2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/pnp.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <media/rc-core.h>
33 #include <linux/pci_ids.h>
35 #include "nuvoton-cir.h"
37 static void nvt_clear_cir_wake_fifo(struct nvt_dev
*nvt
);
39 static const struct nvt_chip nvt_chips
[] = {
40 { "w83667hg", NVT_W83667HG
},
41 { "NCT6775F", NVT_6775F
},
42 { "NCT6776F", NVT_6776F
},
43 { "NCT6779D", NVT_6779D
},
46 static inline struct device
*nvt_get_dev(const struct nvt_dev
*nvt
)
48 return nvt
->rdev
->dev
.parent
;
51 static inline bool is_w83667hg(struct nvt_dev
*nvt
)
53 return nvt
->chip_ver
== NVT_W83667HG
;
56 /* write val to config reg */
57 static inline void nvt_cr_write(struct nvt_dev
*nvt
, u8 val
, u8 reg
)
59 outb(reg
, nvt
->cr_efir
);
60 outb(val
, nvt
->cr_efdr
);
63 /* read val from config reg */
64 static inline u8
nvt_cr_read(struct nvt_dev
*nvt
, u8 reg
)
66 outb(reg
, nvt
->cr_efir
);
67 return inb(nvt
->cr_efdr
);
70 /* update config register bit without changing other bits */
71 static inline void nvt_set_reg_bit(struct nvt_dev
*nvt
, u8 val
, u8 reg
)
73 u8 tmp
= nvt_cr_read(nvt
, reg
) | val
;
74 nvt_cr_write(nvt
, tmp
, reg
);
77 /* clear config register bit without changing other bits */
78 static inline void nvt_clear_reg_bit(struct nvt_dev
*nvt
, u8 val
, u8 reg
)
80 u8 tmp
= nvt_cr_read(nvt
, reg
) & ~val
;
81 nvt_cr_write(nvt
, tmp
, reg
);
84 /* enter extended function mode */
85 static inline int nvt_efm_enable(struct nvt_dev
*nvt
)
87 if (!request_muxed_region(nvt
->cr_efir
, 2, NVT_DRIVER_NAME
))
90 /* Enabling Extended Function Mode explicitly requires writing 2x */
91 outb(EFER_EFM_ENABLE
, nvt
->cr_efir
);
92 outb(EFER_EFM_ENABLE
, nvt
->cr_efir
);
97 /* exit extended function mode */
98 static inline void nvt_efm_disable(struct nvt_dev
*nvt
)
100 outb(EFER_EFM_DISABLE
, nvt
->cr_efir
);
102 release_region(nvt
->cr_efir
, 2);
106 * When you want to address a specific logical device, write its logical
107 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
108 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
110 static inline void nvt_select_logical_dev(struct nvt_dev
*nvt
, u8 ldev
)
112 nvt_cr_write(nvt
, ldev
, CR_LOGICAL_DEV_SEL
);
115 /* select and enable logical device with setting EFM mode*/
116 static inline void nvt_enable_logical_dev(struct nvt_dev
*nvt
, u8 ldev
)
119 nvt_select_logical_dev(nvt
, ldev
);
120 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
121 nvt_efm_disable(nvt
);
124 /* select and disable logical device with setting EFM mode*/
125 static inline void nvt_disable_logical_dev(struct nvt_dev
*nvt
, u8 ldev
)
128 nvt_select_logical_dev(nvt
, ldev
);
129 nvt_cr_write(nvt
, LOGICAL_DEV_DISABLE
, CR_LOGICAL_DEV_EN
);
130 nvt_efm_disable(nvt
);
133 /* write val to cir config register */
134 static inline void nvt_cir_reg_write(struct nvt_dev
*nvt
, u8 val
, u8 offset
)
136 outb(val
, nvt
->cir_addr
+ offset
);
139 /* read val from cir config register */
140 static u8
nvt_cir_reg_read(struct nvt_dev
*nvt
, u8 offset
)
142 return inb(nvt
->cir_addr
+ offset
);
145 /* write val to cir wake register */
146 static inline void nvt_cir_wake_reg_write(struct nvt_dev
*nvt
,
149 outb(val
, nvt
->cir_wake_addr
+ offset
);
152 /* read val from cir wake config register */
153 static u8
nvt_cir_wake_reg_read(struct nvt_dev
*nvt
, u8 offset
)
155 return inb(nvt
->cir_wake_addr
+ offset
);
158 /* don't override io address if one is set already */
159 static void nvt_set_ioaddr(struct nvt_dev
*nvt
, unsigned long *ioaddr
)
161 unsigned long old_addr
;
163 old_addr
= nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_HI
) << 8;
164 old_addr
|= nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_LO
);
169 nvt_cr_write(nvt
, *ioaddr
>> 8, CR_CIR_BASE_ADDR_HI
);
170 nvt_cr_write(nvt
, *ioaddr
& 0xff, CR_CIR_BASE_ADDR_LO
);
174 static void nvt_write_wakeup_codes(struct rc_dev
*dev
,
175 const u8
*wbuf
, int count
)
177 u8 tolerance
, config
;
178 struct nvt_dev
*nvt
= dev
->priv
;
182 /* hardcode the tolerance to 10% */
183 tolerance
= DIV_ROUND_UP(count
, 10);
185 spin_lock_irqsave(&nvt
->lock
, flags
);
187 nvt_clear_cir_wake_fifo(nvt
);
188 nvt_cir_wake_reg_write(nvt
, count
, CIR_WAKE_FIFO_CMP_DEEP
);
189 nvt_cir_wake_reg_write(nvt
, tolerance
, CIR_WAKE_FIFO_CMP_TOL
);
191 config
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRCON
);
193 /* enable writes to wake fifo */
194 nvt_cir_wake_reg_write(nvt
, config
| CIR_WAKE_IRCON_MODE1
,
198 pr_info("Wake samples (%d) =", count
);
200 pr_info("Wake sample fifo cleared");
202 for (i
= 0; i
< count
; i
++)
203 nvt_cir_wake_reg_write(nvt
, wbuf
[i
], CIR_WAKE_WR_FIFO_DATA
);
205 nvt_cir_wake_reg_write(nvt
, config
, CIR_WAKE_IRCON
);
207 spin_unlock_irqrestore(&nvt
->lock
, flags
);
210 static ssize_t
wakeup_data_show(struct device
*dev
,
211 struct device_attribute
*attr
,
214 struct rc_dev
*rc_dev
= to_rc_dev(dev
);
215 struct nvt_dev
*nvt
= rc_dev
->priv
;
216 int fifo_len
, duration
;
221 spin_lock_irqsave(&nvt
->lock
, flags
);
223 fifo_len
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_COUNT
);
224 fifo_len
= min(fifo_len
, WAKEUP_MAX_SIZE
);
226 /* go to first element to be read */
227 while (nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY_IDX
))
228 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
);
230 for (i
= 0; i
< fifo_len
; i
++) {
231 duration
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
);
232 duration
= (duration
& BUF_LEN_MASK
) * SAMPLE_PERIOD
;
233 buf_len
+= snprintf(buf
+ buf_len
, PAGE_SIZE
- buf_len
,
236 buf_len
+= snprintf(buf
+ buf_len
, PAGE_SIZE
- buf_len
, "\n");
238 spin_unlock_irqrestore(&nvt
->lock
, flags
);
243 static ssize_t
wakeup_data_store(struct device
*dev
,
244 struct device_attribute
*attr
,
245 const char *buf
, size_t len
)
247 struct rc_dev
*rc_dev
= to_rc_dev(dev
);
248 u8 wake_buf
[WAKEUP_MAX_SIZE
];
254 argv
= argv_split(GFP_KERNEL
, buf
, &count
);
257 if (!count
|| count
> WAKEUP_MAX_SIZE
) {
262 for (i
= 0; i
< count
; i
++) {
263 ret
= kstrtouint(argv
[i
], 10, &val
);
266 val
= DIV_ROUND_CLOSEST(val
, SAMPLE_PERIOD
);
267 if (!val
|| val
> 0x7f) {
272 /* sequence must start with a pulse */
274 wake_buf
[i
] |= BUF_PULSE_BIT
;
277 nvt_write_wakeup_codes(rc_dev
, wake_buf
, count
);
284 static DEVICE_ATTR_RW(wakeup_data
);
286 /* dump current cir register contents */
287 static void cir_dump_regs(struct nvt_dev
*nvt
)
290 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
292 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME
);
293 pr_info(" * CR CIR ACTIVE : 0x%x\n",
294 nvt_cr_read(nvt
, CR_LOGICAL_DEV_EN
));
295 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
296 (nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_HI
) << 8) |
297 nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_LO
));
298 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
299 nvt_cr_read(nvt
, CR_CIR_IRQ_RSRC
));
301 nvt_efm_disable(nvt
);
303 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME
);
304 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRCON
));
305 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRSTS
));
306 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IREN
));
307 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_RXFCONT
));
308 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_CP
));
309 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_CC
));
310 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_SLCH
));
311 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_SLCL
));
312 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_FIFOCON
));
313 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRFIFOSTS
));
314 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_SRXFIFO
));
315 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_TXFCONT
));
316 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_STXFIFO
));
317 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_FCCH
));
318 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_FCCL
));
319 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRFSM
));
322 /* dump current cir wake register contents */
323 static void cir_wake_dump_regs(struct nvt_dev
*nvt
)
328 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
330 pr_info("%s: Dump CIR WAKE logical device registers:\n",
332 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
333 nvt_cr_read(nvt
, CR_LOGICAL_DEV_EN
));
334 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
335 (nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_HI
) << 8) |
336 nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_LO
));
337 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
338 nvt_cr_read(nvt
, CR_CIR_IRQ_RSRC
));
340 nvt_efm_disable(nvt
);
342 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME
);
343 pr_info(" * IRCON: 0x%x\n",
344 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRCON
));
345 pr_info(" * IRSTS: 0x%x\n",
346 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRSTS
));
347 pr_info(" * IREN: 0x%x\n",
348 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IREN
));
349 pr_info(" * FIFO CMP DEEP: 0x%x\n",
350 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_CMP_DEEP
));
351 pr_info(" * FIFO CMP TOL: 0x%x\n",
352 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_CMP_TOL
));
353 pr_info(" * FIFO COUNT: 0x%x\n",
354 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_COUNT
));
355 pr_info(" * SLCH: 0x%x\n",
356 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SLCH
));
357 pr_info(" * SLCL: 0x%x\n",
358 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SLCL
));
359 pr_info(" * FIFOCON: 0x%x\n",
360 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFOCON
));
361 pr_info(" * SRXFSTS: 0x%x\n",
362 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SRXFSTS
));
363 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
364 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SAMPLE_RX_FIFO
));
365 pr_info(" * WR FIFO DATA: 0x%x\n",
366 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_WR_FIFO_DATA
));
367 pr_info(" * RD FIFO ONLY: 0x%x\n",
368 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
));
369 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
370 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY_IDX
));
371 pr_info(" * FIFO IGNORE: 0x%x\n",
372 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_IGNORE
));
373 pr_info(" * IRFSM: 0x%x\n",
374 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRFSM
));
376 fifo_len
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_COUNT
);
377 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME
, fifo_len
);
378 pr_info("* Contents =");
379 for (i
= 0; i
< fifo_len
; i
++)
381 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
));
385 static inline const char *nvt_find_chip(struct nvt_dev
*nvt
, int id
)
389 for (i
= 0; i
< ARRAY_SIZE(nvt_chips
); i
++)
390 if ((id
& SIO_ID_MASK
) == nvt_chips
[i
].chip_ver
) {
391 nvt
->chip_ver
= nvt_chips
[i
].chip_ver
;
392 return nvt_chips
[i
].name
;
399 /* detect hardware features */
400 static int nvt_hw_detect(struct nvt_dev
*nvt
)
402 struct device
*dev
= nvt_get_dev(nvt
);
403 const char *chip_name
;
408 /* Check if we're wired for the alternate EFER setup */
409 nvt
->chip_major
= nvt_cr_read(nvt
, CR_CHIP_ID_HI
);
410 if (nvt
->chip_major
== 0xff) {
411 nvt_efm_disable(nvt
);
412 nvt
->cr_efir
= CR_EFIR2
;
413 nvt
->cr_efdr
= CR_EFDR2
;
415 nvt
->chip_major
= nvt_cr_read(nvt
, CR_CHIP_ID_HI
);
417 nvt
->chip_minor
= nvt_cr_read(nvt
, CR_CHIP_ID_LO
);
419 nvt_efm_disable(nvt
);
421 chip_id
= nvt
->chip_major
<< 8 | nvt
->chip_minor
;
422 if (chip_id
== NVT_INVALID
) {
423 dev_err(dev
, "No device found on either EFM port\n");
427 chip_name
= nvt_find_chip(nvt
, chip_id
);
429 /* warn, but still let the driver load, if we don't know this chip */
432 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
433 nvt
->chip_major
, nvt
->chip_minor
);
435 dev_info(dev
, "found %s or compatible: chip id: 0x%02x 0x%02x",
436 chip_name
, nvt
->chip_major
, nvt
->chip_minor
);
441 static void nvt_cir_ldev_init(struct nvt_dev
*nvt
)
443 u8 val
, psreg
, psmask
, psval
;
445 if (is_w83667hg(nvt
)) {
446 psreg
= CR_MULTIFUNC_PIN_SEL
;
447 psmask
= MULTIFUNC_PIN_SEL_MASK
;
448 psval
= MULTIFUNC_ENABLE_CIR
| MULTIFUNC_ENABLE_CIRWB
;
450 psreg
= CR_OUTPUT_PIN_SEL
;
451 psmask
= OUTPUT_PIN_SEL_MASK
;
452 psval
= OUTPUT_ENABLE_CIR
| OUTPUT_ENABLE_CIRWB
;
455 /* output pin selection: enable CIR, with WB sensor enabled */
456 val
= nvt_cr_read(nvt
, psreg
);
459 nvt_cr_write(nvt
, val
, psreg
);
461 /* Select CIR logical device */
462 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
464 nvt_set_ioaddr(nvt
, &nvt
->cir_addr
);
466 nvt_cr_write(nvt
, nvt
->cir_irq
, CR_CIR_IRQ_RSRC
);
468 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
469 nvt
->cir_addr
, nvt
->cir_irq
);
472 static void nvt_cir_wake_ldev_init(struct nvt_dev
*nvt
)
474 /* Select ACPI logical device and anable it */
475 nvt_select_logical_dev(nvt
, LOGICAL_DEV_ACPI
);
476 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
478 /* Enable CIR Wake via PSOUT# (Pin60) */
479 nvt_set_reg_bit(nvt
, CIR_WAKE_ENABLE_BIT
, CR_ACPI_CIR_WAKE
);
481 /* enable pme interrupt of cir wakeup event */
482 nvt_set_reg_bit(nvt
, PME_INTR_CIR_PASS_BIT
, CR_ACPI_IRQ_EVENTS2
);
484 /* Select CIR Wake logical device */
485 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
487 nvt_set_ioaddr(nvt
, &nvt
->cir_wake_addr
);
489 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
493 /* clear out the hardware's cir rx fifo */
494 static void nvt_clear_cir_fifo(struct nvt_dev
*nvt
)
496 u8 val
= nvt_cir_reg_read(nvt
, CIR_FIFOCON
);
497 nvt_cir_reg_write(nvt
, val
| CIR_FIFOCON_RXFIFOCLR
, CIR_FIFOCON
);
500 /* clear out the hardware's cir wake rx fifo */
501 static void nvt_clear_cir_wake_fifo(struct nvt_dev
*nvt
)
505 config
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRCON
);
507 /* clearing wake fifo works in learning mode only */
508 nvt_cir_wake_reg_write(nvt
, config
& ~CIR_WAKE_IRCON_MODE0
,
511 val
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFOCON
);
512 nvt_cir_wake_reg_write(nvt
, val
| CIR_WAKE_FIFOCON_RXFIFOCLR
,
515 nvt_cir_wake_reg_write(nvt
, config
, CIR_WAKE_IRCON
);
518 /* clear out the hardware's cir tx fifo */
519 static void nvt_clear_tx_fifo(struct nvt_dev
*nvt
)
523 val
= nvt_cir_reg_read(nvt
, CIR_FIFOCON
);
524 nvt_cir_reg_write(nvt
, val
| CIR_FIFOCON_TXFIFOCLR
, CIR_FIFOCON
);
527 /* enable RX Trigger Level Reach and Packet End interrupts */
528 static void nvt_set_cir_iren(struct nvt_dev
*nvt
)
532 iren
= CIR_IREN_RTR
| CIR_IREN_PE
| CIR_IREN_RFO
;
533 nvt_cir_reg_write(nvt
, iren
, CIR_IREN
);
536 static void nvt_cir_regs_init(struct nvt_dev
*nvt
)
538 /* set sample limit count (PE interrupt raised when reached) */
539 nvt_cir_reg_write(nvt
, CIR_RX_LIMIT_COUNT
>> 8, CIR_SLCH
);
540 nvt_cir_reg_write(nvt
, CIR_RX_LIMIT_COUNT
& 0xff, CIR_SLCL
);
542 /* set fifo irq trigger levels */
543 nvt_cir_reg_write(nvt
, CIR_FIFOCON_TX_TRIGGER_LEV
|
544 CIR_FIFOCON_RX_TRIGGER_LEV
, CIR_FIFOCON
);
547 * Enable TX and RX, specify carrier on = low, off = high, and set
548 * sample period (currently 50us)
550 nvt_cir_reg_write(nvt
,
551 CIR_IRCON_TXEN
| CIR_IRCON_RXEN
|
552 CIR_IRCON_RXINV
| CIR_IRCON_SAMPLE_PERIOD_SEL
,
555 /* clear hardware rx and tx fifos */
556 nvt_clear_cir_fifo(nvt
);
557 nvt_clear_tx_fifo(nvt
);
559 /* clear any and all stray interrupts */
560 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
562 /* and finally, enable interrupts */
563 nvt_set_cir_iren(nvt
);
565 /* enable the CIR logical device */
566 nvt_enable_logical_dev(nvt
, LOGICAL_DEV_CIR
);
569 static void nvt_cir_wake_regs_init(struct nvt_dev
*nvt
)
572 * Disable RX, set specific carrier on = low, off = high,
573 * and sample period (currently 50us)
575 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_IRCON_MODE0
|
576 CIR_WAKE_IRCON_R
| CIR_WAKE_IRCON_RXINV
|
577 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL
,
580 /* clear any and all stray interrupts */
581 nvt_cir_wake_reg_write(nvt
, 0xff, CIR_WAKE_IRSTS
);
583 /* enable the CIR WAKE logical device */
584 nvt_enable_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
587 static void nvt_enable_wake(struct nvt_dev
*nvt
)
593 nvt_select_logical_dev(nvt
, LOGICAL_DEV_ACPI
);
594 nvt_set_reg_bit(nvt
, CIR_WAKE_ENABLE_BIT
, CR_ACPI_CIR_WAKE
);
595 nvt_set_reg_bit(nvt
, PME_INTR_CIR_PASS_BIT
, CR_ACPI_IRQ_EVENTS2
);
597 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
598 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
600 nvt_efm_disable(nvt
);
602 spin_lock_irqsave(&nvt
->lock
, flags
);
604 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_IRCON_MODE0
| CIR_WAKE_IRCON_RXEN
|
605 CIR_WAKE_IRCON_R
| CIR_WAKE_IRCON_RXINV
|
606 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL
,
608 nvt_cir_wake_reg_write(nvt
, 0xff, CIR_WAKE_IRSTS
);
609 nvt_cir_wake_reg_write(nvt
, 0, CIR_WAKE_IREN
);
611 spin_unlock_irqrestore(&nvt
->lock
, flags
);
614 #if 0 /* Currently unused */
615 /* rx carrier detect only works in learning mode, must be called w/lock */
616 static u32
nvt_rx_carrier_detect(struct nvt_dev
*nvt
)
618 u32 count
, carrier
, duration
= 0;
621 count
= nvt_cir_reg_read(nvt
, CIR_FCCL
) |
622 nvt_cir_reg_read(nvt
, CIR_FCCH
) << 8;
624 for (i
= 0; i
< nvt
->pkts
; i
++) {
625 if (nvt
->buf
[i
] & BUF_PULSE_BIT
)
626 duration
+= nvt
->buf
[i
] & BUF_LEN_MASK
;
629 duration
*= SAMPLE_PERIOD
;
631 if (!count
|| !duration
) {
632 dev_notice(nvt_get_dev(nvt
),
633 "Unable to determine carrier! (c:%u, d:%u)",
638 carrier
= MS_TO_NS(count
) / duration
;
640 if ((carrier
> MAX_CARRIER
) || (carrier
< MIN_CARRIER
))
641 nvt_dbg("WTF? Carrier frequency out of range!");
643 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
644 carrier
, count
, duration
);
650 * set carrier frequency
652 * set carrier on 2 registers: CP & CC
653 * always set CP as 0x81
654 * set CC by SPEC, CC = 3MHz/carrier - 1
656 static int nvt_set_tx_carrier(struct rc_dev
*dev
, u32 carrier
)
658 struct nvt_dev
*nvt
= dev
->priv
;
664 nvt_cir_reg_write(nvt
, 1, CIR_CP
);
665 val
= 3000000 / (carrier
) - 1;
666 nvt_cir_reg_write(nvt
, val
& 0xff, CIR_CC
);
668 nvt_dbg("cp: 0x%x cc: 0x%x\n",
669 nvt_cir_reg_read(nvt
, CIR_CP
), nvt_cir_reg_read(nvt
, CIR_CC
));
674 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev
*dev
,
675 struct rc_scancode_filter
*sc_filter
)
680 struct ir_raw_event
*raw
;
681 u8 wake_buf
[WAKEUP_MAX_SIZE
];
684 /* Require mask to be set */
685 if (!sc_filter
->mask
)
688 raw
= kmalloc_array(WAKEUP_MAX_SIZE
, sizeof(*raw
), GFP_KERNEL
);
692 ret
= ir_raw_encode_scancode(dev
->wakeup_protocol
, sc_filter
->data
,
693 raw
, WAKEUP_MAX_SIZE
);
694 complete
= (ret
!= -ENOBUFS
);
696 ret
= WAKEUP_MAX_SIZE
;
700 /* Inspect the ir samples */
701 for (i
= 0, count
= 0; i
< ret
&& count
< WAKEUP_MAX_SIZE
; ++i
) {
703 val
= DIV_ROUND_UP(raw
[i
].duration
, 1000L) / SAMPLE_PERIOD
;
705 /* Split too large values into several smaller ones */
706 while (val
> 0 && count
< WAKEUP_MAX_SIZE
) {
707 /* Skip last value for better comparison tolerance */
708 if (complete
&& i
== ret
- 1 && val
< BUF_LEN_MASK
)
711 /* Clamp values to BUF_LEN_MASK at most */
712 buf_val
= (val
> BUF_LEN_MASK
) ? BUF_LEN_MASK
: val
;
714 wake_buf
[count
] = buf_val
;
717 wake_buf
[count
] |= BUF_PULSE_BIT
;
722 nvt_write_wakeup_codes(dev
, wake_buf
, count
);
733 * 1) clean TX fifo first (handled by AP)
734 * 2) copy data from user space
735 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
736 * 4) send 9 packets to TX FIFO to open TTR
737 * in interrupt_handler:
738 * 5) send all data out
739 * go back to write():
740 * 6) disable TX interrupts, re-enable RX interupts
742 * The key problem of this function is user space data may larger than
743 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
744 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
745 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
746 * set TXFCONT as 0xff, until buf_count less than 0xff.
748 static int nvt_tx_ir(struct rc_dev
*dev
, unsigned *txbuf
, unsigned n
)
750 struct nvt_dev
*nvt
= dev
->priv
;
756 spin_lock_irqsave(&nvt
->lock
, flags
);
758 ret
= min((unsigned)(TX_BUF_LEN
/ sizeof(unsigned)), n
);
759 nvt
->tx
.buf_count
= (ret
* sizeof(unsigned));
761 memcpy(nvt
->tx
.buf
, txbuf
, nvt
->tx
.buf_count
);
763 nvt
->tx
.cur_buf_num
= 0;
765 /* save currently enabled interrupts */
766 iren
= nvt_cir_reg_read(nvt
, CIR_IREN
);
768 /* now disable all interrupts, save TFU & TTR */
769 nvt_cir_reg_write(nvt
, CIR_IREN_TFU
| CIR_IREN_TTR
, CIR_IREN
);
771 nvt
->tx
.tx_state
= ST_TX_REPLY
;
773 nvt_cir_reg_write(nvt
, CIR_FIFOCON_TX_TRIGGER_LEV_8
|
774 CIR_FIFOCON_RXFIFOCLR
, CIR_FIFOCON
);
776 /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
777 for (i
= 0; i
< 9; i
++)
778 nvt_cir_reg_write(nvt
, 0x01, CIR_STXFIFO
);
780 spin_unlock_irqrestore(&nvt
->lock
, flags
);
782 wait_event(nvt
->tx
.queue
, nvt
->tx
.tx_state
== ST_TX_REQUEST
);
784 spin_lock_irqsave(&nvt
->lock
, flags
);
785 nvt
->tx
.tx_state
= ST_TX_NONE
;
786 spin_unlock_irqrestore(&nvt
->lock
, flags
);
788 /* restore enabled interrupts to prior state */
789 nvt_cir_reg_write(nvt
, iren
, CIR_IREN
);
794 /* dump contents of the last rx buffer we got from the hw rx fifo */
795 static void nvt_dump_rx_buf(struct nvt_dev
*nvt
)
799 printk(KERN_DEBUG
"%s (len %d): ", __func__
, nvt
->pkts
);
800 for (i
= 0; (i
< nvt
->pkts
) && (i
< RX_BUF_LEN
); i
++)
801 printk(KERN_CONT
"0x%02x ", nvt
->buf
[i
]);
802 printk(KERN_CONT
"\n");
806 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
807 * trigger decode when appropriate.
809 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
810 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
811 * (default 50us) intervals for that pulse/space. A discrete signal is
812 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
813 * to signal more IR coming (repeats) or end of IR, respectively. We store
814 * sample data in the raw event kfifo until we see 0x7<something> (except f)
815 * or 0x80, at which time, we trigger a decode operation.
817 static void nvt_process_rx_ir_data(struct nvt_dev
*nvt
)
819 DEFINE_IR_RAW_EVENT(rawir
);
823 nvt_dbg_verbose("%s firing", __func__
);
826 nvt_dump_rx_buf(nvt
);
828 nvt_dbg_verbose("Processing buffer of len %d", nvt
->pkts
);
830 for (i
= 0; i
< nvt
->pkts
; i
++) {
831 sample
= nvt
->buf
[i
];
833 rawir
.pulse
= ((sample
& BUF_PULSE_BIT
) != 0);
834 rawir
.duration
= US_TO_NS((sample
& BUF_LEN_MASK
)
837 nvt_dbg("Storing %s with duration %d",
838 rawir
.pulse
? "pulse" : "space", rawir
.duration
);
840 ir_raw_event_store_with_filter(nvt
->rdev
, &rawir
);
845 nvt_dbg("Calling ir_raw_event_handle\n");
846 ir_raw_event_handle(nvt
->rdev
);
848 nvt_dbg_verbose("%s done", __func__
);
851 static void nvt_handle_rx_fifo_overrun(struct nvt_dev
*nvt
)
853 dev_warn(nvt_get_dev(nvt
), "RX FIFO overrun detected, flushing data!");
856 nvt_clear_cir_fifo(nvt
);
857 ir_raw_event_reset(nvt
->rdev
);
860 /* copy data from hardware rx fifo into driver buffer */
861 static void nvt_get_rx_ir_data(struct nvt_dev
*nvt
)
866 /* Get count of how many bytes to read from RX FIFO */
867 fifocount
= nvt_cir_reg_read(nvt
, CIR_RXFCONT
);
869 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount
);
871 /* Read fifocount bytes from CIR Sample RX FIFO register */
872 for (i
= 0; i
< fifocount
; i
++)
873 nvt
->buf
[i
] = nvt_cir_reg_read(nvt
, CIR_SRXFIFO
);
875 nvt
->pkts
= fifocount
;
876 nvt_dbg("%s: pkts now %d", __func__
, nvt
->pkts
);
878 nvt_process_rx_ir_data(nvt
);
881 static void nvt_cir_log_irqs(u8 status
, u8 iren
)
883 nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
885 status
& CIR_IRSTS_RDR
? " RDR" : "",
886 status
& CIR_IRSTS_RTR
? " RTR" : "",
887 status
& CIR_IRSTS_PE
? " PE" : "",
888 status
& CIR_IRSTS_RFO
? " RFO" : "",
889 status
& CIR_IRSTS_TE
? " TE" : "",
890 status
& CIR_IRSTS_TTR
? " TTR" : "",
891 status
& CIR_IRSTS_TFU
? " TFU" : "",
892 status
& CIR_IRSTS_GH
? " GH" : "",
893 status
& ~(CIR_IRSTS_RDR
| CIR_IRSTS_RTR
| CIR_IRSTS_PE
|
894 CIR_IRSTS_RFO
| CIR_IRSTS_TE
| CIR_IRSTS_TTR
|
895 CIR_IRSTS_TFU
| CIR_IRSTS_GH
) ? " ?" : "");
898 static bool nvt_cir_tx_inactive(struct nvt_dev
*nvt
)
900 return nvt
->tx
.tx_state
== ST_TX_NONE
;
903 /* interrupt service routine for incoming and outgoing CIR data */
904 static irqreturn_t
nvt_cir_isr(int irq
, void *data
)
906 struct nvt_dev
*nvt
= data
;
909 nvt_dbg_verbose("%s firing", __func__
);
911 spin_lock(&nvt
->lock
);
914 * Get IR Status register contents. Write 1 to ack/clear
916 * bit: reg name - description
917 * 7: CIR_IRSTS_RDR - RX Data Ready
918 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
919 * 5: CIR_IRSTS_PE - Packet End
920 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
921 * 3: CIR_IRSTS_TE - TX FIFO Empty
922 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
923 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
924 * 0: CIR_IRSTS_GH - Min Length Detected
926 status
= nvt_cir_reg_read(nvt
, CIR_IRSTS
);
927 iren
= nvt_cir_reg_read(nvt
, CIR_IREN
);
929 /* At least NCT6779D creates a spurious interrupt when the
930 * logical device is being disabled.
932 if (status
== 0xff && iren
== 0xff) {
933 spin_unlock(&nvt
->lock
);
934 nvt_dbg_verbose("Spurious interrupt detected");
938 /* IRQ may be shared with CIR WAKE, therefore check for each
939 * status bit whether the related interrupt source is enabled
941 if (!(status
& iren
)) {
942 spin_unlock(&nvt
->lock
);
943 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__
);
947 /* ack/clear all irq flags we've got */
948 nvt_cir_reg_write(nvt
, status
, CIR_IRSTS
);
949 nvt_cir_reg_write(nvt
, 0, CIR_IRSTS
);
951 nvt_cir_log_irqs(status
, iren
);
953 if (status
& CIR_IRSTS_RFO
)
954 nvt_handle_rx_fifo_overrun(nvt
);
956 else if (status
& (CIR_IRSTS_RTR
| CIR_IRSTS_PE
)) {
957 /* We only do rx if not tx'ing */
958 if (nvt_cir_tx_inactive(nvt
))
959 nvt_get_rx_ir_data(nvt
);
962 if (status
& CIR_IRSTS_TE
)
963 nvt_clear_tx_fifo(nvt
);
965 if (status
& CIR_IRSTS_TTR
) {
966 unsigned int pos
, count
;
969 pos
= nvt
->tx
.cur_buf_num
;
970 count
= nvt
->tx
.buf_count
;
972 /* Write data into the hardware tx fifo while pos < count */
974 nvt_cir_reg_write(nvt
, nvt
->tx
.buf
[pos
], CIR_STXFIFO
);
975 nvt
->tx
.cur_buf_num
++;
976 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
978 tmp
= nvt_cir_reg_read(nvt
, CIR_IREN
);
979 nvt_cir_reg_write(nvt
, tmp
& ~CIR_IREN_TTR
, CIR_IREN
);
983 if (status
& CIR_IRSTS_TFU
) {
984 if (nvt
->tx
.tx_state
== ST_TX_REPLY
) {
985 nvt
->tx
.tx_state
= ST_TX_REQUEST
;
986 wake_up(&nvt
->tx
.queue
);
990 spin_unlock(&nvt
->lock
);
992 nvt_dbg_verbose("%s done", __func__
);
996 static void nvt_disable_cir(struct nvt_dev
*nvt
)
1000 spin_lock_irqsave(&nvt
->lock
, flags
);
1002 /* disable CIR interrupts */
1003 nvt_cir_reg_write(nvt
, 0, CIR_IREN
);
1005 /* clear any and all pending interrupts */
1006 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
1008 /* clear all function enable flags */
1009 nvt_cir_reg_write(nvt
, 0, CIR_IRCON
);
1011 /* clear hardware rx and tx fifos */
1012 nvt_clear_cir_fifo(nvt
);
1013 nvt_clear_tx_fifo(nvt
);
1015 spin_unlock_irqrestore(&nvt
->lock
, flags
);
1017 /* disable the CIR logical device */
1018 nvt_disable_logical_dev(nvt
, LOGICAL_DEV_CIR
);
1021 static int nvt_open(struct rc_dev
*dev
)
1023 struct nvt_dev
*nvt
= dev
->priv
;
1024 unsigned long flags
;
1026 spin_lock_irqsave(&nvt
->lock
, flags
);
1028 /* set function enable flags */
1029 nvt_cir_reg_write(nvt
, CIR_IRCON_TXEN
| CIR_IRCON_RXEN
|
1030 CIR_IRCON_RXINV
| CIR_IRCON_SAMPLE_PERIOD_SEL
,
1033 /* clear all pending interrupts */
1034 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
1036 /* enable interrupts */
1037 nvt_set_cir_iren(nvt
);
1039 spin_unlock_irqrestore(&nvt
->lock
, flags
);
1041 /* enable the CIR logical device */
1042 nvt_enable_logical_dev(nvt
, LOGICAL_DEV_CIR
);
1047 static void nvt_close(struct rc_dev
*dev
)
1049 struct nvt_dev
*nvt
= dev
->priv
;
1051 nvt_disable_cir(nvt
);
1054 /* Allocate memory, probe hardware, and initialize everything */
1055 static int nvt_probe(struct pnp_dev
*pdev
, const struct pnp_device_id
*dev_id
)
1057 struct nvt_dev
*nvt
;
1058 struct rc_dev
*rdev
;
1061 nvt
= devm_kzalloc(&pdev
->dev
, sizeof(struct nvt_dev
), GFP_KERNEL
);
1065 /* input device for IR remote (and tx) */
1066 nvt
->rdev
= devm_rc_allocate_device(&pdev
->dev
, RC_DRIVER_IR_RAW
);
1071 /* activate pnp device */
1072 ret
= pnp_activate_dev(pdev
);
1074 dev_err(&pdev
->dev
, "Could not activate PNP device!\n");
1078 /* validate pnp resources */
1079 if (!pnp_port_valid(pdev
, 0) ||
1080 pnp_port_len(pdev
, 0) < CIR_IOREG_LENGTH
) {
1081 dev_err(&pdev
->dev
, "IR PNP Port not valid!\n");
1085 if (!pnp_irq_valid(pdev
, 0)) {
1086 dev_err(&pdev
->dev
, "PNP IRQ not valid!\n");
1090 if (!pnp_port_valid(pdev
, 1) ||
1091 pnp_port_len(pdev
, 1) < CIR_IOREG_LENGTH
) {
1092 dev_err(&pdev
->dev
, "Wake PNP Port not valid!\n");
1096 nvt
->cir_addr
= pnp_port_start(pdev
, 0);
1097 nvt
->cir_irq
= pnp_irq(pdev
, 0);
1099 nvt
->cir_wake_addr
= pnp_port_start(pdev
, 1);
1101 nvt
->cr_efir
= CR_EFIR
;
1102 nvt
->cr_efdr
= CR_EFDR
;
1104 spin_lock_init(&nvt
->lock
);
1106 pnp_set_drvdata(pdev
, nvt
);
1108 init_waitqueue_head(&nvt
->tx
.queue
);
1110 ret
= nvt_hw_detect(nvt
);
1114 /* Initialize CIR & CIR Wake Logical Devices */
1115 nvt_efm_enable(nvt
);
1116 nvt_cir_ldev_init(nvt
);
1117 nvt_cir_wake_ldev_init(nvt
);
1118 nvt_efm_disable(nvt
);
1121 * Initialize CIR & CIR Wake Config Registers
1122 * and enable logical devices
1124 nvt_cir_regs_init(nvt
);
1125 nvt_cir_wake_regs_init(nvt
);
1127 /* Set up the rc device */
1129 rdev
->allowed_protocols
= RC_BIT_ALL_IR_DECODER
;
1130 rdev
->allowed_wakeup_protocols
= RC_BIT_ALL_IR_ENCODER
;
1131 rdev
->encode_wakeup
= true;
1132 rdev
->open
= nvt_open
;
1133 rdev
->close
= nvt_close
;
1134 rdev
->tx_ir
= nvt_tx_ir
;
1135 rdev
->s_tx_carrier
= nvt_set_tx_carrier
;
1136 rdev
->s_wakeup_filter
= nvt_ir_raw_set_wakeup_filter
;
1137 rdev
->input_name
= "Nuvoton w836x7hg Infrared Remote Transceiver";
1138 rdev
->input_phys
= "nuvoton/cir0";
1139 rdev
->input_id
.bustype
= BUS_HOST
;
1140 rdev
->input_id
.vendor
= PCI_VENDOR_ID_WINBOND2
;
1141 rdev
->input_id
.product
= nvt
->chip_major
;
1142 rdev
->input_id
.version
= nvt
->chip_minor
;
1143 rdev
->driver_name
= NVT_DRIVER_NAME
;
1144 rdev
->map_name
= RC_MAP_RC6_MCE
;
1145 rdev
->timeout
= MS_TO_NS(100);
1146 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1147 rdev
->rx_resolution
= US_TO_NS(CIR_SAMPLE_PERIOD
);
1149 rdev
->min_timeout
= XYZ
;
1150 rdev
->max_timeout
= XYZ
;
1152 rdev
->tx_resolution
= XYZ
;
1154 ret
= devm_rc_register_device(&pdev
->dev
, rdev
);
1158 /* now claim resources */
1159 if (!devm_request_region(&pdev
->dev
, nvt
->cir_addr
,
1160 CIR_IOREG_LENGTH
, NVT_DRIVER_NAME
))
1163 ret
= devm_request_irq(&pdev
->dev
, nvt
->cir_irq
, nvt_cir_isr
,
1164 IRQF_SHARED
, NVT_DRIVER_NAME
, nvt
);
1168 if (!devm_request_region(&pdev
->dev
, nvt
->cir_wake_addr
,
1169 CIR_IOREG_LENGTH
, NVT_DRIVER_NAME
"-wake"))
1172 ret
= device_create_file(&rdev
->dev
, &dev_attr_wakeup_data
);
1176 device_init_wakeup(&pdev
->dev
, true);
1178 dev_notice(&pdev
->dev
, "driver has been successfully loaded\n");
1181 cir_wake_dump_regs(nvt
);
1187 static void nvt_remove(struct pnp_dev
*pdev
)
1189 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1191 device_remove_file(&nvt
->rdev
->dev
, &dev_attr_wakeup_data
);
1193 nvt_disable_cir(nvt
);
1195 /* enable CIR Wake (for IR power-on) */
1196 nvt_enable_wake(nvt
);
1199 static int nvt_suspend(struct pnp_dev
*pdev
, pm_message_t state
)
1201 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1202 unsigned long flags
;
1204 nvt_dbg("%s called", __func__
);
1206 spin_lock_irqsave(&nvt
->lock
, flags
);
1208 nvt
->tx
.tx_state
= ST_TX_NONE
;
1210 /* disable all CIR interrupts */
1211 nvt_cir_reg_write(nvt
, 0, CIR_IREN
);
1213 spin_unlock_irqrestore(&nvt
->lock
, flags
);
1215 /* disable cir logical dev */
1216 nvt_disable_logical_dev(nvt
, LOGICAL_DEV_CIR
);
1218 /* make sure wake is enabled */
1219 nvt_enable_wake(nvt
);
1224 static int nvt_resume(struct pnp_dev
*pdev
)
1226 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1228 nvt_dbg("%s called", __func__
);
1230 nvt_cir_regs_init(nvt
);
1231 nvt_cir_wake_regs_init(nvt
);
1236 static void nvt_shutdown(struct pnp_dev
*pdev
)
1238 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1240 nvt_enable_wake(nvt
);
1243 static const struct pnp_device_id nvt_ids
[] = {
1244 { "WEC0530", 0 }, /* CIR */
1245 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1249 static struct pnp_driver nvt_driver
= {
1250 .name
= NVT_DRIVER_NAME
,
1251 .id_table
= nvt_ids
,
1252 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1254 .remove
= nvt_remove
,
1255 .suspend
= nvt_suspend
,
1256 .resume
= nvt_resume
,
1257 .shutdown
= nvt_shutdown
,
1260 module_param(debug
, int, S_IRUGO
| S_IWUSR
);
1261 MODULE_PARM_DESC(debug
, "Enable debugging output");
1263 MODULE_DEVICE_TABLE(pnp
, nvt_ids
);
1264 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1266 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1267 MODULE_LICENSE("GPL");
1269 module_pnp_driver(nvt_driver
);