2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * UBI attaching sub-system.
24 * This sub-system is responsible for attaching MTD devices and it also
25 * implements flash media scanning.
27 * The attaching information is represented by a &struct ubi_attach_info'
28 * object. Information about volumes is represented by &struct ubi_ainf_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33 * objects are kept in per-volume RB-trees with the root at the corresponding
34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35 * per-volume objects and each of these objects is the root of RB-tree of
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
50 * UBI tries to distinguish between 2 types of corruptions.
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
54 * error messages. The idea is that we do not lose important data in these
55 * cases - we may lose only the data which were being written to the media just
56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
57 * supposed to handle such data losses (e.g., by using the FS journal).
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
63 * 2. Unexpected corruptions which are not caused by power cuts. During
64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
65 * Obviously, this lessens the amount of available PEBs, and if at some point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
69 * However, it is difficult to reliably distinguish between these types of
70 * corruptions and UBI's strategy is as follows (in case of attaching by
71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72 * the data area does not contain all 0xFFs, and there were no bit-flips or
73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
76 * o If the data area contains only 0xFFs, there are no data, and it is safe
77 * to just erase this PEB - this is corruption type 1.
78 * o If the data area has bit-flips or data integrity errors (ECC errors on
79 * NAND), it is probably a PEB which was being erased when power cut
80 * happened, so this is corruption type 1. However, this is just a guess,
81 * which might be wrong.
82 * o Otherwise this is corruption type 2.
85 #include <linux/err.h>
86 #include <linux/slab.h>
87 #include <linux/crc32.h>
88 #include <linux/math64.h>
89 #include <linux/random.h>
92 static int self_check_ai(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
);
94 #define AV_FIND BIT(0)
96 #define AV_FIND_OR_ADD (AV_FIND | AV_ADD)
99 * find_or_add_av - internal function to find a volume, add a volume or do
100 * both (find and add if missing).
101 * @ai: attaching information
102 * @vol_id: the requested volume ID
103 * @flags: a combination of the %AV_FIND and %AV_ADD flags describing the
104 * expected operation. If only %AV_ADD is set, -EEXIST is returned
105 * if the volume already exists. If only %AV_FIND is set, NULL is
106 * returned if the volume does not exist. And if both flags are
107 * set, the helper first tries to find an existing volume, and if
108 * it does not exist it creates a new one.
109 * @created: in value used to inform the caller whether it"s a newly created
112 * This function returns a pointer to a volume description or an ERR_PTR if
113 * the operation failed. It can also return NULL if only %AV_FIND is set and
114 * the volume does not exist.
116 static struct ubi_ainf_volume
*find_or_add_av(struct ubi_attach_info
*ai
,
117 int vol_id
, unsigned int flags
,
120 struct ubi_ainf_volume
*av
;
121 struct rb_node
**p
= &ai
->volumes
.rb_node
, *parent
= NULL
;
123 /* Walk the volume RB-tree to look if this volume is already present */
126 av
= rb_entry(parent
, struct ubi_ainf_volume
, rb
);
128 if (vol_id
== av
->vol_id
) {
131 if (!(flags
& AV_FIND
))
132 return ERR_PTR(-EEXIST
);
137 if (vol_id
> av
->vol_id
)
143 if (!(flags
& AV_ADD
))
146 /* The volume is absent - add it */
147 av
= kzalloc(sizeof(*av
), GFP_KERNEL
);
149 return ERR_PTR(-ENOMEM
);
153 if (vol_id
> ai
->highest_vol_id
)
154 ai
->highest_vol_id
= vol_id
;
156 rb_link_node(&av
->rb
, parent
, p
);
157 rb_insert_color(&av
->rb
, &ai
->volumes
);
160 dbg_bld("added volume %d", vol_id
);
165 * ubi_find_or_add_av - search for a volume in the attaching information and
166 * add one if it does not exist.
167 * @ai: attaching information
168 * @vol_id: the requested volume ID
169 * @created: whether the volume has been created or not
171 * This function returns a pointer to the new volume description or an
172 * ERR_PTR if the operation failed.
174 static struct ubi_ainf_volume
*ubi_find_or_add_av(struct ubi_attach_info
*ai
,
175 int vol_id
, bool *created
)
177 return find_or_add_av(ai
, vol_id
, AV_FIND_OR_ADD
, created
);
181 * ubi_alloc_aeb - allocate an aeb element
182 * @ai: attaching information
183 * @pnum: physical eraseblock number
184 * @ec: erase counter of the physical eraseblock
186 * Allocate an aeb object and initialize the pnum and ec information.
187 * vol_id and lnum are set to UBI_UNKNOWN, and the other fields are
188 * initialized to zero.
189 * Note that the element is not added in any list or RB tree.
191 struct ubi_ainf_peb
*ubi_alloc_aeb(struct ubi_attach_info
*ai
, int pnum
,
194 struct ubi_ainf_peb
*aeb
;
196 aeb
= kmem_cache_zalloc(ai
->aeb_slab_cache
, GFP_KERNEL
);
202 aeb
->vol_id
= UBI_UNKNOWN
;
203 aeb
->lnum
= UBI_UNKNOWN
;
209 * ubi_free_aeb - free an aeb element
210 * @ai: attaching information
211 * @aeb: the element to free
213 * Free an aeb object. The caller must have removed the element from any list
216 void ubi_free_aeb(struct ubi_attach_info
*ai
, struct ubi_ainf_peb
*aeb
)
218 kmem_cache_free(ai
->aeb_slab_cache
, aeb
);
222 * add_to_list - add physical eraseblock to a list.
223 * @ai: attaching information
224 * @pnum: physical eraseblock number to add
225 * @vol_id: the last used volume id for the PEB
226 * @lnum: the last used LEB number for the PEB
227 * @ec: erase counter of the physical eraseblock
228 * @to_head: if not zero, add to the head of the list
229 * @list: the list to add to
231 * This function allocates a 'struct ubi_ainf_peb' object for physical
232 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
233 * It stores the @lnum and @vol_id alongside, which can both be
234 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
235 * If @to_head is not zero, PEB will be added to the head of the list, which
236 * basically means it will be processed first later. E.g., we add corrupted
237 * PEBs (corrupted due to power cuts) to the head of the erase list to make
238 * sure we erase them first and get rid of corruptions ASAP. This function
239 * returns zero in case of success and a negative error code in case of
242 static int add_to_list(struct ubi_attach_info
*ai
, int pnum
, int vol_id
,
243 int lnum
, int ec
, int to_head
, struct list_head
*list
)
245 struct ubi_ainf_peb
*aeb
;
247 if (list
== &ai
->free
) {
248 dbg_bld("add to free: PEB %d, EC %d", pnum
, ec
);
249 } else if (list
== &ai
->erase
) {
250 dbg_bld("add to erase: PEB %d, EC %d", pnum
, ec
);
251 } else if (list
== &ai
->alien
) {
252 dbg_bld("add to alien: PEB %d, EC %d", pnum
, ec
);
253 ai
->alien_peb_count
+= 1;
257 aeb
= ubi_alloc_aeb(ai
, pnum
, ec
);
261 aeb
->vol_id
= vol_id
;
264 list_add(&aeb
->u
.list
, list
);
266 list_add_tail(&aeb
->u
.list
, list
);
271 * add_corrupted - add a corrupted physical eraseblock.
272 * @ai: attaching information
273 * @pnum: physical eraseblock number to add
274 * @ec: erase counter of the physical eraseblock
276 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
277 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
278 * was presumably not caused by a power cut. Returns zero in case of success
279 * and a negative error code in case of failure.
281 static int add_corrupted(struct ubi_attach_info
*ai
, int pnum
, int ec
)
283 struct ubi_ainf_peb
*aeb
;
285 dbg_bld("add to corrupted: PEB %d, EC %d", pnum
, ec
);
287 aeb
= ubi_alloc_aeb(ai
, pnum
, ec
);
291 ai
->corr_peb_count
+= 1;
292 list_add(&aeb
->u
.list
, &ai
->corr
);
297 * add_fastmap - add a Fastmap related physical eraseblock.
298 * @ai: attaching information
299 * @pnum: physical eraseblock number the VID header came from
300 * @vid_hdr: the volume identifier header
301 * @ec: erase counter of the physical eraseblock
303 * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp
304 * physical eraseblock @pnum and adds it to the 'fastmap' list.
305 * Such blocks can be Fastmap super and data blocks from both the most
306 * recent Fastmap we're attaching from or from old Fastmaps which will
309 static int add_fastmap(struct ubi_attach_info
*ai
, int pnum
,
310 struct ubi_vid_hdr
*vid_hdr
, int ec
)
312 struct ubi_ainf_peb
*aeb
;
314 aeb
= ubi_alloc_aeb(ai
, pnum
, ec
);
318 aeb
->vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
319 aeb
->sqnum
= be64_to_cpu(vid_hdr
->sqnum
);
320 list_add(&aeb
->u
.list
, &ai
->fastmap
);
322 dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum
,
323 aeb
->vol_id
, aeb
->sqnum
);
329 * validate_vid_hdr - check volume identifier header.
330 * @ubi: UBI device description object
331 * @vid_hdr: the volume identifier header to check
332 * @av: information about the volume this logical eraseblock belongs to
333 * @pnum: physical eraseblock number the VID header came from
335 * This function checks that data stored in @vid_hdr is consistent. Returns
336 * non-zero if an inconsistency was found and zero if not.
338 * Note, UBI does sanity check of everything it reads from the flash media.
339 * Most of the checks are done in the I/O sub-system. Here we check that the
340 * information in the VID header is consistent to the information in other VID
341 * headers of the same volume.
343 static int validate_vid_hdr(const struct ubi_device
*ubi
,
344 const struct ubi_vid_hdr
*vid_hdr
,
345 const struct ubi_ainf_volume
*av
, int pnum
)
347 int vol_type
= vid_hdr
->vol_type
;
348 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
349 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
350 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
352 if (av
->leb_count
!= 0) {
356 * This is not the first logical eraseblock belonging to this
357 * volume. Ensure that the data in its VID header is consistent
358 * to the data in previous logical eraseblock headers.
361 if (vol_id
!= av
->vol_id
) {
362 ubi_err(ubi
, "inconsistent vol_id");
366 if (av
->vol_type
== UBI_STATIC_VOLUME
)
367 av_vol_type
= UBI_VID_STATIC
;
369 av_vol_type
= UBI_VID_DYNAMIC
;
371 if (vol_type
!= av_vol_type
) {
372 ubi_err(ubi
, "inconsistent vol_type");
376 if (used_ebs
!= av
->used_ebs
) {
377 ubi_err(ubi
, "inconsistent used_ebs");
381 if (data_pad
!= av
->data_pad
) {
382 ubi_err(ubi
, "inconsistent data_pad");
390 ubi_err(ubi
, "inconsistent VID header at PEB %d", pnum
);
391 ubi_dump_vid_hdr(vid_hdr
);
397 * add_volume - add volume to the attaching information.
398 * @ai: attaching information
399 * @vol_id: ID of the volume to add
400 * @pnum: physical eraseblock number
401 * @vid_hdr: volume identifier header
403 * If the volume corresponding to the @vid_hdr logical eraseblock is already
404 * present in the attaching information, this function does nothing. Otherwise
405 * it adds corresponding volume to the attaching information. Returns a pointer
406 * to the allocated "av" object in case of success and a negative error code in
409 static struct ubi_ainf_volume
*add_volume(struct ubi_attach_info
*ai
,
410 int vol_id
, int pnum
,
411 const struct ubi_vid_hdr
*vid_hdr
)
413 struct ubi_ainf_volume
*av
;
416 ubi_assert(vol_id
== be32_to_cpu(vid_hdr
->vol_id
));
418 av
= ubi_find_or_add_av(ai
, vol_id
, &created
);
419 if (IS_ERR(av
) || !created
)
422 av
->used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
423 av
->data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
424 av
->compat
= vid_hdr
->compat
;
425 av
->vol_type
= vid_hdr
->vol_type
== UBI_VID_DYNAMIC
? UBI_DYNAMIC_VOLUME
432 * ubi_compare_lebs - find out which logical eraseblock is newer.
433 * @ubi: UBI device description object
434 * @aeb: first logical eraseblock to compare
435 * @pnum: physical eraseblock number of the second logical eraseblock to
437 * @vid_hdr: volume identifier header of the second logical eraseblock
439 * This function compares 2 copies of a LEB and informs which one is newer. In
440 * case of success this function returns a positive value, in case of failure, a
441 * negative error code is returned. The success return codes use the following
443 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
444 * second PEB (described by @pnum and @vid_hdr);
445 * o bit 0 is set: the second PEB is newer;
446 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
447 * o bit 1 is set: bit-flips were detected in the newer LEB;
448 * o bit 2 is cleared: the older LEB is not corrupted;
449 * o bit 2 is set: the older LEB is corrupted.
451 int ubi_compare_lebs(struct ubi_device
*ubi
, const struct ubi_ainf_peb
*aeb
,
452 int pnum
, const struct ubi_vid_hdr
*vid_hdr
)
454 int len
, err
, second_is_newer
, bitflips
= 0, corrupted
= 0;
455 uint32_t data_crc
, crc
;
456 struct ubi_vid_io_buf
*vidb
= NULL
;
457 unsigned long long sqnum2
= be64_to_cpu(vid_hdr
->sqnum
);
459 if (sqnum2
== aeb
->sqnum
) {
461 * This must be a really ancient UBI image which has been
462 * created before sequence numbers support has been added. At
463 * that times we used 32-bit LEB versions stored in logical
464 * eraseblocks. That was before UBI got into mainline. We do not
465 * support these images anymore. Well, those images still work,
466 * but only if no unclean reboots happened.
468 ubi_err(ubi
, "unsupported on-flash UBI format");
472 /* Obviously the LEB with lower sequence counter is older */
473 second_is_newer
= (sqnum2
> aeb
->sqnum
);
476 * Now we know which copy is newer. If the copy flag of the PEB with
477 * newer version is not set, then we just return, otherwise we have to
478 * check data CRC. For the second PEB we already have the VID header,
479 * for the first one - we'll need to re-read it from flash.
481 * Note: this may be optimized so that we wouldn't read twice.
484 if (second_is_newer
) {
485 if (!vid_hdr
->copy_flag
) {
486 /* It is not a copy, so it is newer */
487 dbg_bld("second PEB %d is newer, copy_flag is unset",
492 if (!aeb
->copy_flag
) {
493 /* It is not a copy, so it is newer */
494 dbg_bld("first PEB %d is newer, copy_flag is unset",
496 return bitflips
<< 1;
499 vidb
= ubi_alloc_vid_buf(ubi
, GFP_KERNEL
);
504 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 0);
506 if (err
== UBI_IO_BITFLIPS
)
509 ubi_err(ubi
, "VID of PEB %d header is bad, but it was OK earlier, err %d",
518 vid_hdr
= ubi_get_vid_hdr(vidb
);
521 /* Read the data of the copy and check the CRC */
523 len
= be32_to_cpu(vid_hdr
->data_size
);
525 mutex_lock(&ubi
->buf_mutex
);
526 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, pnum
, 0, len
);
527 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
530 data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
531 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, len
);
532 if (crc
!= data_crc
) {
533 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
534 pnum
, crc
, data_crc
);
537 second_is_newer
= !second_is_newer
;
539 dbg_bld("PEB %d CRC is OK", pnum
);
542 mutex_unlock(&ubi
->buf_mutex
);
544 ubi_free_vid_buf(vidb
);
547 dbg_bld("second PEB %d is newer, copy_flag is set", pnum
);
549 dbg_bld("first PEB %d is newer, copy_flag is set", pnum
);
551 return second_is_newer
| (bitflips
<< 1) | (corrupted
<< 2);
554 mutex_unlock(&ubi
->buf_mutex
);
556 ubi_free_vid_buf(vidb
);
561 * ubi_add_to_av - add used physical eraseblock to the attaching information.
562 * @ubi: UBI device description object
563 * @ai: attaching information
564 * @pnum: the physical eraseblock number
566 * @vid_hdr: the volume identifier header
567 * @bitflips: if bit-flips were detected when this physical eraseblock was read
569 * This function adds information about a used physical eraseblock to the
570 * 'used' tree of the corresponding volume. The function is rather complex
571 * because it has to handle cases when this is not the first physical
572 * eraseblock belonging to the same logical eraseblock, and the newer one has
573 * to be picked, while the older one has to be dropped. This function returns
574 * zero in case of success and a negative error code in case of failure.
576 int ubi_add_to_av(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
, int pnum
,
577 int ec
, const struct ubi_vid_hdr
*vid_hdr
, int bitflips
)
579 int err
, vol_id
, lnum
;
580 unsigned long long sqnum
;
581 struct ubi_ainf_volume
*av
;
582 struct ubi_ainf_peb
*aeb
;
583 struct rb_node
**p
, *parent
= NULL
;
585 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
586 lnum
= be32_to_cpu(vid_hdr
->lnum
);
587 sqnum
= be64_to_cpu(vid_hdr
->sqnum
);
589 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
590 pnum
, vol_id
, lnum
, ec
, sqnum
, bitflips
);
592 av
= add_volume(ai
, vol_id
, pnum
, vid_hdr
);
596 if (ai
->max_sqnum
< sqnum
)
597 ai
->max_sqnum
= sqnum
;
600 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
601 * if this is the first instance of this logical eraseblock or not.
603 p
= &av
->root
.rb_node
;
608 aeb
= rb_entry(parent
, struct ubi_ainf_peb
, u
.rb
);
609 if (lnum
!= aeb
->lnum
) {
610 if (lnum
< aeb
->lnum
)
618 * There is already a physical eraseblock describing the same
619 * logical eraseblock present.
622 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
623 aeb
->pnum
, aeb
->sqnum
, aeb
->ec
);
626 * Make sure that the logical eraseblocks have different
627 * sequence numbers. Otherwise the image is bad.
629 * However, if the sequence number is zero, we assume it must
630 * be an ancient UBI image from the era when UBI did not have
631 * sequence numbers. We still can attach these images, unless
632 * there is a need to distinguish between old and new
633 * eraseblocks, in which case we'll refuse the image in
634 * 'ubi_compare_lebs()'. In other words, we attach old clean
635 * images, but refuse attaching old images with duplicated
636 * logical eraseblocks because there was an unclean reboot.
638 if (aeb
->sqnum
== sqnum
&& sqnum
!= 0) {
639 ubi_err(ubi
, "two LEBs with same sequence number %llu",
641 ubi_dump_aeb(aeb
, 0);
642 ubi_dump_vid_hdr(vid_hdr
);
647 * Now we have to drop the older one and preserve the newer
650 cmp_res
= ubi_compare_lebs(ubi
, aeb
, pnum
, vid_hdr
);
656 * This logical eraseblock is newer than the one
659 err
= validate_vid_hdr(ubi
, vid_hdr
, av
, pnum
);
663 err
= add_to_list(ai
, aeb
->pnum
, aeb
->vol_id
,
664 aeb
->lnum
, aeb
->ec
, cmp_res
& 4,
671 aeb
->vol_id
= vol_id
;
673 aeb
->scrub
= ((cmp_res
& 2) || bitflips
);
674 aeb
->copy_flag
= vid_hdr
->copy_flag
;
677 if (av
->highest_lnum
== lnum
)
679 be32_to_cpu(vid_hdr
->data_size
);
684 * This logical eraseblock is older than the one found
687 return add_to_list(ai
, pnum
, vol_id
, lnum
, ec
,
688 cmp_res
& 4, &ai
->erase
);
693 * We've met this logical eraseblock for the first time, add it to the
694 * attaching information.
697 err
= validate_vid_hdr(ubi
, vid_hdr
, av
, pnum
);
701 aeb
= ubi_alloc_aeb(ai
, pnum
, ec
);
705 aeb
->vol_id
= vol_id
;
707 aeb
->scrub
= bitflips
;
708 aeb
->copy_flag
= vid_hdr
->copy_flag
;
711 if (av
->highest_lnum
<= lnum
) {
712 av
->highest_lnum
= lnum
;
713 av
->last_data_size
= be32_to_cpu(vid_hdr
->data_size
);
717 rb_link_node(&aeb
->u
.rb
, parent
, p
);
718 rb_insert_color(&aeb
->u
.rb
, &av
->root
);
723 * ubi_add_av - add volume to the attaching information.
724 * @ai: attaching information
725 * @vol_id: the requested volume ID
727 * This function returns a pointer to the new volume description or an
728 * ERR_PTR if the operation failed.
730 struct ubi_ainf_volume
*ubi_add_av(struct ubi_attach_info
*ai
, int vol_id
)
734 return find_or_add_av(ai
, vol_id
, AV_ADD
, &created
);
738 * ubi_find_av - find volume in the attaching information.
739 * @ai: attaching information
740 * @vol_id: the requested volume ID
742 * This function returns a pointer to the volume description or %NULL if there
743 * are no data about this volume in the attaching information.
745 struct ubi_ainf_volume
*ubi_find_av(const struct ubi_attach_info
*ai
,
750 return find_or_add_av((struct ubi_attach_info
*)ai
, vol_id
, AV_FIND
,
754 static void destroy_av(struct ubi_attach_info
*ai
, struct ubi_ainf_volume
*av
,
755 struct list_head
*list
);
758 * ubi_remove_av - delete attaching information about a volume.
759 * @ai: attaching information
760 * @av: the volume attaching information to delete
762 void ubi_remove_av(struct ubi_attach_info
*ai
, struct ubi_ainf_volume
*av
)
764 dbg_bld("remove attaching information about volume %d", av
->vol_id
);
766 rb_erase(&av
->rb
, &ai
->volumes
);
767 destroy_av(ai
, av
, &ai
->erase
);
772 * early_erase_peb - erase a physical eraseblock.
773 * @ubi: UBI device description object
774 * @ai: attaching information
775 * @pnum: physical eraseblock number to erase;
776 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
778 * This function erases physical eraseblock 'pnum', and writes the erase
779 * counter header to it. This function should only be used on UBI device
780 * initialization stages, when the EBA sub-system had not been yet initialized.
781 * This function returns zero in case of success and a negative error code in
784 static int early_erase_peb(struct ubi_device
*ubi
,
785 const struct ubi_attach_info
*ai
, int pnum
, int ec
)
788 struct ubi_ec_hdr
*ec_hdr
;
790 if ((long long)ec
>= UBI_MAX_ERASECOUNTER
) {
792 * Erase counter overflow. Upgrade UBI and use 64-bit
793 * erase counters internally.
795 ubi_err(ubi
, "erase counter overflow at PEB %d, EC %d",
800 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
804 ec_hdr
->ec
= cpu_to_be64(ec
);
806 err
= ubi_io_sync_erase(ubi
, pnum
, 0);
810 err
= ubi_io_write_ec_hdr(ubi
, pnum
, ec_hdr
);
818 * ubi_early_get_peb - get a free physical eraseblock.
819 * @ubi: UBI device description object
820 * @ai: attaching information
822 * This function returns a free physical eraseblock. It is supposed to be
823 * called on the UBI initialization stages when the wear-leveling sub-system is
824 * not initialized yet. This function picks a physical eraseblocks from one of
825 * the lists, writes the EC header if it is needed, and removes it from the
828 * This function returns a pointer to the "aeb" of the found free PEB in case
829 * of success and an error code in case of failure.
831 struct ubi_ainf_peb
*ubi_early_get_peb(struct ubi_device
*ubi
,
832 struct ubi_attach_info
*ai
)
835 struct ubi_ainf_peb
*aeb
, *tmp_aeb
;
837 if (!list_empty(&ai
->free
)) {
838 aeb
= list_entry(ai
->free
.next
, struct ubi_ainf_peb
, u
.list
);
839 list_del(&aeb
->u
.list
);
840 dbg_bld("return free PEB %d, EC %d", aeb
->pnum
, aeb
->ec
);
845 * We try to erase the first physical eraseblock from the erase list
846 * and pick it if we succeed, or try to erase the next one if not. And
847 * so forth. We don't want to take care about bad eraseblocks here -
848 * they'll be handled later.
850 list_for_each_entry_safe(aeb
, tmp_aeb
, &ai
->erase
, u
.list
) {
851 if (aeb
->ec
== UBI_UNKNOWN
)
852 aeb
->ec
= ai
->mean_ec
;
854 err
= early_erase_peb(ubi
, ai
, aeb
->pnum
, aeb
->ec
+1);
859 list_del(&aeb
->u
.list
);
860 dbg_bld("return PEB %d, EC %d", aeb
->pnum
, aeb
->ec
);
864 ubi_err(ubi
, "no free eraseblocks");
865 return ERR_PTR(-ENOSPC
);
869 * check_corruption - check the data area of PEB.
870 * @ubi: UBI device description object
871 * @vid_hdr: the (corrupted) VID header of this PEB
872 * @pnum: the physical eraseblock number to check
874 * This is a helper function which is used to distinguish between VID header
875 * corruptions caused by power cuts and other reasons. If the PEB contains only
876 * 0xFF bytes in the data area, the VID header is most probably corrupted
877 * because of a power cut (%0 is returned in this case). Otherwise, it was
878 * probably corrupted for some other reasons (%1 is returned in this case). A
879 * negative error code is returned if a read error occurred.
881 * If the corruption reason was a power cut, UBI can safely erase this PEB.
882 * Otherwise, it should preserve it to avoid possibly destroying important
885 static int check_corruption(struct ubi_device
*ubi
, struct ubi_vid_hdr
*vid_hdr
,
890 mutex_lock(&ubi
->buf_mutex
);
891 memset(ubi
->peb_buf
, 0x00, ubi
->leb_size
);
893 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, ubi
->leb_start
,
895 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
)) {
897 * Bit-flips or integrity errors while reading the data area.
898 * It is difficult to say for sure what type of corruption is
899 * this, but presumably a power cut happened while this PEB was
900 * erased, so it became unstable and corrupted, and should be
910 if (ubi_check_pattern(ubi
->peb_buf
, 0xFF, ubi
->leb_size
))
913 ubi_err(ubi
, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
915 ubi_err(ubi
, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
916 ubi_dump_vid_hdr(vid_hdr
);
917 pr_err("hexdump of PEB %d offset %d, length %d",
918 pnum
, ubi
->leb_start
, ubi
->leb_size
);
919 ubi_dbg_print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
920 ubi
->peb_buf
, ubi
->leb_size
, 1);
924 mutex_unlock(&ubi
->buf_mutex
);
928 static bool vol_ignored(int vol_id
)
931 case UBI_LAYOUT_VOLUME_ID
:
935 #ifdef CONFIG_MTD_UBI_FASTMAP
936 return ubi_is_fm_vol(vol_id
);
943 * scan_peb - scan and process UBI headers of a PEB.
944 * @ubi: UBI device description object
945 * @ai: attaching information
946 * @pnum: the physical eraseblock number
947 * @fast: true if we're scanning for a Fastmap
949 * This function reads UBI headers of PEB @pnum, checks them, and adds
950 * information about this PEB to the corresponding list or RB-tree in the
951 * "attaching info" structure. Returns zero if the physical eraseblock was
952 * successfully handled and a negative error code in case of failure.
954 static int scan_peb(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
,
957 struct ubi_ec_hdr
*ech
= ai
->ech
;
958 struct ubi_vid_io_buf
*vidb
= ai
->vidb
;
959 struct ubi_vid_hdr
*vidh
= ubi_get_vid_hdr(vidb
);
961 int err
, bitflips
= 0, vol_id
= -1, ec_err
= 0;
963 dbg_bld("scan PEB %d", pnum
);
965 /* Skip bad physical eraseblocks */
966 err
= ubi_io_is_bad(ubi
, pnum
);
970 ai
->bad_peb_count
+= 1;
974 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ech
, 0);
980 case UBI_IO_BITFLIPS
:
984 ai
->empty_peb_count
+= 1;
985 return add_to_list(ai
, pnum
, UBI_UNKNOWN
, UBI_UNKNOWN
,
986 UBI_UNKNOWN
, 0, &ai
->erase
);
987 case UBI_IO_FF_BITFLIPS
:
988 ai
->empty_peb_count
+= 1;
989 return add_to_list(ai
, pnum
, UBI_UNKNOWN
, UBI_UNKNOWN
,
990 UBI_UNKNOWN
, 1, &ai
->erase
);
991 case UBI_IO_BAD_HDR_EBADMSG
:
994 * We have to also look at the VID header, possibly it is not
995 * corrupted. Set %bitflips flag in order to make this PEB be
996 * moved and EC be re-created.
1003 ubi_err(ubi
, "'ubi_io_read_ec_hdr()' returned unknown code %d",
1011 /* Make sure UBI version is OK */
1012 if (ech
->version
!= UBI_VERSION
) {
1013 ubi_err(ubi
, "this UBI version is %d, image version is %d",
1014 UBI_VERSION
, (int)ech
->version
);
1018 ec
= be64_to_cpu(ech
->ec
);
1019 if (ec
> UBI_MAX_ERASECOUNTER
) {
1021 * Erase counter overflow. The EC headers have 64 bits
1022 * reserved, but we anyway make use of only 31 bit
1023 * values, as this seems to be enough for any existing
1024 * flash. Upgrade UBI and use 64-bit erase counters
1027 ubi_err(ubi
, "erase counter overflow, max is %d",
1028 UBI_MAX_ERASECOUNTER
);
1029 ubi_dump_ec_hdr(ech
);
1034 * Make sure that all PEBs have the same image sequence number.
1035 * This allows us to detect situations when users flash UBI
1036 * images incorrectly, so that the flash has the new UBI image
1037 * and leftovers from the old one. This feature was added
1038 * relatively recently, and the sequence number was always
1039 * zero, because old UBI implementations always set it to zero.
1040 * For this reasons, we do not panic if some PEBs have zero
1041 * sequence number, while other PEBs have non-zero sequence
1044 image_seq
= be32_to_cpu(ech
->image_seq
);
1045 if (!ubi
->image_seq
)
1046 ubi
->image_seq
= image_seq
;
1047 if (image_seq
&& ubi
->image_seq
!= image_seq
) {
1048 ubi_err(ubi
, "bad image sequence number %d in PEB %d, expected %d",
1049 image_seq
, pnum
, ubi
->image_seq
);
1050 ubi_dump_ec_hdr(ech
);
1055 /* OK, we've done with the EC header, let's look at the VID header */
1057 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 0);
1063 case UBI_IO_BITFLIPS
:
1066 case UBI_IO_BAD_HDR_EBADMSG
:
1067 if (ec_err
== UBI_IO_BAD_HDR_EBADMSG
)
1069 * Both EC and VID headers are corrupted and were read
1070 * with data integrity error, probably this is a bad
1071 * PEB, bit it is not marked as bad yet. This may also
1072 * be a result of power cut during erasure.
1074 ai
->maybe_bad_peb_count
+= 1;
1075 case UBI_IO_BAD_HDR
:
1077 * If we're facing a bad VID header we have to drop *all*
1078 * Fastmap data structures we find. The most recent Fastmap
1079 * could be bad and therefore there is a chance that we attach
1080 * from an old one. On a fine MTD stack a PEB must not render
1081 * bad all of a sudden, but the reality is different.
1082 * So, let's be paranoid and help finding the root cause by
1083 * falling back to scanning mode instead of attaching with a
1084 * bad EBA table and cause data corruption which is hard to
1088 ai
->force_full_scan
= 1;
1092 * Both headers are corrupted. There is a possibility
1093 * that this a valid UBI PEB which has corresponding
1094 * LEB, but the headers are corrupted. However, it is
1095 * impossible to distinguish it from a PEB which just
1096 * contains garbage because of a power cut during erase
1097 * operation. So we just schedule this PEB for erasure.
1099 * Besides, in case of NOR flash, we deliberately
1100 * corrupt both headers because NOR flash erasure is
1101 * slow and can start from the end.
1106 * The EC was OK, but the VID header is corrupted. We
1107 * have to check what is in the data area.
1109 err
= check_corruption(ubi
, vidh
, pnum
);
1114 /* This corruption is caused by a power cut */
1115 err
= add_to_list(ai
, pnum
, UBI_UNKNOWN
,
1116 UBI_UNKNOWN
, ec
, 1, &ai
->erase
);
1118 /* This is an unexpected corruption */
1119 err
= add_corrupted(ai
, pnum
, ec
);
1122 goto adjust_mean_ec
;
1123 case UBI_IO_FF_BITFLIPS
:
1124 err
= add_to_list(ai
, pnum
, UBI_UNKNOWN
, UBI_UNKNOWN
,
1128 goto adjust_mean_ec
;
1130 if (ec_err
|| bitflips
)
1131 err
= add_to_list(ai
, pnum
, UBI_UNKNOWN
,
1132 UBI_UNKNOWN
, ec
, 1, &ai
->erase
);
1134 err
= add_to_list(ai
, pnum
, UBI_UNKNOWN
,
1135 UBI_UNKNOWN
, ec
, 0, &ai
->free
);
1138 goto adjust_mean_ec
;
1140 ubi_err(ubi
, "'ubi_io_read_vid_hdr()' returned unknown code %d",
1145 vol_id
= be32_to_cpu(vidh
->vol_id
);
1146 if (vol_id
> UBI_MAX_VOLUMES
&& !vol_ignored(vol_id
)) {
1147 int lnum
= be32_to_cpu(vidh
->lnum
);
1149 /* Unsupported internal volume */
1150 switch (vidh
->compat
) {
1151 case UBI_COMPAT_DELETE
:
1152 ubi_msg(ubi
, "\"delete\" compatible internal volume %d:%d found, will remove it",
1155 err
= add_to_list(ai
, pnum
, vol_id
, lnum
,
1162 ubi_msg(ubi
, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1167 case UBI_COMPAT_PRESERVE
:
1168 ubi_msg(ubi
, "\"preserve\" compatible internal volume %d:%d found",
1170 err
= add_to_list(ai
, pnum
, vol_id
, lnum
,
1176 case UBI_COMPAT_REJECT
:
1177 ubi_err(ubi
, "incompatible internal volume %d:%d found",
1184 ubi_warn(ubi
, "valid VID header but corrupted EC header at PEB %d",
1187 if (ubi_is_fm_vol(vol_id
))
1188 err
= add_fastmap(ai
, pnum
, vidh
, ec
);
1190 err
= ubi_add_to_av(ubi
, ai
, pnum
, ec
, vidh
, bitflips
);
1199 if (ec
> ai
->max_ec
)
1201 if (ec
< ai
->min_ec
)
1209 * late_analysis - analyze the overall situation with PEB.
1210 * @ubi: UBI device description object
1211 * @ai: attaching information
1213 * This is a helper function which takes a look what PEBs we have after we
1214 * gather information about all of them ("ai" is compete). It decides whether
1215 * the flash is empty and should be formatted of whether there are too many
1216 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1217 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1219 static int late_analysis(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1221 struct ubi_ainf_peb
*aeb
;
1222 int max_corr
, peb_count
;
1224 peb_count
= ubi
->peb_count
- ai
->bad_peb_count
- ai
->alien_peb_count
;
1225 max_corr
= peb_count
/ 20 ?: 8;
1228 * Few corrupted PEBs is not a problem and may be just a result of
1229 * unclean reboots. However, many of them may indicate some problems
1230 * with the flash HW or driver.
1232 if (ai
->corr_peb_count
) {
1233 ubi_err(ubi
, "%d PEBs are corrupted and preserved",
1234 ai
->corr_peb_count
);
1235 pr_err("Corrupted PEBs are:");
1236 list_for_each_entry(aeb
, &ai
->corr
, u
.list
)
1237 pr_cont(" %d", aeb
->pnum
);
1241 * If too many PEBs are corrupted, we refuse attaching,
1242 * otherwise, only print a warning.
1244 if (ai
->corr_peb_count
>= max_corr
) {
1245 ubi_err(ubi
, "too many corrupted PEBs, refusing");
1250 if (ai
->empty_peb_count
+ ai
->maybe_bad_peb_count
== peb_count
) {
1252 * All PEBs are empty, or almost all - a couple PEBs look like
1253 * they may be bad PEBs which were not marked as bad yet.
1255 * This piece of code basically tries to distinguish between
1256 * the following situations:
1258 * 1. Flash is empty, but there are few bad PEBs, which are not
1259 * marked as bad so far, and which were read with error. We
1260 * want to go ahead and format this flash. While formatting,
1261 * the faulty PEBs will probably be marked as bad.
1263 * 2. Flash contains non-UBI data and we do not want to format
1264 * it and destroy possibly important information.
1266 if (ai
->maybe_bad_peb_count
<= 2) {
1268 ubi_msg(ubi
, "empty MTD device detected");
1269 get_random_bytes(&ubi
->image_seq
,
1270 sizeof(ubi
->image_seq
));
1272 ubi_err(ubi
, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1282 * destroy_av - free volume attaching information.
1283 * @av: volume attaching information
1284 * @ai: attaching information
1285 * @list: put the aeb elements in there if !NULL, otherwise free them
1287 * This function destroys the volume attaching information.
1289 static void destroy_av(struct ubi_attach_info
*ai
, struct ubi_ainf_volume
*av
,
1290 struct list_head
*list
)
1292 struct ubi_ainf_peb
*aeb
;
1293 struct rb_node
*this = av
->root
.rb_node
;
1297 this = this->rb_left
;
1298 else if (this->rb_right
)
1299 this = this->rb_right
;
1301 aeb
= rb_entry(this, struct ubi_ainf_peb
, u
.rb
);
1302 this = rb_parent(this);
1304 if (this->rb_left
== &aeb
->u
.rb
)
1305 this->rb_left
= NULL
;
1307 this->rb_right
= NULL
;
1311 list_add_tail(&aeb
->u
.list
, list
);
1313 ubi_free_aeb(ai
, aeb
);
1320 * destroy_ai - destroy attaching information.
1321 * @ai: attaching information
1323 static void destroy_ai(struct ubi_attach_info
*ai
)
1325 struct ubi_ainf_peb
*aeb
, *aeb_tmp
;
1326 struct ubi_ainf_volume
*av
;
1329 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->alien
, u
.list
) {
1330 list_del(&aeb
->u
.list
);
1331 ubi_free_aeb(ai
, aeb
);
1333 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->erase
, u
.list
) {
1334 list_del(&aeb
->u
.list
);
1335 ubi_free_aeb(ai
, aeb
);
1337 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->corr
, u
.list
) {
1338 list_del(&aeb
->u
.list
);
1339 ubi_free_aeb(ai
, aeb
);
1341 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->free
, u
.list
) {
1342 list_del(&aeb
->u
.list
);
1343 ubi_free_aeb(ai
, aeb
);
1345 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->fastmap
, u
.list
) {
1346 list_del(&aeb
->u
.list
);
1347 ubi_free_aeb(ai
, aeb
);
1350 /* Destroy the volume RB-tree */
1351 rb
= ai
->volumes
.rb_node
;
1355 else if (rb
->rb_right
)
1358 av
= rb_entry(rb
, struct ubi_ainf_volume
, rb
);
1362 if (rb
->rb_left
== &av
->rb
)
1365 rb
->rb_right
= NULL
;
1368 destroy_av(ai
, av
, NULL
);
1372 kmem_cache_destroy(ai
->aeb_slab_cache
);
1377 * scan_all - scan entire MTD device.
1378 * @ubi: UBI device description object
1379 * @ai: attach info object
1380 * @start: start scanning at this PEB
1382 * This function does full scanning of an MTD device and returns complete
1383 * information about it in form of a "struct ubi_attach_info" object. In case
1384 * of failure, an error code is returned.
1386 static int scan_all(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
,
1390 struct rb_node
*rb1
, *rb2
;
1391 struct ubi_ainf_volume
*av
;
1392 struct ubi_ainf_peb
*aeb
;
1396 ai
->ech
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
1400 ai
->vidb
= ubi_alloc_vid_buf(ubi
, GFP_KERNEL
);
1404 for (pnum
= start
; pnum
< ubi
->peb_count
; pnum
++) {
1407 dbg_gen("process PEB %d", pnum
);
1408 err
= scan_peb(ubi
, ai
, pnum
, false);
1413 ubi_msg(ubi
, "scanning is finished");
1415 /* Calculate mean erase counter */
1417 ai
->mean_ec
= div_u64(ai
->ec_sum
, ai
->ec_count
);
1419 err
= late_analysis(ubi
, ai
);
1424 * In case of unknown erase counter we use the mean erase counter
1427 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1428 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
)
1429 if (aeb
->ec
== UBI_UNKNOWN
)
1430 aeb
->ec
= ai
->mean_ec
;
1433 list_for_each_entry(aeb
, &ai
->free
, u
.list
) {
1434 if (aeb
->ec
== UBI_UNKNOWN
)
1435 aeb
->ec
= ai
->mean_ec
;
1438 list_for_each_entry(aeb
, &ai
->corr
, u
.list
)
1439 if (aeb
->ec
== UBI_UNKNOWN
)
1440 aeb
->ec
= ai
->mean_ec
;
1442 list_for_each_entry(aeb
, &ai
->erase
, u
.list
)
1443 if (aeb
->ec
== UBI_UNKNOWN
)
1444 aeb
->ec
= ai
->mean_ec
;
1446 err
= self_check_ai(ubi
, ai
);
1450 ubi_free_vid_buf(ai
->vidb
);
1456 ubi_free_vid_buf(ai
->vidb
);
1462 static struct ubi_attach_info
*alloc_ai(void)
1464 struct ubi_attach_info
*ai
;
1466 ai
= kzalloc(sizeof(struct ubi_attach_info
), GFP_KERNEL
);
1470 INIT_LIST_HEAD(&ai
->corr
);
1471 INIT_LIST_HEAD(&ai
->free
);
1472 INIT_LIST_HEAD(&ai
->erase
);
1473 INIT_LIST_HEAD(&ai
->alien
);
1474 INIT_LIST_HEAD(&ai
->fastmap
);
1475 ai
->volumes
= RB_ROOT
;
1476 ai
->aeb_slab_cache
= kmem_cache_create("ubi_aeb_slab_cache",
1477 sizeof(struct ubi_ainf_peb
),
1479 if (!ai
->aeb_slab_cache
) {
1487 #ifdef CONFIG_MTD_UBI_FASTMAP
1490 * scan_fast - try to find a fastmap and attach from it.
1491 * @ubi: UBI device description object
1492 * @ai: attach info object
1494 * Returns 0 on success, negative return values indicate an internal
1496 * UBI_NO_FASTMAP denotes that no fastmap was found.
1497 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1499 static int scan_fast(struct ubi_device
*ubi
, struct ubi_attach_info
**ai
)
1502 struct ubi_attach_info
*scan_ai
;
1506 scan_ai
= alloc_ai();
1510 scan_ai
->ech
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
1514 scan_ai
->vidb
= ubi_alloc_vid_buf(ubi
, GFP_KERNEL
);
1518 for (pnum
= 0; pnum
< UBI_FM_MAX_START
; pnum
++) {
1521 dbg_gen("process PEB %d", pnum
);
1522 err
= scan_peb(ubi
, scan_ai
, pnum
, true);
1527 ubi_free_vid_buf(scan_ai
->vidb
);
1528 kfree(scan_ai
->ech
);
1530 if (scan_ai
->force_full_scan
)
1531 err
= UBI_NO_FASTMAP
;
1533 err
= ubi_scan_fastmap(ubi
, *ai
, scan_ai
);
1537 * Didn't attach via fastmap, do a full scan but reuse what
1538 * we've aready scanned.
1543 destroy_ai(scan_ai
);
1548 ubi_free_vid_buf(scan_ai
->vidb
);
1550 kfree(scan_ai
->ech
);
1552 destroy_ai(scan_ai
);
1560 * ubi_attach - attach an MTD device.
1561 * @ubi: UBI device descriptor
1562 * @force_scan: if set to non-zero attach by scanning
1564 * This function returns zero in case of success and a negative error code in
1567 int ubi_attach(struct ubi_device
*ubi
, int force_scan
)
1570 struct ubi_attach_info
*ai
;
1576 #ifdef CONFIG_MTD_UBI_FASTMAP
1577 /* On small flash devices we disable fastmap in any case. */
1578 if ((int)mtd_div_by_eb(ubi
->mtd
->size
, ubi
->mtd
) <= UBI_FM_MAX_START
) {
1579 ubi
->fm_disabled
= 1;
1584 err
= scan_all(ubi
, ai
, 0);
1586 err
= scan_fast(ubi
, &ai
);
1587 if (err
> 0 || mtd_is_eccerr(err
)) {
1588 if (err
!= UBI_NO_FASTMAP
) {
1594 err
= scan_all(ubi
, ai
, 0);
1596 err
= scan_all(ubi
, ai
, UBI_FM_MAX_START
);
1601 err
= scan_all(ubi
, ai
, 0);
1606 ubi
->bad_peb_count
= ai
->bad_peb_count
;
1607 ubi
->good_peb_count
= ubi
->peb_count
- ubi
->bad_peb_count
;
1608 ubi
->corr_peb_count
= ai
->corr_peb_count
;
1609 ubi
->max_ec
= ai
->max_ec
;
1610 ubi
->mean_ec
= ai
->mean_ec
;
1611 dbg_gen("max. sequence number: %llu", ai
->max_sqnum
);
1613 err
= ubi_read_volume_table(ubi
, ai
);
1617 err
= ubi_wl_init(ubi
, ai
);
1621 err
= ubi_eba_init(ubi
, ai
);
1625 #ifdef CONFIG_MTD_UBI_FASTMAP
1626 if (ubi
->fm
&& ubi_dbg_chk_fastmap(ubi
)) {
1627 struct ubi_attach_info
*scan_ai
;
1629 scan_ai
= alloc_ai();
1635 err
= scan_all(ubi
, scan_ai
, 0);
1637 destroy_ai(scan_ai
);
1641 err
= self_check_eba(ubi
, ai
, scan_ai
);
1642 destroy_ai(scan_ai
);
1655 ubi_free_internal_volumes(ubi
);
1663 * self_check_ai - check the attaching information.
1664 * @ubi: UBI device description object
1665 * @ai: attaching information
1667 * This function returns zero if the attaching information is all right, and a
1668 * negative error code if not or if an error occurred.
1670 static int self_check_ai(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1672 struct ubi_vid_io_buf
*vidb
= ai
->vidb
;
1673 struct ubi_vid_hdr
*vidh
= ubi_get_vid_hdr(vidb
);
1674 int pnum
, err
, vols_found
= 0;
1675 struct rb_node
*rb1
, *rb2
;
1676 struct ubi_ainf_volume
*av
;
1677 struct ubi_ainf_peb
*aeb
, *last_aeb
;
1680 if (!ubi_dbg_chk_gen(ubi
))
1684 * At first, check that attaching information is OK.
1686 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1694 ubi_err(ubi
, "bad is_empty flag");
1698 if (av
->vol_id
< 0 || av
->highest_lnum
< 0 ||
1699 av
->leb_count
< 0 || av
->vol_type
< 0 || av
->used_ebs
< 0 ||
1700 av
->data_pad
< 0 || av
->last_data_size
< 0) {
1701 ubi_err(ubi
, "negative values");
1705 if (av
->vol_id
>= UBI_MAX_VOLUMES
&&
1706 av
->vol_id
< UBI_INTERNAL_VOL_START
) {
1707 ubi_err(ubi
, "bad vol_id");
1711 if (av
->vol_id
> ai
->highest_vol_id
) {
1712 ubi_err(ubi
, "highest_vol_id is %d, but vol_id %d is there",
1713 ai
->highest_vol_id
, av
->vol_id
);
1717 if (av
->vol_type
!= UBI_DYNAMIC_VOLUME
&&
1718 av
->vol_type
!= UBI_STATIC_VOLUME
) {
1719 ubi_err(ubi
, "bad vol_type");
1723 if (av
->data_pad
> ubi
->leb_size
/ 2) {
1724 ubi_err(ubi
, "bad data_pad");
1729 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1735 if (aeb
->pnum
< 0 || aeb
->ec
< 0) {
1736 ubi_err(ubi
, "negative values");
1740 if (aeb
->ec
< ai
->min_ec
) {
1741 ubi_err(ubi
, "bad ai->min_ec (%d), %d found",
1742 ai
->min_ec
, aeb
->ec
);
1746 if (aeb
->ec
> ai
->max_ec
) {
1747 ubi_err(ubi
, "bad ai->max_ec (%d), %d found",
1748 ai
->max_ec
, aeb
->ec
);
1752 if (aeb
->pnum
>= ubi
->peb_count
) {
1753 ubi_err(ubi
, "too high PEB number %d, total PEBs %d",
1754 aeb
->pnum
, ubi
->peb_count
);
1758 if (av
->vol_type
== UBI_STATIC_VOLUME
) {
1759 if (aeb
->lnum
>= av
->used_ebs
) {
1760 ubi_err(ubi
, "bad lnum or used_ebs");
1764 if (av
->used_ebs
!= 0) {
1765 ubi_err(ubi
, "non-zero used_ebs");
1770 if (aeb
->lnum
> av
->highest_lnum
) {
1771 ubi_err(ubi
, "incorrect highest_lnum or lnum");
1776 if (av
->leb_count
!= leb_count
) {
1777 ubi_err(ubi
, "bad leb_count, %d objects in the tree",
1787 if (aeb
->lnum
!= av
->highest_lnum
) {
1788 ubi_err(ubi
, "bad highest_lnum");
1793 if (vols_found
!= ai
->vols_found
) {
1794 ubi_err(ubi
, "bad ai->vols_found %d, should be %d",
1795 ai
->vols_found
, vols_found
);
1799 /* Check that attaching information is correct */
1800 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1802 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1809 err
= ubi_io_read_vid_hdr(ubi
, aeb
->pnum
, vidb
, 1);
1810 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1811 ubi_err(ubi
, "VID header is not OK (%d)",
1818 vol_type
= vidh
->vol_type
== UBI_VID_DYNAMIC
?
1819 UBI_DYNAMIC_VOLUME
: UBI_STATIC_VOLUME
;
1820 if (av
->vol_type
!= vol_type
) {
1821 ubi_err(ubi
, "bad vol_type");
1825 if (aeb
->sqnum
!= be64_to_cpu(vidh
->sqnum
)) {
1826 ubi_err(ubi
, "bad sqnum %llu", aeb
->sqnum
);
1830 if (av
->vol_id
!= be32_to_cpu(vidh
->vol_id
)) {
1831 ubi_err(ubi
, "bad vol_id %d", av
->vol_id
);
1835 if (av
->compat
!= vidh
->compat
) {
1836 ubi_err(ubi
, "bad compat %d", vidh
->compat
);
1840 if (aeb
->lnum
!= be32_to_cpu(vidh
->lnum
)) {
1841 ubi_err(ubi
, "bad lnum %d", aeb
->lnum
);
1845 if (av
->used_ebs
!= be32_to_cpu(vidh
->used_ebs
)) {
1846 ubi_err(ubi
, "bad used_ebs %d", av
->used_ebs
);
1850 if (av
->data_pad
!= be32_to_cpu(vidh
->data_pad
)) {
1851 ubi_err(ubi
, "bad data_pad %d", av
->data_pad
);
1859 if (av
->highest_lnum
!= be32_to_cpu(vidh
->lnum
)) {
1860 ubi_err(ubi
, "bad highest_lnum %d", av
->highest_lnum
);
1864 if (av
->last_data_size
!= be32_to_cpu(vidh
->data_size
)) {
1865 ubi_err(ubi
, "bad last_data_size %d",
1866 av
->last_data_size
);
1872 * Make sure that all the physical eraseblocks are in one of the lists
1875 buf
= kzalloc(ubi
->peb_count
, GFP_KERNEL
);
1879 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++) {
1880 err
= ubi_io_is_bad(ubi
, pnum
);
1888 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
)
1889 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
)
1892 list_for_each_entry(aeb
, &ai
->free
, u
.list
)
1895 list_for_each_entry(aeb
, &ai
->corr
, u
.list
)
1898 list_for_each_entry(aeb
, &ai
->erase
, u
.list
)
1901 list_for_each_entry(aeb
, &ai
->alien
, u
.list
)
1905 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++)
1907 ubi_err(ubi
, "PEB %d is not referred", pnum
);
1917 ubi_err(ubi
, "bad attaching information about LEB %d", aeb
->lnum
);
1918 ubi_dump_aeb(aeb
, 0);
1923 ubi_err(ubi
, "bad attaching information about volume %d", av
->vol_id
);
1928 ubi_err(ubi
, "bad attaching information about volume %d", av
->vol_id
);
1930 ubi_dump_vid_hdr(vidh
);