x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / mtd / nand / nandsim.c
blobc84742671a5f9782a23bec53b0182de0e8871289
1 /*
2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
52 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #endif
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
61 #endif
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64 #endif
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
67 #endif
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70 #endif
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE 50
73 #endif
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH 8
76 #endif
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS 0
79 #endif
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG 0
82 #endif
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG 0
85 #endif
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS 32
88 #endif
90 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
91 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
92 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
93 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
94 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
95 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
96 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
97 static uint log = CONFIG_NANDSIM_LOG;
98 static uint dbg = CONFIG_NANDSIM_DBG;
99 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
100 static unsigned int parts_num;
101 static char *badblocks = NULL;
102 static char *weakblocks = NULL;
103 static char *weakpages = NULL;
104 static unsigned int bitflips = 0;
105 static char *gravepages = NULL;
106 static unsigned int overridesize = 0;
107 static char *cache_file = NULL;
108 static unsigned int bbt;
109 static unsigned int bch;
110 static u_char id_bytes[8] = {
111 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
112 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
113 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
114 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
115 [4 ... 7] = 0xFF,
118 module_param_array(id_bytes, byte, NULL, 0400);
119 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
120 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
121 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
122 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
123 module_param(access_delay, uint, 0400);
124 module_param(programm_delay, uint, 0400);
125 module_param(erase_delay, uint, 0400);
126 module_param(output_cycle, uint, 0400);
127 module_param(input_cycle, uint, 0400);
128 module_param(bus_width, uint, 0400);
129 module_param(do_delays, uint, 0400);
130 module_param(log, uint, 0400);
131 module_param(dbg, uint, 0400);
132 module_param_array(parts, ulong, &parts_num, 0400);
133 module_param(badblocks, charp, 0400);
134 module_param(weakblocks, charp, 0400);
135 module_param(weakpages, charp, 0400);
136 module_param(bitflips, uint, 0400);
137 module_param(gravepages, charp, 0400);
138 module_param(overridesize, uint, 0400);
139 module_param(cache_file, charp, 0400);
140 module_param(bbt, uint, 0400);
141 module_param(bch, uint, 0400);
143 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command");
144 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
145 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
146 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)");
147 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
148 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
149 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
150 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
151 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
152 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
153 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
154 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
155 MODULE_PARM_DESC(log, "Perform logging if not zero");
156 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
157 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
158 /* Page and erase block positions for the following parameters are independent of any partitions */
159 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
160 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
161 " separated by commas e.g. 113:2 means eb 113"
162 " can be erased only twice before failing");
163 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
164 " separated by commas e.g. 1401:2 means page 1401"
165 " can be written only twice before failing");
166 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
167 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
168 " separated by commas e.g. 1401:2 means page 1401"
169 " can be read only twice before failing");
170 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
171 "The size is specified in erase blocks and as the exponent of a power of two"
172 " e.g. 5 means a size of 32 erase blocks");
173 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
174 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
175 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
176 "be correctable in 512-byte blocks");
178 /* The largest possible page size */
179 #define NS_LARGEST_PAGE_SIZE 4096
181 /* The prefix for simulator output */
182 #define NS_OUTPUT_PREFIX "[nandsim]"
184 /* Simulator's output macros (logging, debugging, warning, error) */
185 #define NS_LOG(args...) \
186 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
187 #define NS_DBG(args...) \
188 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
189 #define NS_WARN(args...) \
190 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
191 #define NS_ERR(args...) \
192 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
193 #define NS_INFO(args...) \
194 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
196 /* Busy-wait delay macros (microseconds, milliseconds) */
197 #define NS_UDELAY(us) \
198 do { if (do_delays) udelay(us); } while(0)
199 #define NS_MDELAY(us) \
200 do { if (do_delays) mdelay(us); } while(0)
202 /* Is the nandsim structure initialized ? */
203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
205 /* Good operation completion status */
206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
208 /* Operation failed completion status */
209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
211 /* Calculate the page offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET(ns) \
213 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
215 /* Calculate the OOB offset in flash RAM image by (row, column) address */
216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
218 /* After a command is input, the simulator goes to one of the following states */
219 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
220 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
221 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
222 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
223 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
224 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
225 #define STATE_CMD_STATUS 0x00000007 /* read status */
226 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
227 #define STATE_CMD_READID 0x0000000A /* read ID */
228 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
229 #define STATE_CMD_RESET 0x0000000C /* reset */
230 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
231 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
232 #define STATE_CMD_MASK 0x0000000F /* command states mask */
234 /* After an address is input, the simulator goes to one of these states */
235 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
236 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
237 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
238 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
239 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
241 /* During data input/output the simulator is in these states */
242 #define STATE_DATAIN 0x00000100 /* waiting for data input */
243 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
245 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
246 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
247 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
248 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
250 /* Previous operation is done, ready to accept new requests */
251 #define STATE_READY 0x00000000
253 /* This state is used to mark that the next state isn't known yet */
254 #define STATE_UNKNOWN 0x10000000
256 /* Simulator's actions bit masks */
257 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
258 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
259 #define ACTION_SECERASE 0x00300000 /* erase sector */
260 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
261 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
262 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
263 #define ACTION_MASK 0x00700000 /* action mask */
265 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
266 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
268 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
269 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
270 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
280 * Maximum previous states which need to be saved. Currently saving is
281 * only needed for page program operation with preceded read command
282 * (which is only valid for 512-byte pages).
284 #define NS_MAX_PREVSTATES 1
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
289 struct nandsim_debug_info {
290 struct dentry *dfs_root;
291 struct dentry *dfs_wear_report;
295 * A union to represent flash memory contents and flash buffer.
297 union ns_mem {
298 u_char *byte; /* for byte access */
299 uint16_t *word; /* for 16-bit word access */
303 * The structure which describes all the internal simulator data.
305 struct nandsim {
306 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
307 unsigned int nbparts;
309 uint busw; /* flash chip bus width (8 or 16) */
310 u_char ids[8]; /* chip's ID bytes */
311 uint32_t options; /* chip's characteristic bits */
312 uint32_t state; /* current chip state */
313 uint32_t nxstate; /* next expected state */
315 uint32_t *op; /* current operation, NULL operations isn't known yet */
316 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
317 uint16_t npstates; /* number of previous states saved */
318 uint16_t stateidx; /* current state index */
320 /* The simulated NAND flash pages array */
321 union ns_mem *pages;
323 /* Slab allocator for nand pages */
324 struct kmem_cache *nand_pages_slab;
326 /* Internal buffer of page + OOB size bytes */
327 union ns_mem buf;
329 /* NAND flash "geometry" */
330 struct {
331 uint64_t totsz; /* total flash size, bytes */
332 uint32_t secsz; /* flash sector (erase block) size, bytes */
333 uint pgsz; /* NAND flash page size, bytes */
334 uint oobsz; /* page OOB area size, bytes */
335 uint64_t totszoob; /* total flash size including OOB, bytes */
336 uint pgszoob; /* page size including OOB , bytes*/
337 uint secszoob; /* sector size including OOB, bytes */
338 uint pgnum; /* total number of pages */
339 uint pgsec; /* number of pages per sector */
340 uint secshift; /* bits number in sector size */
341 uint pgshift; /* bits number in page size */
342 uint pgaddrbytes; /* bytes per page address */
343 uint secaddrbytes; /* bytes per sector address */
344 uint idbytes; /* the number ID bytes that this chip outputs */
345 } geom;
347 /* NAND flash internal registers */
348 struct {
349 unsigned command; /* the command register */
350 u_char status; /* the status register */
351 uint row; /* the page number */
352 uint column; /* the offset within page */
353 uint count; /* internal counter */
354 uint num; /* number of bytes which must be processed */
355 uint off; /* fixed page offset */
356 } regs;
358 /* NAND flash lines state */
359 struct {
360 int ce; /* chip Enable */
361 int cle; /* command Latch Enable */
362 int ale; /* address Latch Enable */
363 int wp; /* write Protect */
364 } lines;
366 /* Fields needed when using a cache file */
367 struct file *cfile; /* Open file */
368 unsigned long *pages_written; /* Which pages have been written */
369 void *file_buf;
370 struct page *held_pages[NS_MAX_HELD_PAGES];
371 int held_cnt;
373 struct nandsim_debug_info dbg;
377 * Operations array. To perform any operation the simulator must pass
378 * through the correspondent states chain.
380 static struct nandsim_operations {
381 uint32_t reqopts; /* options which are required to perform the operation */
382 uint32_t states[NS_OPER_STATES]; /* operation's states */
383 } ops[NS_OPER_NUM] = {
384 /* Read page + OOB from the beginning */
385 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
386 STATE_DATAOUT, STATE_READY}},
387 /* Read page + OOB from the second half */
388 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
389 STATE_DATAOUT, STATE_READY}},
390 /* Read OOB */
391 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
392 STATE_DATAOUT, STATE_READY}},
393 /* Program page starting from the beginning */
394 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
395 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396 /* Program page starting from the beginning */
397 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
398 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399 /* Program page starting from the second half */
400 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
401 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
402 /* Program OOB */
403 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
404 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
405 /* Erase sector */
406 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
407 /* Read status */
408 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
409 /* Read ID */
410 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
411 /* Large page devices read page */
412 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
413 STATE_DATAOUT, STATE_READY}},
414 /* Large page devices random page read */
415 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
416 STATE_DATAOUT, STATE_READY}},
419 struct weak_block {
420 struct list_head list;
421 unsigned int erase_block_no;
422 unsigned int max_erases;
423 unsigned int erases_done;
426 static LIST_HEAD(weak_blocks);
428 struct weak_page {
429 struct list_head list;
430 unsigned int page_no;
431 unsigned int max_writes;
432 unsigned int writes_done;
435 static LIST_HEAD(weak_pages);
437 struct grave_page {
438 struct list_head list;
439 unsigned int page_no;
440 unsigned int max_reads;
441 unsigned int reads_done;
444 static LIST_HEAD(grave_pages);
446 static unsigned long *erase_block_wear = NULL;
447 static unsigned int wear_eb_count = 0;
448 static unsigned long total_wear = 0;
450 /* MTD structure for NAND controller */
451 static struct mtd_info *nsmtd;
453 static int nandsim_debugfs_show(struct seq_file *m, void *private)
455 unsigned long wmin = -1, wmax = 0, avg;
456 unsigned long deciles[10], decile_max[10], tot = 0;
457 unsigned int i;
459 /* Calc wear stats */
460 for (i = 0; i < wear_eb_count; ++i) {
461 unsigned long wear = erase_block_wear[i];
462 if (wear < wmin)
463 wmin = wear;
464 if (wear > wmax)
465 wmax = wear;
466 tot += wear;
469 for (i = 0; i < 9; ++i) {
470 deciles[i] = 0;
471 decile_max[i] = (wmax * (i + 1) + 5) / 10;
473 deciles[9] = 0;
474 decile_max[9] = wmax;
475 for (i = 0; i < wear_eb_count; ++i) {
476 int d;
477 unsigned long wear = erase_block_wear[i];
478 for (d = 0; d < 10; ++d)
479 if (wear <= decile_max[d]) {
480 deciles[d] += 1;
481 break;
484 avg = tot / wear_eb_count;
486 /* Output wear report */
487 seq_printf(m, "Total numbers of erases: %lu\n", tot);
488 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count);
489 seq_printf(m, "Average number of erases: %lu\n", avg);
490 seq_printf(m, "Maximum number of erases: %lu\n", wmax);
491 seq_printf(m, "Minimum number of erases: %lu\n", wmin);
492 for (i = 0; i < 10; ++i) {
493 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
494 if (from > decile_max[i])
495 continue;
496 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
497 from,
498 decile_max[i],
499 deciles[i]);
502 return 0;
505 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
507 return single_open(file, nandsim_debugfs_show, inode->i_private);
510 static const struct file_operations dfs_fops = {
511 .open = nandsim_debugfs_open,
512 .read = seq_read,
513 .llseek = seq_lseek,
514 .release = single_release,
518 * nandsim_debugfs_create - initialize debugfs
519 * @dev: nandsim device description object
521 * This function creates all debugfs files for UBI device @ubi. Returns zero in
522 * case of success and a negative error code in case of failure.
524 static int nandsim_debugfs_create(struct nandsim *dev)
526 struct nandsim_debug_info *dbg = &dev->dbg;
527 struct dentry *dent;
529 if (!IS_ENABLED(CONFIG_DEBUG_FS))
530 return 0;
532 dent = debugfs_create_dir("nandsim", NULL);
533 if (!dent) {
534 NS_ERR("cannot create \"nandsim\" debugfs directory\n");
535 return -ENODEV;
537 dbg->dfs_root = dent;
539 dent = debugfs_create_file("wear_report", S_IRUSR,
540 dbg->dfs_root, dev, &dfs_fops);
541 if (!dent)
542 goto out_remove;
543 dbg->dfs_wear_report = dent;
545 return 0;
547 out_remove:
548 debugfs_remove_recursive(dbg->dfs_root);
549 return -ENODEV;
553 * nandsim_debugfs_remove - destroy all debugfs files
555 static void nandsim_debugfs_remove(struct nandsim *ns)
557 if (IS_ENABLED(CONFIG_DEBUG_FS))
558 debugfs_remove_recursive(ns->dbg.dfs_root);
562 * Allocate array of page pointers, create slab allocation for an array
563 * and initialize the array by NULL pointers.
565 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
567 static int __init alloc_device(struct nandsim *ns)
569 struct file *cfile;
570 int i, err;
572 if (cache_file) {
573 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
574 if (IS_ERR(cfile))
575 return PTR_ERR(cfile);
576 if (!(cfile->f_mode & FMODE_CAN_READ)) {
577 NS_ERR("alloc_device: cache file not readable\n");
578 err = -EINVAL;
579 goto err_close;
581 if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
582 NS_ERR("alloc_device: cache file not writeable\n");
583 err = -EINVAL;
584 goto err_close;
586 ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
587 sizeof(unsigned long));
588 if (!ns->pages_written) {
589 NS_ERR("alloc_device: unable to allocate pages written array\n");
590 err = -ENOMEM;
591 goto err_close;
593 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
594 if (!ns->file_buf) {
595 NS_ERR("alloc_device: unable to allocate file buf\n");
596 err = -ENOMEM;
597 goto err_free;
599 ns->cfile = cfile;
600 return 0;
603 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
604 if (!ns->pages) {
605 NS_ERR("alloc_device: unable to allocate page array\n");
606 return -ENOMEM;
608 for (i = 0; i < ns->geom.pgnum; i++) {
609 ns->pages[i].byte = NULL;
611 ns->nand_pages_slab = kmem_cache_create("nandsim",
612 ns->geom.pgszoob, 0, 0, NULL);
613 if (!ns->nand_pages_slab) {
614 NS_ERR("cache_create: unable to create kmem_cache\n");
615 return -ENOMEM;
618 return 0;
620 err_free:
621 vfree(ns->pages_written);
622 err_close:
623 filp_close(cfile, NULL);
624 return err;
628 * Free any allocated pages, and free the array of page pointers.
630 static void free_device(struct nandsim *ns)
632 int i;
634 if (ns->cfile) {
635 kfree(ns->file_buf);
636 vfree(ns->pages_written);
637 filp_close(ns->cfile, NULL);
638 return;
641 if (ns->pages) {
642 for (i = 0; i < ns->geom.pgnum; i++) {
643 if (ns->pages[i].byte)
644 kmem_cache_free(ns->nand_pages_slab,
645 ns->pages[i].byte);
647 kmem_cache_destroy(ns->nand_pages_slab);
648 vfree(ns->pages);
652 static char __init *get_partition_name(int i)
654 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
658 * Initialize the nandsim structure.
660 * RETURNS: 0 if success, -ERRNO if failure.
662 static int __init init_nandsim(struct mtd_info *mtd)
664 struct nand_chip *chip = mtd_to_nand(mtd);
665 struct nandsim *ns = nand_get_controller_data(chip);
666 int i, ret = 0;
667 uint64_t remains;
668 uint64_t next_offset;
670 if (NS_IS_INITIALIZED(ns)) {
671 NS_ERR("init_nandsim: nandsim is already initialized\n");
672 return -EIO;
675 /* Force mtd to not do delays */
676 chip->chip_delay = 0;
678 /* Initialize the NAND flash parameters */
679 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
680 ns->geom.totsz = mtd->size;
681 ns->geom.pgsz = mtd->writesize;
682 ns->geom.oobsz = mtd->oobsize;
683 ns->geom.secsz = mtd->erasesize;
684 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
685 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
686 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
687 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
688 ns->geom.pgshift = chip->page_shift;
689 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
690 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
691 ns->options = 0;
693 if (ns->geom.pgsz == 512) {
694 ns->options |= OPT_PAGE512;
695 if (ns->busw == 8)
696 ns->options |= OPT_PAGE512_8BIT;
697 } else if (ns->geom.pgsz == 2048) {
698 ns->options |= OPT_PAGE2048;
699 } else if (ns->geom.pgsz == 4096) {
700 ns->options |= OPT_PAGE4096;
701 } else {
702 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
703 return -EIO;
706 if (ns->options & OPT_SMALLPAGE) {
707 if (ns->geom.totsz <= (32 << 20)) {
708 ns->geom.pgaddrbytes = 3;
709 ns->geom.secaddrbytes = 2;
710 } else {
711 ns->geom.pgaddrbytes = 4;
712 ns->geom.secaddrbytes = 3;
714 } else {
715 if (ns->geom.totsz <= (128 << 20)) {
716 ns->geom.pgaddrbytes = 4;
717 ns->geom.secaddrbytes = 2;
718 } else {
719 ns->geom.pgaddrbytes = 5;
720 ns->geom.secaddrbytes = 3;
724 /* Fill the partition_info structure */
725 if (parts_num > ARRAY_SIZE(ns->partitions)) {
726 NS_ERR("too many partitions.\n");
727 return -EINVAL;
729 remains = ns->geom.totsz;
730 next_offset = 0;
731 for (i = 0; i < parts_num; ++i) {
732 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
734 if (!part_sz || part_sz > remains) {
735 NS_ERR("bad partition size.\n");
736 return -EINVAL;
738 ns->partitions[i].name = get_partition_name(i);
739 if (!ns->partitions[i].name) {
740 NS_ERR("unable to allocate memory.\n");
741 return -ENOMEM;
743 ns->partitions[i].offset = next_offset;
744 ns->partitions[i].size = part_sz;
745 next_offset += ns->partitions[i].size;
746 remains -= ns->partitions[i].size;
748 ns->nbparts = parts_num;
749 if (remains) {
750 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
751 NS_ERR("too many partitions.\n");
752 return -EINVAL;
754 ns->partitions[i].name = get_partition_name(i);
755 if (!ns->partitions[i].name) {
756 NS_ERR("unable to allocate memory.\n");
757 return -ENOMEM;
759 ns->partitions[i].offset = next_offset;
760 ns->partitions[i].size = remains;
761 ns->nbparts += 1;
764 if (ns->busw == 16)
765 NS_WARN("16-bit flashes support wasn't tested\n");
767 printk("flash size: %llu MiB\n",
768 (unsigned long long)ns->geom.totsz >> 20);
769 printk("page size: %u bytes\n", ns->geom.pgsz);
770 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
771 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
772 printk("pages number: %u\n", ns->geom.pgnum);
773 printk("pages per sector: %u\n", ns->geom.pgsec);
774 printk("bus width: %u\n", ns->busw);
775 printk("bits in sector size: %u\n", ns->geom.secshift);
776 printk("bits in page size: %u\n", ns->geom.pgshift);
777 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1);
778 printk("flash size with OOB: %llu KiB\n",
779 (unsigned long long)ns->geom.totszoob >> 10);
780 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
781 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
782 printk("options: %#x\n", ns->options);
784 if ((ret = alloc_device(ns)) != 0)
785 return ret;
787 /* Allocate / initialize the internal buffer */
788 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
789 if (!ns->buf.byte) {
790 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
791 ns->geom.pgszoob);
792 return -ENOMEM;
794 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
796 return 0;
800 * Free the nandsim structure.
802 static void free_nandsim(struct nandsim *ns)
804 kfree(ns->buf.byte);
805 free_device(ns);
807 return;
810 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
812 char *w;
813 int zero_ok;
814 unsigned int erase_block_no;
815 loff_t offset;
817 if (!badblocks)
818 return 0;
819 w = badblocks;
820 do {
821 zero_ok = (*w == '0' ? 1 : 0);
822 erase_block_no = simple_strtoul(w, &w, 0);
823 if (!zero_ok && !erase_block_no) {
824 NS_ERR("invalid badblocks.\n");
825 return -EINVAL;
827 offset = (loff_t)erase_block_no * ns->geom.secsz;
828 if (mtd_block_markbad(mtd, offset)) {
829 NS_ERR("invalid badblocks.\n");
830 return -EINVAL;
832 if (*w == ',')
833 w += 1;
834 } while (*w);
835 return 0;
838 static int parse_weakblocks(void)
840 char *w;
841 int zero_ok;
842 unsigned int erase_block_no;
843 unsigned int max_erases;
844 struct weak_block *wb;
846 if (!weakblocks)
847 return 0;
848 w = weakblocks;
849 do {
850 zero_ok = (*w == '0' ? 1 : 0);
851 erase_block_no = simple_strtoul(w, &w, 0);
852 if (!zero_ok && !erase_block_no) {
853 NS_ERR("invalid weakblocks.\n");
854 return -EINVAL;
856 max_erases = 3;
857 if (*w == ':') {
858 w += 1;
859 max_erases = simple_strtoul(w, &w, 0);
861 if (*w == ',')
862 w += 1;
863 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
864 if (!wb) {
865 NS_ERR("unable to allocate memory.\n");
866 return -ENOMEM;
868 wb->erase_block_no = erase_block_no;
869 wb->max_erases = max_erases;
870 list_add(&wb->list, &weak_blocks);
871 } while (*w);
872 return 0;
875 static int erase_error(unsigned int erase_block_no)
877 struct weak_block *wb;
879 list_for_each_entry(wb, &weak_blocks, list)
880 if (wb->erase_block_no == erase_block_no) {
881 if (wb->erases_done >= wb->max_erases)
882 return 1;
883 wb->erases_done += 1;
884 return 0;
886 return 0;
889 static int parse_weakpages(void)
891 char *w;
892 int zero_ok;
893 unsigned int page_no;
894 unsigned int max_writes;
895 struct weak_page *wp;
897 if (!weakpages)
898 return 0;
899 w = weakpages;
900 do {
901 zero_ok = (*w == '0' ? 1 : 0);
902 page_no = simple_strtoul(w, &w, 0);
903 if (!zero_ok && !page_no) {
904 NS_ERR("invalid weakpagess.\n");
905 return -EINVAL;
907 max_writes = 3;
908 if (*w == ':') {
909 w += 1;
910 max_writes = simple_strtoul(w, &w, 0);
912 if (*w == ',')
913 w += 1;
914 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
915 if (!wp) {
916 NS_ERR("unable to allocate memory.\n");
917 return -ENOMEM;
919 wp->page_no = page_no;
920 wp->max_writes = max_writes;
921 list_add(&wp->list, &weak_pages);
922 } while (*w);
923 return 0;
926 static int write_error(unsigned int page_no)
928 struct weak_page *wp;
930 list_for_each_entry(wp, &weak_pages, list)
931 if (wp->page_no == page_no) {
932 if (wp->writes_done >= wp->max_writes)
933 return 1;
934 wp->writes_done += 1;
935 return 0;
937 return 0;
940 static int parse_gravepages(void)
942 char *g;
943 int zero_ok;
944 unsigned int page_no;
945 unsigned int max_reads;
946 struct grave_page *gp;
948 if (!gravepages)
949 return 0;
950 g = gravepages;
951 do {
952 zero_ok = (*g == '0' ? 1 : 0);
953 page_no = simple_strtoul(g, &g, 0);
954 if (!zero_ok && !page_no) {
955 NS_ERR("invalid gravepagess.\n");
956 return -EINVAL;
958 max_reads = 3;
959 if (*g == ':') {
960 g += 1;
961 max_reads = simple_strtoul(g, &g, 0);
963 if (*g == ',')
964 g += 1;
965 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
966 if (!gp) {
967 NS_ERR("unable to allocate memory.\n");
968 return -ENOMEM;
970 gp->page_no = page_no;
971 gp->max_reads = max_reads;
972 list_add(&gp->list, &grave_pages);
973 } while (*g);
974 return 0;
977 static int read_error(unsigned int page_no)
979 struct grave_page *gp;
981 list_for_each_entry(gp, &grave_pages, list)
982 if (gp->page_no == page_no) {
983 if (gp->reads_done >= gp->max_reads)
984 return 1;
985 gp->reads_done += 1;
986 return 0;
988 return 0;
991 static void free_lists(void)
993 struct list_head *pos, *n;
994 list_for_each_safe(pos, n, &weak_blocks) {
995 list_del(pos);
996 kfree(list_entry(pos, struct weak_block, list));
998 list_for_each_safe(pos, n, &weak_pages) {
999 list_del(pos);
1000 kfree(list_entry(pos, struct weak_page, list));
1002 list_for_each_safe(pos, n, &grave_pages) {
1003 list_del(pos);
1004 kfree(list_entry(pos, struct grave_page, list));
1006 kfree(erase_block_wear);
1009 static int setup_wear_reporting(struct mtd_info *mtd)
1011 size_t mem;
1013 wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1014 mem = wear_eb_count * sizeof(unsigned long);
1015 if (mem / sizeof(unsigned long) != wear_eb_count) {
1016 NS_ERR("Too many erase blocks for wear reporting\n");
1017 return -ENOMEM;
1019 erase_block_wear = kzalloc(mem, GFP_KERNEL);
1020 if (!erase_block_wear) {
1021 NS_ERR("Too many erase blocks for wear reporting\n");
1022 return -ENOMEM;
1024 return 0;
1027 static void update_wear(unsigned int erase_block_no)
1029 if (!erase_block_wear)
1030 return;
1031 total_wear += 1;
1033 * TODO: Notify this through a debugfs entry,
1034 * instead of showing an error message.
1036 if (total_wear == 0)
1037 NS_ERR("Erase counter total overflow\n");
1038 erase_block_wear[erase_block_no] += 1;
1039 if (erase_block_wear[erase_block_no] == 0)
1040 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1044 * Returns the string representation of 'state' state.
1046 static char *get_state_name(uint32_t state)
1048 switch (NS_STATE(state)) {
1049 case STATE_CMD_READ0:
1050 return "STATE_CMD_READ0";
1051 case STATE_CMD_READ1:
1052 return "STATE_CMD_READ1";
1053 case STATE_CMD_PAGEPROG:
1054 return "STATE_CMD_PAGEPROG";
1055 case STATE_CMD_READOOB:
1056 return "STATE_CMD_READOOB";
1057 case STATE_CMD_READSTART:
1058 return "STATE_CMD_READSTART";
1059 case STATE_CMD_ERASE1:
1060 return "STATE_CMD_ERASE1";
1061 case STATE_CMD_STATUS:
1062 return "STATE_CMD_STATUS";
1063 case STATE_CMD_SEQIN:
1064 return "STATE_CMD_SEQIN";
1065 case STATE_CMD_READID:
1066 return "STATE_CMD_READID";
1067 case STATE_CMD_ERASE2:
1068 return "STATE_CMD_ERASE2";
1069 case STATE_CMD_RESET:
1070 return "STATE_CMD_RESET";
1071 case STATE_CMD_RNDOUT:
1072 return "STATE_CMD_RNDOUT";
1073 case STATE_CMD_RNDOUTSTART:
1074 return "STATE_CMD_RNDOUTSTART";
1075 case STATE_ADDR_PAGE:
1076 return "STATE_ADDR_PAGE";
1077 case STATE_ADDR_SEC:
1078 return "STATE_ADDR_SEC";
1079 case STATE_ADDR_ZERO:
1080 return "STATE_ADDR_ZERO";
1081 case STATE_ADDR_COLUMN:
1082 return "STATE_ADDR_COLUMN";
1083 case STATE_DATAIN:
1084 return "STATE_DATAIN";
1085 case STATE_DATAOUT:
1086 return "STATE_DATAOUT";
1087 case STATE_DATAOUT_ID:
1088 return "STATE_DATAOUT_ID";
1089 case STATE_DATAOUT_STATUS:
1090 return "STATE_DATAOUT_STATUS";
1091 case STATE_READY:
1092 return "STATE_READY";
1093 case STATE_UNKNOWN:
1094 return "STATE_UNKNOWN";
1097 NS_ERR("get_state_name: unknown state, BUG\n");
1098 return NULL;
1102 * Check if command is valid.
1104 * RETURNS: 1 if wrong command, 0 if right.
1106 static int check_command(int cmd)
1108 switch (cmd) {
1110 case NAND_CMD_READ0:
1111 case NAND_CMD_READ1:
1112 case NAND_CMD_READSTART:
1113 case NAND_CMD_PAGEPROG:
1114 case NAND_CMD_READOOB:
1115 case NAND_CMD_ERASE1:
1116 case NAND_CMD_STATUS:
1117 case NAND_CMD_SEQIN:
1118 case NAND_CMD_READID:
1119 case NAND_CMD_ERASE2:
1120 case NAND_CMD_RESET:
1121 case NAND_CMD_RNDOUT:
1122 case NAND_CMD_RNDOUTSTART:
1123 return 0;
1125 default:
1126 return 1;
1131 * Returns state after command is accepted by command number.
1133 static uint32_t get_state_by_command(unsigned command)
1135 switch (command) {
1136 case NAND_CMD_READ0:
1137 return STATE_CMD_READ0;
1138 case NAND_CMD_READ1:
1139 return STATE_CMD_READ1;
1140 case NAND_CMD_PAGEPROG:
1141 return STATE_CMD_PAGEPROG;
1142 case NAND_CMD_READSTART:
1143 return STATE_CMD_READSTART;
1144 case NAND_CMD_READOOB:
1145 return STATE_CMD_READOOB;
1146 case NAND_CMD_ERASE1:
1147 return STATE_CMD_ERASE1;
1148 case NAND_CMD_STATUS:
1149 return STATE_CMD_STATUS;
1150 case NAND_CMD_SEQIN:
1151 return STATE_CMD_SEQIN;
1152 case NAND_CMD_READID:
1153 return STATE_CMD_READID;
1154 case NAND_CMD_ERASE2:
1155 return STATE_CMD_ERASE2;
1156 case NAND_CMD_RESET:
1157 return STATE_CMD_RESET;
1158 case NAND_CMD_RNDOUT:
1159 return STATE_CMD_RNDOUT;
1160 case NAND_CMD_RNDOUTSTART:
1161 return STATE_CMD_RNDOUTSTART;
1164 NS_ERR("get_state_by_command: unknown command, BUG\n");
1165 return 0;
1169 * Move an address byte to the correspondent internal register.
1171 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1173 uint byte = (uint)bt;
1175 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1176 ns->regs.column |= (byte << 8 * ns->regs.count);
1177 else {
1178 ns->regs.row |= (byte << 8 * (ns->regs.count -
1179 ns->geom.pgaddrbytes +
1180 ns->geom.secaddrbytes));
1183 return;
1187 * Switch to STATE_READY state.
1189 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1191 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1193 ns->state = STATE_READY;
1194 ns->nxstate = STATE_UNKNOWN;
1195 ns->op = NULL;
1196 ns->npstates = 0;
1197 ns->stateidx = 0;
1198 ns->regs.num = 0;
1199 ns->regs.count = 0;
1200 ns->regs.off = 0;
1201 ns->regs.row = 0;
1202 ns->regs.column = 0;
1203 ns->regs.status = status;
1207 * If the operation isn't known yet, try to find it in the global array
1208 * of supported operations.
1210 * Operation can be unknown because of the following.
1211 * 1. New command was accepted and this is the first call to find the
1212 * correspondent states chain. In this case ns->npstates = 0;
1213 * 2. There are several operations which begin with the same command(s)
1214 * (for example program from the second half and read from the
1215 * second half operations both begin with the READ1 command). In this
1216 * case the ns->pstates[] array contains previous states.
1218 * Thus, the function tries to find operation containing the following
1219 * states (if the 'flag' parameter is 0):
1220 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1222 * If (one and only one) matching operation is found, it is accepted (
1223 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1224 * zeroed).
1226 * If there are several matches, the current state is pushed to the
1227 * ns->pstates.
1229 * The operation can be unknown only while commands are input to the chip.
1230 * As soon as address command is accepted, the operation must be known.
1231 * In such situation the function is called with 'flag' != 0, and the
1232 * operation is searched using the following pattern:
1233 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1235 * It is supposed that this pattern must either match one operation or
1236 * none. There can't be ambiguity in that case.
1238 * If no matches found, the function does the following:
1239 * 1. if there are saved states present, try to ignore them and search
1240 * again only using the last command. If nothing was found, switch
1241 * to the STATE_READY state.
1242 * 2. if there are no saved states, switch to the STATE_READY state.
1244 * RETURNS: -2 - no matched operations found.
1245 * -1 - several matches.
1246 * 0 - operation is found.
1248 static int find_operation(struct nandsim *ns, uint32_t flag)
1250 int opsfound = 0;
1251 int i, j, idx = 0;
1253 for (i = 0; i < NS_OPER_NUM; i++) {
1255 int found = 1;
1257 if (!(ns->options & ops[i].reqopts))
1258 /* Ignore operations we can't perform */
1259 continue;
1261 if (flag) {
1262 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1263 continue;
1264 } else {
1265 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1266 continue;
1269 for (j = 0; j < ns->npstates; j++)
1270 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1271 && (ns->options & ops[idx].reqopts)) {
1272 found = 0;
1273 break;
1276 if (found) {
1277 idx = i;
1278 opsfound += 1;
1282 if (opsfound == 1) {
1283 /* Exact match */
1284 ns->op = &ops[idx].states[0];
1285 if (flag) {
1287 * In this case the find_operation function was
1288 * called when address has just began input. But it isn't
1289 * yet fully input and the current state must
1290 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1291 * state must be the next state (ns->nxstate).
1293 ns->stateidx = ns->npstates - 1;
1294 } else {
1295 ns->stateidx = ns->npstates;
1297 ns->npstates = 0;
1298 ns->state = ns->op[ns->stateidx];
1299 ns->nxstate = ns->op[ns->stateidx + 1];
1300 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1301 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1302 return 0;
1305 if (opsfound == 0) {
1306 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1307 if (ns->npstates != 0) {
1308 NS_DBG("find_operation: no operation found, try again with state %s\n",
1309 get_state_name(ns->state));
1310 ns->npstates = 0;
1311 return find_operation(ns, 0);
1314 NS_DBG("find_operation: no operations found\n");
1315 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1316 return -2;
1319 if (flag) {
1320 /* This shouldn't happen */
1321 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1322 return -2;
1325 NS_DBG("find_operation: there is still ambiguity\n");
1327 ns->pstates[ns->npstates++] = ns->state;
1329 return -1;
1332 static void put_pages(struct nandsim *ns)
1334 int i;
1336 for (i = 0; i < ns->held_cnt; i++)
1337 put_page(ns->held_pages[i]);
1340 /* Get page cache pages in advance to provide NOFS memory allocation */
1341 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1343 pgoff_t index, start_index, end_index;
1344 struct page *page;
1345 struct address_space *mapping = file->f_mapping;
1347 start_index = pos >> PAGE_SHIFT;
1348 end_index = (pos + count - 1) >> PAGE_SHIFT;
1349 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1350 return -EINVAL;
1351 ns->held_cnt = 0;
1352 for (index = start_index; index <= end_index; index++) {
1353 page = find_get_page(mapping, index);
1354 if (page == NULL) {
1355 page = find_or_create_page(mapping, index, GFP_NOFS);
1356 if (page == NULL) {
1357 write_inode_now(mapping->host, 1);
1358 page = find_or_create_page(mapping, index, GFP_NOFS);
1360 if (page == NULL) {
1361 put_pages(ns);
1362 return -ENOMEM;
1364 unlock_page(page);
1366 ns->held_pages[ns->held_cnt++] = page;
1368 return 0;
1371 static int set_memalloc(void)
1373 if (current->flags & PF_MEMALLOC)
1374 return 0;
1375 current->flags |= PF_MEMALLOC;
1376 return 1;
1379 static void clear_memalloc(int memalloc)
1381 if (memalloc)
1382 current->flags &= ~PF_MEMALLOC;
1385 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1387 ssize_t tx;
1388 int err, memalloc;
1390 err = get_pages(ns, file, count, pos);
1391 if (err)
1392 return err;
1393 memalloc = set_memalloc();
1394 tx = kernel_read(file, pos, buf, count);
1395 clear_memalloc(memalloc);
1396 put_pages(ns);
1397 return tx;
1400 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1402 ssize_t tx;
1403 int err, memalloc;
1405 err = get_pages(ns, file, count, pos);
1406 if (err)
1407 return err;
1408 memalloc = set_memalloc();
1409 tx = kernel_write(file, buf, count, pos);
1410 clear_memalloc(memalloc);
1411 put_pages(ns);
1412 return tx;
1416 * Returns a pointer to the current page.
1418 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1420 return &(ns->pages[ns->regs.row]);
1424 * Retuns a pointer to the current byte, within the current page.
1426 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1428 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1431 static int do_read_error(struct nandsim *ns, int num)
1433 unsigned int page_no = ns->regs.row;
1435 if (read_error(page_no)) {
1436 prandom_bytes(ns->buf.byte, num);
1437 NS_WARN("simulating read error in page %u\n", page_no);
1438 return 1;
1440 return 0;
1443 static void do_bit_flips(struct nandsim *ns, int num)
1445 if (bitflips && prandom_u32() < (1 << 22)) {
1446 int flips = 1;
1447 if (bitflips > 1)
1448 flips = (prandom_u32() % (int) bitflips) + 1;
1449 while (flips--) {
1450 int pos = prandom_u32() % (num * 8);
1451 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1452 NS_WARN("read_page: flipping bit %d in page %d "
1453 "reading from %d ecc: corrected=%u failed=%u\n",
1454 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1455 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1461 * Fill the NAND buffer with data read from the specified page.
1463 static void read_page(struct nandsim *ns, int num)
1465 union ns_mem *mypage;
1467 if (ns->cfile) {
1468 if (!test_bit(ns->regs.row, ns->pages_written)) {
1469 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1470 memset(ns->buf.byte, 0xFF, num);
1471 } else {
1472 loff_t pos;
1473 ssize_t tx;
1475 NS_DBG("read_page: page %d written, reading from %d\n",
1476 ns->regs.row, ns->regs.column + ns->regs.off);
1477 if (do_read_error(ns, num))
1478 return;
1479 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1480 tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1481 if (tx != num) {
1482 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1483 return;
1485 do_bit_flips(ns, num);
1487 return;
1490 mypage = NS_GET_PAGE(ns);
1491 if (mypage->byte == NULL) {
1492 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1493 memset(ns->buf.byte, 0xFF, num);
1494 } else {
1495 NS_DBG("read_page: page %d allocated, reading from %d\n",
1496 ns->regs.row, ns->regs.column + ns->regs.off);
1497 if (do_read_error(ns, num))
1498 return;
1499 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1500 do_bit_flips(ns, num);
1505 * Erase all pages in the specified sector.
1507 static void erase_sector(struct nandsim *ns)
1509 union ns_mem *mypage;
1510 int i;
1512 if (ns->cfile) {
1513 for (i = 0; i < ns->geom.pgsec; i++)
1514 if (__test_and_clear_bit(ns->regs.row + i,
1515 ns->pages_written)) {
1516 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1518 return;
1521 mypage = NS_GET_PAGE(ns);
1522 for (i = 0; i < ns->geom.pgsec; i++) {
1523 if (mypage->byte != NULL) {
1524 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1525 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1526 mypage->byte = NULL;
1528 mypage++;
1533 * Program the specified page with the contents from the NAND buffer.
1535 static int prog_page(struct nandsim *ns, int num)
1537 int i;
1538 union ns_mem *mypage;
1539 u_char *pg_off;
1541 if (ns->cfile) {
1542 loff_t off;
1543 ssize_t tx;
1544 int all;
1546 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1547 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1548 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1549 if (!test_bit(ns->regs.row, ns->pages_written)) {
1550 all = 1;
1551 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1552 } else {
1553 all = 0;
1554 tx = read_file(ns, ns->cfile, pg_off, num, off);
1555 if (tx != num) {
1556 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1557 return -1;
1560 for (i = 0; i < num; i++)
1561 pg_off[i] &= ns->buf.byte[i];
1562 if (all) {
1563 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1564 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1565 if (tx != ns->geom.pgszoob) {
1566 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1567 return -1;
1569 __set_bit(ns->regs.row, ns->pages_written);
1570 } else {
1571 tx = write_file(ns, ns->cfile, pg_off, num, off);
1572 if (tx != num) {
1573 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1574 return -1;
1577 return 0;
1580 mypage = NS_GET_PAGE(ns);
1581 if (mypage->byte == NULL) {
1582 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1584 * We allocate memory with GFP_NOFS because a flash FS may
1585 * utilize this. If it is holding an FS lock, then gets here,
1586 * then kernel memory alloc runs writeback which goes to the FS
1587 * again and deadlocks. This was seen in practice.
1589 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1590 if (mypage->byte == NULL) {
1591 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1592 return -1;
1594 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1597 pg_off = NS_PAGE_BYTE_OFF(ns);
1598 for (i = 0; i < num; i++)
1599 pg_off[i] &= ns->buf.byte[i];
1601 return 0;
1605 * If state has any action bit, perform this action.
1607 * RETURNS: 0 if success, -1 if error.
1609 static int do_state_action(struct nandsim *ns, uint32_t action)
1611 int num;
1612 int busdiv = ns->busw == 8 ? 1 : 2;
1613 unsigned int erase_block_no, page_no;
1615 action &= ACTION_MASK;
1617 /* Check that page address input is correct */
1618 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1619 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1620 return -1;
1623 switch (action) {
1625 case ACTION_CPY:
1627 * Copy page data to the internal buffer.
1630 /* Column shouldn't be very large */
1631 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1632 NS_ERR("do_state_action: column number is too large\n");
1633 break;
1635 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1636 read_page(ns, num);
1638 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1639 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1641 if (ns->regs.off == 0)
1642 NS_LOG("read page %d\n", ns->regs.row);
1643 else if (ns->regs.off < ns->geom.pgsz)
1644 NS_LOG("read page %d (second half)\n", ns->regs.row);
1645 else
1646 NS_LOG("read OOB of page %d\n", ns->regs.row);
1648 NS_UDELAY(access_delay);
1649 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1651 break;
1653 case ACTION_SECERASE:
1655 * Erase sector.
1658 if (ns->lines.wp) {
1659 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1660 return -1;
1663 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1664 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1665 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1666 return -1;
1669 ns->regs.row = (ns->regs.row <<
1670 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1671 ns->regs.column = 0;
1673 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1675 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1676 ns->regs.row, NS_RAW_OFFSET(ns));
1677 NS_LOG("erase sector %u\n", erase_block_no);
1679 erase_sector(ns);
1681 NS_MDELAY(erase_delay);
1683 if (erase_block_wear)
1684 update_wear(erase_block_no);
1686 if (erase_error(erase_block_no)) {
1687 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1688 return -1;
1691 break;
1693 case ACTION_PRGPAGE:
1695 * Program page - move internal buffer data to the page.
1698 if (ns->lines.wp) {
1699 NS_WARN("do_state_action: device is write-protected, programm\n");
1700 return -1;
1703 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1704 if (num != ns->regs.count) {
1705 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1706 ns->regs.count, num);
1707 return -1;
1710 if (prog_page(ns, num) == -1)
1711 return -1;
1713 page_no = ns->regs.row;
1715 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1716 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1717 NS_LOG("programm page %d\n", ns->regs.row);
1719 NS_UDELAY(programm_delay);
1720 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1722 if (write_error(page_no)) {
1723 NS_WARN("simulating write failure in page %u\n", page_no);
1724 return -1;
1727 break;
1729 case ACTION_ZEROOFF:
1730 NS_DBG("do_state_action: set internal offset to 0\n");
1731 ns->regs.off = 0;
1732 break;
1734 case ACTION_HALFOFF:
1735 if (!(ns->options & OPT_PAGE512_8BIT)) {
1736 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1737 "byte page size 8x chips\n");
1738 return -1;
1740 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1741 ns->regs.off = ns->geom.pgsz/2;
1742 break;
1744 case ACTION_OOBOFF:
1745 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1746 ns->regs.off = ns->geom.pgsz;
1747 break;
1749 default:
1750 NS_DBG("do_state_action: BUG! unknown action\n");
1753 return 0;
1757 * Switch simulator's state.
1759 static void switch_state(struct nandsim *ns)
1761 if (ns->op) {
1763 * The current operation have already been identified.
1764 * Just follow the states chain.
1767 ns->stateidx += 1;
1768 ns->state = ns->nxstate;
1769 ns->nxstate = ns->op[ns->stateidx + 1];
1771 NS_DBG("switch_state: operation is known, switch to the next state, "
1772 "state: %s, nxstate: %s\n",
1773 get_state_name(ns->state), get_state_name(ns->nxstate));
1775 /* See, whether we need to do some action */
1776 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1777 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1778 return;
1781 } else {
1783 * We don't yet know which operation we perform.
1784 * Try to identify it.
1788 * The only event causing the switch_state function to
1789 * be called with yet unknown operation is new command.
1791 ns->state = get_state_by_command(ns->regs.command);
1793 NS_DBG("switch_state: operation is unknown, try to find it\n");
1795 if (find_operation(ns, 0) != 0)
1796 return;
1798 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1799 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1800 return;
1804 /* For 16x devices column means the page offset in words */
1805 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1806 NS_DBG("switch_state: double the column number for 16x device\n");
1807 ns->regs.column <<= 1;
1810 if (NS_STATE(ns->nxstate) == STATE_READY) {
1812 * The current state is the last. Return to STATE_READY
1815 u_char status = NS_STATUS_OK(ns);
1817 /* In case of data states, see if all bytes were input/output */
1818 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1819 && ns->regs.count != ns->regs.num) {
1820 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1821 ns->regs.num - ns->regs.count);
1822 status = NS_STATUS_FAILED(ns);
1825 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1827 switch_to_ready_state(ns, status);
1829 return;
1830 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1832 * If the next state is data input/output, switch to it now
1835 ns->state = ns->nxstate;
1836 ns->nxstate = ns->op[++ns->stateidx + 1];
1837 ns->regs.num = ns->regs.count = 0;
1839 NS_DBG("switch_state: the next state is data I/O, switch, "
1840 "state: %s, nxstate: %s\n",
1841 get_state_name(ns->state), get_state_name(ns->nxstate));
1844 * Set the internal register to the count of bytes which
1845 * are expected to be input or output
1847 switch (NS_STATE(ns->state)) {
1848 case STATE_DATAIN:
1849 case STATE_DATAOUT:
1850 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1851 break;
1853 case STATE_DATAOUT_ID:
1854 ns->regs.num = ns->geom.idbytes;
1855 break;
1857 case STATE_DATAOUT_STATUS:
1858 ns->regs.count = ns->regs.num = 0;
1859 break;
1861 default:
1862 NS_ERR("switch_state: BUG! unknown data state\n");
1865 } else if (ns->nxstate & STATE_ADDR_MASK) {
1867 * If the next state is address input, set the internal
1868 * register to the number of expected address bytes
1871 ns->regs.count = 0;
1873 switch (NS_STATE(ns->nxstate)) {
1874 case STATE_ADDR_PAGE:
1875 ns->regs.num = ns->geom.pgaddrbytes;
1877 break;
1878 case STATE_ADDR_SEC:
1879 ns->regs.num = ns->geom.secaddrbytes;
1880 break;
1882 case STATE_ADDR_ZERO:
1883 ns->regs.num = 1;
1884 break;
1886 case STATE_ADDR_COLUMN:
1887 /* Column address is always 2 bytes */
1888 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1889 break;
1891 default:
1892 NS_ERR("switch_state: BUG! unknown address state\n");
1894 } else {
1896 * Just reset internal counters.
1899 ns->regs.num = 0;
1900 ns->regs.count = 0;
1904 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1906 struct nand_chip *chip = mtd_to_nand(mtd);
1907 struct nandsim *ns = nand_get_controller_data(chip);
1908 u_char outb = 0x00;
1910 /* Sanity and correctness checks */
1911 if (!ns->lines.ce) {
1912 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1913 return outb;
1915 if (ns->lines.ale || ns->lines.cle) {
1916 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1917 return outb;
1919 if (!(ns->state & STATE_DATAOUT_MASK)) {
1920 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1921 "return %#x\n", get_state_name(ns->state), (uint)outb);
1922 return outb;
1925 /* Status register may be read as many times as it is wanted */
1926 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1927 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1928 return ns->regs.status;
1931 /* Check if there is any data in the internal buffer which may be read */
1932 if (ns->regs.count == ns->regs.num) {
1933 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1934 return outb;
1937 switch (NS_STATE(ns->state)) {
1938 case STATE_DATAOUT:
1939 if (ns->busw == 8) {
1940 outb = ns->buf.byte[ns->regs.count];
1941 ns->regs.count += 1;
1942 } else {
1943 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1944 ns->regs.count += 2;
1946 break;
1947 case STATE_DATAOUT_ID:
1948 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1949 outb = ns->ids[ns->regs.count];
1950 ns->regs.count += 1;
1951 break;
1952 default:
1953 BUG();
1956 if (ns->regs.count == ns->regs.num) {
1957 NS_DBG("read_byte: all bytes were read\n");
1959 if (NS_STATE(ns->nxstate) == STATE_READY)
1960 switch_state(ns);
1963 return outb;
1966 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1968 struct nand_chip *chip = mtd_to_nand(mtd);
1969 struct nandsim *ns = nand_get_controller_data(chip);
1971 /* Sanity and correctness checks */
1972 if (!ns->lines.ce) {
1973 NS_ERR("write_byte: chip is disabled, ignore write\n");
1974 return;
1976 if (ns->lines.ale && ns->lines.cle) {
1977 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1978 return;
1981 if (ns->lines.cle == 1) {
1983 * The byte written is a command.
1986 if (byte == NAND_CMD_RESET) {
1987 NS_LOG("reset chip\n");
1988 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1989 return;
1992 /* Check that the command byte is correct */
1993 if (check_command(byte)) {
1994 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1995 return;
1998 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1999 || NS_STATE(ns->state) == STATE_DATAOUT) {
2000 int row = ns->regs.row;
2002 switch_state(ns);
2003 if (byte == NAND_CMD_RNDOUT)
2004 ns->regs.row = row;
2007 /* Check if chip is expecting command */
2008 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2009 /* Do not warn if only 2 id bytes are read */
2010 if (!(ns->regs.command == NAND_CMD_READID &&
2011 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2013 * We are in situation when something else (not command)
2014 * was expected but command was input. In this case ignore
2015 * previous command(s)/state(s) and accept the last one.
2017 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2018 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2020 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2023 NS_DBG("command byte corresponding to %s state accepted\n",
2024 get_state_name(get_state_by_command(byte)));
2025 ns->regs.command = byte;
2026 switch_state(ns);
2028 } else if (ns->lines.ale == 1) {
2030 * The byte written is an address.
2033 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2035 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2037 if (find_operation(ns, 1) < 0)
2038 return;
2040 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2041 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2042 return;
2045 ns->regs.count = 0;
2046 switch (NS_STATE(ns->nxstate)) {
2047 case STATE_ADDR_PAGE:
2048 ns->regs.num = ns->geom.pgaddrbytes;
2049 break;
2050 case STATE_ADDR_SEC:
2051 ns->regs.num = ns->geom.secaddrbytes;
2052 break;
2053 case STATE_ADDR_ZERO:
2054 ns->regs.num = 1;
2055 break;
2056 default:
2057 BUG();
2061 /* Check that chip is expecting address */
2062 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2063 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2064 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2065 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2066 return;
2069 /* Check if this is expected byte */
2070 if (ns->regs.count == ns->regs.num) {
2071 NS_ERR("write_byte: no more address bytes expected\n");
2072 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2073 return;
2076 accept_addr_byte(ns, byte);
2078 ns->regs.count += 1;
2080 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2081 (uint)byte, ns->regs.count, ns->regs.num);
2083 if (ns->regs.count == ns->regs.num) {
2084 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2085 switch_state(ns);
2088 } else {
2090 * The byte written is an input data.
2093 /* Check that chip is expecting data input */
2094 if (!(ns->state & STATE_DATAIN_MASK)) {
2095 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2096 "switch to %s\n", (uint)byte,
2097 get_state_name(ns->state), get_state_name(STATE_READY));
2098 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2099 return;
2102 /* Check if this is expected byte */
2103 if (ns->regs.count == ns->regs.num) {
2104 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2105 ns->regs.num);
2106 return;
2109 if (ns->busw == 8) {
2110 ns->buf.byte[ns->regs.count] = byte;
2111 ns->regs.count += 1;
2112 } else {
2113 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2114 ns->regs.count += 2;
2118 return;
2121 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2123 struct nand_chip *chip = mtd_to_nand(mtd);
2124 struct nandsim *ns = nand_get_controller_data(chip);
2126 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2127 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2128 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2130 if (cmd != NAND_CMD_NONE)
2131 ns_nand_write_byte(mtd, cmd);
2134 static int ns_device_ready(struct mtd_info *mtd)
2136 NS_DBG("device_ready\n");
2137 return 1;
2140 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2142 struct nand_chip *chip = mtd_to_nand(mtd);
2144 NS_DBG("read_word\n");
2146 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2149 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2151 struct nand_chip *chip = mtd_to_nand(mtd);
2152 struct nandsim *ns = nand_get_controller_data(chip);
2154 /* Check that chip is expecting data input */
2155 if (!(ns->state & STATE_DATAIN_MASK)) {
2156 NS_ERR("write_buf: data input isn't expected, state is %s, "
2157 "switch to STATE_READY\n", get_state_name(ns->state));
2158 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2159 return;
2162 /* Check if these are expected bytes */
2163 if (ns->regs.count + len > ns->regs.num) {
2164 NS_ERR("write_buf: too many input bytes\n");
2165 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2166 return;
2169 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2170 ns->regs.count += len;
2172 if (ns->regs.count == ns->regs.num) {
2173 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2177 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2179 struct nand_chip *chip = mtd_to_nand(mtd);
2180 struct nandsim *ns = nand_get_controller_data(chip);
2182 /* Sanity and correctness checks */
2183 if (!ns->lines.ce) {
2184 NS_ERR("read_buf: chip is disabled\n");
2185 return;
2187 if (ns->lines.ale || ns->lines.cle) {
2188 NS_ERR("read_buf: ALE or CLE pin is high\n");
2189 return;
2191 if (!(ns->state & STATE_DATAOUT_MASK)) {
2192 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2193 get_state_name(ns->state));
2194 return;
2197 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2198 int i;
2200 for (i = 0; i < len; i++)
2201 buf[i] = mtd_to_nand(mtd)->read_byte(mtd);
2203 return;
2206 /* Check if these are expected bytes */
2207 if (ns->regs.count + len > ns->regs.num) {
2208 NS_ERR("read_buf: too many bytes to read\n");
2209 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2210 return;
2213 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2214 ns->regs.count += len;
2216 if (ns->regs.count == ns->regs.num) {
2217 if (NS_STATE(ns->nxstate) == STATE_READY)
2218 switch_state(ns);
2221 return;
2225 * Module initialization function
2227 static int __init ns_init_module(void)
2229 struct nand_chip *chip;
2230 struct nandsim *nand;
2231 int retval = -ENOMEM, i;
2233 if (bus_width != 8 && bus_width != 16) {
2234 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2235 return -EINVAL;
2238 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2239 chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim),
2240 GFP_KERNEL);
2241 if (!chip) {
2242 NS_ERR("unable to allocate core structures.\n");
2243 return -ENOMEM;
2245 nsmtd = nand_to_mtd(chip);
2246 nand = (struct nandsim *)(chip + 1);
2247 nand_set_controller_data(chip, (void *)nand);
2250 * Register simulator's callbacks.
2252 chip->cmd_ctrl = ns_hwcontrol;
2253 chip->read_byte = ns_nand_read_byte;
2254 chip->dev_ready = ns_device_ready;
2255 chip->write_buf = ns_nand_write_buf;
2256 chip->read_buf = ns_nand_read_buf;
2257 chip->read_word = ns_nand_read_word;
2258 chip->ecc.mode = NAND_ECC_SOFT;
2259 chip->ecc.algo = NAND_ECC_HAMMING;
2260 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2261 /* and 'badblocks' parameters to work */
2262 chip->options |= NAND_SKIP_BBTSCAN;
2264 switch (bbt) {
2265 case 2:
2266 chip->bbt_options |= NAND_BBT_NO_OOB;
2267 case 1:
2268 chip->bbt_options |= NAND_BBT_USE_FLASH;
2269 case 0:
2270 break;
2271 default:
2272 NS_ERR("bbt has to be 0..2\n");
2273 retval = -EINVAL;
2274 goto error;
2277 * Perform minimum nandsim structure initialization to handle
2278 * the initial ID read command correctly
2280 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2281 nand->geom.idbytes = 8;
2282 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2283 nand->geom.idbytes = 6;
2284 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2285 nand->geom.idbytes = 4;
2286 else
2287 nand->geom.idbytes = 2;
2288 nand->regs.status = NS_STATUS_OK(nand);
2289 nand->nxstate = STATE_UNKNOWN;
2290 nand->options |= OPT_PAGE512; /* temporary value */
2291 memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2292 if (bus_width == 16) {
2293 nand->busw = 16;
2294 chip->options |= NAND_BUSWIDTH_16;
2297 nsmtd->owner = THIS_MODULE;
2299 if ((retval = parse_weakblocks()) != 0)
2300 goto error;
2302 if ((retval = parse_weakpages()) != 0)
2303 goto error;
2305 if ((retval = parse_gravepages()) != 0)
2306 goto error;
2308 retval = nand_scan_ident(nsmtd, 1, NULL);
2309 if (retval) {
2310 NS_ERR("cannot scan NAND Simulator device\n");
2311 goto error;
2314 if (bch) {
2315 unsigned int eccsteps, eccbytes;
2316 if (!mtd_nand_has_bch()) {
2317 NS_ERR("BCH ECC support is disabled\n");
2318 retval = -EINVAL;
2319 goto error;
2321 /* use 512-byte ecc blocks */
2322 eccsteps = nsmtd->writesize/512;
2323 eccbytes = (bch*13+7)/8;
2324 /* do not bother supporting small page devices */
2325 if ((nsmtd->oobsize < 64) || !eccsteps) {
2326 NS_ERR("bch not available on small page devices\n");
2327 retval = -EINVAL;
2328 goto error;
2330 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2331 NS_ERR("invalid bch value %u\n", bch);
2332 retval = -EINVAL;
2333 goto error;
2335 chip->ecc.mode = NAND_ECC_SOFT;
2336 chip->ecc.algo = NAND_ECC_BCH;
2337 chip->ecc.size = 512;
2338 chip->ecc.strength = bch;
2339 chip->ecc.bytes = eccbytes;
2340 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2343 retval = nand_scan_tail(nsmtd);
2344 if (retval) {
2345 NS_ERR("can't register NAND Simulator\n");
2346 goto error;
2349 if (overridesize) {
2350 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2351 if (new_size >> overridesize != nsmtd->erasesize) {
2352 NS_ERR("overridesize is too big\n");
2353 retval = -EINVAL;
2354 goto err_exit;
2356 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2357 nsmtd->size = new_size;
2358 chip->chipsize = new_size;
2359 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2360 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2363 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2364 goto err_exit;
2366 if ((retval = nandsim_debugfs_create(nand)) != 0)
2367 goto err_exit;
2369 if ((retval = init_nandsim(nsmtd)) != 0)
2370 goto err_exit;
2372 if ((retval = chip->scan_bbt(nsmtd)) != 0)
2373 goto err_exit;
2375 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2376 goto err_exit;
2378 /* Register NAND partitions */
2379 retval = mtd_device_register(nsmtd, &nand->partitions[0],
2380 nand->nbparts);
2381 if (retval != 0)
2382 goto err_exit;
2384 return 0;
2386 err_exit:
2387 free_nandsim(nand);
2388 nand_release(nsmtd);
2389 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2390 kfree(nand->partitions[i].name);
2391 error:
2392 kfree(chip);
2393 free_lists();
2395 return retval;
2398 module_init(ns_init_module);
2401 * Module clean-up function
2403 static void __exit ns_cleanup_module(void)
2405 struct nand_chip *chip = mtd_to_nand(nsmtd);
2406 struct nandsim *ns = nand_get_controller_data(chip);
2407 int i;
2409 nandsim_debugfs_remove(ns);
2410 free_nandsim(ns); /* Free nandsim private resources */
2411 nand_release(nsmtd); /* Unregister driver */
2412 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2413 kfree(ns->partitions[i].name);
2414 kfree(mtd_to_nand(nsmtd)); /* Free other structures */
2415 free_lists();
2418 module_exit(ns_cleanup_module);
2420 MODULE_LICENSE ("GPL");
2421 MODULE_AUTHOR ("Artem B. Bityuckiy");
2422 MODULE_DESCRIPTION ("The NAND flash simulator");