x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / mtd / nand / lpc32xx_mlc.c
blob846a66c1b1338f92e65a9548c6fa32e63d834294
1 /*
2 * Driver for NAND MLC Controller in LPC32xx
4 * Author: Roland Stigge <stigge@antcom.de>
6 * Copyright © 2011 WORK Microwave GmbH
7 * Copyright © 2011, 2012 Roland Stigge
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 * NAND Flash Controller Operation:
21 * - Read: Auto Decode
22 * - Write: Auto Encode
23 * - Tested Page Sizes: 2048, 4096
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/clk.h>
33 #include <linux/err.h>
34 #include <linux/delay.h>
35 #include <linux/completion.h>
36 #include <linux/interrupt.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mtd/lpc32xx_mlc.h>
40 #include <linux/io.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dmaengine.h>
44 #include <linux/mtd/nand_ecc.h>
46 #define DRV_NAME "lpc32xx_mlc"
48 /**********************************************************************
49 * MLC NAND controller register offsets
50 **********************************************************************/
52 #define MLC_BUFF(x) (x + 0x00000)
53 #define MLC_DATA(x) (x + 0x08000)
54 #define MLC_CMD(x) (x + 0x10000)
55 #define MLC_ADDR(x) (x + 0x10004)
56 #define MLC_ECC_ENC_REG(x) (x + 0x10008)
57 #define MLC_ECC_DEC_REG(x) (x + 0x1000C)
58 #define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010)
59 #define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014)
60 #define MLC_RPR(x) (x + 0x10018)
61 #define MLC_WPR(x) (x + 0x1001C)
62 #define MLC_RUBP(x) (x + 0x10020)
63 #define MLC_ROBP(x) (x + 0x10024)
64 #define MLC_SW_WP_ADD_LOW(x) (x + 0x10028)
65 #define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C)
66 #define MLC_ICR(x) (x + 0x10030)
67 #define MLC_TIME_REG(x) (x + 0x10034)
68 #define MLC_IRQ_MR(x) (x + 0x10038)
69 #define MLC_IRQ_SR(x) (x + 0x1003C)
70 #define MLC_LOCK_PR(x) (x + 0x10044)
71 #define MLC_ISR(x) (x + 0x10048)
72 #define MLC_CEH(x) (x + 0x1004C)
74 /**********************************************************************
75 * MLC_CMD bit definitions
76 **********************************************************************/
77 #define MLCCMD_RESET 0xFF
79 /**********************************************************************
80 * MLC_ICR bit definitions
81 **********************************************************************/
82 #define MLCICR_WPROT (1 << 3)
83 #define MLCICR_LARGEBLOCK (1 << 2)
84 #define MLCICR_LONGADDR (1 << 1)
85 #define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */
87 /**********************************************************************
88 * MLC_TIME_REG bit definitions
89 **********************************************************************/
90 #define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24)
91 #define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19)
92 #define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16)
93 #define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12)
94 #define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8)
95 #define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4)
96 #define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0)
98 /**********************************************************************
99 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
100 **********************************************************************/
101 #define MLCIRQ_NAND_READY (1 << 5)
102 #define MLCIRQ_CONTROLLER_READY (1 << 4)
103 #define MLCIRQ_DECODE_FAILURE (1 << 3)
104 #define MLCIRQ_DECODE_ERROR (1 << 2)
105 #define MLCIRQ_ECC_READY (1 << 1)
106 #define MLCIRQ_WRPROT_FAULT (1 << 0)
108 /**********************************************************************
109 * MLC_LOCK_PR bit definitions
110 **********************************************************************/
111 #define MLCLOCKPR_MAGIC 0xA25E
113 /**********************************************************************
114 * MLC_ISR bit definitions
115 **********************************************************************/
116 #define MLCISR_DECODER_FAILURE (1 << 6)
117 #define MLCISR_ERRORS ((1 << 4) | (1 << 5))
118 #define MLCISR_ERRORS_DETECTED (1 << 3)
119 #define MLCISR_ECC_READY (1 << 2)
120 #define MLCISR_CONTROLLER_READY (1 << 1)
121 #define MLCISR_NAND_READY (1 << 0)
123 /**********************************************************************
124 * MLC_CEH bit definitions
125 **********************************************************************/
126 #define MLCCEH_NORMAL (1 << 0)
128 struct lpc32xx_nand_cfg_mlc {
129 uint32_t tcea_delay;
130 uint32_t busy_delay;
131 uint32_t nand_ta;
132 uint32_t rd_high;
133 uint32_t rd_low;
134 uint32_t wr_high;
135 uint32_t wr_low;
136 int wp_gpio;
137 struct mtd_partition *parts;
138 unsigned num_parts;
141 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
142 struct mtd_oob_region *oobregion)
144 struct nand_chip *nand_chip = mtd_to_nand(mtd);
146 if (section >= nand_chip->ecc.steps)
147 return -ERANGE;
149 oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
150 oobregion->length = nand_chip->ecc.bytes;
152 return 0;
155 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
156 struct mtd_oob_region *oobregion)
158 struct nand_chip *nand_chip = mtd_to_nand(mtd);
160 if (section >= nand_chip->ecc.steps)
161 return -ERANGE;
163 oobregion->offset = 16 * section;
164 oobregion->length = 16 - nand_chip->ecc.bytes;
166 return 0;
169 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
170 .ecc = lpc32xx_ooblayout_ecc,
171 .free = lpc32xx_ooblayout_free,
174 static struct nand_bbt_descr lpc32xx_nand_bbt = {
175 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
176 NAND_BBT_WRITE,
177 .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
180 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
181 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
182 NAND_BBT_WRITE,
183 .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
186 struct lpc32xx_nand_host {
187 struct nand_chip nand_chip;
188 struct lpc32xx_mlc_platform_data *pdata;
189 struct clk *clk;
190 void __iomem *io_base;
191 int irq;
192 struct lpc32xx_nand_cfg_mlc *ncfg;
193 struct completion comp_nand;
194 struct completion comp_controller;
195 uint32_t llptr;
197 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
199 dma_addr_t oob_buf_phy;
201 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
203 uint8_t *oob_buf;
204 /* Physical address of DMA base address */
205 dma_addr_t io_base_phy;
207 struct completion comp_dma;
208 struct dma_chan *dma_chan;
209 struct dma_slave_config dma_slave_config;
210 struct scatterlist sgl;
211 uint8_t *dma_buf;
212 uint8_t *dummy_buf;
213 int mlcsubpages; /* number of 512bytes-subpages */
217 * Activate/Deactivate DMA Operation:
219 * Using the PL080 DMA Controller for transferring the 512 byte subpages
220 * instead of doing readl() / writel() in a loop slows it down significantly.
221 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
223 * - readl() of 128 x 32 bits in a loop: ~20us
224 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
225 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
227 * This applies to the transfer itself. In the DMA case: only the
228 * wait_for_completion() (DMA setup _not_ included).
230 * Note that the 512 bytes subpage transfer is done directly from/to a
231 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
232 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
233 * controller transferring data between its internal buffer to/from the NAND
234 * chip.)
236 * Therefore, using the PL080 DMA is disabled by default, for now.
239 static int use_dma;
241 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
243 uint32_t clkrate, tmp;
245 /* Reset MLC controller */
246 writel(MLCCMD_RESET, MLC_CMD(host->io_base));
247 udelay(1000);
249 /* Get base clock for MLC block */
250 clkrate = clk_get_rate(host->clk);
251 if (clkrate == 0)
252 clkrate = 104000000;
254 /* Unlock MLC_ICR
255 * (among others, will be locked again automatically) */
256 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
258 /* Configure MLC Controller: Large Block, 5 Byte Address */
259 tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
260 writel(tmp, MLC_ICR(host->io_base));
262 /* Unlock MLC_TIME_REG
263 * (among others, will be locked again automatically) */
264 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
266 /* Compute clock setup values, see LPC and NAND manual */
267 tmp = 0;
268 tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
269 tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
270 tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
271 tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
272 tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
273 tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
274 tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
275 writel(tmp, MLC_TIME_REG(host->io_base));
277 /* Enable IRQ for CONTROLLER_READY and NAND_READY */
278 writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
279 MLC_IRQ_MR(host->io_base));
281 /* Normal nCE operation: nCE controlled by controller */
282 writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
286 * Hardware specific access to control lines
288 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
289 unsigned int ctrl)
291 struct nand_chip *nand_chip = mtd_to_nand(mtd);
292 struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
294 if (cmd != NAND_CMD_NONE) {
295 if (ctrl & NAND_CLE)
296 writel(cmd, MLC_CMD(host->io_base));
297 else
298 writel(cmd, MLC_ADDR(host->io_base));
303 * Read Device Ready (NAND device _and_ controller ready)
305 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
307 struct nand_chip *nand_chip = mtd_to_nand(mtd);
308 struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
310 if ((readb(MLC_ISR(host->io_base)) &
311 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
312 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
313 return 1;
315 return 0;
318 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
320 uint8_t sr;
322 /* Clear interrupt flag by reading status */
323 sr = readb(MLC_IRQ_SR(host->io_base));
324 if (sr & MLCIRQ_NAND_READY)
325 complete(&host->comp_nand);
326 if (sr & MLCIRQ_CONTROLLER_READY)
327 complete(&host->comp_controller);
329 return IRQ_HANDLED;
332 static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
334 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
336 if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
337 goto exit;
339 wait_for_completion(&host->comp_nand);
341 while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
342 /* Seems to be delayed sometimes by controller */
343 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
344 cpu_relax();
347 exit:
348 return NAND_STATUS_READY;
351 static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
352 struct nand_chip *chip)
354 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
356 if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
357 goto exit;
359 wait_for_completion(&host->comp_controller);
361 while (!(readb(MLC_ISR(host->io_base)) &
362 MLCISR_CONTROLLER_READY)) {
363 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
364 cpu_relax();
367 exit:
368 return NAND_STATUS_READY;
371 static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
373 lpc32xx_waitfunc_nand(mtd, chip);
374 lpc32xx_waitfunc_controller(mtd, chip);
376 return NAND_STATUS_READY;
380 * Enable NAND write protect
382 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
384 if (gpio_is_valid(host->ncfg->wp_gpio))
385 gpio_set_value(host->ncfg->wp_gpio, 0);
389 * Disable NAND write protect
391 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
393 if (gpio_is_valid(host->ncfg->wp_gpio))
394 gpio_set_value(host->ncfg->wp_gpio, 1);
397 static void lpc32xx_dma_complete_func(void *completion)
399 complete(completion);
402 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
403 enum dma_transfer_direction dir)
405 struct nand_chip *chip = mtd_to_nand(mtd);
406 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
407 struct dma_async_tx_descriptor *desc;
408 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
409 int res;
411 sg_init_one(&host->sgl, mem, len);
413 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
414 DMA_BIDIRECTIONAL);
415 if (res != 1) {
416 dev_err(mtd->dev.parent, "Failed to map sg list\n");
417 return -ENXIO;
419 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
420 flags);
421 if (!desc) {
422 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
423 goto out1;
426 init_completion(&host->comp_dma);
427 desc->callback = lpc32xx_dma_complete_func;
428 desc->callback_param = &host->comp_dma;
430 dmaengine_submit(desc);
431 dma_async_issue_pending(host->dma_chan);
433 wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
435 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
436 DMA_BIDIRECTIONAL);
437 return 0;
438 out1:
439 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
440 DMA_BIDIRECTIONAL);
441 return -ENXIO;
444 static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
445 uint8_t *buf, int oob_required, int page)
447 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
448 int i, j;
449 uint8_t *oobbuf = chip->oob_poi;
450 uint32_t mlc_isr;
451 int res;
452 uint8_t *dma_buf;
453 bool dma_mapped;
455 if ((void *)buf <= high_memory) {
456 dma_buf = buf;
457 dma_mapped = true;
458 } else {
459 dma_buf = host->dma_buf;
460 dma_mapped = false;
463 /* Writing Command and Address */
464 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
466 /* For all sub-pages */
467 for (i = 0; i < host->mlcsubpages; i++) {
468 /* Start Auto Decode Command */
469 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
471 /* Wait for Controller Ready */
472 lpc32xx_waitfunc_controller(mtd, chip);
474 /* Check ECC Error status */
475 mlc_isr = readl(MLC_ISR(host->io_base));
476 if (mlc_isr & MLCISR_DECODER_FAILURE) {
477 mtd->ecc_stats.failed++;
478 dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
479 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
480 mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
483 /* Read 512 + 16 Bytes */
484 if (use_dma) {
485 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
486 DMA_DEV_TO_MEM);
487 if (res)
488 return res;
489 } else {
490 for (j = 0; j < (512 >> 2); j++) {
491 *((uint32_t *)(buf)) =
492 readl(MLC_BUFF(host->io_base));
493 buf += 4;
496 for (j = 0; j < (16 >> 2); j++) {
497 *((uint32_t *)(oobbuf)) =
498 readl(MLC_BUFF(host->io_base));
499 oobbuf += 4;
503 if (use_dma && !dma_mapped)
504 memcpy(buf, dma_buf, mtd->writesize);
506 return 0;
509 static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
510 struct nand_chip *chip,
511 const uint8_t *buf, int oob_required,
512 int page)
514 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
515 const uint8_t *oobbuf = chip->oob_poi;
516 uint8_t *dma_buf = (uint8_t *)buf;
517 int res;
518 int i, j;
520 if (use_dma && (void *)buf >= high_memory) {
521 dma_buf = host->dma_buf;
522 memcpy(dma_buf, buf, mtd->writesize);
525 for (i = 0; i < host->mlcsubpages; i++) {
526 /* Start Encode */
527 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
529 /* Write 512 + 6 Bytes to Buffer */
530 if (use_dma) {
531 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
532 DMA_MEM_TO_DEV);
533 if (res)
534 return res;
535 } else {
536 for (j = 0; j < (512 >> 2); j++) {
537 writel(*((uint32_t *)(buf)),
538 MLC_BUFF(host->io_base));
539 buf += 4;
542 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
543 oobbuf += 4;
544 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
545 oobbuf += 12;
547 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
548 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
550 /* Wait for Controller Ready */
551 lpc32xx_waitfunc_controller(mtd, chip);
553 return 0;
556 static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
557 int page)
559 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
561 /* Read whole page - necessary with MLC controller! */
562 lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
564 return 0;
567 static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
568 int page)
570 /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
571 return 0;
574 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
575 static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
577 /* Always enabled! */
580 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
582 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
583 dma_cap_mask_t mask;
585 if (!host->pdata || !host->pdata->dma_filter) {
586 dev_err(mtd->dev.parent, "no DMA platform data\n");
587 return -ENOENT;
590 dma_cap_zero(mask);
591 dma_cap_set(DMA_SLAVE, mask);
592 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
593 "nand-mlc");
594 if (!host->dma_chan) {
595 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
596 return -EBUSY;
600 * Set direction to a sensible value even if the dmaengine driver
601 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
602 * driver criticizes it as "alien transfer direction".
604 host->dma_slave_config.direction = DMA_DEV_TO_MEM;
605 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
606 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
607 host->dma_slave_config.src_maxburst = 128;
608 host->dma_slave_config.dst_maxburst = 128;
609 /* DMA controller does flow control: */
610 host->dma_slave_config.device_fc = false;
611 host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
612 host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
613 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
614 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
615 goto out1;
618 return 0;
619 out1:
620 dma_release_channel(host->dma_chan);
621 return -ENXIO;
624 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
626 struct lpc32xx_nand_cfg_mlc *ncfg;
627 struct device_node *np = dev->of_node;
629 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
630 if (!ncfg)
631 return NULL;
633 of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
634 of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
635 of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
636 of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
637 of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
638 of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
639 of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
641 if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
642 !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
643 !ncfg->wr_low) {
644 dev_err(dev, "chip parameters not specified correctly\n");
645 return NULL;
648 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
650 return ncfg;
654 * Probe for NAND controller
656 static int lpc32xx_nand_probe(struct platform_device *pdev)
658 struct lpc32xx_nand_host *host;
659 struct mtd_info *mtd;
660 struct nand_chip *nand_chip;
661 struct resource *rc;
662 int res;
664 /* Allocate memory for the device structure (and zero it) */
665 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
666 if (!host)
667 return -ENOMEM;
669 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
670 host->io_base = devm_ioremap_resource(&pdev->dev, rc);
671 if (IS_ERR(host->io_base))
672 return PTR_ERR(host->io_base);
674 host->io_base_phy = rc->start;
676 nand_chip = &host->nand_chip;
677 mtd = nand_to_mtd(nand_chip);
678 if (pdev->dev.of_node)
679 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
680 if (!host->ncfg) {
681 dev_err(&pdev->dev,
682 "Missing or bad NAND config from device tree\n");
683 return -ENOENT;
685 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
686 return -EPROBE_DEFER;
687 if (gpio_is_valid(host->ncfg->wp_gpio) &&
688 gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
689 dev_err(&pdev->dev, "GPIO not available\n");
690 return -EBUSY;
692 lpc32xx_wp_disable(host);
694 host->pdata = dev_get_platdata(&pdev->dev);
696 /* link the private data structures */
697 nand_set_controller_data(nand_chip, host);
698 nand_set_flash_node(nand_chip, pdev->dev.of_node);
699 mtd->dev.parent = &pdev->dev;
701 /* Get NAND clock */
702 host->clk = clk_get(&pdev->dev, NULL);
703 if (IS_ERR(host->clk)) {
704 dev_err(&pdev->dev, "Clock initialization failure\n");
705 res = -ENOENT;
706 goto err_exit1;
708 clk_prepare_enable(host->clk);
710 nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
711 nand_chip->dev_ready = lpc32xx_nand_device_ready;
712 nand_chip->chip_delay = 25; /* us */
713 nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
714 nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
716 /* Init NAND controller */
717 lpc32xx_nand_setup(host);
719 platform_set_drvdata(pdev, host);
721 /* Initialize function pointers */
722 nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
723 nand_chip->ecc.read_page_raw = lpc32xx_read_page;
724 nand_chip->ecc.read_page = lpc32xx_read_page;
725 nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
726 nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
727 nand_chip->ecc.write_oob = lpc32xx_write_oob;
728 nand_chip->ecc.read_oob = lpc32xx_read_oob;
729 nand_chip->ecc.strength = 4;
730 nand_chip->ecc.bytes = 10;
731 nand_chip->waitfunc = lpc32xx_waitfunc;
733 nand_chip->options = NAND_NO_SUBPAGE_WRITE;
734 nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
735 nand_chip->bbt_td = &lpc32xx_nand_bbt;
736 nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
738 if (use_dma) {
739 res = lpc32xx_dma_setup(host);
740 if (res) {
741 res = -EIO;
742 goto err_exit2;
747 * Scan to find existance of the device and
748 * Get the type of NAND device SMALL block or LARGE block
750 res = nand_scan_ident(mtd, 1, NULL);
751 if (res)
752 goto err_exit3;
754 host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
755 if (!host->dma_buf) {
756 res = -ENOMEM;
757 goto err_exit3;
760 host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
761 if (!host->dummy_buf) {
762 res = -ENOMEM;
763 goto err_exit3;
766 nand_chip->ecc.mode = NAND_ECC_HW;
767 nand_chip->ecc.size = 512;
768 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
769 host->mlcsubpages = mtd->writesize / 512;
771 /* initially clear interrupt status */
772 readb(MLC_IRQ_SR(host->io_base));
774 init_completion(&host->comp_nand);
775 init_completion(&host->comp_controller);
777 host->irq = platform_get_irq(pdev, 0);
778 if (host->irq < 0) {
779 dev_err(&pdev->dev, "failed to get platform irq\n");
780 res = -EINVAL;
781 goto err_exit3;
784 if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
785 IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
786 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
787 res = -ENXIO;
788 goto err_exit3;
792 * Fills out all the uninitialized function pointers with the defaults
793 * And scans for a bad block table if appropriate.
795 res = nand_scan_tail(mtd);
796 if (res)
797 goto err_exit4;
799 mtd->name = DRV_NAME;
801 res = mtd_device_register(mtd, host->ncfg->parts,
802 host->ncfg->num_parts);
803 if (!res)
804 return res;
806 nand_release(mtd);
808 err_exit4:
809 free_irq(host->irq, host);
810 err_exit3:
811 if (use_dma)
812 dma_release_channel(host->dma_chan);
813 err_exit2:
814 clk_disable_unprepare(host->clk);
815 clk_put(host->clk);
816 err_exit1:
817 lpc32xx_wp_enable(host);
818 gpio_free(host->ncfg->wp_gpio);
820 return res;
824 * Remove NAND device
826 static int lpc32xx_nand_remove(struct platform_device *pdev)
828 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
829 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
831 nand_release(mtd);
832 free_irq(host->irq, host);
833 if (use_dma)
834 dma_release_channel(host->dma_chan);
836 clk_disable_unprepare(host->clk);
837 clk_put(host->clk);
839 lpc32xx_wp_enable(host);
840 gpio_free(host->ncfg->wp_gpio);
842 return 0;
845 #ifdef CONFIG_PM
846 static int lpc32xx_nand_resume(struct platform_device *pdev)
848 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
850 /* Re-enable NAND clock */
851 clk_prepare_enable(host->clk);
853 /* Fresh init of NAND controller */
854 lpc32xx_nand_setup(host);
856 /* Disable write protect */
857 lpc32xx_wp_disable(host);
859 return 0;
862 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
864 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
866 /* Enable write protect for safety */
867 lpc32xx_wp_enable(host);
869 /* Disable clock */
870 clk_disable_unprepare(host->clk);
871 return 0;
874 #else
875 #define lpc32xx_nand_resume NULL
876 #define lpc32xx_nand_suspend NULL
877 #endif
879 static const struct of_device_id lpc32xx_nand_match[] = {
880 { .compatible = "nxp,lpc3220-mlc" },
881 { /* sentinel */ },
883 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
885 static struct platform_driver lpc32xx_nand_driver = {
886 .probe = lpc32xx_nand_probe,
887 .remove = lpc32xx_nand_remove,
888 .resume = lpc32xx_nand_resume,
889 .suspend = lpc32xx_nand_suspend,
890 .driver = {
891 .name = DRV_NAME,
892 .of_match_table = lpc32xx_nand_match,
896 module_platform_driver(lpc32xx_nand_driver);
898 MODULE_LICENSE("GPL");
899 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
900 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");