x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / mtd / mtdpart.c
blobea5e5307f667f2a6669287377a633824bb67a4bb
1 /*
2 * Simple MTD partitioning layer
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
34 #include "mtdcore.h"
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
40 /* Our partition node structure */
41 struct mtd_part {
42 struct mtd_info mtd;
43 struct mtd_info *master;
44 uint64_t offset;
45 struct list_head list;
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure.
52 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
54 return container_of(mtd, struct mtd_part, mtd);
59 * MTD methods which simply translate the effective address and pass through
60 * to the _real_ device.
63 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
64 size_t *retlen, u_char *buf)
66 struct mtd_part *part = mtd_to_part(mtd);
67 struct mtd_ecc_stats stats;
68 int res;
70 stats = part->master->ecc_stats;
71 res = part->master->_read(part->master, from + part->offset, len,
72 retlen, buf);
73 if (unlikely(mtd_is_eccerr(res)))
74 mtd->ecc_stats.failed +=
75 part->master->ecc_stats.failed - stats.failed;
76 else
77 mtd->ecc_stats.corrected +=
78 part->master->ecc_stats.corrected - stats.corrected;
79 return res;
82 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
83 size_t *retlen, void **virt, resource_size_t *phys)
85 struct mtd_part *part = mtd_to_part(mtd);
87 return part->master->_point(part->master, from + part->offset, len,
88 retlen, virt, phys);
91 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
93 struct mtd_part *part = mtd_to_part(mtd);
95 return part->master->_unpoint(part->master, from + part->offset, len);
98 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
99 unsigned long len,
100 unsigned long offset,
101 unsigned long flags)
103 struct mtd_part *part = mtd_to_part(mtd);
105 offset += part->offset;
106 return part->master->_get_unmapped_area(part->master, len, offset,
107 flags);
110 static int part_read_oob(struct mtd_info *mtd, loff_t from,
111 struct mtd_oob_ops *ops)
113 struct mtd_part *part = mtd_to_part(mtd);
114 int res;
116 if (from >= mtd->size)
117 return -EINVAL;
118 if (ops->datbuf && from + ops->len > mtd->size)
119 return -EINVAL;
122 * If OOB is also requested, make sure that we do not read past the end
123 * of this partition.
125 if (ops->oobbuf) {
126 size_t len, pages;
128 len = mtd_oobavail(mtd, ops);
129 pages = mtd_div_by_ws(mtd->size, mtd);
130 pages -= mtd_div_by_ws(from, mtd);
131 if (ops->ooboffs + ops->ooblen > pages * len)
132 return -EINVAL;
135 res = part->master->_read_oob(part->master, from + part->offset, ops);
136 if (unlikely(res)) {
137 if (mtd_is_bitflip(res))
138 mtd->ecc_stats.corrected++;
139 if (mtd_is_eccerr(res))
140 mtd->ecc_stats.failed++;
142 return res;
145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
146 size_t len, size_t *retlen, u_char *buf)
148 struct mtd_part *part = mtd_to_part(mtd);
149 return part->master->_read_user_prot_reg(part->master, from, len,
150 retlen, buf);
153 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
154 size_t *retlen, struct otp_info *buf)
156 struct mtd_part *part = mtd_to_part(mtd);
157 return part->master->_get_user_prot_info(part->master, len, retlen,
158 buf);
161 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
162 size_t len, size_t *retlen, u_char *buf)
164 struct mtd_part *part = mtd_to_part(mtd);
165 return part->master->_read_fact_prot_reg(part->master, from, len,
166 retlen, buf);
169 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
170 size_t *retlen, struct otp_info *buf)
172 struct mtd_part *part = mtd_to_part(mtd);
173 return part->master->_get_fact_prot_info(part->master, len, retlen,
174 buf);
177 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
178 size_t *retlen, const u_char *buf)
180 struct mtd_part *part = mtd_to_part(mtd);
181 return part->master->_write(part->master, to + part->offset, len,
182 retlen, buf);
185 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
186 size_t *retlen, const u_char *buf)
188 struct mtd_part *part = mtd_to_part(mtd);
189 return part->master->_panic_write(part->master, to + part->offset, len,
190 retlen, buf);
193 static int part_write_oob(struct mtd_info *mtd, loff_t to,
194 struct mtd_oob_ops *ops)
196 struct mtd_part *part = mtd_to_part(mtd);
198 if (to >= mtd->size)
199 return -EINVAL;
200 if (ops->datbuf && to + ops->len > mtd->size)
201 return -EINVAL;
202 return part->master->_write_oob(part->master, to + part->offset, ops);
205 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
206 size_t len, size_t *retlen, u_char *buf)
208 struct mtd_part *part = mtd_to_part(mtd);
209 return part->master->_write_user_prot_reg(part->master, from, len,
210 retlen, buf);
213 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
214 size_t len)
216 struct mtd_part *part = mtd_to_part(mtd);
217 return part->master->_lock_user_prot_reg(part->master, from, len);
220 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
221 unsigned long count, loff_t to, size_t *retlen)
223 struct mtd_part *part = mtd_to_part(mtd);
224 return part->master->_writev(part->master, vecs, count,
225 to + part->offset, retlen);
228 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
230 struct mtd_part *part = mtd_to_part(mtd);
231 int ret;
233 instr->addr += part->offset;
234 ret = part->master->_erase(part->master, instr);
235 if (ret) {
236 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
237 instr->fail_addr -= part->offset;
238 instr->addr -= part->offset;
240 return ret;
243 void mtd_erase_callback(struct erase_info *instr)
245 if (instr->mtd->_erase == part_erase) {
246 struct mtd_part *part = mtd_to_part(instr->mtd);
248 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
249 instr->fail_addr -= part->offset;
250 instr->addr -= part->offset;
252 if (instr->callback)
253 instr->callback(instr);
255 EXPORT_SYMBOL_GPL(mtd_erase_callback);
257 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
259 struct mtd_part *part = mtd_to_part(mtd);
260 return part->master->_lock(part->master, ofs + part->offset, len);
263 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
265 struct mtd_part *part = mtd_to_part(mtd);
266 return part->master->_unlock(part->master, ofs + part->offset, len);
269 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
271 struct mtd_part *part = mtd_to_part(mtd);
272 return part->master->_is_locked(part->master, ofs + part->offset, len);
275 static void part_sync(struct mtd_info *mtd)
277 struct mtd_part *part = mtd_to_part(mtd);
278 part->master->_sync(part->master);
281 static int part_suspend(struct mtd_info *mtd)
283 struct mtd_part *part = mtd_to_part(mtd);
284 return part->master->_suspend(part->master);
287 static void part_resume(struct mtd_info *mtd)
289 struct mtd_part *part = mtd_to_part(mtd);
290 part->master->_resume(part->master);
293 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
295 struct mtd_part *part = mtd_to_part(mtd);
296 ofs += part->offset;
297 return part->master->_block_isreserved(part->master, ofs);
300 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
302 struct mtd_part *part = mtd_to_part(mtd);
303 ofs += part->offset;
304 return part->master->_block_isbad(part->master, ofs);
307 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
309 struct mtd_part *part = mtd_to_part(mtd);
310 int res;
312 ofs += part->offset;
313 res = part->master->_block_markbad(part->master, ofs);
314 if (!res)
315 mtd->ecc_stats.badblocks++;
316 return res;
319 static int part_get_device(struct mtd_info *mtd)
321 struct mtd_part *part = mtd_to_part(mtd);
322 return part->master->_get_device(part->master);
325 static void part_put_device(struct mtd_info *mtd)
327 struct mtd_part *part = mtd_to_part(mtd);
328 part->master->_put_device(part->master);
331 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
332 struct mtd_oob_region *oobregion)
334 struct mtd_part *part = mtd_to_part(mtd);
336 return mtd_ooblayout_ecc(part->master, section, oobregion);
339 static int part_ooblayout_free(struct mtd_info *mtd, int section,
340 struct mtd_oob_region *oobregion)
342 struct mtd_part *part = mtd_to_part(mtd);
344 return mtd_ooblayout_free(part->master, section, oobregion);
347 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
348 .ecc = part_ooblayout_ecc,
349 .free = part_ooblayout_free,
352 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
354 struct mtd_part *part = mtd_to_part(mtd);
356 return part->master->_max_bad_blocks(part->master,
357 ofs + part->offset, len);
360 static inline void free_partition(struct mtd_part *p)
362 kfree(p->mtd.name);
363 kfree(p);
367 * This function unregisters and destroy all slave MTD objects which are
368 * attached to the given master MTD object.
371 int del_mtd_partitions(struct mtd_info *master)
373 struct mtd_part *slave, *next;
374 int ret, err = 0;
376 mutex_lock(&mtd_partitions_mutex);
377 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
378 if (slave->master == master) {
379 ret = del_mtd_device(&slave->mtd);
380 if (ret < 0) {
381 err = ret;
382 continue;
384 list_del(&slave->list);
385 free_partition(slave);
387 mutex_unlock(&mtd_partitions_mutex);
389 return err;
392 static struct mtd_part *allocate_partition(struct mtd_info *master,
393 const struct mtd_partition *part, int partno,
394 uint64_t cur_offset)
396 struct mtd_part *slave;
397 char *name;
399 /* allocate the partition structure */
400 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
401 name = kstrdup(part->name, GFP_KERNEL);
402 if (!name || !slave) {
403 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
404 master->name);
405 kfree(name);
406 kfree(slave);
407 return ERR_PTR(-ENOMEM);
410 /* set up the MTD object for this partition */
411 slave->mtd.type = master->type;
412 slave->mtd.flags = master->flags & ~part->mask_flags;
413 slave->mtd.size = part->size;
414 slave->mtd.writesize = master->writesize;
415 slave->mtd.writebufsize = master->writebufsize;
416 slave->mtd.oobsize = master->oobsize;
417 slave->mtd.oobavail = master->oobavail;
418 slave->mtd.subpage_sft = master->subpage_sft;
419 slave->mtd.pairing = master->pairing;
421 slave->mtd.name = name;
422 slave->mtd.owner = master->owner;
424 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
425 * concern for showing the same data in multiple partitions.
426 * However, it is very useful to have the master node present,
427 * so the MTD_PARTITIONED_MASTER option allows that. The master
428 * will have device nodes etc only if this is set, so make the
429 * parent conditional on that option. Note, this is a way to
430 * distinguish between the master and the partition in sysfs.
432 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
433 &master->dev :
434 master->dev.parent;
435 slave->mtd.dev.of_node = part->of_node;
437 slave->mtd._read = part_read;
438 slave->mtd._write = part_write;
440 if (master->_panic_write)
441 slave->mtd._panic_write = part_panic_write;
443 if (master->_point && master->_unpoint) {
444 slave->mtd._point = part_point;
445 slave->mtd._unpoint = part_unpoint;
448 if (master->_get_unmapped_area)
449 slave->mtd._get_unmapped_area = part_get_unmapped_area;
450 if (master->_read_oob)
451 slave->mtd._read_oob = part_read_oob;
452 if (master->_write_oob)
453 slave->mtd._write_oob = part_write_oob;
454 if (master->_read_user_prot_reg)
455 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
456 if (master->_read_fact_prot_reg)
457 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
458 if (master->_write_user_prot_reg)
459 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
460 if (master->_lock_user_prot_reg)
461 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
462 if (master->_get_user_prot_info)
463 slave->mtd._get_user_prot_info = part_get_user_prot_info;
464 if (master->_get_fact_prot_info)
465 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
466 if (master->_sync)
467 slave->mtd._sync = part_sync;
468 if (!partno && !master->dev.class && master->_suspend &&
469 master->_resume) {
470 slave->mtd._suspend = part_suspend;
471 slave->mtd._resume = part_resume;
473 if (master->_writev)
474 slave->mtd._writev = part_writev;
475 if (master->_lock)
476 slave->mtd._lock = part_lock;
477 if (master->_unlock)
478 slave->mtd._unlock = part_unlock;
479 if (master->_is_locked)
480 slave->mtd._is_locked = part_is_locked;
481 if (master->_block_isreserved)
482 slave->mtd._block_isreserved = part_block_isreserved;
483 if (master->_block_isbad)
484 slave->mtd._block_isbad = part_block_isbad;
485 if (master->_block_markbad)
486 slave->mtd._block_markbad = part_block_markbad;
487 if (master->_max_bad_blocks)
488 slave->mtd._max_bad_blocks = part_max_bad_blocks;
490 if (master->_get_device)
491 slave->mtd._get_device = part_get_device;
492 if (master->_put_device)
493 slave->mtd._put_device = part_put_device;
495 slave->mtd._erase = part_erase;
496 slave->master = master;
497 slave->offset = part->offset;
499 if (slave->offset == MTDPART_OFS_APPEND)
500 slave->offset = cur_offset;
501 if (slave->offset == MTDPART_OFS_NXTBLK) {
502 slave->offset = cur_offset;
503 if (mtd_mod_by_eb(cur_offset, master) != 0) {
504 /* Round up to next erasesize */
505 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
506 printk(KERN_NOTICE "Moving partition %d: "
507 "0x%012llx -> 0x%012llx\n", partno,
508 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
511 if (slave->offset == MTDPART_OFS_RETAIN) {
512 slave->offset = cur_offset;
513 if (master->size - slave->offset >= slave->mtd.size) {
514 slave->mtd.size = master->size - slave->offset
515 - slave->mtd.size;
516 } else {
517 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
518 part->name, master->size - slave->offset,
519 slave->mtd.size);
520 /* register to preserve ordering */
521 goto out_register;
524 if (slave->mtd.size == MTDPART_SIZ_FULL)
525 slave->mtd.size = master->size - slave->offset;
527 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
528 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
530 /* let's do some sanity checks */
531 if (slave->offset >= master->size) {
532 /* let's register it anyway to preserve ordering */
533 slave->offset = 0;
534 slave->mtd.size = 0;
535 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
536 part->name);
537 goto out_register;
539 if (slave->offset + slave->mtd.size > master->size) {
540 slave->mtd.size = master->size - slave->offset;
541 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
542 part->name, master->name, (unsigned long long)slave->mtd.size);
544 if (master->numeraseregions > 1) {
545 /* Deal with variable erase size stuff */
546 int i, max = master->numeraseregions;
547 u64 end = slave->offset + slave->mtd.size;
548 struct mtd_erase_region_info *regions = master->eraseregions;
550 /* Find the first erase regions which is part of this
551 * partition. */
552 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
554 /* The loop searched for the region _behind_ the first one */
555 if (i > 0)
556 i--;
558 /* Pick biggest erasesize */
559 for (; i < max && regions[i].offset < end; i++) {
560 if (slave->mtd.erasesize < regions[i].erasesize) {
561 slave->mtd.erasesize = regions[i].erasesize;
564 BUG_ON(slave->mtd.erasesize == 0);
565 } else {
566 /* Single erase size */
567 slave->mtd.erasesize = master->erasesize;
570 if ((slave->mtd.flags & MTD_WRITEABLE) &&
571 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
572 /* Doesn't start on a boundary of major erase size */
573 /* FIXME: Let it be writable if it is on a boundary of
574 * _minor_ erase size though */
575 slave->mtd.flags &= ~MTD_WRITEABLE;
576 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
577 part->name);
579 if ((slave->mtd.flags & MTD_WRITEABLE) &&
580 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
581 slave->mtd.flags &= ~MTD_WRITEABLE;
582 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
583 part->name);
586 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
587 slave->mtd.ecc_step_size = master->ecc_step_size;
588 slave->mtd.ecc_strength = master->ecc_strength;
589 slave->mtd.bitflip_threshold = master->bitflip_threshold;
591 if (master->_block_isbad) {
592 uint64_t offs = 0;
594 while (offs < slave->mtd.size) {
595 if (mtd_block_isreserved(master, offs + slave->offset))
596 slave->mtd.ecc_stats.bbtblocks++;
597 else if (mtd_block_isbad(master, offs + slave->offset))
598 slave->mtd.ecc_stats.badblocks++;
599 offs += slave->mtd.erasesize;
603 out_register:
604 return slave;
607 static ssize_t mtd_partition_offset_show(struct device *dev,
608 struct device_attribute *attr, char *buf)
610 struct mtd_info *mtd = dev_get_drvdata(dev);
611 struct mtd_part *part = mtd_to_part(mtd);
612 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
615 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
617 static const struct attribute *mtd_partition_attrs[] = {
618 &dev_attr_offset.attr,
619 NULL
622 static int mtd_add_partition_attrs(struct mtd_part *new)
624 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
625 if (ret)
626 printk(KERN_WARNING
627 "mtd: failed to create partition attrs, err=%d\n", ret);
628 return ret;
631 int mtd_add_partition(struct mtd_info *master, const char *name,
632 long long offset, long long length)
634 struct mtd_partition part;
635 struct mtd_part *new;
636 int ret = 0;
638 /* the direct offset is expected */
639 if (offset == MTDPART_OFS_APPEND ||
640 offset == MTDPART_OFS_NXTBLK)
641 return -EINVAL;
643 if (length == MTDPART_SIZ_FULL)
644 length = master->size - offset;
646 if (length <= 0)
647 return -EINVAL;
649 memset(&part, 0, sizeof(part));
650 part.name = name;
651 part.size = length;
652 part.offset = offset;
654 new = allocate_partition(master, &part, -1, offset);
655 if (IS_ERR(new))
656 return PTR_ERR(new);
658 mutex_lock(&mtd_partitions_mutex);
659 list_add(&new->list, &mtd_partitions);
660 mutex_unlock(&mtd_partitions_mutex);
662 add_mtd_device(&new->mtd);
664 mtd_add_partition_attrs(new);
666 return ret;
668 EXPORT_SYMBOL_GPL(mtd_add_partition);
670 int mtd_del_partition(struct mtd_info *master, int partno)
672 struct mtd_part *slave, *next;
673 int ret = -EINVAL;
675 mutex_lock(&mtd_partitions_mutex);
676 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
677 if ((slave->master == master) &&
678 (slave->mtd.index == partno)) {
679 sysfs_remove_files(&slave->mtd.dev.kobj,
680 mtd_partition_attrs);
681 ret = del_mtd_device(&slave->mtd);
682 if (ret < 0)
683 break;
685 list_del(&slave->list);
686 free_partition(slave);
687 break;
689 mutex_unlock(&mtd_partitions_mutex);
691 return ret;
693 EXPORT_SYMBOL_GPL(mtd_del_partition);
696 * This function, given a master MTD object and a partition table, creates
697 * and registers slave MTD objects which are bound to the master according to
698 * the partition definitions.
700 * For historical reasons, this function's caller only registers the master
701 * if the MTD_PARTITIONED_MASTER config option is set.
704 int add_mtd_partitions(struct mtd_info *master,
705 const struct mtd_partition *parts,
706 int nbparts)
708 struct mtd_part *slave;
709 uint64_t cur_offset = 0;
710 int i;
712 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
714 for (i = 0; i < nbparts; i++) {
715 slave = allocate_partition(master, parts + i, i, cur_offset);
716 if (IS_ERR(slave)) {
717 del_mtd_partitions(master);
718 return PTR_ERR(slave);
721 mutex_lock(&mtd_partitions_mutex);
722 list_add(&slave->list, &mtd_partitions);
723 mutex_unlock(&mtd_partitions_mutex);
725 add_mtd_device(&slave->mtd);
726 mtd_add_partition_attrs(slave);
728 cur_offset = slave->offset + slave->mtd.size;
731 return 0;
734 static DEFINE_SPINLOCK(part_parser_lock);
735 static LIST_HEAD(part_parsers);
737 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
739 struct mtd_part_parser *p, *ret = NULL;
741 spin_lock(&part_parser_lock);
743 list_for_each_entry(p, &part_parsers, list)
744 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
745 ret = p;
746 break;
749 spin_unlock(&part_parser_lock);
751 return ret;
754 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
756 module_put(p->owner);
760 * Many partition parsers just expected the core to kfree() all their data in
761 * one chunk. Do that by default.
763 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
764 int nr_parts)
766 kfree(pparts);
769 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
771 p->owner = owner;
773 if (!p->cleanup)
774 p->cleanup = &mtd_part_parser_cleanup_default;
776 spin_lock(&part_parser_lock);
777 list_add(&p->list, &part_parsers);
778 spin_unlock(&part_parser_lock);
780 return 0;
782 EXPORT_SYMBOL_GPL(__register_mtd_parser);
784 void deregister_mtd_parser(struct mtd_part_parser *p)
786 spin_lock(&part_parser_lock);
787 list_del(&p->list);
788 spin_unlock(&part_parser_lock);
790 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
793 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
794 * are changing this array!
796 static const char * const default_mtd_part_types[] = {
797 "cmdlinepart",
798 "ofpart",
799 NULL
803 * parse_mtd_partitions - parse MTD partitions
804 * @master: the master partition (describes whole MTD device)
805 * @types: names of partition parsers to try or %NULL
806 * @pparts: info about partitions found is returned here
807 * @data: MTD partition parser-specific data
809 * This function tries to find partition on MTD device @master. It uses MTD
810 * partition parsers, specified in @types. However, if @types is %NULL, then
811 * the default list of parsers is used. The default list contains only the
812 * "cmdlinepart" and "ofpart" parsers ATM.
813 * Note: If there are more then one parser in @types, the kernel only takes the
814 * partitions parsed out by the first parser.
816 * This function may return:
817 * o a negative error code in case of failure
818 * o zero otherwise, and @pparts will describe the partitions, number of
819 * partitions, and the parser which parsed them. Caller must release
820 * resources with mtd_part_parser_cleanup() when finished with the returned
821 * data.
823 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
824 struct mtd_partitions *pparts,
825 struct mtd_part_parser_data *data)
827 struct mtd_part_parser *parser;
828 int ret, err = 0;
830 if (!types)
831 types = default_mtd_part_types;
833 for ( ; *types; types++) {
834 pr_debug("%s: parsing partitions %s\n", master->name, *types);
835 parser = mtd_part_parser_get(*types);
836 if (!parser && !request_module("%s", *types))
837 parser = mtd_part_parser_get(*types);
838 pr_debug("%s: got parser %s\n", master->name,
839 parser ? parser->name : NULL);
840 if (!parser)
841 continue;
842 ret = (*parser->parse_fn)(master, &pparts->parts, data);
843 pr_debug("%s: parser %s: %i\n",
844 master->name, parser->name, ret);
845 if (ret > 0) {
846 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
847 ret, parser->name, master->name);
848 pparts->nr_parts = ret;
849 pparts->parser = parser;
850 return 0;
852 mtd_part_parser_put(parser);
854 * Stash the first error we see; only report it if no parser
855 * succeeds
857 if (ret < 0 && !err)
858 err = ret;
860 return err;
863 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
865 const struct mtd_part_parser *parser;
867 if (!parts)
868 return;
870 parser = parts->parser;
871 if (parser) {
872 if (parser->cleanup)
873 parser->cleanup(parts->parts, parts->nr_parts);
875 mtd_part_parser_put(parser);
879 int mtd_is_partition(const struct mtd_info *mtd)
881 struct mtd_part *part;
882 int ispart = 0;
884 mutex_lock(&mtd_partitions_mutex);
885 list_for_each_entry(part, &mtd_partitions, list)
886 if (&part->mtd == mtd) {
887 ispart = 1;
888 break;
890 mutex_unlock(&mtd_partitions_mutex);
892 return ispart;
894 EXPORT_SYMBOL_GPL(mtd_is_partition);
896 /* Returns the size of the entire flash chip */
897 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
899 if (!mtd_is_partition(mtd))
900 return mtd->size;
902 return mtd_to_part(mtd)->master->size;
904 EXPORT_SYMBOL_GPL(mtd_get_device_size);