000 new_b = __alloc_buffer_wait(c, nf);
1001 if (!new_b)
1002 return NULL;
1005 * We've had a period where the mutex was unlocked, so need to
1006 * recheck the hash table.
1008 b = __find(c, block);
1009 if (b) {
1010 __free_buffer_wake(new_b);
1011 goto found_buffer;
1014 __check_watermark(c, write_list);
1016 b = new_b;
1017 b->hold_count = 1;
1018 b->read_error = 0;
1019 b->write_error = 0;
1020 __link_buffer(b, block, LIST_CLEAN);
1022 if (nf == NF_FRESH) {
1023 b->state = 0;
1024 return b;
1027 b->state = 1 << B_READING;
1028 *need_submit = 1;
1030 return b;
1032 found_buffer:
1033 if (nf == NF_PREFETCH)
1034 return NULL;
1036 * Note: it is essential that we don't wait for the buffer to be
1037 * read if dm_bufio_get function is used. Both dm_bufio_get and
1038 * dm_bufio_prefetch can be used in the driver request routine.
1039 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1040 * the same buffer, it would deadlock if we waited.
1042 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1043 return NULL;
1045 b->hold_count++;
1046 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1047 test_bit(B_WRITING, &b->state));
1048 return b;
1052 * The endio routine for reading: set the error, clear the bit and wake up
1053 * anyone waiting on the buffer.
1055 static void read_endio(struct bio *bio)
1057 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1059 b->read_error = bio->bi_error;
1061 BUG_ON(!test_bit(B_READING, &b->state));
1063 smp_mb__before_atomic();
1064 clear_bit(B_READING, &b->state);
1065 smp_mb__after_atomic();
1067 wake_up_bit(&b->state, B_READING);
1071 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1072 * functions is similar except that dm_bufio_new doesn't read the
1073 * buffer from the disk (assuming that the caller overwrites all the data
1074 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1076 static void *new_read(struct dm_bufio_client *c, sector_t block,
1077 enum new_flag nf, struct dm_buffer **bp)
1079 int need_submit;
1080 struct dm_buffer *b;
1082 LIST_HEAD(write_list);
1084 dm_bufio_lock(c);
1085 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1086 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1087 if (b && b->hold_count == 1)
1088 buffer_record_stack(b);
1089 #endif
1090 dm_bufio_unlock(c);
1092 __flush_write_list(&write_list);
1094 if (!b)
1095 return NULL;
1097 if (need_submit)
1098 submit_io(b, READ, b->block, read_endio);
1100 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1102 if (b->read_error) {
1103 int error = b->read_error;
1105 dm_bufio_release(b);
1107 return ERR_PTR(error);
1110 *bp = b;
1112 return b->data;
1115 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1116 struct dm_buffer **bp)
1118 return new_read(c, block, NF_GET, bp);
1120 EXPORT_SYMBOL_GPL(dm_bufio_get);
1122 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1123 struct dm_buffer **bp)
1125 BUG_ON(dm_bufio_in_request());
1127 return new_read(c, block, NF_READ, bp);
1129 EXPORT_SYMBOL_GPL(dm_bufio_read);
1131 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1132 struct dm_buffer **bp)
1134 BUG_ON(dm_bufio_in_request());
1136 return new_read(c, block, NF_FRESH, bp);
1138 EXPORT_SYMBOL_GPL(dm_bufio_new);
1140 void dm_bufio_prefetch(struct dm_bufio_client *c,
1141 sector_t block, unsigned n_blocks)
1143 struct blk_plug plug;
1145 LIST_HEAD(write_list);
1147 BUG_ON(dm_bufio_in_request());
1149 blk_start_plug(&plug);
1150 dm_bufio_lock(c);
1152 for (; n_blocks--; block++) {
1153 int need_submit;
1154 struct dm_buffer *b;
1155 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1156 &write_list);
1157 if (unlikely(!list_empty(&write_list))) {
1158 dm_bufio_unlock(c);
1159 blk_finish_plug(&plug);
1160 __flush_write_list(&write_list);
1161 blk_start_plug(&plug);
1162 dm_bufio_lock(c);
1164 if (unlikely(b != NULL)) {
1165 dm_bufio_unlock(c);
1167 if (need_submit)
1168 submit_io(b, READ, b->block, read_endio);
1169 dm_bufio_release(b);
1171 cond_resched();
1173 if (!n_blocks)
1174 goto flush_plug;
1175 dm_bufio_lock(c);
1179 dm_bufio_unlock(c);
1181 flush_plug:
1182 blk_finish_plug(&plug);
1184 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1186 void dm_bufio_release(struct dm_buffer *b)
1188 struct dm_bufio_client *c = b->c;
1190 dm_bufio_lock(c);
1192 BUG_ON(!b->hold_count);
1194 b->hold_count--;
1195 if (!b->hold_count) {
1196 wake_up(&c->free_buffer_wait);
1199 * If there were errors on the buffer, and the buffer is not
1200 * to be written, free the buffer. There is no point in caching
1201 * invalid buffer.
1203 if ((b->read_error || b->write_error) &&
1204 !test_bit(B_READING, &b->state) &&
1205 !test_bit(B_WRITING, &b->state) &&
1206 !test_bit(B_DIRTY, &b->state)) {
1207 __unlink_buffer(b);
1208 __free_buffer_wake(b);
1212 dm_bufio_unlock(c);
1214 EXPORT_SYMBOL_GPL(dm_bufio_release);
1216 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1218 struct dm_bufio_client *c = b->c;
1220 dm_bufio_lock(c);
1222 BUG_ON(test_bit(B_READING, &b->state));
1224 if (!test_and_set_bit(B_DIRTY, &b->state))
1225 __relink_lru(b, LIST_DIRTY);
1227 dm_bufio_unlock(c);
1229 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1231 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1233 LIST_HEAD(write_list);
1235 BUG_ON(dm_bufio_in_request());
1237 dm_bufio_lock(c);
1238 __write_dirty_buffers_async(c, 0, &write_list);
1239 dm_bufio_unlock(c);
1240 __flush_write_list(&write_list);
1242 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1245 * For performance, it is essential that the buffers are written asynchronously
1246 * and simultaneously (so that the block layer can merge the writes) and then
1247 * waited upon.
1249 * Finally, we flush hardware disk cache.
1251 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1253 int a, f;
1254 unsigned long buffers_processed = 0;
1255 struct dm_buffer *b, *tmp;
1257 LIST_HEAD(write_list);
1259 dm_bufio_lock(c);
1260 __write_dirty_buffers_async(c, 0, &write_list);
1261 dm_bufio_unlock(c);
1262 __flush_write_list(&write_list);
1263 dm_bufio_lock(c);
1265 again:
1266 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1267 int dropped_lock = 0;
1269 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1270 buffers_processed++;
1272 BUG_ON(test_bit(B_READING, &b->state));
1274 if (test_bit(B_WRITING, &b->state)) {
1275 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1276 dropped_lock = 1;
1277 b->hold_count++;
1278 dm_bufio_unlock(c);
1279 wait_on_bit_io(&b->state, B_WRITING,
1280 TASK_UNINTERRUPTIBLE);
1281 dm_bufio_lock(c);
1282 b->hold_count--;
1283 } else
1284 wait_on_bit_io(&b->state, B_WRITING,
1285 TASK_UNINTERRUPTIBLE);
1288 if (!test_bit(B_DIRTY, &b->state) &&
1289 !test_bit(B_WRITING, &b->state))
1290 __relink_lru(b, LIST_CLEAN);
1292 cond_resched();
1295 * If we dropped the lock, the list is no longer consistent,
1296 * so we must restart the search.
1298 * In the most common case, the buffer just processed is
1299 * relinked to the clean list, so we won't loop scanning the
1300 * same buffer again and again.
1302 * This may livelock if there is another thread simultaneously
1303 * dirtying buffers, so we count the number of buffers walked
1304 * and if it exceeds the total number of buffers, it means that
1305 * someone is doing some writes simultaneously with us. In
1306 * this case, stop, dropping the lock.
1308 if (dropped_lock)
1309 goto again;
1311 wake_up(&c->free_buffer_wait);
1312 dm_bufio_unlock(c);
1314 a = xchg(&c->async_write_error, 0);
1315 f = dm_bufio_issue_flush(c);
1316 if (a)
1317 return a;
1319 return f;
1321 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1324 * Use dm-io to send and empty barrier flush the device.
1326 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1328 struct dm_io_request io_req = {
1329 .bi_op = REQ_OP_WRITE,
1330 .bi_op_flags = REQ_PREFLUSH,
1331 .mem.type = DM_IO_KMEM,
1332 .mem.ptr.addr = NULL,
1333 .client = c->dm_io,
1335 struct dm_io_region io_reg = {
1336 .bdev = c->bdev,
1337 .sector = 0,
1338 .count = 0,
1341 BUG_ON(dm_bufio_in_request());
1343 return dm_io(&io_req, 1, &io_reg, NULL);
1345 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1348 * We first delete any other buffer that may be at that new location.
1350 * Then, we write the buffer to the original location if it was dirty.
1352 * Then, if we are the only one who is holding the buffer, relink the buffer
1353 * in the hash queue for the new location.
1355 * If there was someone else holding the buffer, we write it to the new
1356 * location but not relink it, because that other user needs to have the buffer
1357 * at the same place.
1359 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1361 struct dm_bufio_client *c = b->c;
1362 struct dm_buffer *new;
1364 BUG_ON(dm_bufio_in_request());
1366 dm_bufio_lock(c);
1368 retry:
1369 new = __find(c, new_block);
1370 if (new) {
1371 if (new->hold_count) {
1372 __wait_for_free_buffer(c);
1373 goto retry;
1377 * FIXME: Is there any point waiting for a write that's going
1378 * to be overwritten in a bit?
1380 __make_buffer_clean(new);
1381 __unlink_buffer(new);
1382 __free_buffer_wake(new);
1385 BUG_ON(!b->hold_count);
1386 BUG_ON(test_bit(B_READING, &b->state));
1388 __write_dirty_buffer(b, NULL);
1389 if (b->hold_count == 1) {
1390 wait_on_bit_io(&b->state, B_WRITING,
1391 TASK_UNINTERRUPTIBLE);
1392 set_bit(B_DIRTY, &b->state);
1393 __unlink_buffer(b);
1394 __link_buffer(b, new_block, LIST_DIRTY);
1395 } else {
1396 sector_t old_block;
1397 wait_on_bit_lock_io(&b->state, B_WRITING,
1398 TASK_UNINTERRUPTIBLE);
1400 * Relink buffer to "new_block" so that write_callback
1401 * sees "new_block" as a block number.
1402 * After the write, link the buffer back to old_block.
1403 * All this must be done in bufio lock, so that block number
1404 * change isn't visible to other threads.
1406 old_block = b->block;
1407 __unlink_buffer(b);
1408 __link_buffer(b, new_block, b->list_mode);
1409 submit_io(b, WRITE, new_block, write_endio);
1410 wait_on_bit_io(&b->state, B_WRITING,
1411 TASK_UNINTERRUPTIBLE);
1412 __unlink_buffer(b);
1413 __link_buffer(b, old_block, b->list_mode);
1416 dm_bufio_unlock(c);
1417 dm_bufio_release(b);
1419 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1422 * Free the given buffer.
1424 * This is just a hint, if the buffer is in use or dirty, this function
1425 * does nothing.
1427 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1429 struct dm_buffer *b;
1431 dm_bufio_lock(c);
1433 b = __find(c, block);
1434 if (b && likely(!b->hold_count) && likely(!b->state)) {
1435 __unlink_buffer(b);
1436 __free_buffer_wake(b);
1439 dm_bufio_unlock(c);
1441 EXPORT_SYMBOL(dm_bufio_forget);
1443 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1445 c->minimum_buffers = n;
1447 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1449 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1451 return c->block_size;
1453 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1455 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1457 return i_size_read(c->bdev->bd_inode) >>
1458 (SECTOR_SHIFT + c->sectors_per_block_bits);
1460 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1462 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1464 return b->block;
1466 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1468 void *dm_bufio_get_block_data(struct dm_buffer *b)
1470 return b->data;
1472 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1474 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1476 return b + 1;
1478 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1480 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1482 return b->c;
1484 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1486 static void drop_buffers(struct dm_bufio_client *c)
1488 struct dm_buffer *b;
1489 int i;
1490 bool warned = false;
1492 BUG_ON(dm_bufio_in_request());
1495 * An optimization so that the buffers are not written one-by-one.
1497 dm_bufio_write_dirty_buffers_async(c);
1499 dm_bufio_lock(c);
1501 while ((b = __get_unclaimed_buffer(c)))
1502 __free_buffer_wake(b);
1504 for (i = 0; i < LIST_SIZE; i++)
1505 list_for_each_entry(b, &c->lru[i], lru_list) {
1506 WARN_ON(!warned);
1507 warned = true;
1508 DMERR("leaked buffer %llx, hold count %u, list %d",
1509 (unsigned long long)b->block, b->hold_count, i);
1510 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1511 print_stack_trace(&b->stack_trace, 1);
1512 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1513 #endif
1516 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1517 while ((b = __get_unclaimed_buffer(c)))
1518 __free_buffer_wake(b);
1519 #endif
1521 for (i = 0; i < LIST_SIZE; i++)
1522 BUG_ON(!list_empty(&c->lru[i]));
1524 dm_bufio_unlock(c);
1528 * We may not be able to evict this buffer if IO pending or the client
1529 * is still using it. Caller is expected to know buffer is too old.
1531 * And if GFP_NOFS is used, we must not do any I/O because we hold
1532 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1533 * rerouted to different bufio client.
1535 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1537 if (!(gfp & __GFP_FS)) {
1538 if (test_bit(B_READING, &b->state) ||
1539 test_bit(B_WRITING, &b->state) ||
1540 test_bit(B_DIRTY, &b->state))
1541 return false;
1544 if (b->hold_count)
1545 return false;
1547 __make_buffer_clean(b);
1548 __unlink_buffer(b);
1549 __free_buffer_wake(b);
1551 return true;
1554 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1556 unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1557 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1560 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1561 gfp_t gfp_mask)
1563 int l;
1564 struct dm_buffer *b, *tmp;
1565 unsigned long freed = 0;
1566 unsigned long count = nr_to_scan;
1567 unsigned long retain_target = get_retain_buffers(c);
1569 for (l = 0; l < LIST_SIZE; l++) {
1570 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1571 if (__try_evict_buffer(b, gfp_mask))
1572 freed++;
1573 if (!--nr_to_scan || ((count - freed) <= retain_target))
1574 return freed;
1575 cond_resched();
1578 return freed;
1581 static unsigned long
1582 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1584 struct dm_bufio_client *c;
1585 unsigned long freed;
1587 c = container_of(shrink, struct dm_bufio_client, shrinker);
1588 if (sc->gfp_mask & __GFP_FS)
1589 dm_bufio_lock(c);
1590 else if (!dm_bufio_trylock(c))
1591 return SHRINK_STOP;
1593 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1594 dm_bufio_unlock(c);
1595 return freed;
1598 static unsigned long
1599 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1601 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1603 return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]);
1607 * Create the buffering interface
1609 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1610 unsigned reserved_buffers, unsigned aux_size,
1611 void (*alloc_callback)(struct dm_buffer *),
1612 void (*write_callback)(struct dm_buffer *))
1614 int r;
1615 struct dm_bufio_client *c;
1616 unsigned i;
1618 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1619 (block_size & (block_size - 1)));
1621 c = kzalloc(sizeof(*c), GFP_KERNEL);
1622 if (!c) {
1623 r = -ENOMEM;
1624 goto bad_client;
1626 c->buffer_tree = RB_ROOT;
1628 c->bdev = bdev;
1629 c->block_size = block_size;
1630 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1631 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1632 __ffs(block_size) - PAGE_SHIFT : 0;
1633 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1634 PAGE_SHIFT - __ffs(block_size) : 0);
1636 c->aux_size = aux_size;
1637 c->alloc_callback = alloc_callback;
1638 c->write_callback = write_callback;
1640 for (i = 0; i < LIST_SIZE; i++) {
1641 INIT_LIST_HEAD(&c->lru[i]);
1642 c->n_buffers[i] = 0;
1645 mutex_init(&c->lock);
1646 INIT_LIST_HEAD(&c->reserved_buffers);
1647 c->need_reserved_buffers = reserved_buffers;
1649 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1651 init_waitqueue_head(&c->free_buffer_wait);
1652 c->async_write_error = 0;
1654 c->dm_io = dm_io_client_create();
1655 if (IS_ERR(c->dm_io)) {
1656 r = PTR_ERR(c->dm_io);
1657 goto bad_dm_io;
1660 mutex_lock(&dm_bufio_clients_lock);
1661 if (c->blocks_per_page_bits) {
1662 if (!DM_BUFIO_CACHE_NAME(c)) {
1663 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1664 if (!DM_BUFIO_CACHE_NAME(c)) {
1665 r = -ENOMEM;
1666 mutex_unlock(&dm_bufio_clients_lock);
1667 goto bad_cache;
1671 if (!DM_BUFIO_CACHE(c)) {
1672 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1673 c->block_size,
1674 c->block_size, 0, NULL);
1675 if (!DM_BUFIO_CACHE(c)) {
1676 r = -ENOMEM;
1677 mutex_unlock(&dm_bufio_clients_lock);
1678 goto bad_cache;
1682 mutex_unlock(&dm_bufio_clients_lock);
1684 while (c->need_reserved_buffers) {
1685 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1687 if (!b) {
1688 r = -ENOMEM;
1689 goto bad_buffer;
1691 __free_buffer_wake(b);
1694 mutex_lock(&dm_bufio_clients_lock);
1695 dm_bufio_client_count++;
1696 list_add(&c->client_list, &dm_bufio_all_clients);
1697 __cache_size_refresh();
1698 mutex_unlock(&dm_bufio_clients_lock);
1700 c->shrinker.count_objects = dm_bufio_shrink_count;
1701 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1702 c->shrinker.seeks = 1;
1703 c->shrinker.batch = 0;
1704 register_shrinker(&c->shrinker);
1706 return c;
1708 bad_buffer:
1709 bad_cache:
1710 while (!list_empty(&c->reserved_buffers)) {
1711 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1712 struct dm_buffer, lru_list);
1713 list_del(&b->lru_list);
1714 free_buffer(b);
1716 dm_io_client_destroy(c->dm_io);
1717 bad_dm_io:
1718 kfree(c);
1719 bad_client:
1720 return ERR_PTR(r);
1722 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1725 * Free the buffering interface.
1726 * It is required that there are no references on any buffers.
1728 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1730 unsigned i;
1732 drop_buffers(c);
1734 unregister_shrinker(&c->shrinker);
1736 mutex_lock(&dm_bufio_clients_lock);
1738 list_del(&c->client_list);
1739 dm_bufio_client_count--;
1740 __cache_size_refresh();
1742 mutex_unlock(&dm_bufio_clients_lock);
1744 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1745 BUG_ON(c->need_reserved_buffers);
1747 while (!list_empty(&c->reserved_buffers)) {
1748 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1749 struct dm_buffer, lru_list);
1750 list_del(&b->lru_list);
1751 free_buffer(b);
1754 for (i = 0; i < LIST_SIZE; i++)
1755 if (c->n_buffers[i])
1756 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1758 for (i = 0; i < LIST_SIZE; i++)
1759 BUG_ON(c->n_buffers[i]);
1761 dm_io_client_destroy(c->dm_io);
1762 kfree(c);
1764 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1766 static unsigned get_max_age_hz(void)
1768 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1770 if (max_age > UINT_MAX / HZ)
1771 max_age = UINT_MAX / HZ;
1773 return max_age * HZ;
1776 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1778 return time_after_eq(jiffies, b->last_accessed + age_hz);
1781 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1783 struct dm_buffer *b, *tmp;
1784 unsigned long retain_target = get_retain_buffers(c);
1785 unsigned long count;
1786 LIST_HEAD(write_list);
1788 dm_bufio_lock(c);
1790 __check_watermark(c, &write_list);
1791 if (unlikely(!list_empty(&write_list))) {
1792 dm_bufio_unlock(c);
1793 __flush_write_list(&write_list);
1794 dm_bufio_lock(c);
1797 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1798 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1799 if (count <= retain_target)
1800 break;
1802 if (!older_than(b, age_hz))
1803 break;
1805 if (__try_evict_buffer(b, 0))
1806 count--;
1808 cond_resched();
1811 dm_bufio_unlock(c);
1814 static void cleanup_old_buffers(void)
1816 unsigned long max_age_hz = get_max_age_hz();
1817 struct dm_bufio_client *c;
1819 mutex_lock(&dm_bufio_clients_lock);
1821 __cache_size_refresh();
1823 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1824 __evict_old_buffers(c, max_age_hz);
1826 mutex_unlock(&dm_bufio_clients_lock);
1829 static struct workqueue_struct *dm_bufio_wq;
1830 static struct delayed_work dm_bufio_work;
1832 static void work_fn(struct work_struct *w)
1834 cleanup_old_buffers();
1836 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1837 DM_BUFIO_WORK_TIMER_SECS * HZ);
1840 /*----------------------------------------------------------------
1841 * Module setup
1842 *--------------------------------------------------------------*/
1845 * This is called only once for the whole dm_bufio module.
1846 * It initializes memory limit.
1848 static int __init dm_bufio_init(void)
1850 __u64 mem;
1852 dm_bufio_allocated_kmem_cache = 0;
1853 dm_bufio_allocated_get_free_pages = 0;
1854 dm_bufio_allocated_vmalloc = 0;
1855 dm_bufio_current_allocated = 0;
1857 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1858 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1860 mem = (__u64)((totalram_pages - totalhigh_pages) *
1861 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1863 if (mem > ULONG_MAX)
1864 mem = ULONG_MAX;
1866 #ifdef CONFIG_MMU
1868 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1869 * in fs/proc/internal.h
1871 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1872 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1873 #endif
1875 dm_bufio_default_cache_size = mem;
1877 mutex_lock(&dm_bufio_clients_lock);
1878 __cache_size_refresh();
1879 mutex_unlock(&dm_bufio_clients_lock);
1881 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1882 if (!dm_bufio_wq)
1883 return -ENOMEM;
1885 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1886 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1887 DM_BUFIO_WORK_TIMER_SECS * HZ);
1889 return 0;
1893 * This is called once when unloading the dm_bufio module.
1895 static void __exit dm_bufio_exit(void)
1897 int bug = 0;
1898 int i;
1900 cancel_delayed_work_sync(&dm_bufio_work);
1901 destroy_workqueue(dm_bufio_wq);
1903 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1904 kmem_cache_destroy(dm_bufio_caches[i]);
1906 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1907 kfree(dm_bufio_cache_names[i]);
1909 if (dm_bufio_client_count) {
1910 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1911 __func__, dm_bufio_client_count);
1912 bug = 1;
1915 if (dm_bufio_current_allocated) {
1916 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1917 __func__, dm_bufio_current_allocated);
1918 bug = 1;
1921 if (dm_bufio_allocated_get_free_pages) {
1922 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1923 __func__, dm_bufio_allocated_get_free_pages);
1924 bug = 1;
1927 if (dm_bufio_allocated_vmalloc) {
1928 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1929 __func__, dm_bufio_allocated_vmalloc);
1930 bug = 1;
1933 BUG_ON(bug);
1936 module_init(dm_bufio_init)
1937 module_exit(dm_bufio_exit)
1939 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1940 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1942 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1943 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1945 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1946 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1948 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1949 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1951 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1952 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1954 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1955 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1957 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1958 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1960 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1961 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1963 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1964 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1965 MODULE_LICENSE("GPL");