x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / media / cec / cec-adap.c
blobccda41c2c9e41ed37969280420b7d98609c6641b
1 /*
2 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/kmod.h>
25 #include <linux/ktime.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
31 #include "cec-priv.h"
33 static void cec_fill_msg_report_features(struct cec_adapter *adap,
34 struct cec_msg *msg,
35 unsigned int la_idx);
38 * 400 ms is the time it takes for one 16 byte message to be
39 * transferred and 5 is the maximum number of retries. Add
40 * another 100 ms as a margin. So if the transmit doesn't
41 * finish before that time something is really wrong and we
42 * have to time out.
44 * This is a sign that something it really wrong and a warning
45 * will be issued.
47 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
49 #define call_op(adap, op, arg...) \
50 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
52 #define call_void_op(adap, op, arg...) \
53 do { \
54 if (adap->ops->op) \
55 adap->ops->op(adap, ## arg); \
56 } while (0)
58 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
60 int i;
62 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
63 if (adap->log_addrs.log_addr[i] == log_addr)
64 return i;
65 return -1;
68 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
70 int i = cec_log_addr2idx(adap, log_addr);
72 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
76 * Queue a new event for this filehandle. If ts == 0, then set it
77 * to the current time.
79 * The two events that are currently defined do not need to keep track
80 * of intermediate events, so no actual queue of events is needed,
81 * instead just store the latest state and the total number of lost
82 * messages.
84 * Should new events be added in the future that require intermediate
85 * results to be queued as well, then a proper queue data structure is
86 * required. But until then, just keep it simple.
88 void cec_queue_event_fh(struct cec_fh *fh,
89 const struct cec_event *new_ev, u64 ts)
91 struct cec_event *ev = &fh->events[new_ev->event - 1];
93 if (ts == 0)
94 ts = ktime_get_ns();
96 mutex_lock(&fh->lock);
97 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
98 fh->pending_events & (1 << new_ev->event)) {
100 * If there is already a lost_msgs event, then just
101 * update the lost_msgs count. This effectively
102 * merges the old and new events into one.
104 ev->lost_msgs.lost_msgs += new_ev->lost_msgs.lost_msgs;
105 goto unlock;
109 * Intermediate states are not interesting, so just
110 * overwrite any older event.
112 *ev = *new_ev;
113 ev->ts = ts;
114 fh->pending_events |= 1 << new_ev->event;
116 unlock:
117 mutex_unlock(&fh->lock);
118 wake_up_interruptible(&fh->wait);
121 /* Queue a new event for all open filehandles. */
122 static void cec_queue_event(struct cec_adapter *adap,
123 const struct cec_event *ev)
125 u64 ts = ktime_get_ns();
126 struct cec_fh *fh;
128 mutex_lock(&adap->devnode.lock);
129 list_for_each_entry(fh, &adap->devnode.fhs, list)
130 cec_queue_event_fh(fh, ev, ts);
131 mutex_unlock(&adap->devnode.lock);
135 * Queue a new message for this filehandle. If there is no more room
136 * in the queue, then send the LOST_MSGS event instead.
138 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
140 static const struct cec_event ev_lost_msg = {
141 .ts = 0,
142 .event = CEC_EVENT_LOST_MSGS,
143 .flags = 0,
145 .lost_msgs.lost_msgs = 1,
148 struct cec_msg_entry *entry;
150 mutex_lock(&fh->lock);
151 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
152 if (!entry)
153 goto lost_msgs;
155 entry->msg = *msg;
156 /* Add new msg at the end of the queue */
157 list_add_tail(&entry->list, &fh->msgs);
160 * if the queue now has more than CEC_MAX_MSG_RX_QUEUE_SZ
161 * messages, drop the oldest one and send a lost message event.
163 if (fh->queued_msgs == CEC_MAX_MSG_RX_QUEUE_SZ) {
164 list_del(&entry->list);
165 goto lost_msgs;
167 fh->queued_msgs++;
168 mutex_unlock(&fh->lock);
169 wake_up_interruptible(&fh->wait);
170 return;
172 lost_msgs:
173 mutex_unlock(&fh->lock);
174 cec_queue_event_fh(fh, &ev_lost_msg, 0);
178 * Queue the message for those filehandles that are in monitor mode.
179 * If valid_la is true (this message is for us or was sent by us),
180 * then pass it on to any monitoring filehandle. If this message
181 * isn't for us or from us, then only give it to filehandles that
182 * are in MONITOR_ALL mode.
184 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
185 * set and the CEC adapter was placed in 'monitor all' mode.
187 static void cec_queue_msg_monitor(struct cec_adapter *adap,
188 const struct cec_msg *msg,
189 bool valid_la)
191 struct cec_fh *fh;
192 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
193 CEC_MODE_MONITOR_ALL;
195 mutex_lock(&adap->devnode.lock);
196 list_for_each_entry(fh, &adap->devnode.fhs, list) {
197 if (fh->mode_follower >= monitor_mode)
198 cec_queue_msg_fh(fh, msg);
200 mutex_unlock(&adap->devnode.lock);
204 * Queue the message for follower filehandles.
206 static void cec_queue_msg_followers(struct cec_adapter *adap,
207 const struct cec_msg *msg)
209 struct cec_fh *fh;
211 mutex_lock(&adap->devnode.lock);
212 list_for_each_entry(fh, &adap->devnode.fhs, list) {
213 if (fh->mode_follower == CEC_MODE_FOLLOWER)
214 cec_queue_msg_fh(fh, msg);
216 mutex_unlock(&adap->devnode.lock);
219 /* Notify userspace of an adapter state change. */
220 static void cec_post_state_event(struct cec_adapter *adap)
222 struct cec_event ev = {
223 .event = CEC_EVENT_STATE_CHANGE,
226 ev.state_change.phys_addr = adap->phys_addr;
227 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
228 cec_queue_event(adap, &ev);
232 * A CEC transmit (and a possible wait for reply) completed.
233 * If this was in blocking mode, then complete it, otherwise
234 * queue the message for userspace to dequeue later.
236 * This function is called with adap->lock held.
238 static void cec_data_completed(struct cec_data *data)
241 * Delete this transmit from the filehandle's xfer_list since
242 * we're done with it.
244 * Note that if the filehandle is closed before this transmit
245 * finished, then the release() function will set data->fh to NULL.
246 * Without that we would be referring to a closed filehandle.
248 if (data->fh)
249 list_del(&data->xfer_list);
251 if (data->blocking) {
253 * Someone is blocking so mark the message as completed
254 * and call complete.
256 data->completed = true;
257 complete(&data->c);
258 } else {
260 * No blocking, so just queue the message if needed and
261 * free the memory.
263 if (data->fh)
264 cec_queue_msg_fh(data->fh, &data->msg);
265 kfree(data);
270 * A pending CEC transmit needs to be cancelled, either because the CEC
271 * adapter is disabled or the transmit takes an impossibly long time to
272 * finish.
274 * This function is called with adap->lock held.
276 static void cec_data_cancel(struct cec_data *data)
279 * It's either the current transmit, or it is a pending
280 * transmit. Take the appropriate action to clear it.
282 if (data->adap->transmitting == data) {
283 data->adap->transmitting = NULL;
284 } else {
285 list_del_init(&data->list);
286 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
287 data->adap->transmit_queue_sz--;
290 /* Mark it as an error */
291 data->msg.tx_ts = ktime_get_ns();
292 data->msg.tx_status |= CEC_TX_STATUS_ERROR |
293 CEC_TX_STATUS_MAX_RETRIES;
294 data->msg.tx_error_cnt++;
295 data->attempts = 0;
296 /* Queue transmitted message for monitoring purposes */
297 cec_queue_msg_monitor(data->adap, &data->msg, 1);
299 cec_data_completed(data);
303 * Main CEC state machine
305 * Wait until the thread should be stopped, or we are not transmitting and
306 * a new transmit message is queued up, in which case we start transmitting
307 * that message. When the adapter finished transmitting the message it will
308 * call cec_transmit_done().
310 * If the adapter is disabled, then remove all queued messages instead.
312 * If the current transmit times out, then cancel that transmit.
314 int cec_thread_func(void *_adap)
316 struct cec_adapter *adap = _adap;
318 for (;;) {
319 unsigned int signal_free_time;
320 struct cec_data *data;
321 bool timeout = false;
322 u8 attempts;
324 if (adap->transmitting) {
325 int err;
328 * We are transmitting a message, so add a timeout
329 * to prevent the state machine to get stuck waiting
330 * for this message to finalize and add a check to
331 * see if the adapter is disabled in which case the
332 * transmit should be canceled.
334 err = wait_event_interruptible_timeout(adap->kthread_waitq,
335 kthread_should_stop() ||
336 (!adap->is_configured && !adap->is_configuring) ||
337 (!adap->transmitting &&
338 !list_empty(&adap->transmit_queue)),
339 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
340 timeout = err == 0;
341 } else {
342 /* Otherwise we just wait for something to happen. */
343 wait_event_interruptible(adap->kthread_waitq,
344 kthread_should_stop() ||
345 (!adap->transmitting &&
346 !list_empty(&adap->transmit_queue)));
349 mutex_lock(&adap->lock);
351 if ((!adap->is_configured && !adap->is_configuring) ||
352 kthread_should_stop()) {
354 * If the adapter is disabled, or we're asked to stop,
355 * then cancel any pending transmits.
357 while (!list_empty(&adap->transmit_queue)) {
358 data = list_first_entry(&adap->transmit_queue,
359 struct cec_data, list);
360 cec_data_cancel(data);
362 if (adap->transmitting)
363 cec_data_cancel(adap->transmitting);
366 * Cancel the pending timeout work. We have to unlock
367 * the mutex when flushing the work since
368 * cec_wait_timeout() will take it. This is OK since
369 * no new entries can be added to wait_queue as long
370 * as adap->transmitting is NULL, which it is due to
371 * the cec_data_cancel() above.
373 while (!list_empty(&adap->wait_queue)) {
374 data = list_first_entry(&adap->wait_queue,
375 struct cec_data, list);
377 if (!cancel_delayed_work(&data->work)) {
378 mutex_unlock(&adap->lock);
379 flush_scheduled_work();
380 mutex_lock(&adap->lock);
382 cec_data_cancel(data);
384 goto unlock;
387 if (adap->transmitting && timeout) {
389 * If we timeout, then log that. This really shouldn't
390 * happen and is an indication of a faulty CEC adapter
391 * driver, or the CEC bus is in some weird state.
393 dprintk(0, "message %*ph timed out!\n",
394 adap->transmitting->msg.len,
395 adap->transmitting->msg.msg);
396 /* Just give up on this. */
397 cec_data_cancel(adap->transmitting);
398 goto unlock;
402 * If we are still transmitting, or there is nothing new to
403 * transmit, then just continue waiting.
405 if (adap->transmitting || list_empty(&adap->transmit_queue))
406 goto unlock;
408 /* Get a new message to transmit */
409 data = list_first_entry(&adap->transmit_queue,
410 struct cec_data, list);
411 list_del_init(&data->list);
412 adap->transmit_queue_sz--;
413 /* Make this the current transmitting message */
414 adap->transmitting = data;
417 * Suggested number of attempts as per the CEC 2.0 spec:
418 * 4 attempts is the default, except for 'secondary poll
419 * messages', i.e. poll messages not sent during the adapter
420 * configuration phase when it allocates logical addresses.
422 if (data->msg.len == 1 && adap->is_configured)
423 attempts = 2;
424 else
425 attempts = 4;
427 /* Set the suggested signal free time */
428 if (data->attempts) {
429 /* should be >= 3 data bit periods for a retry */
430 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
431 } else if (data->new_initiator) {
432 /* should be >= 5 data bit periods for new initiator */
433 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
434 } else {
436 * should be >= 7 data bit periods for sending another
437 * frame immediately after another.
439 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
441 if (data->attempts == 0)
442 data->attempts = attempts;
444 /* Tell the adapter to transmit, cancel on error */
445 if (adap->ops->adap_transmit(adap, data->attempts,
446 signal_free_time, &data->msg))
447 cec_data_cancel(data);
449 unlock:
450 mutex_unlock(&adap->lock);
452 if (kthread_should_stop())
453 break;
455 return 0;
459 * Called by the CEC adapter if a transmit finished.
461 void cec_transmit_done(struct cec_adapter *adap, u8 status, u8 arb_lost_cnt,
462 u8 nack_cnt, u8 low_drive_cnt, u8 error_cnt)
464 struct cec_data *data;
465 struct cec_msg *msg;
466 u64 ts = ktime_get_ns();
468 dprintk(2, "cec_transmit_done %02x\n", status);
469 mutex_lock(&adap->lock);
470 data = adap->transmitting;
471 if (!data) {
473 * This can happen if a transmit was issued and the cable is
474 * unplugged while the transmit is ongoing. Ignore this
475 * transmit in that case.
477 dprintk(1, "cec_transmit_done without an ongoing transmit!\n");
478 goto unlock;
481 msg = &data->msg;
483 /* Drivers must fill in the status! */
484 WARN_ON(status == 0);
485 msg->tx_ts = ts;
486 msg->tx_status |= status;
487 msg->tx_arb_lost_cnt += arb_lost_cnt;
488 msg->tx_nack_cnt += nack_cnt;
489 msg->tx_low_drive_cnt += low_drive_cnt;
490 msg->tx_error_cnt += error_cnt;
492 /* Mark that we're done with this transmit */
493 adap->transmitting = NULL;
496 * If there are still retry attempts left and there was an error and
497 * the hardware didn't signal that it retried itself (by setting
498 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
500 if (data->attempts > 1 &&
501 !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
502 /* Retry this message */
503 data->attempts--;
504 /* Add the message in front of the transmit queue */
505 list_add(&data->list, &adap->transmit_queue);
506 adap->transmit_queue_sz++;
507 goto wake_thread;
510 data->attempts = 0;
512 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
513 if (!(status & CEC_TX_STATUS_OK))
514 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
516 /* Queue transmitted message for monitoring purposes */
517 cec_queue_msg_monitor(adap, msg, 1);
519 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
520 msg->timeout) {
522 * Queue the message into the wait queue if we want to wait
523 * for a reply.
525 list_add_tail(&data->list, &adap->wait_queue);
526 schedule_delayed_work(&data->work,
527 msecs_to_jiffies(msg->timeout));
528 } else {
529 /* Otherwise we're done */
530 cec_data_completed(data);
533 wake_thread:
535 * Wake up the main thread to see if another message is ready
536 * for transmitting or to retry the current message.
538 wake_up_interruptible(&adap->kthread_waitq);
539 unlock:
540 mutex_unlock(&adap->lock);
542 EXPORT_SYMBOL_GPL(cec_transmit_done);
545 * Called when waiting for a reply times out.
547 static void cec_wait_timeout(struct work_struct *work)
549 struct cec_data *data = container_of(work, struct cec_data, work.work);
550 struct cec_adapter *adap = data->adap;
552 mutex_lock(&adap->lock);
554 * Sanity check in case the timeout and the arrival of the message
555 * happened at the same time.
557 if (list_empty(&data->list))
558 goto unlock;
560 /* Mark the message as timed out */
561 list_del_init(&data->list);
562 data->msg.rx_ts = ktime_get_ns();
563 data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
564 cec_data_completed(data);
565 unlock:
566 mutex_unlock(&adap->lock);
570 * Transmit a message. The fh argument may be NULL if the transmit is not
571 * associated with a specific filehandle.
573 * This function is called with adap->lock held.
575 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
576 struct cec_fh *fh, bool block)
578 struct cec_data *data;
579 u8 last_initiator = 0xff;
580 unsigned int timeout;
581 int res = 0;
583 msg->rx_ts = 0;
584 msg->tx_ts = 0;
585 msg->rx_status = 0;
586 msg->tx_status = 0;
587 msg->tx_arb_lost_cnt = 0;
588 msg->tx_nack_cnt = 0;
589 msg->tx_low_drive_cnt = 0;
590 msg->tx_error_cnt = 0;
591 msg->sequence = ++adap->sequence;
592 if (!msg->sequence)
593 msg->sequence = ++adap->sequence;
595 if (msg->reply && msg->timeout == 0) {
596 /* Make sure the timeout isn't 0. */
597 msg->timeout = 1000;
599 if (msg->timeout)
600 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS;
601 else
602 msg->flags = 0;
604 /* Sanity checks */
605 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
606 dprintk(1, "cec_transmit_msg: invalid length %d\n", msg->len);
607 return -EINVAL;
609 if (msg->timeout && msg->len == 1) {
610 dprintk(1, "cec_transmit_msg: can't reply for poll msg\n");
611 return -EINVAL;
613 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
614 if (msg->len == 1) {
615 if (cec_msg_destination(msg) == 0xf) {
616 dprintk(1, "cec_transmit_msg: invalid poll message\n");
617 return -EINVAL;
619 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
621 * If the destination is a logical address our adapter
622 * has already claimed, then just NACK this.
623 * It depends on the hardware what it will do with a
624 * POLL to itself (some OK this), so it is just as
625 * easy to handle it here so the behavior will be
626 * consistent.
628 msg->tx_ts = ktime_get_ns();
629 msg->tx_status = CEC_TX_STATUS_NACK |
630 CEC_TX_STATUS_MAX_RETRIES;
631 msg->tx_nack_cnt = 1;
632 return 0;
635 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
636 cec_has_log_addr(adap, cec_msg_destination(msg))) {
637 dprintk(1, "cec_transmit_msg: destination is the adapter itself\n");
638 return -EINVAL;
640 if (msg->len > 1 && adap->is_configured &&
641 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
642 dprintk(1, "cec_transmit_msg: initiator has unknown logical address %d\n",
643 cec_msg_initiator(msg));
644 return -EINVAL;
646 if (!adap->is_configured && !adap->is_configuring)
647 return -ENONET;
649 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ)
650 return -EBUSY;
652 data = kzalloc(sizeof(*data), GFP_KERNEL);
653 if (!data)
654 return -ENOMEM;
656 if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
657 msg->msg[2] = adap->phys_addr >> 8;
658 msg->msg[3] = adap->phys_addr & 0xff;
661 if (msg->timeout)
662 dprintk(2, "cec_transmit_msg: %*ph (wait for 0x%02x%s)\n",
663 msg->len, msg->msg, msg->reply, !block ? ", nb" : "");
664 else
665 dprintk(2, "cec_transmit_msg: %*ph%s\n",
666 msg->len, msg->msg, !block ? " (nb)" : "");
668 data->msg = *msg;
669 data->fh = fh;
670 data->adap = adap;
671 data->blocking = block;
674 * Determine if this message follows a message from the same
675 * initiator. Needed to determine the free signal time later on.
677 if (msg->len > 1) {
678 if (!(list_empty(&adap->transmit_queue))) {
679 const struct cec_data *last;
681 last = list_last_entry(&adap->transmit_queue,
682 const struct cec_data, list);
683 last_initiator = cec_msg_initiator(&last->msg);
684 } else if (adap->transmitting) {
685 last_initiator =
686 cec_msg_initiator(&adap->transmitting->msg);
689 data->new_initiator = last_initiator != cec_msg_initiator(msg);
690 init_completion(&data->c);
691 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
693 if (fh)
694 list_add_tail(&data->xfer_list, &fh->xfer_list);
695 list_add_tail(&data->list, &adap->transmit_queue);
696 adap->transmit_queue_sz++;
697 if (!adap->transmitting)
698 wake_up_interruptible(&adap->kthread_waitq);
700 /* All done if we don't need to block waiting for completion */
701 if (!block)
702 return 0;
705 * If we don't get a completion before this time something is really
706 * wrong and we time out.
708 timeout = CEC_XFER_TIMEOUT_MS;
709 /* Add the requested timeout if we have to wait for a reply as well */
710 if (msg->timeout)
711 timeout += msg->timeout;
714 * Release the lock and wait, retake the lock afterwards.
716 mutex_unlock(&adap->lock);
717 res = wait_for_completion_killable_timeout(&data->c,
718 msecs_to_jiffies(timeout));
719 mutex_lock(&adap->lock);
721 if (data->completed) {
722 /* The transmit completed (possibly with an error) */
723 *msg = data->msg;
724 kfree(data);
725 return 0;
728 * The wait for completion timed out or was interrupted, so mark this
729 * as non-blocking and disconnect from the filehandle since it is
730 * still 'in flight'. When it finally completes it will just drop the
731 * result silently.
733 data->blocking = false;
734 if (data->fh)
735 list_del(&data->xfer_list);
736 data->fh = NULL;
738 if (res == 0) { /* timed out */
739 /* Check if the reply or the transmit failed */
740 if (msg->timeout && (msg->tx_status & CEC_TX_STATUS_OK))
741 msg->rx_status = CEC_RX_STATUS_TIMEOUT;
742 else
743 msg->tx_status = CEC_TX_STATUS_MAX_RETRIES;
745 return res > 0 ? 0 : res;
748 /* Helper function to be used by drivers and this framework. */
749 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
750 bool block)
752 int ret;
754 mutex_lock(&adap->lock);
755 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
756 mutex_unlock(&adap->lock);
757 return ret;
759 EXPORT_SYMBOL_GPL(cec_transmit_msg);
762 * I don't like forward references but without this the low-level
763 * cec_received_msg() function would come after a bunch of high-level
764 * CEC protocol handling functions. That was very confusing.
766 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
767 bool is_reply);
769 #define DIRECTED 0x80
770 #define BCAST1_4 0x40
771 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
772 #define BCAST (BCAST1_4 | BCAST2_0)
773 #define BOTH (BCAST | DIRECTED)
776 * Specify minimum length and whether the message is directed, broadcast
777 * or both. Messages that do not match the criteria are ignored as per
778 * the CEC specification.
780 static const u8 cec_msg_size[256] = {
781 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
782 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
783 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
784 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
785 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
786 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
787 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
788 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
789 [CEC_MSG_STANDBY] = 2 | BOTH,
790 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
791 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
792 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
793 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
794 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
795 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
796 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
797 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
798 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
799 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
800 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
801 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
802 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
803 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
804 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
805 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
806 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
807 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
808 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
809 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
810 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
811 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
812 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
813 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
814 [CEC_MSG_PLAY] = 3 | DIRECTED,
815 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
816 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
817 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
818 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
819 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
820 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
821 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
822 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
823 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
824 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
825 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
826 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
827 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
828 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
829 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
830 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
831 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
832 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
833 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
834 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
835 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
836 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
837 [CEC_MSG_ABORT] = 2 | DIRECTED,
838 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
839 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
840 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
841 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
842 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
843 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
844 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
845 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
846 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
847 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
848 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
849 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
850 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
851 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
852 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
853 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
854 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
855 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
858 /* Called by the CEC adapter if a message is received */
859 void cec_received_msg(struct cec_adapter *adap, struct cec_msg *msg)
861 struct cec_data *data;
862 u8 msg_init = cec_msg_initiator(msg);
863 u8 msg_dest = cec_msg_destination(msg);
864 u8 cmd = msg->msg[1];
865 bool is_reply = false;
866 bool valid_la = true;
867 u8 min_len = 0;
869 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
870 return;
873 * Some CEC adapters will receive the messages that they transmitted.
874 * This test filters out those messages by checking if we are the
875 * initiator, and just returning in that case.
877 * Note that this won't work if this is an Unregistered device.
879 * It is bad practice if the hardware receives the message that it
880 * transmitted and luckily most CEC adapters behave correctly in this
881 * respect.
883 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
884 cec_has_log_addr(adap, msg_init))
885 return;
887 msg->rx_ts = ktime_get_ns();
888 msg->rx_status = CEC_RX_STATUS_OK;
889 msg->sequence = msg->reply = msg->timeout = 0;
890 msg->tx_status = 0;
891 msg->tx_ts = 0;
892 msg->tx_arb_lost_cnt = 0;
893 msg->tx_nack_cnt = 0;
894 msg->tx_low_drive_cnt = 0;
895 msg->tx_error_cnt = 0;
896 msg->flags = 0;
897 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
899 mutex_lock(&adap->lock);
900 dprintk(2, "cec_received_msg: %*ph\n", msg->len, msg->msg);
902 /* Check if this message was for us (directed or broadcast). */
903 if (!cec_msg_is_broadcast(msg))
904 valid_la = cec_has_log_addr(adap, msg_dest);
907 * Check if the length is not too short or if the message is a
908 * broadcast message where a directed message was expected or
909 * vice versa. If so, then the message has to be ignored (according
910 * to section CEC 7.3 and CEC 12.2).
912 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
913 u8 dir_fl = cec_msg_size[cmd] & BOTH;
915 min_len = cec_msg_size[cmd] & 0x1f;
916 if (msg->len < min_len)
917 valid_la = false;
918 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
919 valid_la = false;
920 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4))
921 valid_la = false;
922 else if (cec_msg_is_broadcast(msg) &&
923 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 &&
924 !(dir_fl & BCAST2_0))
925 valid_la = false;
927 if (valid_la && min_len) {
928 /* These messages have special length requirements */
929 switch (cmd) {
930 case CEC_MSG_TIMER_STATUS:
931 if (msg->msg[2] & 0x10) {
932 switch (msg->msg[2] & 0xf) {
933 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
934 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
935 if (msg->len < 5)
936 valid_la = false;
937 break;
939 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
940 if (msg->len < 5)
941 valid_la = false;
943 break;
944 case CEC_MSG_RECORD_ON:
945 switch (msg->msg[2]) {
946 case CEC_OP_RECORD_SRC_OWN:
947 break;
948 case CEC_OP_RECORD_SRC_DIGITAL:
949 if (msg->len < 10)
950 valid_la = false;
951 break;
952 case CEC_OP_RECORD_SRC_ANALOG:
953 if (msg->len < 7)
954 valid_la = false;
955 break;
956 case CEC_OP_RECORD_SRC_EXT_PLUG:
957 if (msg->len < 4)
958 valid_la = false;
959 break;
960 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
961 if (msg->len < 5)
962 valid_la = false;
963 break;
965 break;
969 /* It's a valid message and not a poll or CDC message */
970 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
971 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
973 /* The aborted command is in msg[2] */
974 if (abort)
975 cmd = msg->msg[2];
978 * Walk over all transmitted messages that are waiting for a
979 * reply.
981 list_for_each_entry(data, &adap->wait_queue, list) {
982 struct cec_msg *dst = &data->msg;
985 * The *only* CEC message that has two possible replies
986 * is CEC_MSG_INITIATE_ARC.
987 * In this case allow either of the two replies.
989 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
990 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
991 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
992 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
993 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
994 dst->reply = cmd;
996 /* Does the command match? */
997 if ((abort && cmd != dst->msg[1]) ||
998 (!abort && cmd != dst->reply))
999 continue;
1001 /* Does the addressing match? */
1002 if (msg_init != cec_msg_destination(dst) &&
1003 !cec_msg_is_broadcast(dst))
1004 continue;
1006 /* We got a reply */
1007 memcpy(dst->msg, msg->msg, msg->len);
1008 dst->len = msg->len;
1009 dst->rx_ts = msg->rx_ts;
1010 dst->rx_status = msg->rx_status;
1011 if (abort)
1012 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1013 msg->flags = dst->flags;
1014 /* Remove it from the wait_queue */
1015 list_del_init(&data->list);
1017 /* Cancel the pending timeout work */
1018 if (!cancel_delayed_work(&data->work)) {
1019 mutex_unlock(&adap->lock);
1020 flush_scheduled_work();
1021 mutex_lock(&adap->lock);
1024 * Mark this as a reply, provided someone is still
1025 * waiting for the answer.
1027 if (data->fh)
1028 is_reply = true;
1029 cec_data_completed(data);
1030 break;
1033 mutex_unlock(&adap->lock);
1035 /* Pass the message on to any monitoring filehandles */
1036 cec_queue_msg_monitor(adap, msg, valid_la);
1038 /* We're done if it is not for us or a poll message */
1039 if (!valid_la || msg->len <= 1)
1040 return;
1042 if (adap->log_addrs.log_addr_mask == 0)
1043 return;
1046 * Process the message on the protocol level. If is_reply is true,
1047 * then cec_receive_notify() won't pass on the reply to the listener(s)
1048 * since that was already done by cec_data_completed() above.
1050 cec_receive_notify(adap, msg, is_reply);
1052 EXPORT_SYMBOL_GPL(cec_received_msg);
1054 /* Logical Address Handling */
1057 * Attempt to claim a specific logical address.
1059 * This function is called with adap->lock held.
1061 static int cec_config_log_addr(struct cec_adapter *adap,
1062 unsigned int idx,
1063 unsigned int log_addr)
1065 struct cec_log_addrs *las = &adap->log_addrs;
1066 struct cec_msg msg = { };
1067 int err;
1069 if (cec_has_log_addr(adap, log_addr))
1070 return 0;
1072 /* Send poll message */
1073 msg.len = 1;
1074 msg.msg[0] = (log_addr << 4) | log_addr;
1075 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1078 * While trying to poll the physical address was reset
1079 * and the adapter was unconfigured, so bail out.
1081 if (!adap->is_configuring)
1082 return -EINTR;
1084 if (err)
1085 return err;
1087 if (msg.tx_status & CEC_TX_STATUS_OK)
1088 return 0;
1091 * Message not acknowledged, so this logical
1092 * address is free to use.
1094 err = adap->ops->adap_log_addr(adap, log_addr);
1095 if (err)
1096 return err;
1098 las->log_addr[idx] = log_addr;
1099 las->log_addr_mask |= 1 << log_addr;
1100 adap->phys_addrs[log_addr] = adap->phys_addr;
1102 dprintk(2, "claimed addr %d (%d)\n", log_addr,
1103 las->primary_device_type[idx]);
1104 return 1;
1108 * Unconfigure the adapter: clear all logical addresses and send
1109 * the state changed event.
1111 * This function is called with adap->lock held.
1113 static void cec_adap_unconfigure(struct cec_adapter *adap)
1115 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1116 adap->log_addrs.log_addr_mask = 0;
1117 adap->is_configuring = false;
1118 adap->is_configured = false;
1119 memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1120 wake_up_interruptible(&adap->kthread_waitq);
1121 cec_post_state_event(adap);
1125 * Attempt to claim the required logical addresses.
1127 static int cec_config_thread_func(void *arg)
1129 /* The various LAs for each type of device */
1130 static const u8 tv_log_addrs[] = {
1131 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1132 CEC_LOG_ADDR_INVALID
1134 static const u8 record_log_addrs[] = {
1135 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1136 CEC_LOG_ADDR_RECORD_3,
1137 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1138 CEC_LOG_ADDR_INVALID
1140 static const u8 tuner_log_addrs[] = {
1141 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1142 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1143 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1144 CEC_LOG_ADDR_INVALID
1146 static const u8 playback_log_addrs[] = {
1147 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1148 CEC_LOG_ADDR_PLAYBACK_3,
1149 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1150 CEC_LOG_ADDR_INVALID
1152 static const u8 audiosystem_log_addrs[] = {
1153 CEC_LOG_ADDR_AUDIOSYSTEM,
1154 CEC_LOG_ADDR_INVALID
1156 static const u8 specific_use_log_addrs[] = {
1157 CEC_LOG_ADDR_SPECIFIC,
1158 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1159 CEC_LOG_ADDR_INVALID
1161 static const u8 *type2addrs[6] = {
1162 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1163 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1164 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1165 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1166 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1167 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1169 static const u16 type2mask[] = {
1170 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1171 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1172 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1173 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1174 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1175 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1177 struct cec_adapter *adap = arg;
1178 struct cec_log_addrs *las = &adap->log_addrs;
1179 int err;
1180 int i, j;
1182 mutex_lock(&adap->lock);
1183 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1184 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1185 las->log_addr_mask = 0;
1187 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1188 goto configured;
1190 for (i = 0; i < las->num_log_addrs; i++) {
1191 unsigned int type = las->log_addr_type[i];
1192 const u8 *la_list;
1193 u8 last_la;
1196 * The TV functionality can only map to physical address 0.
1197 * For any other address, try the Specific functionality
1198 * instead as per the spec.
1200 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1201 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1203 la_list = type2addrs[type];
1204 last_la = las->log_addr[i];
1205 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1206 if (last_la == CEC_LOG_ADDR_INVALID ||
1207 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1208 !((1 << last_la) & type2mask[type]))
1209 last_la = la_list[0];
1211 err = cec_config_log_addr(adap, i, last_la);
1212 if (err > 0) /* Reused last LA */
1213 continue;
1215 if (err < 0)
1216 goto unconfigure;
1218 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1219 /* Tried this one already, skip it */
1220 if (la_list[j] == last_la)
1221 continue;
1222 /* The backup addresses are CEC 2.0 specific */
1223 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1224 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1225 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1226 continue;
1228 err = cec_config_log_addr(adap, i, la_list[j]);
1229 if (err == 0) /* LA is in use */
1230 continue;
1231 if (err < 0)
1232 goto unconfigure;
1233 /* Done, claimed an LA */
1234 break;
1237 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1238 dprintk(1, "could not claim LA %d\n", i);
1241 if (adap->log_addrs.log_addr_mask == 0 &&
1242 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1243 goto unconfigure;
1245 configured:
1246 if (adap->log_addrs.log_addr_mask == 0) {
1247 /* Fall back to unregistered */
1248 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1249 las->log_addr_mask = 1 << las->log_addr[0];
1250 for (i = 1; i < las->num_log_addrs; i++)
1251 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1253 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1254 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1255 adap->is_configured = true;
1256 adap->is_configuring = false;
1257 cec_post_state_event(adap);
1260 * Now post the Report Features and Report Physical Address broadcast
1261 * messages. Note that these are non-blocking transmits, meaning that
1262 * they are just queued up and once adap->lock is unlocked the main
1263 * thread will kick in and start transmitting these.
1265 * If after this function is done (but before one or more of these
1266 * messages are actually transmitted) the CEC adapter is unconfigured,
1267 * then any remaining messages will be dropped by the main thread.
1269 for (i = 0; i < las->num_log_addrs; i++) {
1270 struct cec_msg msg = {};
1272 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1273 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1274 continue;
1276 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1278 /* Report Features must come first according to CEC 2.0 */
1279 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1280 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1281 cec_fill_msg_report_features(adap, &msg, i);
1282 cec_transmit_msg_fh(adap, &msg, NULL, false);
1285 /* Report Physical Address */
1286 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1287 las->primary_device_type[i]);
1288 dprintk(2, "config: la %d pa %x.%x.%x.%x\n",
1289 las->log_addr[i],
1290 cec_phys_addr_exp(adap->phys_addr));
1291 cec_transmit_msg_fh(adap, &msg, NULL, false);
1293 adap->kthread_config = NULL;
1294 complete(&adap->config_completion);
1295 mutex_unlock(&adap->lock);
1296 return 0;
1298 unconfigure:
1299 for (i = 0; i < las->num_log_addrs; i++)
1300 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1301 cec_adap_unconfigure(adap);
1302 adap->kthread_config = NULL;
1303 mutex_unlock(&adap->lock);
1304 complete(&adap->config_completion);
1305 return 0;
1309 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1310 * logical addresses.
1312 * This function is called with adap->lock held.
1314 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1316 if (WARN_ON(adap->is_configuring || adap->is_configured))
1317 return;
1319 init_completion(&adap->config_completion);
1321 /* Ready to kick off the thread */
1322 adap->is_configuring = true;
1323 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1324 "ceccfg-%s", adap->name);
1325 if (IS_ERR(adap->kthread_config)) {
1326 adap->kthread_config = NULL;
1327 } else if (block) {
1328 mutex_unlock(&adap->lock);
1329 wait_for_completion(&adap->config_completion);
1330 mutex_lock(&adap->lock);
1334 /* Set a new physical address and send an event notifying userspace of this.
1336 * This function is called with adap->lock held.
1338 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1340 if (phys_addr == adap->phys_addr || adap->devnode.unregistered)
1341 return;
1343 if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1344 adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1345 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1346 cec_post_state_event(adap);
1347 cec_adap_unconfigure(adap);
1348 /* Disabling monitor all mode should always succeed */
1349 if (adap->monitor_all_cnt)
1350 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1351 WARN_ON(adap->ops->adap_enable(adap, false));
1352 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1353 return;
1356 if (adap->ops->adap_enable(adap, true))
1357 return;
1359 if (adap->monitor_all_cnt &&
1360 call_op(adap, adap_monitor_all_enable, true)) {
1361 WARN_ON(adap->ops->adap_enable(adap, false));
1362 return;
1364 adap->phys_addr = phys_addr;
1365 cec_post_state_event(adap);
1366 if (adap->log_addrs.num_log_addrs)
1367 cec_claim_log_addrs(adap, block);
1370 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1372 if (IS_ERR_OR_NULL(adap))
1373 return;
1375 mutex_lock(&adap->lock);
1376 __cec_s_phys_addr(adap, phys_addr, block);
1377 mutex_unlock(&adap->lock);
1379 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1382 * Called from either the ioctl or a driver to set the logical addresses.
1384 * This function is called with adap->lock held.
1386 int __cec_s_log_addrs(struct cec_adapter *adap,
1387 struct cec_log_addrs *log_addrs, bool block)
1389 u16 type_mask = 0;
1390 int i;
1392 if (adap->devnode.unregistered)
1393 return -ENODEV;
1395 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1396 adap->log_addrs.num_log_addrs = 0;
1397 cec_adap_unconfigure(adap);
1398 return 0;
1401 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1403 * Sanitize log_addrs fields if a CDC-Only device is
1404 * requested.
1406 log_addrs->num_log_addrs = 1;
1407 log_addrs->osd_name[0] = '\0';
1408 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1409 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1411 * This is just an internal convention since a CDC-Only device
1412 * doesn't have to be a switch. But switches already use
1413 * unregistered, so it makes some kind of sense to pick this
1414 * as the primary device. Since a CDC-Only device never sends
1415 * any 'normal' CEC messages this primary device type is never
1416 * sent over the CEC bus.
1418 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1419 log_addrs->all_device_types[0] = 0;
1420 log_addrs->features[0][0] = 0;
1421 log_addrs->features[0][1] = 0;
1424 /* Ensure the osd name is 0-terminated */
1425 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1427 /* Sanity checks */
1428 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1429 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1430 return -EINVAL;
1434 * Vendor ID is a 24 bit number, so check if the value is
1435 * within the correct range.
1437 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1438 (log_addrs->vendor_id & 0xff000000) != 0)
1439 return -EINVAL;
1441 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1442 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0)
1443 return -EINVAL;
1445 if (log_addrs->num_log_addrs > 1)
1446 for (i = 0; i < log_addrs->num_log_addrs; i++)
1447 if (log_addrs->log_addr_type[i] ==
1448 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1449 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1450 return -EINVAL;
1453 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1454 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1455 u8 *features = log_addrs->features[i];
1456 bool op_is_dev_features = false;
1457 unsigned j;
1459 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1460 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1461 dprintk(1, "duplicate logical address type\n");
1462 return -EINVAL;
1464 type_mask |= 1 << log_addrs->log_addr_type[i];
1465 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1466 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1467 /* Record already contains the playback functionality */
1468 dprintk(1, "invalid record + playback combination\n");
1469 return -EINVAL;
1471 if (log_addrs->primary_device_type[i] >
1472 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1473 dprintk(1, "unknown primary device type\n");
1474 return -EINVAL;
1476 if (log_addrs->primary_device_type[i] == 2) {
1477 dprintk(1, "invalid primary device type\n");
1478 return -EINVAL;
1480 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1481 dprintk(1, "unknown logical address type\n");
1482 return -EINVAL;
1484 for (j = 0; j < feature_sz; j++) {
1485 if ((features[j] & 0x80) == 0) {
1486 if (op_is_dev_features)
1487 break;
1488 op_is_dev_features = true;
1491 if (!op_is_dev_features || j == feature_sz) {
1492 dprintk(1, "malformed features\n");
1493 return -EINVAL;
1495 /* Zero unused part of the feature array */
1496 memset(features + j + 1, 0, feature_sz - j - 1);
1499 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1500 if (log_addrs->num_log_addrs > 2) {
1501 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1502 return -EINVAL;
1504 if (log_addrs->num_log_addrs == 2) {
1505 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1506 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1507 dprintk(1, "Two LAs is only allowed for audiosystem and TV\n");
1508 return -EINVAL;
1510 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1511 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1512 dprintk(1, "An audiosystem/TV can only be combined with record or playback\n");
1513 return -EINVAL;
1518 /* Zero unused LAs */
1519 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1520 log_addrs->primary_device_type[i] = 0;
1521 log_addrs->log_addr_type[i] = 0;
1522 log_addrs->all_device_types[i] = 0;
1523 memset(log_addrs->features[i], 0,
1524 sizeof(log_addrs->features[i]));
1527 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1528 adap->log_addrs = *log_addrs;
1529 if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1530 cec_claim_log_addrs(adap, block);
1531 return 0;
1534 int cec_s_log_addrs(struct cec_adapter *adap,
1535 struct cec_log_addrs *log_addrs, bool block)
1537 int err;
1539 mutex_lock(&adap->lock);
1540 err = __cec_s_log_addrs(adap, log_addrs, block);
1541 mutex_unlock(&adap->lock);
1542 return err;
1544 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1546 /* High-level core CEC message handling */
1548 /* Fill in the Report Features message */
1549 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1550 struct cec_msg *msg,
1551 unsigned int la_idx)
1553 const struct cec_log_addrs *las = &adap->log_addrs;
1554 const u8 *features = las->features[la_idx];
1555 bool op_is_dev_features = false;
1556 unsigned int idx;
1558 /* Report Features */
1559 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1560 msg->len = 4;
1561 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1562 msg->msg[2] = adap->log_addrs.cec_version;
1563 msg->msg[3] = las->all_device_types[la_idx];
1565 /* Write RC Profiles first, then Device Features */
1566 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1567 msg->msg[msg->len++] = features[idx];
1568 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1569 if (op_is_dev_features)
1570 break;
1571 op_is_dev_features = true;
1576 /* Transmit the Feature Abort message */
1577 static int cec_feature_abort_reason(struct cec_adapter *adap,
1578 struct cec_msg *msg, u8 reason)
1580 struct cec_msg tx_msg = { };
1583 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1584 * message!
1586 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1587 return 0;
1588 cec_msg_set_reply_to(&tx_msg, msg);
1589 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1590 return cec_transmit_msg(adap, &tx_msg, false);
1593 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1595 return cec_feature_abort_reason(adap, msg,
1596 CEC_OP_ABORT_UNRECOGNIZED_OP);
1599 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1601 return cec_feature_abort_reason(adap, msg,
1602 CEC_OP_ABORT_REFUSED);
1606 * Called when a CEC message is received. This function will do any
1607 * necessary core processing. The is_reply bool is true if this message
1608 * is a reply to an earlier transmit.
1610 * The message is either a broadcast message or a valid directed message.
1612 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1613 bool is_reply)
1615 bool is_broadcast = cec_msg_is_broadcast(msg);
1616 u8 dest_laddr = cec_msg_destination(msg);
1617 u8 init_laddr = cec_msg_initiator(msg);
1618 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1619 int la_idx = cec_log_addr2idx(adap, dest_laddr);
1620 bool from_unregistered = init_laddr == 0xf;
1621 struct cec_msg tx_cec_msg = { };
1623 dprintk(1, "cec_receive_notify: %*ph\n", msg->len, msg->msg);
1625 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1626 if (cec_is_cdc_only(&adap->log_addrs) &&
1627 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1628 return 0;
1630 if (adap->ops->received) {
1631 /* Allow drivers to process the message first */
1632 if (adap->ops->received(adap, msg) != -ENOMSG)
1633 return 0;
1637 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1638 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1639 * handled by the CEC core, even if the passthrough mode is on.
1640 * The others are just ignored if passthrough mode is on.
1642 switch (msg->msg[1]) {
1643 case CEC_MSG_GET_CEC_VERSION:
1644 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1645 case CEC_MSG_ABORT:
1646 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1647 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1648 case CEC_MSG_GIVE_OSD_NAME:
1649 case CEC_MSG_GIVE_FEATURES:
1651 * Skip processing these messages if the passthrough mode
1652 * is on.
1654 if (adap->passthrough)
1655 goto skip_processing;
1656 /* Ignore if addressing is wrong */
1657 if (is_broadcast || from_unregistered)
1658 return 0;
1659 break;
1661 case CEC_MSG_USER_CONTROL_PRESSED:
1662 case CEC_MSG_USER_CONTROL_RELEASED:
1663 /* Wrong addressing mode: don't process */
1664 if (is_broadcast || from_unregistered)
1665 goto skip_processing;
1666 break;
1668 case CEC_MSG_REPORT_PHYSICAL_ADDR:
1670 * This message is always processed, regardless of the
1671 * passthrough setting.
1673 * Exception: don't process if wrong addressing mode.
1675 if (!is_broadcast)
1676 goto skip_processing;
1677 break;
1679 default:
1680 break;
1683 cec_msg_set_reply_to(&tx_cec_msg, msg);
1685 switch (msg->msg[1]) {
1686 /* The following messages are processed but still passed through */
1687 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1688 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1690 if (!from_unregistered)
1691 adap->phys_addrs[init_laddr] = pa;
1692 dprintk(1, "Reported physical address %x.%x.%x.%x for logical address %d\n",
1693 cec_phys_addr_exp(pa), init_laddr);
1694 break;
1697 case CEC_MSG_USER_CONTROL_PRESSED:
1698 if (!(adap->capabilities & CEC_CAP_RC) ||
1699 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1700 break;
1702 #if IS_REACHABLE(CONFIG_RC_CORE)
1703 switch (msg->msg[2]) {
1705 * Play function, this message can have variable length
1706 * depending on the specific play function that is used.
1708 case 0x60:
1709 if (msg->len == 2)
1710 rc_keydown(adap->rc, RC_TYPE_CEC,
1711 msg->msg[2], 0);
1712 else
1713 rc_keydown(adap->rc, RC_TYPE_CEC,
1714 msg->msg[2] << 8 | msg->msg[3], 0);
1715 break;
1717 * Other function messages that are not handled.
1718 * Currently the RC framework does not allow to supply an
1719 * additional parameter to a keypress. These "keys" contain
1720 * other information such as channel number, an input number
1721 * etc.
1722 * For the time being these messages are not processed by the
1723 * framework and are simply forwarded to the user space.
1725 case 0x56: case 0x57:
1726 case 0x67: case 0x68: case 0x69: case 0x6a:
1727 break;
1728 default:
1729 rc_keydown(adap->rc, RC_TYPE_CEC, msg->msg[2], 0);
1730 break;
1732 #endif
1733 break;
1735 case CEC_MSG_USER_CONTROL_RELEASED:
1736 if (!(adap->capabilities & CEC_CAP_RC) ||
1737 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1738 break;
1739 #if IS_REACHABLE(CONFIG_RC_CORE)
1740 rc_keyup(adap->rc);
1741 #endif
1742 break;
1745 * The remaining messages are only processed if the passthrough mode
1746 * is off.
1748 case CEC_MSG_GET_CEC_VERSION:
1749 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
1750 return cec_transmit_msg(adap, &tx_cec_msg, false);
1752 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1753 /* Do nothing for CEC switches using addr 15 */
1754 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
1755 return 0;
1756 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
1757 return cec_transmit_msg(adap, &tx_cec_msg, false);
1759 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1760 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
1761 return cec_feature_abort(adap, msg);
1762 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
1763 return cec_transmit_msg(adap, &tx_cec_msg, false);
1765 case CEC_MSG_ABORT:
1766 /* Do nothing for CEC switches */
1767 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
1768 return 0;
1769 return cec_feature_refused(adap, msg);
1771 case CEC_MSG_GIVE_OSD_NAME: {
1772 if (adap->log_addrs.osd_name[0] == 0)
1773 return cec_feature_abort(adap, msg);
1774 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
1775 return cec_transmit_msg(adap, &tx_cec_msg, false);
1778 case CEC_MSG_GIVE_FEATURES:
1779 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
1780 return cec_feature_abort(adap, msg);
1781 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
1782 return cec_transmit_msg(adap, &tx_cec_msg, false);
1784 default:
1786 * Unprocessed messages are aborted if userspace isn't doing
1787 * any processing either.
1789 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
1790 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
1791 return cec_feature_abort(adap, msg);
1792 break;
1795 skip_processing:
1796 /* If this was a reply, then we're done, unless otherwise specified */
1797 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
1798 return 0;
1801 * Send to the exclusive follower if there is one, otherwise send
1802 * to all followers.
1804 if (adap->cec_follower)
1805 cec_queue_msg_fh(adap->cec_follower, msg);
1806 else
1807 cec_queue_msg_followers(adap, msg);
1808 return 0;
1812 * Helper functions to keep track of the 'monitor all' use count.
1814 * These functions are called with adap->lock held.
1816 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
1818 int ret = 0;
1820 if (adap->monitor_all_cnt == 0)
1821 ret = call_op(adap, adap_monitor_all_enable, 1);
1822 if (ret == 0)
1823 adap->monitor_all_cnt++;
1824 return ret;
1827 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
1829 adap->monitor_all_cnt--;
1830 if (adap->monitor_all_cnt == 0)
1831 WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
1834 #ifdef CONFIG_MEDIA_CEC_DEBUG
1836 * Log the current state of the CEC adapter.
1837 * Very useful for debugging.
1839 int cec_adap_status(struct seq_file *file, void *priv)
1841 struct cec_adapter *adap = dev_get_drvdata(file->private);
1842 struct cec_data *data;
1844 mutex_lock(&adap->lock);
1845 seq_printf(file, "configured: %d\n", adap->is_configured);
1846 seq_printf(file, "configuring: %d\n", adap->is_configuring);
1847 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
1848 cec_phys_addr_exp(adap->phys_addr));
1849 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
1850 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
1851 if (adap->cec_follower)
1852 seq_printf(file, "has CEC follower%s\n",
1853 adap->passthrough ? " (in passthrough mode)" : "");
1854 if (adap->cec_initiator)
1855 seq_puts(file, "has CEC initiator\n");
1856 if (adap->monitor_all_cnt)
1857 seq_printf(file, "file handles in Monitor All mode: %u\n",
1858 adap->monitor_all_cnt);
1859 data = adap->transmitting;
1860 if (data)
1861 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
1862 data->msg.len, data->msg.msg, data->msg.reply,
1863 data->msg.timeout);
1864 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
1865 list_for_each_entry(data, &adap->transmit_queue, list) {
1866 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
1867 data->msg.len, data->msg.msg, data->msg.reply,
1868 data->msg.timeout);
1870 list_for_each_entry(data, &adap->wait_queue, list) {
1871 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
1872 data->msg.len, data->msg.msg, data->msg.reply,
1873 data->msg.timeout);
1876 call_void_op(adap, adap_status, file);
1877 mutex_unlock(&adap->lock);
1878 return 0;
1880 #endif