2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
42 #include <trace/events/block.h>
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN))
53 * Number of guaranteed r1bios in case of extreme VM load:
55 #define NR_RAID1_BIOS 256
57 /* when we get a read error on a read-only array, we redirect to another
58 * device without failing the first device, or trying to over-write to
59 * correct the read error. To keep track of bad blocks on a per-bio
60 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 #define IO_BLOCKED ((struct bio *)1)
63 /* When we successfully write to a known bad-block, we need to remove the
64 * bad-block marking which must be done from process context. So we record
65 * the success by setting devs[n].bio to IO_MADE_GOOD
67 #define IO_MADE_GOOD ((struct bio *)2)
69 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71 /* When there are this many requests queue to be written by
72 * the raid1 thread, we become 'congested' to provide back-pressure
75 static int max_queued_requests
= 1024;
77 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
);
78 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
);
80 #define raid1_log(md, fmt, args...) \
81 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
85 struct pool_info
*pi
= data
;
86 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
88 /* allocate a r1bio with room for raid_disks entries in the bios array */
89 return kzalloc(size
, gfp_flags
);
92 static void r1bio_pool_free(void *r1_bio
, void *data
)
97 #define RESYNC_BLOCK_SIZE (64*1024)
98 #define RESYNC_DEPTH 32
99 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
100 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
101 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
102 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
103 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
104 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
106 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
108 struct pool_info
*pi
= data
;
109 struct r1bio
*r1_bio
;
114 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
119 * Allocate bios : 1 for reading, n-1 for writing
121 for (j
= pi
->raid_disks
; j
-- ; ) {
122 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
125 r1_bio
->bios
[j
] = bio
;
128 * Allocate RESYNC_PAGES data pages and attach them to
130 * If this is a user-requested check/repair, allocate
131 * RESYNC_PAGES for each bio.
133 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
134 need_pages
= pi
->raid_disks
;
137 for (j
= 0; j
< need_pages
; j
++) {
138 bio
= r1_bio
->bios
[j
];
139 bio
->bi_vcnt
= RESYNC_PAGES
;
141 if (bio_alloc_pages(bio
, gfp_flags
))
144 /* If not user-requests, copy the page pointers to all bios */
145 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
146 for (i
=0; i
<RESYNC_PAGES
; i
++)
147 for (j
=1; j
<pi
->raid_disks
; j
++)
148 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
149 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
152 r1_bio
->master_bio
= NULL
;
158 bio_free_pages(r1_bio
->bios
[j
]);
161 while (++j
< pi
->raid_disks
)
162 bio_put(r1_bio
->bios
[j
]);
163 r1bio_pool_free(r1_bio
, data
);
167 static void r1buf_pool_free(void *__r1_bio
, void *data
)
169 struct pool_info
*pi
= data
;
171 struct r1bio
*r1bio
= __r1_bio
;
173 for (i
= 0; i
< RESYNC_PAGES
; i
++)
174 for (j
= pi
->raid_disks
; j
-- ;) {
176 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
177 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
178 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
180 for (i
=0 ; i
< pi
->raid_disks
; i
++)
181 bio_put(r1bio
->bios
[i
]);
183 r1bio_pool_free(r1bio
, data
);
186 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
190 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
191 struct bio
**bio
= r1_bio
->bios
+ i
;
192 if (!BIO_SPECIAL(*bio
))
198 static void free_r1bio(struct r1bio
*r1_bio
)
200 struct r1conf
*conf
= r1_bio
->mddev
->private;
202 put_all_bios(conf
, r1_bio
);
203 mempool_free(r1_bio
, conf
->r1bio_pool
);
206 static void put_buf(struct r1bio
*r1_bio
)
208 struct r1conf
*conf
= r1_bio
->mddev
->private;
209 sector_t sect
= r1_bio
->sector
;
212 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
213 struct bio
*bio
= r1_bio
->bios
[i
];
215 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
218 mempool_free(r1_bio
, conf
->r1buf_pool
);
220 lower_barrier(conf
, sect
);
223 static void reschedule_retry(struct r1bio
*r1_bio
)
226 struct mddev
*mddev
= r1_bio
->mddev
;
227 struct r1conf
*conf
= mddev
->private;
230 idx
= sector_to_idx(r1_bio
->sector
);
231 spin_lock_irqsave(&conf
->device_lock
, flags
);
232 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
233 atomic_inc(&conf
->nr_queued
[idx
]);
234 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
236 wake_up(&conf
->wait_barrier
);
237 md_wakeup_thread(mddev
->thread
);
241 * raid_end_bio_io() is called when we have finished servicing a mirrored
242 * operation and are ready to return a success/failure code to the buffer
245 static void call_bio_endio(struct r1bio
*r1_bio
)
247 struct bio
*bio
= r1_bio
->master_bio
;
249 struct r1conf
*conf
= r1_bio
->mddev
->private;
250 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
252 if (bio
->bi_phys_segments
) {
254 spin_lock_irqsave(&conf
->device_lock
, flags
);
255 bio
->bi_phys_segments
--;
256 done
= (bio
->bi_phys_segments
== 0);
257 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
259 * make_request() might be waiting for
260 * bi_phys_segments to decrease
262 wake_up(&conf
->wait_barrier
);
266 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
267 bio
->bi_error
= -EIO
;
272 * Wake up any possible resync thread that waits for the device
275 allow_barrier(conf
, bi_sector
);
279 static void raid_end_bio_io(struct r1bio
*r1_bio
)
281 struct bio
*bio
= r1_bio
->master_bio
;
283 /* if nobody has done the final endio yet, do it now */
284 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
285 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
286 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
287 (unsigned long long) bio
->bi_iter
.bi_sector
,
288 (unsigned long long) bio_end_sector(bio
) - 1);
290 call_bio_endio(r1_bio
);
296 * Update disk head position estimator based on IRQ completion info.
298 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
300 struct r1conf
*conf
= r1_bio
->mddev
->private;
302 conf
->mirrors
[disk
].head_position
=
303 r1_bio
->sector
+ (r1_bio
->sectors
);
307 * Find the disk number which triggered given bio
309 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
312 struct r1conf
*conf
= r1_bio
->mddev
->private;
313 int raid_disks
= conf
->raid_disks
;
315 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
316 if (r1_bio
->bios
[mirror
] == bio
)
319 BUG_ON(mirror
== raid_disks
* 2);
320 update_head_pos(mirror
, r1_bio
);
325 static void raid1_end_read_request(struct bio
*bio
)
327 int uptodate
= !bio
->bi_error
;
328 struct r1bio
*r1_bio
= bio
->bi_private
;
329 struct r1conf
*conf
= r1_bio
->mddev
->private;
330 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
333 * this branch is our 'one mirror IO has finished' event handler:
335 update_head_pos(r1_bio
->read_disk
, r1_bio
);
338 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
339 else if (test_bit(FailFast
, &rdev
->flags
) &&
340 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
341 /* This was a fail-fast read so we definitely
345 /* If all other devices have failed, we want to return
346 * the error upwards rather than fail the last device.
347 * Here we redefine "uptodate" to mean "Don't want to retry"
350 spin_lock_irqsave(&conf
->device_lock
, flags
);
351 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
352 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
353 test_bit(In_sync
, &rdev
->flags
)))
355 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
359 raid_end_bio_io(r1_bio
);
360 rdev_dec_pending(rdev
, conf
->mddev
);
365 char b
[BDEVNAME_SIZE
];
366 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
368 bdevname(rdev
->bdev
, b
),
369 (unsigned long long)r1_bio
->sector
);
370 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
371 reschedule_retry(r1_bio
);
372 /* don't drop the reference on read_disk yet */
376 static void close_write(struct r1bio
*r1_bio
)
378 /* it really is the end of this request */
379 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
380 /* free extra copy of the data pages */
381 int i
= r1_bio
->behind_page_count
;
383 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
384 kfree(r1_bio
->behind_bvecs
);
385 r1_bio
->behind_bvecs
= NULL
;
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
390 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
391 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
392 md_write_end(r1_bio
->mddev
);
395 static void r1_bio_write_done(struct r1bio
*r1_bio
)
397 if (!atomic_dec_and_test(&r1_bio
->remaining
))
400 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
401 reschedule_retry(r1_bio
);
404 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
405 reschedule_retry(r1_bio
);
407 raid_end_bio_io(r1_bio
);
411 static void raid1_end_write_request(struct bio
*bio
)
413 struct r1bio
*r1_bio
= bio
->bi_private
;
414 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
415 struct r1conf
*conf
= r1_bio
->mddev
->private;
416 struct bio
*to_put
= NULL
;
417 int mirror
= find_bio_disk(r1_bio
, bio
);
418 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
421 discard_error
= bio
->bi_error
&& bio_op(bio
) == REQ_OP_DISCARD
;
424 * 'one mirror IO has finished' event handler:
426 if (bio
->bi_error
&& !discard_error
) {
427 set_bit(WriteErrorSeen
, &rdev
->flags
);
428 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
429 set_bit(MD_RECOVERY_NEEDED
, &
430 conf
->mddev
->recovery
);
432 if (test_bit(FailFast
, &rdev
->flags
) &&
433 (bio
->bi_opf
& MD_FAILFAST
) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly
, &rdev
->flags
)) {
436 md_error(r1_bio
->mddev
, rdev
);
437 if (!test_bit(Faulty
, &rdev
->flags
))
438 /* This is the only remaining device,
439 * We need to retry the write without
442 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
444 /* Finished with this branch */
445 r1_bio
->bios
[mirror
] = NULL
;
449 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
464 r1_bio
->bios
[mirror
] = NULL
;
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
474 if (test_bit(In_sync
, &rdev
->flags
) &&
475 !test_bit(Faulty
, &rdev
->flags
))
476 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
478 /* Maybe we can clear some bad blocks. */
479 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
480 &first_bad
, &bad_sectors
) && !discard_error
) {
481 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
482 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
487 if (test_bit(WriteMostly
, &rdev
->flags
))
488 atomic_dec(&r1_bio
->behind_remaining
);
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
497 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
498 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
501 struct bio
*mbio
= r1_bio
->master_bio
;
502 pr_debug("raid1: behind end write sectors"
504 (unsigned long long) mbio
->bi_iter
.bi_sector
,
505 (unsigned long long) bio_end_sector(mbio
) - 1);
506 call_bio_endio(r1_bio
);
510 if (r1_bio
->bios
[mirror
] == NULL
)
511 rdev_dec_pending(rdev
, conf
->mddev
);
514 * Let's see if all mirrored write operations have finished
517 r1_bio_write_done(r1_bio
);
523 static sector_t
align_to_barrier_unit_end(sector_t start_sector
,
528 WARN_ON(sectors
== 0);
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
533 len
= round_up(start_sector
+ 1, BARRIER_UNIT_SECTOR_SIZE
) -
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
554 * The rdev for the device selected will have nr_pending incremented.
556 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
558 const sector_t this_sector
= r1_bio
->sector
;
560 int best_good_sectors
;
561 int best_disk
, best_dist_disk
, best_pending_disk
;
565 unsigned int min_pending
;
566 struct md_rdev
*rdev
;
568 int choose_next_idle
;
572 * Check if we can balance. We can balance on the whole
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
577 sectors
= r1_bio
->sectors
;
580 best_dist
= MaxSector
;
581 best_pending_disk
= -1;
582 min_pending
= UINT_MAX
;
583 best_good_sectors
= 0;
585 choose_next_idle
= 0;
586 clear_bit(R1BIO_FailFast
, &r1_bio
->state
);
588 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
589 (mddev_is_clustered(conf
->mddev
) &&
590 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
591 this_sector
+ sectors
)))
596 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
600 unsigned int pending
;
603 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
604 if (r1_bio
->bios
[disk
] == IO_BLOCKED
606 || test_bit(Faulty
, &rdev
->flags
))
608 if (!test_bit(In_sync
, &rdev
->flags
) &&
609 rdev
->recovery_offset
< this_sector
+ sectors
)
611 if (test_bit(WriteMostly
, &rdev
->flags
)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
614 if (best_dist_disk
< 0) {
615 if (is_badblock(rdev
, this_sector
, sectors
,
616 &first_bad
, &bad_sectors
)) {
617 if (first_bad
<= this_sector
)
618 /* Cannot use this */
620 best_good_sectors
= first_bad
- this_sector
;
622 best_good_sectors
= sectors
;
623 best_dist_disk
= disk
;
624 best_pending_disk
= disk
;
628 /* This is a reasonable device to use. It might
631 if (is_badblock(rdev
, this_sector
, sectors
,
632 &first_bad
, &bad_sectors
)) {
633 if (best_dist
< MaxSector
)
634 /* already have a better device */
636 if (first_bad
<= this_sector
) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
641 bad_sectors
-= (this_sector
- first_bad
);
642 if (choose_first
&& sectors
> bad_sectors
)
643 sectors
= bad_sectors
;
644 if (best_good_sectors
> sectors
)
645 best_good_sectors
= sectors
;
648 sector_t good_sectors
= first_bad
- this_sector
;
649 if (good_sectors
> best_good_sectors
) {
650 best_good_sectors
= good_sectors
;
658 best_good_sectors
= sectors
;
661 /* At least two disks to choose from so failfast is OK */
662 set_bit(R1BIO_FailFast
, &r1_bio
->state
);
664 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
665 has_nonrot_disk
|= nonrot
;
666 pending
= atomic_read(&rdev
->nr_pending
);
667 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
672 /* Don't change to another disk for sequential reads */
673 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
675 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
676 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
680 * If buffered sequential IO size exceeds optimal
681 * iosize, check if there is idle disk. If yes, choose
682 * the idle disk. read_balance could already choose an
683 * idle disk before noticing it's a sequential IO in
684 * this disk. This doesn't matter because this disk
685 * will idle, next time it will be utilized after the
686 * first disk has IO size exceeds optimal iosize. In
687 * this way, iosize of the first disk will be optimal
688 * iosize at least. iosize of the second disk might be
689 * small, but not a big deal since when the second disk
690 * starts IO, the first disk is likely still busy.
692 if (nonrot
&& opt_iosize
> 0 &&
693 mirror
->seq_start
!= MaxSector
&&
694 mirror
->next_seq_sect
> opt_iosize
&&
695 mirror
->next_seq_sect
- opt_iosize
>=
697 choose_next_idle
= 1;
703 if (choose_next_idle
)
706 if (min_pending
> pending
) {
707 min_pending
= pending
;
708 best_pending_disk
= disk
;
711 if (dist
< best_dist
) {
713 best_dist_disk
= disk
;
718 * If all disks are rotational, choose the closest disk. If any disk is
719 * non-rotational, choose the disk with less pending request even the
720 * disk is rotational, which might/might not be optimal for raids with
721 * mixed ratation/non-rotational disks depending on workload.
723 if (best_disk
== -1) {
724 if (has_nonrot_disk
|| min_pending
== 0)
725 best_disk
= best_pending_disk
;
727 best_disk
= best_dist_disk
;
730 if (best_disk
>= 0) {
731 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
734 atomic_inc(&rdev
->nr_pending
);
735 sectors
= best_good_sectors
;
737 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
738 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
740 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
743 *max_sectors
= sectors
;
748 static int raid1_congested(struct mddev
*mddev
, int bits
)
750 struct r1conf
*conf
= mddev
->private;
753 if ((bits
& (1 << WB_async_congested
)) &&
754 conf
->pending_count
>= max_queued_requests
)
758 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
759 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
760 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
761 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
765 /* Note the '|| 1' - when read_balance prefers
766 * non-congested targets, it can be removed
768 if ((bits
& (1 << WB_async_congested
)) || 1)
769 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
771 ret
&= bdi_congested(q
->backing_dev_info
, bits
);
778 static void flush_pending_writes(struct r1conf
*conf
)
780 /* Any writes that have been queued but are awaiting
781 * bitmap updates get flushed here.
783 spin_lock_irq(&conf
->device_lock
);
785 if (conf
->pending_bio_list
.head
) {
787 bio
= bio_list_get(&conf
->pending_bio_list
);
788 conf
->pending_count
= 0;
789 spin_unlock_irq(&conf
->device_lock
);
790 /* flush any pending bitmap writes to
791 * disk before proceeding w/ I/O */
792 bitmap_unplug(conf
->mddev
->bitmap
);
793 wake_up(&conf
->wait_barrier
);
795 while (bio
) { /* submit pending writes */
796 struct bio
*next
= bio
->bi_next
;
797 struct md_rdev
*rdev
= (void*)bio
->bi_bdev
;
799 bio
->bi_bdev
= rdev
->bdev
;
800 if (test_bit(Faulty
, &rdev
->flags
)) {
801 bio
->bi_error
= -EIO
;
803 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
804 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
808 generic_make_request(bio
);
812 spin_unlock_irq(&conf
->device_lock
);
816 * Sometimes we need to suspend IO while we do something else,
817 * either some resync/recovery, or reconfigure the array.
818 * To do this we raise a 'barrier'.
819 * The 'barrier' is a counter that can be raised multiple times
820 * to count how many activities are happening which preclude
822 * We can only raise the barrier if there is no pending IO.
823 * i.e. if nr_pending == 0.
824 * We choose only to raise the barrier if no-one is waiting for the
825 * barrier to go down. This means that as soon as an IO request
826 * is ready, no other operations which require a barrier will start
827 * until the IO request has had a chance.
829 * So: regular IO calls 'wait_barrier'. When that returns there
830 * is no backgroup IO happening, It must arrange to call
831 * allow_barrier when it has finished its IO.
832 * backgroup IO calls must call raise_barrier. Once that returns
833 * there is no normal IO happeing. It must arrange to call
834 * lower_barrier when the particular background IO completes.
836 static void raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
838 int idx
= sector_to_idx(sector_nr
);
840 spin_lock_irq(&conf
->resync_lock
);
842 /* Wait until no block IO is waiting */
843 wait_event_lock_irq(conf
->wait_barrier
,
844 !atomic_read(&conf
->nr_waiting
[idx
]),
847 /* block any new IO from starting */
848 atomic_inc(&conf
->barrier
[idx
]);
850 * In raise_barrier() we firstly increase conf->barrier[idx] then
851 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
852 * increase conf->nr_pending[idx] then check conf->barrier[idx].
853 * A memory barrier here to make sure conf->nr_pending[idx] won't
854 * be fetched before conf->barrier[idx] is increased. Otherwise
855 * there will be a race between raise_barrier() and _wait_barrier().
857 smp_mb__after_atomic();
859 /* For these conditions we must wait:
860 * A: while the array is in frozen state
861 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
862 * existing in corresponding I/O barrier bucket.
863 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
864 * max resync count which allowed on current I/O barrier bucket.
866 wait_event_lock_irq(conf
->wait_barrier
,
867 !conf
->array_frozen
&&
868 !atomic_read(&conf
->nr_pending
[idx
]) &&
869 atomic_read(&conf
->barrier
[idx
]) < RESYNC_DEPTH
,
872 atomic_inc(&conf
->nr_pending
[idx
]);
873 spin_unlock_irq(&conf
->resync_lock
);
876 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
)
878 int idx
= sector_to_idx(sector_nr
);
880 BUG_ON(atomic_read(&conf
->barrier
[idx
]) <= 0);
882 atomic_dec(&conf
->barrier
[idx
]);
883 atomic_dec(&conf
->nr_pending
[idx
]);
884 wake_up(&conf
->wait_barrier
);
887 static void _wait_barrier(struct r1conf
*conf
, int idx
)
890 * We need to increase conf->nr_pending[idx] very early here,
891 * then raise_barrier() can be blocked when it waits for
892 * conf->nr_pending[idx] to be 0. Then we can avoid holding
893 * conf->resync_lock when there is no barrier raised in same
894 * barrier unit bucket. Also if the array is frozen, I/O
895 * should be blocked until array is unfrozen.
897 atomic_inc(&conf
->nr_pending
[idx
]);
899 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
900 * check conf->barrier[idx]. In raise_barrier() we firstly increase
901 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
902 * barrier is necessary here to make sure conf->barrier[idx] won't be
903 * fetched before conf->nr_pending[idx] is increased. Otherwise there
904 * will be a race between _wait_barrier() and raise_barrier().
906 smp_mb__after_atomic();
909 * Don't worry about checking two atomic_t variables at same time
910 * here. If during we check conf->barrier[idx], the array is
911 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
912 * 0, it is safe to return and make the I/O continue. Because the
913 * array is frozen, all I/O returned here will eventually complete
914 * or be queued, no race will happen. See code comment in
917 if (!READ_ONCE(conf
->array_frozen
) &&
918 !atomic_read(&conf
->barrier
[idx
]))
922 * After holding conf->resync_lock, conf->nr_pending[idx]
923 * should be decreased before waiting for barrier to drop.
924 * Otherwise, we may encounter a race condition because
925 * raise_barrer() might be waiting for conf->nr_pending[idx]
926 * to be 0 at same time.
928 spin_lock_irq(&conf
->resync_lock
);
929 atomic_inc(&conf
->nr_waiting
[idx
]);
930 atomic_dec(&conf
->nr_pending
[idx
]);
932 * In case freeze_array() is waiting for
933 * get_unqueued_pending() == extra
935 wake_up(&conf
->wait_barrier
);
936 /* Wait for the barrier in same barrier unit bucket to drop. */
937 wait_event_lock_irq(conf
->wait_barrier
,
938 !conf
->array_frozen
&&
939 !atomic_read(&conf
->barrier
[idx
]),
941 atomic_inc(&conf
->nr_pending
[idx
]);
942 atomic_dec(&conf
->nr_waiting
[idx
]);
943 spin_unlock_irq(&conf
->resync_lock
);
946 static void wait_read_barrier(struct r1conf
*conf
, sector_t sector_nr
)
948 int idx
= sector_to_idx(sector_nr
);
951 * Very similar to _wait_barrier(). The difference is, for read
952 * I/O we don't need wait for sync I/O, but if the whole array
953 * is frozen, the read I/O still has to wait until the array is
954 * unfrozen. Since there is no ordering requirement with
955 * conf->barrier[idx] here, memory barrier is unnecessary as well.
957 atomic_inc(&conf
->nr_pending
[idx
]);
959 if (!READ_ONCE(conf
->array_frozen
))
962 spin_lock_irq(&conf
->resync_lock
);
963 atomic_inc(&conf
->nr_waiting
[idx
]);
964 atomic_dec(&conf
->nr_pending
[idx
]);
966 * In case freeze_array() is waiting for
967 * get_unqueued_pending() == extra
969 wake_up(&conf
->wait_barrier
);
970 /* Wait for array to be unfrozen */
971 wait_event_lock_irq(conf
->wait_barrier
,
974 atomic_inc(&conf
->nr_pending
[idx
]);
975 atomic_dec(&conf
->nr_waiting
[idx
]);
976 spin_unlock_irq(&conf
->resync_lock
);
979 static void wait_barrier(struct r1conf
*conf
, sector_t sector_nr
)
981 int idx
= sector_to_idx(sector_nr
);
983 _wait_barrier(conf
, idx
);
986 static void wait_all_barriers(struct r1conf
*conf
)
990 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
991 _wait_barrier(conf
, idx
);
994 static void _allow_barrier(struct r1conf
*conf
, int idx
)
996 atomic_dec(&conf
->nr_pending
[idx
]);
997 wake_up(&conf
->wait_barrier
);
1000 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1002 int idx
= sector_to_idx(sector_nr
);
1004 _allow_barrier(conf
, idx
);
1007 static void allow_all_barriers(struct r1conf
*conf
)
1011 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1012 _allow_barrier(conf
, idx
);
1015 /* conf->resync_lock should be held */
1016 static int get_unqueued_pending(struct r1conf
*conf
)
1020 for (ret
= 0, idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1021 ret
+= atomic_read(&conf
->nr_pending
[idx
]) -
1022 atomic_read(&conf
->nr_queued
[idx
]);
1027 static void freeze_array(struct r1conf
*conf
, int extra
)
1029 /* Stop sync I/O and normal I/O and wait for everything to
1031 * This is called in two situations:
1032 * 1) management command handlers (reshape, remove disk, quiesce).
1033 * 2) one normal I/O request failed.
1035 * After array_frozen is set to 1, new sync IO will be blocked at
1036 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1037 * or wait_read_barrier(). The flying I/Os will either complete or be
1038 * queued. When everything goes quite, there are only queued I/Os left.
1040 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1041 * barrier bucket index which this I/O request hits. When all sync and
1042 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1043 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1044 * in handle_read_error(), we may call freeze_array() before trying to
1045 * fix the read error. In this case, the error read I/O is not queued,
1046 * so get_unqueued_pending() == 1.
1048 * Therefore before this function returns, we need to wait until
1049 * get_unqueued_pendings(conf) gets equal to extra. For
1050 * normal I/O context, extra is 1, in rested situations extra is 0.
1052 spin_lock_irq(&conf
->resync_lock
);
1053 conf
->array_frozen
= 1;
1054 raid1_log(conf
->mddev
, "wait freeze");
1055 wait_event_lock_irq_cmd(
1057 get_unqueued_pending(conf
) == extra
,
1059 flush_pending_writes(conf
));
1060 spin_unlock_irq(&conf
->resync_lock
);
1062 static void unfreeze_array(struct r1conf
*conf
)
1064 /* reverse the effect of the freeze */
1065 spin_lock_irq(&conf
->resync_lock
);
1066 conf
->array_frozen
= 0;
1067 spin_unlock_irq(&conf
->resync_lock
);
1068 wake_up(&conf
->wait_barrier
);
1071 /* duplicate the data pages for behind I/O
1073 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
1076 struct bio_vec
*bvec
;
1077 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
1079 if (unlikely(!bvecs
))
1082 bio_for_each_segment_all(bvec
, bio
, i
) {
1084 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
1085 if (unlikely(!bvecs
[i
].bv_page
))
1087 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
1088 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
1089 kunmap(bvecs
[i
].bv_page
);
1090 kunmap(bvec
->bv_page
);
1092 r1_bio
->behind_bvecs
= bvecs
;
1093 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
1094 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1098 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
1099 if (bvecs
[i
].bv_page
)
1100 put_page(bvecs
[i
].bv_page
);
1102 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1103 bio
->bi_iter
.bi_size
);
1106 struct raid1_plug_cb
{
1107 struct blk_plug_cb cb
;
1108 struct bio_list pending
;
1112 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1114 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1116 struct mddev
*mddev
= plug
->cb
.data
;
1117 struct r1conf
*conf
= mddev
->private;
1120 if (from_schedule
|| current
->bio_list
) {
1121 spin_lock_irq(&conf
->device_lock
);
1122 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1123 conf
->pending_count
+= plug
->pending_cnt
;
1124 spin_unlock_irq(&conf
->device_lock
);
1125 wake_up(&conf
->wait_barrier
);
1126 md_wakeup_thread(mddev
->thread
);
1131 /* we aren't scheduling, so we can do the write-out directly. */
1132 bio
= bio_list_get(&plug
->pending
);
1133 bitmap_unplug(mddev
->bitmap
);
1134 wake_up(&conf
->wait_barrier
);
1136 while (bio
) { /* submit pending writes */
1137 struct bio
*next
= bio
->bi_next
;
1138 struct md_rdev
*rdev
= (void*)bio
->bi_bdev
;
1139 bio
->bi_next
= NULL
;
1140 bio
->bi_bdev
= rdev
->bdev
;
1141 if (test_bit(Faulty
, &rdev
->flags
)) {
1142 bio
->bi_error
= -EIO
;
1144 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1145 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1146 /* Just ignore it */
1149 generic_make_request(bio
);
1155 static inline struct r1bio
*
1156 alloc_r1bio(struct mddev
*mddev
, struct bio
*bio
, sector_t sectors_handled
)
1158 struct r1conf
*conf
= mddev
->private;
1159 struct r1bio
*r1_bio
;
1161 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1163 r1_bio
->master_bio
= bio
;
1164 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1166 r1_bio
->mddev
= mddev
;
1167 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1172 static void raid1_read_request(struct mddev
*mddev
, struct bio
*bio
)
1174 struct r1conf
*conf
= mddev
->private;
1175 struct raid1_info
*mirror
;
1176 struct r1bio
*r1_bio
;
1177 struct bio
*read_bio
;
1178 struct bitmap
*bitmap
= mddev
->bitmap
;
1179 const int op
= bio_op(bio
);
1180 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1181 int sectors_handled
;
1186 * Still need barrier for READ in case that whole
1189 wait_read_barrier(conf
, bio
->bi_iter
.bi_sector
);
1191 r1_bio
= alloc_r1bio(mddev
, bio
, 0);
1194 * We might need to issue multiple reads to different
1195 * devices if there are bad blocks around, so we keep
1196 * track of the number of reads in bio->bi_phys_segments.
1197 * If this is 0, there is only one r1_bio and no locking
1198 * will be needed when requests complete. If it is
1199 * non-zero, then it is the number of not-completed requests.
1201 bio
->bi_phys_segments
= 0;
1202 bio_clear_flag(bio
, BIO_SEG_VALID
);
1205 * make_request() can abort the operation when read-ahead is being
1206 * used and no empty request is available.
1209 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1212 /* couldn't find anywhere to read from */
1213 raid_end_bio_io(r1_bio
);
1216 mirror
= conf
->mirrors
+ rdisk
;
1218 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1221 * Reading from a write-mostly device must take care not to
1222 * over-take any writes that are 'behind'
1224 raid1_log(mddev
, "wait behind writes");
1225 wait_event(bitmap
->behind_wait
,
1226 atomic_read(&bitmap
->behind_writes
) == 0);
1228 r1_bio
->read_disk
= rdisk
;
1230 read_bio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1231 bio_trim(read_bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
1234 r1_bio
->bios
[rdisk
] = read_bio
;
1236 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1237 mirror
->rdev
->data_offset
;
1238 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1239 read_bio
->bi_end_io
= raid1_end_read_request
;
1240 bio_set_op_attrs(read_bio
, op
, do_sync
);
1241 if (test_bit(FailFast
, &mirror
->rdev
->flags
) &&
1242 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
1243 read_bio
->bi_opf
|= MD_FAILFAST
;
1244 read_bio
->bi_private
= r1_bio
;
1247 trace_block_bio_remap(bdev_get_queue(read_bio
->bi_bdev
),
1248 read_bio
, disk_devt(mddev
->gendisk
),
1251 if (max_sectors
< r1_bio
->sectors
) {
1253 * could not read all from this device, so we will need another
1256 sectors_handled
= (r1_bio
->sector
+ max_sectors
1257 - bio
->bi_iter
.bi_sector
);
1258 r1_bio
->sectors
= max_sectors
;
1259 spin_lock_irq(&conf
->device_lock
);
1260 if (bio
->bi_phys_segments
== 0)
1261 bio
->bi_phys_segments
= 2;
1263 bio
->bi_phys_segments
++;
1264 spin_unlock_irq(&conf
->device_lock
);
1267 * Cannot call generic_make_request directly as that will be
1268 * queued in __make_request and subsequent mempool_alloc might
1269 * block waiting for it. So hand bio over to raid1d.
1271 reschedule_retry(r1_bio
);
1273 r1_bio
= alloc_r1bio(mddev
, bio
, sectors_handled
);
1276 generic_make_request(read_bio
);
1279 static void raid1_write_request(struct mddev
*mddev
, struct bio
*bio
)
1281 struct r1conf
*conf
= mddev
->private;
1282 struct r1bio
*r1_bio
;
1284 struct bitmap
*bitmap
= mddev
->bitmap
;
1285 unsigned long flags
;
1286 struct md_rdev
*blocked_rdev
;
1287 struct blk_plug_cb
*cb
;
1288 struct raid1_plug_cb
*plug
= NULL
;
1290 int sectors_handled
;
1294 * Register the new request and wait if the reconstruction
1295 * thread has put up a bar for new requests.
1296 * Continue immediately if no resync is active currently.
1299 md_write_start(mddev
, bio
); /* wait on superblock update early */
1301 if ((bio_end_sector(bio
) > mddev
->suspend_lo
&&
1302 bio
->bi_iter
.bi_sector
< mddev
->suspend_hi
) ||
1303 (mddev_is_clustered(mddev
) &&
1304 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1305 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
)))) {
1308 * As the suspend_* range is controlled by userspace, we want
1309 * an interruptible wait.
1313 flush_signals(current
);
1314 prepare_to_wait(&conf
->wait_barrier
,
1315 &w
, TASK_INTERRUPTIBLE
);
1316 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1317 bio
->bi_iter
.bi_sector
>= mddev
->suspend_hi
||
1318 (mddev_is_clustered(mddev
) &&
1319 !md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1320 bio
->bi_iter
.bi_sector
,
1321 bio_end_sector(bio
))))
1325 finish_wait(&conf
->wait_barrier
, &w
);
1327 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1329 r1_bio
= alloc_r1bio(mddev
, bio
, 0);
1331 /* We might need to issue multiple writes to different
1332 * devices if there are bad blocks around, so we keep
1333 * track of the number of writes in bio->bi_phys_segments.
1334 * If this is 0, there is only one r1_bio and no locking
1335 * will be needed when requests complete. If it is
1336 * non-zero, then it is the number of not-completed requests.
1338 bio
->bi_phys_segments
= 0;
1339 bio_clear_flag(bio
, BIO_SEG_VALID
);
1341 if (conf
->pending_count
>= max_queued_requests
) {
1342 md_wakeup_thread(mddev
->thread
);
1343 raid1_log(mddev
, "wait queued");
1344 wait_event(conf
->wait_barrier
,
1345 conf
->pending_count
< max_queued_requests
);
1347 /* first select target devices under rcu_lock and
1348 * inc refcount on their rdev. Record them by setting
1350 * If there are known/acknowledged bad blocks on any device on
1351 * which we have seen a write error, we want to avoid writing those
1353 * This potentially requires several writes to write around
1354 * the bad blocks. Each set of writes gets it's own r1bio
1355 * with a set of bios attached.
1358 disks
= conf
->raid_disks
* 2;
1360 blocked_rdev
= NULL
;
1362 max_sectors
= r1_bio
->sectors
;
1363 for (i
= 0; i
< disks
; i
++) {
1364 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1365 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1366 atomic_inc(&rdev
->nr_pending
);
1367 blocked_rdev
= rdev
;
1370 r1_bio
->bios
[i
] = NULL
;
1371 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1372 if (i
< conf
->raid_disks
)
1373 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1377 atomic_inc(&rdev
->nr_pending
);
1378 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1383 is_bad
= is_badblock(rdev
, r1_bio
->sector
, max_sectors
,
1384 &first_bad
, &bad_sectors
);
1386 /* mustn't write here until the bad block is
1388 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1389 blocked_rdev
= rdev
;
1392 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1393 /* Cannot write here at all */
1394 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1395 if (bad_sectors
< max_sectors
)
1396 /* mustn't write more than bad_sectors
1397 * to other devices yet
1399 max_sectors
= bad_sectors
;
1400 rdev_dec_pending(rdev
, mddev
);
1401 /* We don't set R1BIO_Degraded as that
1402 * only applies if the disk is
1403 * missing, so it might be re-added,
1404 * and we want to know to recover this
1406 * In this case the device is here,
1407 * and the fact that this chunk is not
1408 * in-sync is recorded in the bad
1414 int good_sectors
= first_bad
- r1_bio
->sector
;
1415 if (good_sectors
< max_sectors
)
1416 max_sectors
= good_sectors
;
1419 r1_bio
->bios
[i
] = bio
;
1423 if (unlikely(blocked_rdev
)) {
1424 /* Wait for this device to become unblocked */
1427 for (j
= 0; j
< i
; j
++)
1428 if (r1_bio
->bios
[j
])
1429 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1431 allow_barrier(conf
, bio
->bi_iter
.bi_sector
);
1432 raid1_log(mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1433 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1434 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1438 if (max_sectors
< r1_bio
->sectors
) {
1439 /* We are splitting this write into multiple parts, so
1440 * we need to prepare for allocating another r1_bio.
1442 r1_bio
->sectors
= max_sectors
;
1443 spin_lock_irq(&conf
->device_lock
);
1444 if (bio
->bi_phys_segments
== 0)
1445 bio
->bi_phys_segments
= 2;
1447 bio
->bi_phys_segments
++;
1448 spin_unlock_irq(&conf
->device_lock
);
1450 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_iter
.bi_sector
;
1452 atomic_set(&r1_bio
->remaining
, 1);
1453 atomic_set(&r1_bio
->behind_remaining
, 0);
1456 for (i
= 0; i
< disks
; i
++) {
1457 struct bio
*mbio
= NULL
;
1459 if (!r1_bio
->bios
[i
])
1462 offset
= r1_bio
->sector
- bio
->bi_iter
.bi_sector
;
1466 * Not if there are too many, or cannot
1467 * allocate memory, or a reader on WriteMostly
1468 * is waiting for behind writes to flush */
1470 (atomic_read(&bitmap
->behind_writes
)
1471 < mddev
->bitmap_info
.max_write_behind
) &&
1472 !waitqueue_active(&bitmap
->behind_wait
)) {
1473 mbio
= bio_clone_bioset_partial(bio
, GFP_NOIO
,
1477 alloc_behind_pages(mbio
, r1_bio
);
1480 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1482 test_bit(R1BIO_BehindIO
,
1488 if (r1_bio
->behind_bvecs
)
1489 mbio
= bio_clone_bioset_partial(bio
, GFP_NOIO
,
1494 mbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1495 bio_trim(mbio
, offset
, max_sectors
);
1499 if (r1_bio
->behind_bvecs
) {
1500 struct bio_vec
*bvec
;
1504 * We trimmed the bio, so _all is legit
1506 bio_for_each_segment_all(bvec
, mbio
, j
)
1507 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1508 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1509 atomic_inc(&r1_bio
->behind_remaining
);
1512 r1_bio
->bios
[i
] = mbio
;
1514 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1515 conf
->mirrors
[i
].rdev
->data_offset
);
1516 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1517 mbio
->bi_end_io
= raid1_end_write_request
;
1518 mbio
->bi_opf
= bio_op(bio
) | (bio
->bi_opf
& (REQ_SYNC
| REQ_FUA
));
1519 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
) &&
1520 !test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
) &&
1521 conf
->raid_disks
- mddev
->degraded
> 1)
1522 mbio
->bi_opf
|= MD_FAILFAST
;
1523 mbio
->bi_private
= r1_bio
;
1525 atomic_inc(&r1_bio
->remaining
);
1528 trace_block_bio_remap(bdev_get_queue(mbio
->bi_bdev
),
1529 mbio
, disk_devt(mddev
->gendisk
),
1531 /* flush_pending_writes() needs access to the rdev so...*/
1532 mbio
->bi_bdev
= (void*)conf
->mirrors
[i
].rdev
;
1534 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1536 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1539 spin_lock_irqsave(&conf
->device_lock
, flags
);
1541 bio_list_add(&plug
->pending
, mbio
);
1542 plug
->pending_cnt
++;
1544 bio_list_add(&conf
->pending_bio_list
, mbio
);
1545 conf
->pending_count
++;
1547 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1549 md_wakeup_thread(mddev
->thread
);
1551 /* Mustn't call r1_bio_write_done before this next test,
1552 * as it could result in the bio being freed.
1554 if (sectors_handled
< bio_sectors(bio
)) {
1555 r1_bio_write_done(r1_bio
);
1556 /* We need another r1_bio. It has already been counted
1557 * in bio->bi_phys_segments
1559 r1_bio
= alloc_r1bio(mddev
, bio
, sectors_handled
);
1563 r1_bio_write_done(r1_bio
);
1565 /* In case raid1d snuck in to freeze_array */
1566 wake_up(&conf
->wait_barrier
);
1569 static void raid1_make_request(struct mddev
*mddev
, struct bio
*bio
)
1574 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1575 md_flush_request(mddev
, bio
);
1579 /* if bio exceeds barrier unit boundary, split it */
1581 sectors
= align_to_barrier_unit_end(
1582 bio
->bi_iter
.bi_sector
, bio_sectors(bio
));
1583 if (sectors
< bio_sectors(bio
)) {
1584 split
= bio_split(bio
, sectors
, GFP_NOIO
, fs_bio_set
);
1585 bio_chain(split
, bio
);
1590 if (bio_data_dir(split
) == READ
) {
1591 raid1_read_request(mddev
, split
);
1594 * If a bio is splitted, the first part of bio will
1595 * pass barrier but the bio is queued in
1596 * current->bio_list (see generic_make_request). If
1597 * there is a raise_barrier() called here, the second
1598 * part of bio can't pass barrier. But since the first
1599 * part bio isn't dispatched to underlaying disks yet,
1600 * the barrier is never released, hence raise_barrier
1601 * will alays wait. We have a deadlock.
1602 * Note, this only happens in read path. For write
1603 * path, the first part of bio is dispatched in a
1604 * schedule() call (because of blk plug) or offloaded
1606 * Quitting from the function immediately can change
1607 * the bio order queued in bio_list and avoid the deadlock.
1610 generic_make_request(bio
);
1614 raid1_write_request(mddev
, split
);
1615 } while (split
!= bio
);
1618 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1620 struct r1conf
*conf
= mddev
->private;
1623 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1624 conf
->raid_disks
- mddev
->degraded
);
1626 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1627 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1628 seq_printf(seq
, "%s",
1629 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1632 seq_printf(seq
, "]");
1635 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1637 char b
[BDEVNAME_SIZE
];
1638 struct r1conf
*conf
= mddev
->private;
1639 unsigned long flags
;
1642 * If it is not operational, then we have already marked it as dead
1643 * else if it is the last working disks, ignore the error, let the
1644 * next level up know.
1645 * else mark the drive as failed
1647 spin_lock_irqsave(&conf
->device_lock
, flags
);
1648 if (test_bit(In_sync
, &rdev
->flags
)
1649 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1651 * Don't fail the drive, act as though we were just a
1652 * normal single drive.
1653 * However don't try a recovery from this drive as
1654 * it is very likely to fail.
1656 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1657 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1660 set_bit(Blocked
, &rdev
->flags
);
1661 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1663 set_bit(Faulty
, &rdev
->flags
);
1665 set_bit(Faulty
, &rdev
->flags
);
1666 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1668 * if recovery is running, make sure it aborts.
1670 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1671 set_mask_bits(&mddev
->sb_flags
, 0,
1672 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1673 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1674 "md/raid1:%s: Operation continuing on %d devices.\n",
1675 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1676 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1679 static void print_conf(struct r1conf
*conf
)
1683 pr_debug("RAID1 conf printout:\n");
1685 pr_debug("(!conf)\n");
1688 pr_debug(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1692 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1693 char b
[BDEVNAME_SIZE
];
1694 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1696 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1697 i
, !test_bit(In_sync
, &rdev
->flags
),
1698 !test_bit(Faulty
, &rdev
->flags
),
1699 bdevname(rdev
->bdev
,b
));
1704 static void close_sync(struct r1conf
*conf
)
1706 wait_all_barriers(conf
);
1707 allow_all_barriers(conf
);
1709 mempool_destroy(conf
->r1buf_pool
);
1710 conf
->r1buf_pool
= NULL
;
1713 static int raid1_spare_active(struct mddev
*mddev
)
1716 struct r1conf
*conf
= mddev
->private;
1718 unsigned long flags
;
1721 * Find all failed disks within the RAID1 configuration
1722 * and mark them readable.
1723 * Called under mddev lock, so rcu protection not needed.
1724 * device_lock used to avoid races with raid1_end_read_request
1725 * which expects 'In_sync' flags and ->degraded to be consistent.
1727 spin_lock_irqsave(&conf
->device_lock
, flags
);
1728 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1729 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1730 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1732 && !test_bit(Candidate
, &repl
->flags
)
1733 && repl
->recovery_offset
== MaxSector
1734 && !test_bit(Faulty
, &repl
->flags
)
1735 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1736 /* replacement has just become active */
1738 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1741 /* Replaced device not technically
1742 * faulty, but we need to be sure
1743 * it gets removed and never re-added
1745 set_bit(Faulty
, &rdev
->flags
);
1746 sysfs_notify_dirent_safe(
1751 && rdev
->recovery_offset
== MaxSector
1752 && !test_bit(Faulty
, &rdev
->flags
)
1753 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1755 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1758 mddev
->degraded
-= count
;
1759 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1765 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1767 struct r1conf
*conf
= mddev
->private;
1770 struct raid1_info
*p
;
1772 int last
= conf
->raid_disks
- 1;
1774 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1777 if (md_integrity_add_rdev(rdev
, mddev
))
1780 if (rdev
->raid_disk
>= 0)
1781 first
= last
= rdev
->raid_disk
;
1784 * find the disk ... but prefer rdev->saved_raid_disk
1787 if (rdev
->saved_raid_disk
>= 0 &&
1788 rdev
->saved_raid_disk
>= first
&&
1789 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1790 first
= last
= rdev
->saved_raid_disk
;
1792 for (mirror
= first
; mirror
<= last
; mirror
++) {
1793 p
= conf
->mirrors
+mirror
;
1797 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1798 rdev
->data_offset
<< 9);
1800 p
->head_position
= 0;
1801 rdev
->raid_disk
= mirror
;
1803 /* As all devices are equivalent, we don't need a full recovery
1804 * if this was recently any drive of the array
1806 if (rdev
->saved_raid_disk
< 0)
1808 rcu_assign_pointer(p
->rdev
, rdev
);
1811 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1812 p
[conf
->raid_disks
].rdev
== NULL
) {
1813 /* Add this device as a replacement */
1814 clear_bit(In_sync
, &rdev
->flags
);
1815 set_bit(Replacement
, &rdev
->flags
);
1816 rdev
->raid_disk
= mirror
;
1819 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1823 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1824 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1829 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1831 struct r1conf
*conf
= mddev
->private;
1833 int number
= rdev
->raid_disk
;
1834 struct raid1_info
*p
= conf
->mirrors
+ number
;
1836 if (rdev
!= p
->rdev
)
1837 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1840 if (rdev
== p
->rdev
) {
1841 if (test_bit(In_sync
, &rdev
->flags
) ||
1842 atomic_read(&rdev
->nr_pending
)) {
1846 /* Only remove non-faulty devices if recovery
1849 if (!test_bit(Faulty
, &rdev
->flags
) &&
1850 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1851 mddev
->degraded
< conf
->raid_disks
) {
1856 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1858 if (atomic_read(&rdev
->nr_pending
)) {
1859 /* lost the race, try later */
1865 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1866 /* We just removed a device that is being replaced.
1867 * Move down the replacement. We drain all IO before
1868 * doing this to avoid confusion.
1870 struct md_rdev
*repl
=
1871 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1872 freeze_array(conf
, 0);
1873 clear_bit(Replacement
, &repl
->flags
);
1875 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1876 unfreeze_array(conf
);
1877 clear_bit(WantReplacement
, &rdev
->flags
);
1879 clear_bit(WantReplacement
, &rdev
->flags
);
1880 err
= md_integrity_register(mddev
);
1888 static void end_sync_read(struct bio
*bio
)
1890 struct r1bio
*r1_bio
= bio
->bi_private
;
1892 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1895 * we have read a block, now it needs to be re-written,
1896 * or re-read if the read failed.
1897 * We don't do much here, just schedule handling by raid1d
1900 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1902 if (atomic_dec_and_test(&r1_bio
->remaining
))
1903 reschedule_retry(r1_bio
);
1906 static void end_sync_write(struct bio
*bio
)
1908 int uptodate
= !bio
->bi_error
;
1909 struct r1bio
*r1_bio
= bio
->bi_private
;
1910 struct mddev
*mddev
= r1_bio
->mddev
;
1911 struct r1conf
*conf
= mddev
->private;
1914 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1917 sector_t sync_blocks
= 0;
1918 sector_t s
= r1_bio
->sector
;
1919 long sectors_to_go
= r1_bio
->sectors
;
1920 /* make sure these bits doesn't get cleared. */
1922 bitmap_end_sync(mddev
->bitmap
, s
,
1925 sectors_to_go
-= sync_blocks
;
1926 } while (sectors_to_go
> 0);
1927 set_bit(WriteErrorSeen
, &rdev
->flags
);
1928 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1929 set_bit(MD_RECOVERY_NEEDED
, &
1931 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1932 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1933 &first_bad
, &bad_sectors
) &&
1934 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1937 &first_bad
, &bad_sectors
)
1939 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1941 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1942 int s
= r1_bio
->sectors
;
1943 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1944 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1945 reschedule_retry(r1_bio
);
1948 md_done_sync(mddev
, s
, uptodate
);
1953 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1954 int sectors
, struct page
*page
, int rw
)
1956 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1960 set_bit(WriteErrorSeen
, &rdev
->flags
);
1961 if (!test_and_set_bit(WantReplacement
,
1963 set_bit(MD_RECOVERY_NEEDED
, &
1964 rdev
->mddev
->recovery
);
1966 /* need to record an error - either for the block or the device */
1967 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1968 md_error(rdev
->mddev
, rdev
);
1972 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1974 /* Try some synchronous reads of other devices to get
1975 * good data, much like with normal read errors. Only
1976 * read into the pages we already have so we don't
1977 * need to re-issue the read request.
1978 * We don't need to freeze the array, because being in an
1979 * active sync request, there is no normal IO, and
1980 * no overlapping syncs.
1981 * We don't need to check is_badblock() again as we
1982 * made sure that anything with a bad block in range
1983 * will have bi_end_io clear.
1985 struct mddev
*mddev
= r1_bio
->mddev
;
1986 struct r1conf
*conf
= mddev
->private;
1987 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1988 sector_t sect
= r1_bio
->sector
;
1989 int sectors
= r1_bio
->sectors
;
1991 struct md_rdev
*rdev
;
1993 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
1994 if (test_bit(FailFast
, &rdev
->flags
)) {
1995 /* Don't try recovering from here - just fail it
1996 * ... unless it is the last working device of course */
1997 md_error(mddev
, rdev
);
1998 if (test_bit(Faulty
, &rdev
->flags
))
1999 /* Don't try to read from here, but make sure
2000 * put_buf does it's thing
2002 bio
->bi_end_io
= end_sync_write
;
2007 int d
= r1_bio
->read_disk
;
2011 if (s
> (PAGE_SIZE
>>9))
2014 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
2015 /* No rcu protection needed here devices
2016 * can only be removed when no resync is
2017 * active, and resync is currently active
2019 rdev
= conf
->mirrors
[d
].rdev
;
2020 if (sync_page_io(rdev
, sect
, s
<<9,
2021 bio
->bi_io_vec
[idx
].bv_page
,
2022 REQ_OP_READ
, 0, false)) {
2028 if (d
== conf
->raid_disks
* 2)
2030 } while (!success
&& d
!= r1_bio
->read_disk
);
2033 char b
[BDEVNAME_SIZE
];
2035 /* Cannot read from anywhere, this block is lost.
2036 * Record a bad block on each device. If that doesn't
2037 * work just disable and interrupt the recovery.
2038 * Don't fail devices as that won't really help.
2040 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2042 bdevname(bio
->bi_bdev
, b
),
2043 (unsigned long long)r1_bio
->sector
);
2044 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
2045 rdev
= conf
->mirrors
[d
].rdev
;
2046 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
2048 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2052 conf
->recovery_disabled
=
2053 mddev
->recovery_disabled
;
2054 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2055 md_done_sync(mddev
, r1_bio
->sectors
, 0);
2067 /* write it back and re-read */
2068 while (d
!= r1_bio
->read_disk
) {
2070 d
= conf
->raid_disks
* 2;
2072 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2074 rdev
= conf
->mirrors
[d
].rdev
;
2075 if (r1_sync_page_io(rdev
, sect
, s
,
2076 bio
->bi_io_vec
[idx
].bv_page
,
2078 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
2079 rdev_dec_pending(rdev
, mddev
);
2083 while (d
!= r1_bio
->read_disk
) {
2085 d
= conf
->raid_disks
* 2;
2087 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2089 rdev
= conf
->mirrors
[d
].rdev
;
2090 if (r1_sync_page_io(rdev
, sect
, s
,
2091 bio
->bi_io_vec
[idx
].bv_page
,
2093 atomic_add(s
, &rdev
->corrected_errors
);
2099 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
2104 static void process_checks(struct r1bio
*r1_bio
)
2106 /* We have read all readable devices. If we haven't
2107 * got the block, then there is no hope left.
2108 * If we have, then we want to do a comparison
2109 * and skip the write if everything is the same.
2110 * If any blocks failed to read, then we need to
2111 * attempt an over-write
2113 struct mddev
*mddev
= r1_bio
->mddev
;
2114 struct r1conf
*conf
= mddev
->private;
2119 /* Fix variable parts of all bios */
2120 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
2121 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2125 struct bio
*b
= r1_bio
->bios
[i
];
2126 if (b
->bi_end_io
!= end_sync_read
)
2128 /* fixup the bio for reuse, but preserve errno */
2129 error
= b
->bi_error
;
2131 b
->bi_error
= error
;
2133 b
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2134 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
2135 conf
->mirrors
[i
].rdev
->data_offset
;
2136 b
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
2137 b
->bi_end_io
= end_sync_read
;
2138 b
->bi_private
= r1_bio
;
2140 size
= b
->bi_iter
.bi_size
;
2141 for (j
= 0; j
< vcnt
; j
++) {
2143 bi
= &b
->bi_io_vec
[j
];
2145 if (size
> PAGE_SIZE
)
2146 bi
->bv_len
= PAGE_SIZE
;
2152 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
2153 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
2154 !r1_bio
->bios
[primary
]->bi_error
) {
2155 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
2156 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2159 r1_bio
->read_disk
= primary
;
2160 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2162 struct bio
*pbio
= r1_bio
->bios
[primary
];
2163 struct bio
*sbio
= r1_bio
->bios
[i
];
2164 int error
= sbio
->bi_error
;
2166 if (sbio
->bi_end_io
!= end_sync_read
)
2168 /* Now we can 'fixup' the error value */
2172 for (j
= vcnt
; j
-- ; ) {
2174 p
= pbio
->bi_io_vec
[j
].bv_page
;
2175 s
= sbio
->bi_io_vec
[j
].bv_page
;
2176 if (memcmp(page_address(p
),
2178 sbio
->bi_io_vec
[j
].bv_len
))
2184 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2185 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2187 /* No need to write to this device. */
2188 sbio
->bi_end_io
= NULL
;
2189 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2193 bio_copy_data(sbio
, pbio
);
2197 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2199 struct r1conf
*conf
= mddev
->private;
2201 int disks
= conf
->raid_disks
* 2;
2202 struct bio
*bio
, *wbio
;
2204 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2206 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2207 /* ouch - failed to read all of that. */
2208 if (!fix_sync_read_error(r1_bio
))
2211 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2212 process_checks(r1_bio
);
2217 atomic_set(&r1_bio
->remaining
, 1);
2218 for (i
= 0; i
< disks
; i
++) {
2219 wbio
= r1_bio
->bios
[i
];
2220 if (wbio
->bi_end_io
== NULL
||
2221 (wbio
->bi_end_io
== end_sync_read
&&
2222 (i
== r1_bio
->read_disk
||
2223 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2225 if (test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2228 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2229 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
))
2230 wbio
->bi_opf
|= MD_FAILFAST
;
2232 wbio
->bi_end_io
= end_sync_write
;
2233 atomic_inc(&r1_bio
->remaining
);
2234 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2236 generic_make_request(wbio
);
2239 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2240 /* if we're here, all write(s) have completed, so clean up */
2241 int s
= r1_bio
->sectors
;
2242 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2243 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2244 reschedule_retry(r1_bio
);
2247 md_done_sync(mddev
, s
, 1);
2253 * This is a kernel thread which:
2255 * 1. Retries failed read operations on working mirrors.
2256 * 2. Updates the raid superblock when problems encounter.
2257 * 3. Performs writes following reads for array synchronising.
2260 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2261 sector_t sect
, int sectors
)
2263 struct mddev
*mddev
= conf
->mddev
;
2269 struct md_rdev
*rdev
;
2271 if (s
> (PAGE_SIZE
>>9))
2279 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2281 (test_bit(In_sync
, &rdev
->flags
) ||
2282 (!test_bit(Faulty
, &rdev
->flags
) &&
2283 rdev
->recovery_offset
>= sect
+ s
)) &&
2284 is_badblock(rdev
, sect
, s
,
2285 &first_bad
, &bad_sectors
) == 0) {
2286 atomic_inc(&rdev
->nr_pending
);
2288 if (sync_page_io(rdev
, sect
, s
<<9,
2289 conf
->tmppage
, REQ_OP_READ
, 0, false))
2291 rdev_dec_pending(rdev
, mddev
);
2297 if (d
== conf
->raid_disks
* 2)
2299 } while (!success
&& d
!= read_disk
);
2302 /* Cannot read from anywhere - mark it bad */
2303 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2304 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2305 md_error(mddev
, rdev
);
2308 /* write it back and re-read */
2310 while (d
!= read_disk
) {
2312 d
= conf
->raid_disks
* 2;
2315 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2317 !test_bit(Faulty
, &rdev
->flags
)) {
2318 atomic_inc(&rdev
->nr_pending
);
2320 r1_sync_page_io(rdev
, sect
, s
,
2321 conf
->tmppage
, WRITE
);
2322 rdev_dec_pending(rdev
, mddev
);
2327 while (d
!= read_disk
) {
2328 char b
[BDEVNAME_SIZE
];
2330 d
= conf
->raid_disks
* 2;
2333 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2335 !test_bit(Faulty
, &rdev
->flags
)) {
2336 atomic_inc(&rdev
->nr_pending
);
2338 if (r1_sync_page_io(rdev
, sect
, s
,
2339 conf
->tmppage
, READ
)) {
2340 atomic_add(s
, &rdev
->corrected_errors
);
2341 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2343 (unsigned long long)(sect
+
2345 bdevname(rdev
->bdev
, b
));
2347 rdev_dec_pending(rdev
, mddev
);
2356 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2358 struct mddev
*mddev
= r1_bio
->mddev
;
2359 struct r1conf
*conf
= mddev
->private;
2360 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2362 /* bio has the data to be written to device 'i' where
2363 * we just recently had a write error.
2364 * We repeatedly clone the bio and trim down to one block,
2365 * then try the write. Where the write fails we record
2367 * It is conceivable that the bio doesn't exactly align with
2368 * blocks. We must handle this somehow.
2370 * We currently own a reference on the rdev.
2376 int sect_to_write
= r1_bio
->sectors
;
2379 if (rdev
->badblocks
.shift
< 0)
2382 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2383 bdev_logical_block_size(rdev
->bdev
) >> 9);
2384 sector
= r1_bio
->sector
;
2385 sectors
= ((sector
+ block_sectors
)
2386 & ~(sector_t
)(block_sectors
- 1))
2389 while (sect_to_write
) {
2391 if (sectors
> sect_to_write
)
2392 sectors
= sect_to_write
;
2393 /* Write at 'sector' for 'sectors'*/
2395 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2396 unsigned vcnt
= r1_bio
->behind_page_count
;
2397 struct bio_vec
*vec
= r1_bio
->behind_bvecs
;
2399 while (!vec
->bv_page
) {
2404 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2405 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2407 wbio
->bi_vcnt
= vcnt
;
2409 wbio
= bio_clone_fast(r1_bio
->master_bio
, GFP_NOIO
,
2413 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2414 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2415 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2417 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2418 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2419 wbio
->bi_bdev
= rdev
->bdev
;
2421 if (submit_bio_wait(wbio
) < 0)
2423 ok
= rdev_set_badblocks(rdev
, sector
,
2428 sect_to_write
-= sectors
;
2430 sectors
= block_sectors
;
2435 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2438 int s
= r1_bio
->sectors
;
2439 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2440 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2441 struct bio
*bio
= r1_bio
->bios
[m
];
2442 if (bio
->bi_end_io
== NULL
)
2444 if (!bio
->bi_error
&&
2445 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2446 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2448 if (bio
->bi_error
&&
2449 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2450 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2451 md_error(conf
->mddev
, rdev
);
2455 md_done_sync(conf
->mddev
, s
, 1);
2458 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2463 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2464 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2465 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2466 rdev_clear_badblocks(rdev
,
2468 r1_bio
->sectors
, 0);
2469 rdev_dec_pending(rdev
, conf
->mddev
);
2470 } else if (r1_bio
->bios
[m
] != NULL
) {
2471 /* This drive got a write error. We need to
2472 * narrow down and record precise write
2476 if (!narrow_write_error(r1_bio
, m
)) {
2477 md_error(conf
->mddev
,
2478 conf
->mirrors
[m
].rdev
);
2479 /* an I/O failed, we can't clear the bitmap */
2480 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2482 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2486 spin_lock_irq(&conf
->device_lock
);
2487 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2488 idx
= sector_to_idx(r1_bio
->sector
);
2489 atomic_inc(&conf
->nr_queued
[idx
]);
2490 spin_unlock_irq(&conf
->device_lock
);
2492 * In case freeze_array() is waiting for condition
2493 * get_unqueued_pending() == extra to be true.
2495 wake_up(&conf
->wait_barrier
);
2496 md_wakeup_thread(conf
->mddev
->thread
);
2498 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2499 close_write(r1_bio
);
2500 raid_end_bio_io(r1_bio
);
2504 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2508 struct mddev
*mddev
= conf
->mddev
;
2510 char b
[BDEVNAME_SIZE
];
2511 struct md_rdev
*rdev
;
2513 sector_t bio_sector
;
2515 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2516 /* we got a read error. Maybe the drive is bad. Maybe just
2517 * the block and we can fix it.
2518 * We freeze all other IO, and try reading the block from
2519 * other devices. When we find one, we re-write
2520 * and check it that fixes the read error.
2521 * This is all done synchronously while the array is
2525 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2526 bdevname(bio
->bi_bdev
, b
);
2527 bio_dev
= bio
->bi_bdev
->bd_dev
;
2528 bio_sector
= conf
->mirrors
[r1_bio
->read_disk
].rdev
->data_offset
+ r1_bio
->sector
;
2530 r1_bio
->bios
[r1_bio
->read_disk
] = NULL
;
2532 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
2534 && !test_bit(FailFast
, &rdev
->flags
)) {
2535 freeze_array(conf
, 1);
2536 fix_read_error(conf
, r1_bio
->read_disk
,
2537 r1_bio
->sector
, r1_bio
->sectors
);
2538 unfreeze_array(conf
);
2540 r1_bio
->bios
[r1_bio
->read_disk
] = IO_BLOCKED
;
2543 rdev_dec_pending(rdev
, conf
->mddev
);
2546 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2548 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2549 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2550 raid_end_bio_io(r1_bio
);
2552 const unsigned long do_sync
2553 = r1_bio
->master_bio
->bi_opf
& REQ_SYNC
;
2554 r1_bio
->read_disk
= disk
;
2555 bio
= bio_clone_fast(r1_bio
->master_bio
, GFP_NOIO
,
2557 bio_trim(bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
2559 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2560 rdev
= conf
->mirrors
[disk
].rdev
;
2561 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2563 (unsigned long long)r1_bio
->sector
,
2564 bdevname(rdev
->bdev
, b
));
2565 bio
->bi_iter
.bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2566 bio
->bi_bdev
= rdev
->bdev
;
2567 bio
->bi_end_io
= raid1_end_read_request
;
2568 bio_set_op_attrs(bio
, REQ_OP_READ
, do_sync
);
2569 if (test_bit(FailFast
, &rdev
->flags
) &&
2570 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
2571 bio
->bi_opf
|= MD_FAILFAST
;
2572 bio
->bi_private
= r1_bio
;
2573 if (max_sectors
< r1_bio
->sectors
) {
2574 /* Drat - have to split this up more */
2575 struct bio
*mbio
= r1_bio
->master_bio
;
2576 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2577 - mbio
->bi_iter
.bi_sector
);
2578 r1_bio
->sectors
= max_sectors
;
2579 spin_lock_irq(&conf
->device_lock
);
2580 if (mbio
->bi_phys_segments
== 0)
2581 mbio
->bi_phys_segments
= 2;
2583 mbio
->bi_phys_segments
++;
2584 spin_unlock_irq(&conf
->device_lock
);
2585 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
),
2586 bio
, bio_dev
, bio_sector
);
2587 generic_make_request(bio
);
2590 r1_bio
= alloc_r1bio(mddev
, mbio
, sectors_handled
);
2591 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2595 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
),
2596 bio
, bio_dev
, bio_sector
);
2597 generic_make_request(bio
);
2602 static void raid1d(struct md_thread
*thread
)
2604 struct mddev
*mddev
= thread
->mddev
;
2605 struct r1bio
*r1_bio
;
2606 unsigned long flags
;
2607 struct r1conf
*conf
= mddev
->private;
2608 struct list_head
*head
= &conf
->retry_list
;
2609 struct blk_plug plug
;
2612 md_check_recovery(mddev
);
2614 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2615 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2617 spin_lock_irqsave(&conf
->device_lock
, flags
);
2618 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
))
2619 list_splice_init(&conf
->bio_end_io_list
, &tmp
);
2620 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2621 while (!list_empty(&tmp
)) {
2622 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2624 list_del(&r1_bio
->retry_list
);
2625 idx
= sector_to_idx(r1_bio
->sector
);
2626 atomic_dec(&conf
->nr_queued
[idx
]);
2627 if (mddev
->degraded
)
2628 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2629 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2630 close_write(r1_bio
);
2631 raid_end_bio_io(r1_bio
);
2635 blk_start_plug(&plug
);
2638 flush_pending_writes(conf
);
2640 spin_lock_irqsave(&conf
->device_lock
, flags
);
2641 if (list_empty(head
)) {
2642 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2645 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2646 list_del(head
->prev
);
2647 idx
= sector_to_idx(r1_bio
->sector
);
2648 atomic_dec(&conf
->nr_queued
[idx
]);
2649 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2651 mddev
= r1_bio
->mddev
;
2652 conf
= mddev
->private;
2653 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2654 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2655 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2656 handle_sync_write_finished(conf
, r1_bio
);
2658 sync_request_write(mddev
, r1_bio
);
2659 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2660 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2661 handle_write_finished(conf
, r1_bio
);
2662 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2663 handle_read_error(conf
, r1_bio
);
2665 /* just a partial read to be scheduled from separate
2668 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2671 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2672 md_check_recovery(mddev
);
2674 blk_finish_plug(&plug
);
2677 static int init_resync(struct r1conf
*conf
)
2681 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2682 BUG_ON(conf
->r1buf_pool
);
2683 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2685 if (!conf
->r1buf_pool
)
2691 * perform a "sync" on one "block"
2693 * We need to make sure that no normal I/O request - particularly write
2694 * requests - conflict with active sync requests.
2696 * This is achieved by tracking pending requests and a 'barrier' concept
2697 * that can be installed to exclude normal IO requests.
2700 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2703 struct r1conf
*conf
= mddev
->private;
2704 struct r1bio
*r1_bio
;
2706 sector_t max_sector
, nr_sectors
;
2710 int write_targets
= 0, read_targets
= 0;
2711 sector_t sync_blocks
;
2712 int still_degraded
= 0;
2713 int good_sectors
= RESYNC_SECTORS
;
2714 int min_bad
= 0; /* number of sectors that are bad in all devices */
2715 int idx
= sector_to_idx(sector_nr
);
2717 if (!conf
->r1buf_pool
)
2718 if (init_resync(conf
))
2721 max_sector
= mddev
->dev_sectors
;
2722 if (sector_nr
>= max_sector
) {
2723 /* If we aborted, we need to abort the
2724 * sync on the 'current' bitmap chunk (there will
2725 * only be one in raid1 resync.
2726 * We can find the current addess in mddev->curr_resync
2728 if (mddev
->curr_resync
< max_sector
) /* aborted */
2729 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2731 else /* completed sync */
2734 bitmap_close_sync(mddev
->bitmap
);
2737 if (mddev_is_clustered(mddev
)) {
2738 conf
->cluster_sync_low
= 0;
2739 conf
->cluster_sync_high
= 0;
2744 if (mddev
->bitmap
== NULL
&&
2745 mddev
->recovery_cp
== MaxSector
&&
2746 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2747 conf
->fullsync
== 0) {
2749 return max_sector
- sector_nr
;
2751 /* before building a request, check if we can skip these blocks..
2752 * This call the bitmap_start_sync doesn't actually record anything
2754 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2755 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2756 /* We can skip this block, and probably several more */
2762 * If there is non-resync activity waiting for a turn, then let it
2763 * though before starting on this new sync request.
2765 if (atomic_read(&conf
->nr_waiting
[idx
]))
2766 schedule_timeout_uninterruptible(1);
2768 /* we are incrementing sector_nr below. To be safe, we check against
2769 * sector_nr + two times RESYNC_SECTORS
2772 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2773 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2774 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2776 raise_barrier(conf
, sector_nr
);
2780 * If we get a correctably read error during resync or recovery,
2781 * we might want to read from a different device. So we
2782 * flag all drives that could conceivably be read from for READ,
2783 * and any others (which will be non-In_sync devices) for WRITE.
2784 * If a read fails, we try reading from something else for which READ
2788 r1_bio
->mddev
= mddev
;
2789 r1_bio
->sector
= sector_nr
;
2791 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2792 /* make sure good_sectors won't go across barrier unit boundary */
2793 good_sectors
= align_to_barrier_unit_end(sector_nr
, good_sectors
);
2795 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2796 struct md_rdev
*rdev
;
2797 bio
= r1_bio
->bios
[i
];
2800 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2802 test_bit(Faulty
, &rdev
->flags
)) {
2803 if (i
< conf
->raid_disks
)
2805 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2806 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2807 bio
->bi_end_io
= end_sync_write
;
2810 /* may need to read from here */
2811 sector_t first_bad
= MaxSector
;
2814 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2815 &first_bad
, &bad_sectors
)) {
2816 if (first_bad
> sector_nr
)
2817 good_sectors
= first_bad
- sector_nr
;
2819 bad_sectors
-= (sector_nr
- first_bad
);
2821 min_bad
> bad_sectors
)
2822 min_bad
= bad_sectors
;
2825 if (sector_nr
< first_bad
) {
2826 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2833 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2834 bio
->bi_end_io
= end_sync_read
;
2836 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2837 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2838 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2840 * The device is suitable for reading (InSync),
2841 * but has bad block(s) here. Let's try to correct them,
2842 * if we are doing resync or repair. Otherwise, leave
2843 * this device alone for this sync request.
2845 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2846 bio
->bi_end_io
= end_sync_write
;
2850 if (bio
->bi_end_io
) {
2851 atomic_inc(&rdev
->nr_pending
);
2852 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2853 bio
->bi_bdev
= rdev
->bdev
;
2854 bio
->bi_private
= r1_bio
;
2855 if (test_bit(FailFast
, &rdev
->flags
))
2856 bio
->bi_opf
|= MD_FAILFAST
;
2862 r1_bio
->read_disk
= disk
;
2864 if (read_targets
== 0 && min_bad
> 0) {
2865 /* These sectors are bad on all InSync devices, so we
2866 * need to mark them bad on all write targets
2869 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2870 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2871 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2872 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2876 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2881 /* Cannot record the badblocks, so need to
2883 * If there are multiple read targets, could just
2884 * fail the really bad ones ???
2886 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2887 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2893 if (min_bad
> 0 && min_bad
< good_sectors
) {
2894 /* only resync enough to reach the next bad->good
2896 good_sectors
= min_bad
;
2899 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2900 /* extra read targets are also write targets */
2901 write_targets
+= read_targets
-1;
2903 if (write_targets
== 0 || read_targets
== 0) {
2904 /* There is nowhere to write, so all non-sync
2905 * drives must be failed - so we are finished
2909 max_sector
= sector_nr
+ min_bad
;
2910 rv
= max_sector
- sector_nr
;
2916 if (max_sector
> mddev
->resync_max
)
2917 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2918 if (max_sector
> sector_nr
+ good_sectors
)
2919 max_sector
= sector_nr
+ good_sectors
;
2924 int len
= PAGE_SIZE
;
2925 if (sector_nr
+ (len
>>9) > max_sector
)
2926 len
= (max_sector
- sector_nr
) << 9;
2929 if (sync_blocks
== 0) {
2930 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2931 &sync_blocks
, still_degraded
) &&
2933 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2935 if ((len
>> 9) > sync_blocks
)
2936 len
= sync_blocks
<<9;
2939 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2940 bio
= r1_bio
->bios
[i
];
2941 if (bio
->bi_end_io
) {
2942 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2943 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2945 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2948 bio
= r1_bio
->bios
[i
];
2949 if (bio
->bi_end_io
==NULL
)
2951 /* remove last page from this bio */
2953 bio
->bi_iter
.bi_size
-= len
;
2954 bio_clear_flag(bio
, BIO_SEG_VALID
);
2960 nr_sectors
+= len
>>9;
2961 sector_nr
+= len
>>9;
2962 sync_blocks
-= (len
>>9);
2963 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2965 r1_bio
->sectors
= nr_sectors
;
2967 if (mddev_is_clustered(mddev
) &&
2968 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2969 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2970 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2971 /* Send resync message */
2972 md_cluster_ops
->resync_info_update(mddev
,
2973 conf
->cluster_sync_low
,
2974 conf
->cluster_sync_high
);
2977 /* For a user-requested sync, we read all readable devices and do a
2980 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2981 atomic_set(&r1_bio
->remaining
, read_targets
);
2982 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2983 bio
= r1_bio
->bios
[i
];
2984 if (bio
->bi_end_io
== end_sync_read
) {
2986 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2987 if (read_targets
== 1)
2988 bio
->bi_opf
&= ~MD_FAILFAST
;
2989 generic_make_request(bio
);
2993 atomic_set(&r1_bio
->remaining
, 1);
2994 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2995 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2996 if (read_targets
== 1)
2997 bio
->bi_opf
&= ~MD_FAILFAST
;
2998 generic_make_request(bio
);
3004 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3009 return mddev
->dev_sectors
;
3012 static struct r1conf
*setup_conf(struct mddev
*mddev
)
3014 struct r1conf
*conf
;
3016 struct raid1_info
*disk
;
3017 struct md_rdev
*rdev
;
3020 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
3024 conf
->nr_pending
= kcalloc(BARRIER_BUCKETS_NR
,
3025 sizeof(atomic_t
), GFP_KERNEL
);
3026 if (!conf
->nr_pending
)
3029 conf
->nr_waiting
= kcalloc(BARRIER_BUCKETS_NR
,
3030 sizeof(atomic_t
), GFP_KERNEL
);
3031 if (!conf
->nr_waiting
)
3034 conf
->nr_queued
= kcalloc(BARRIER_BUCKETS_NR
,
3035 sizeof(atomic_t
), GFP_KERNEL
);
3036 if (!conf
->nr_queued
)
3039 conf
->barrier
= kcalloc(BARRIER_BUCKETS_NR
,
3040 sizeof(atomic_t
), GFP_KERNEL
);
3044 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
3045 * mddev
->raid_disks
* 2,
3050 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3054 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
3055 if (!conf
->poolinfo
)
3057 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
3058 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3061 if (!conf
->r1bio_pool
)
3064 conf
->poolinfo
->mddev
= mddev
;
3067 spin_lock_init(&conf
->device_lock
);
3068 rdev_for_each(rdev
, mddev
) {
3069 struct request_queue
*q
;
3070 int disk_idx
= rdev
->raid_disk
;
3071 if (disk_idx
>= mddev
->raid_disks
3074 if (test_bit(Replacement
, &rdev
->flags
))
3075 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
3077 disk
= conf
->mirrors
+ disk_idx
;
3082 q
= bdev_get_queue(rdev
->bdev
);
3084 disk
->head_position
= 0;
3085 disk
->seq_start
= MaxSector
;
3087 conf
->raid_disks
= mddev
->raid_disks
;
3088 conf
->mddev
= mddev
;
3089 INIT_LIST_HEAD(&conf
->retry_list
);
3090 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3092 spin_lock_init(&conf
->resync_lock
);
3093 init_waitqueue_head(&conf
->wait_barrier
);
3095 bio_list_init(&conf
->pending_bio_list
);
3096 conf
->pending_count
= 0;
3097 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3100 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
3102 disk
= conf
->mirrors
+ i
;
3104 if (i
< conf
->raid_disks
&&
3105 disk
[conf
->raid_disks
].rdev
) {
3106 /* This slot has a replacement. */
3108 /* No original, just make the replacement
3109 * a recovering spare
3112 disk
[conf
->raid_disks
].rdev
;
3113 disk
[conf
->raid_disks
].rdev
= NULL
;
3114 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
3115 /* Original is not in_sync - bad */
3120 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3121 disk
->head_position
= 0;
3123 (disk
->rdev
->saved_raid_disk
< 0))
3129 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
3137 mempool_destroy(conf
->r1bio_pool
);
3138 kfree(conf
->mirrors
);
3139 safe_put_page(conf
->tmppage
);
3140 kfree(conf
->poolinfo
);
3141 kfree(conf
->nr_pending
);
3142 kfree(conf
->nr_waiting
);
3143 kfree(conf
->nr_queued
);
3144 kfree(conf
->barrier
);
3147 return ERR_PTR(err
);
3150 static void raid1_free(struct mddev
*mddev
, void *priv
);
3151 static int raid1_run(struct mddev
*mddev
)
3153 struct r1conf
*conf
;
3155 struct md_rdev
*rdev
;
3157 bool discard_supported
= false;
3159 if (mddev
->level
!= 1) {
3160 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3161 mdname(mddev
), mddev
->level
);
3164 if (mddev
->reshape_position
!= MaxSector
) {
3165 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3170 * copy the already verified devices into our private RAID1
3171 * bookkeeping area. [whatever we allocate in run(),
3172 * should be freed in raid1_free()]
3174 if (mddev
->private == NULL
)
3175 conf
= setup_conf(mddev
);
3177 conf
= mddev
->private;
3180 return PTR_ERR(conf
);
3183 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3185 rdev_for_each(rdev
, mddev
) {
3186 if (!mddev
->gendisk
)
3188 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3189 rdev
->data_offset
<< 9);
3190 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3191 discard_supported
= true;
3194 mddev
->degraded
= 0;
3195 for (i
=0; i
< conf
->raid_disks
; i
++)
3196 if (conf
->mirrors
[i
].rdev
== NULL
||
3197 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
3198 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
3201 if (conf
->raid_disks
- mddev
->degraded
== 1)
3202 mddev
->recovery_cp
= MaxSector
;
3204 if (mddev
->recovery_cp
!= MaxSector
)
3205 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3207 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3208 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3212 * Ok, everything is just fine now
3214 mddev
->thread
= conf
->thread
;
3215 conf
->thread
= NULL
;
3216 mddev
->private = conf
;
3217 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3219 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
3222 if (discard_supported
)
3223 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3226 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3230 ret
= md_integrity_register(mddev
);
3232 md_unregister_thread(&mddev
->thread
);
3233 raid1_free(mddev
, conf
);
3238 static void raid1_free(struct mddev
*mddev
, void *priv
)
3240 struct r1conf
*conf
= priv
;
3242 mempool_destroy(conf
->r1bio_pool
);
3243 kfree(conf
->mirrors
);
3244 safe_put_page(conf
->tmppage
);
3245 kfree(conf
->poolinfo
);
3246 kfree(conf
->nr_pending
);
3247 kfree(conf
->nr_waiting
);
3248 kfree(conf
->nr_queued
);
3249 kfree(conf
->barrier
);
3253 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3255 /* no resync is happening, and there is enough space
3256 * on all devices, so we can resize.
3257 * We need to make sure resync covers any new space.
3258 * If the array is shrinking we should possibly wait until
3259 * any io in the removed space completes, but it hardly seems
3262 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3263 if (mddev
->external_size
&&
3264 mddev
->array_sectors
> newsize
)
3266 if (mddev
->bitmap
) {
3267 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3271 md_set_array_sectors(mddev
, newsize
);
3272 if (sectors
> mddev
->dev_sectors
&&
3273 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3274 mddev
->recovery_cp
= mddev
->dev_sectors
;
3275 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3277 mddev
->dev_sectors
= sectors
;
3278 mddev
->resync_max_sectors
= sectors
;
3282 static int raid1_reshape(struct mddev
*mddev
)
3285 * 1/ resize the r1bio_pool
3286 * 2/ resize conf->mirrors
3288 * We allocate a new r1bio_pool if we can.
3289 * Then raise a device barrier and wait until all IO stops.
3290 * Then resize conf->mirrors and swap in the new r1bio pool.
3292 * At the same time, we "pack" the devices so that all the missing
3293 * devices have the higher raid_disk numbers.
3295 mempool_t
*newpool
, *oldpool
;
3296 struct pool_info
*newpoolinfo
;
3297 struct raid1_info
*newmirrors
;
3298 struct r1conf
*conf
= mddev
->private;
3299 int cnt
, raid_disks
;
3300 unsigned long flags
;
3303 /* Cannot change chunk_size, layout, or level */
3304 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3305 mddev
->layout
!= mddev
->new_layout
||
3306 mddev
->level
!= mddev
->new_level
) {
3307 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3308 mddev
->new_layout
= mddev
->layout
;
3309 mddev
->new_level
= mddev
->level
;
3313 if (!mddev_is_clustered(mddev
)) {
3314 err
= md_allow_write(mddev
);
3319 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3321 if (raid_disks
< conf
->raid_disks
) {
3323 for (d
= 0; d
< conf
->raid_disks
; d
++)
3324 if (conf
->mirrors
[d
].rdev
)
3326 if (cnt
> raid_disks
)
3330 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3333 newpoolinfo
->mddev
= mddev
;
3334 newpoolinfo
->raid_disks
= raid_disks
* 2;
3336 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3337 r1bio_pool_free
, newpoolinfo
);
3342 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3346 mempool_destroy(newpool
);
3350 freeze_array(conf
, 0);
3352 /* ok, everything is stopped */
3353 oldpool
= conf
->r1bio_pool
;
3354 conf
->r1bio_pool
= newpool
;
3356 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3357 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3358 if (rdev
&& rdev
->raid_disk
!= d2
) {
3359 sysfs_unlink_rdev(mddev
, rdev
);
3360 rdev
->raid_disk
= d2
;
3361 sysfs_unlink_rdev(mddev
, rdev
);
3362 if (sysfs_link_rdev(mddev
, rdev
))
3363 pr_warn("md/raid1:%s: cannot register rd%d\n",
3364 mdname(mddev
), rdev
->raid_disk
);
3367 newmirrors
[d2
++].rdev
= rdev
;
3369 kfree(conf
->mirrors
);
3370 conf
->mirrors
= newmirrors
;
3371 kfree(conf
->poolinfo
);
3372 conf
->poolinfo
= newpoolinfo
;
3374 spin_lock_irqsave(&conf
->device_lock
, flags
);
3375 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3376 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3377 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3378 mddev
->delta_disks
= 0;
3380 unfreeze_array(conf
);
3382 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3383 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3384 md_wakeup_thread(mddev
->thread
);
3386 mempool_destroy(oldpool
);
3390 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3392 struct r1conf
*conf
= mddev
->private;
3395 case 2: /* wake for suspend */
3396 wake_up(&conf
->wait_barrier
);
3399 freeze_array(conf
, 0);
3402 unfreeze_array(conf
);
3407 static void *raid1_takeover(struct mddev
*mddev
)
3409 /* raid1 can take over:
3410 * raid5 with 2 devices, any layout or chunk size
3412 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3413 struct r1conf
*conf
;
3414 mddev
->new_level
= 1;
3415 mddev
->new_layout
= 0;
3416 mddev
->new_chunk_sectors
= 0;
3417 conf
= setup_conf(mddev
);
3418 if (!IS_ERR(conf
)) {
3419 /* Array must appear to be quiesced */
3420 conf
->array_frozen
= 1;
3421 mddev_clear_unsupported_flags(mddev
,
3422 UNSUPPORTED_MDDEV_FLAGS
);
3426 return ERR_PTR(-EINVAL
);
3429 static struct md_personality raid1_personality
=
3433 .owner
= THIS_MODULE
,
3434 .make_request
= raid1_make_request
,
3437 .status
= raid1_status
,
3438 .error_handler
= raid1_error
,
3439 .hot_add_disk
= raid1_add_disk
,
3440 .hot_remove_disk
= raid1_remove_disk
,
3441 .spare_active
= raid1_spare_active
,
3442 .sync_request
= raid1_sync_request
,
3443 .resize
= raid1_resize
,
3445 .check_reshape
= raid1_reshape
,
3446 .quiesce
= raid1_quiesce
,
3447 .takeover
= raid1_takeover
,
3448 .congested
= raid1_congested
,
3451 static int __init
raid_init(void)
3453 return register_md_personality(&raid1_personality
);
3456 static void raid_exit(void)
3458 unregister_md_personality(&raid1_personality
);
3461 module_init(raid_init
);
3462 module_exit(raid_exit
);
3463 MODULE_LICENSE("GPL");
3464 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3465 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3466 MODULE_ALIAS("md-raid1");
3467 MODULE_ALIAS("md-level-1");
3469 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);