2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output sub-system.
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
94 static int self_check_not_bad(const struct ubi_device
*ubi
, int pnum
);
95 static int self_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
);
96 static int self_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
97 const struct ubi_ec_hdr
*ec_hdr
);
98 static int self_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
);
99 static int self_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
100 const struct ubi_vid_hdr
*vid_hdr
);
101 static int self_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
102 int offset
, int len
);
105 * ubi_io_read - read data from a physical eraseblock.
106 * @ubi: UBI device description object
107 * @buf: buffer where to store the read data
108 * @pnum: physical eraseblock number to read from
109 * @offset: offset within the physical eraseblock from where to read
110 * @len: how many bytes to read
112 * This function reads data from offset @offset of physical eraseblock @pnum
113 * and stores the read data in the @buf buffer. The following return codes are
116 * o %0 if all the requested data were successfully read;
117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118 * correctable bit-flips were detected; this is harmless but may indicate
119 * that this eraseblock may become bad soon (but do not have to);
120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121 * example it can be an ECC error in case of NAND; this most probably means
122 * that the data is corrupted;
123 * o %-EIO if some I/O error occurred;
124 * o other negative error codes in case of other errors.
126 int ubi_io_read(const struct ubi_device
*ubi
, void *buf
, int pnum
, int offset
,
129 int err
, retries
= 0;
133 dbg_io("read %d bytes from PEB %d:%d", len
, pnum
, offset
);
135 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
136 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
139 err
= self_check_not_bad(ubi
, pnum
);
144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 * do not do this, the following may happen:
146 * 1. The buffer contains data from previous operation, e.g., read from
147 * another PEB previously. The data looks like expected, e.g., if we
148 * just do not read anything and return - the caller would not
149 * notice this. E.g., if we are reading a VID header, the buffer may
150 * contain a valid VID header from another PEB.
151 * 2. The driver is buggy and returns us success or -EBADMSG or
152 * -EUCLEAN, but it does not actually put any data to the buffer.
154 * This may confuse UBI or upper layers - they may think the buffer
155 * contains valid data while in fact it is just old data. This is
156 * especially possible because UBI (and UBIFS) relies on CRC, and
157 * treats data as correct even in case of ECC errors if the CRC is
160 * Try to prevent this situation by changing the first byte of the
163 *((uint8_t *)buf
) ^= 0xFF;
165 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
167 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf
);
169 const char *errstr
= mtd_is_eccerr(err
) ? " (ECC error)" : "";
171 if (mtd_is_bitflip(err
)) {
173 * -EUCLEAN is reported if there was a bit-flip which
174 * was corrected, so this is harmless.
176 * We do not report about it here unless debugging is
177 * enabled. A corresponding message will be printed
178 * later, when it is has been scrubbed.
180 ubi_msg(ubi
, "fixable bit-flip detected at PEB %d",
182 ubi_assert(len
== read
);
183 return UBI_IO_BITFLIPS
;
186 if (retries
++ < UBI_IO_RETRIES
) {
187 ubi_warn(ubi
, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
188 err
, errstr
, len
, pnum
, offset
, read
);
193 ubi_err(ubi
, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
194 err
, errstr
, len
, pnum
, offset
, read
);
198 * The driver should never return -EBADMSG if it failed to read
199 * all the requested data. But some buggy drivers might do
200 * this, so we change it to -EIO.
202 if (read
!= len
&& mtd_is_eccerr(err
)) {
207 ubi_assert(len
== read
);
209 if (ubi_dbg_is_bitflip(ubi
)) {
210 dbg_gen("bit-flip (emulated)");
211 err
= UBI_IO_BITFLIPS
;
219 * ubi_io_write - write data to a physical eraseblock.
220 * @ubi: UBI device description object
221 * @buf: buffer with the data to write
222 * @pnum: physical eraseblock number to write to
223 * @offset: offset within the physical eraseblock where to write
224 * @len: how many bytes to write
226 * This function writes @len bytes of data from buffer @buf to offset @offset
227 * of physical eraseblock @pnum. If all the data were successfully written,
228 * zero is returned. If an error occurred, this function returns a negative
229 * error code. If %-EIO is returned, the physical eraseblock most probably went
232 * Note, in case of an error, it is possible that something was still written
233 * to the flash media, but may be some garbage.
235 int ubi_io_write(struct ubi_device
*ubi
, const void *buf
, int pnum
, int offset
,
242 dbg_io("write %d bytes to PEB %d:%d", len
, pnum
, offset
);
244 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
245 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
246 ubi_assert(offset
% ubi
->hdrs_min_io_size
== 0);
247 ubi_assert(len
> 0 && len
% ubi
->hdrs_min_io_size
== 0);
250 ubi_err(ubi
, "read-only mode");
254 err
= self_check_not_bad(ubi
, pnum
);
258 /* The area we are writing to has to contain all 0xFF bytes */
259 err
= ubi_self_check_all_ff(ubi
, pnum
, offset
, len
);
263 if (offset
>= ubi
->leb_start
) {
265 * We write to the data area of the physical eraseblock. Make
266 * sure it has valid EC and VID headers.
268 err
= self_check_peb_ec_hdr(ubi
, pnum
);
271 err
= self_check_peb_vid_hdr(ubi
, pnum
);
276 if (ubi_dbg_is_write_failure(ubi
)) {
277 ubi_err(ubi
, "cannot write %d bytes to PEB %d:%d (emulated)",
283 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
284 err
= mtd_write(ubi
->mtd
, addr
, len
, &written
, buf
);
286 ubi_err(ubi
, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
287 err
, len
, pnum
, offset
, written
);
289 ubi_dump_flash(ubi
, pnum
, offset
, len
);
291 ubi_assert(written
== len
);
294 err
= self_check_write(ubi
, buf
, pnum
, offset
, len
);
299 * Since we always write sequentially, the rest of the PEB has
300 * to contain only 0xFF bytes.
303 len
= ubi
->peb_size
- offset
;
305 err
= ubi_self_check_all_ff(ubi
, pnum
, offset
, len
);
312 * erase_callback - MTD erasure call-back.
313 * @ei: MTD erase information object.
315 * Note, even though MTD erase interface is asynchronous, all the current
316 * implementations are synchronous anyway.
318 static void erase_callback(struct erase_info
*ei
)
320 wake_up_interruptible((wait_queue_head_t
*)ei
->priv
);
324 * do_sync_erase - synchronously erase a physical eraseblock.
325 * @ubi: UBI device description object
326 * @pnum: the physical eraseblock number to erase
328 * This function synchronously erases physical eraseblock @pnum and returns
329 * zero in case of success and a negative error code in case of failure. If
330 * %-EIO is returned, the physical eraseblock most probably went bad.
332 static int do_sync_erase(struct ubi_device
*ubi
, int pnum
)
334 int err
, retries
= 0;
335 struct erase_info ei
;
336 wait_queue_head_t wq
;
338 dbg_io("erase PEB %d", pnum
);
339 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
342 ubi_err(ubi
, "read-only mode");
347 init_waitqueue_head(&wq
);
348 memset(&ei
, 0, sizeof(struct erase_info
));
351 ei
.addr
= (loff_t
)pnum
* ubi
->peb_size
;
352 ei
.len
= ubi
->peb_size
;
353 ei
.callback
= erase_callback
;
354 ei
.priv
= (unsigned long)&wq
;
356 err
= mtd_erase(ubi
->mtd
, &ei
);
358 if (retries
++ < UBI_IO_RETRIES
) {
359 ubi_warn(ubi
, "error %d while erasing PEB %d, retry",
364 ubi_err(ubi
, "cannot erase PEB %d, error %d", pnum
, err
);
369 err
= wait_event_interruptible(wq
, ei
.state
== MTD_ERASE_DONE
||
370 ei
.state
== MTD_ERASE_FAILED
);
372 ubi_err(ubi
, "interrupted PEB %d erasure", pnum
);
376 if (ei
.state
== MTD_ERASE_FAILED
) {
377 if (retries
++ < UBI_IO_RETRIES
) {
378 ubi_warn(ubi
, "error while erasing PEB %d, retry",
383 ubi_err(ubi
, "cannot erase PEB %d", pnum
);
388 err
= ubi_self_check_all_ff(ubi
, pnum
, 0, ubi
->peb_size
);
392 if (ubi_dbg_is_erase_failure(ubi
)) {
393 ubi_err(ubi
, "cannot erase PEB %d (emulated)", pnum
);
400 /* Patterns to write to a physical eraseblock when torturing it */
401 static uint8_t patterns
[] = {0xa5, 0x5a, 0x0};
404 * torture_peb - test a supposedly bad physical eraseblock.
405 * @ubi: UBI device description object
406 * @pnum: the physical eraseblock number to test
408 * This function returns %-EIO if the physical eraseblock did not pass the
409 * test, a positive number of erase operations done if the test was
410 * successfully passed, and other negative error codes in case of other errors.
412 static int torture_peb(struct ubi_device
*ubi
, int pnum
)
414 int err
, i
, patt_count
;
416 ubi_msg(ubi
, "run torture test for PEB %d", pnum
);
417 patt_count
= ARRAY_SIZE(patterns
);
418 ubi_assert(patt_count
> 0);
420 mutex_lock(&ubi
->buf_mutex
);
421 for (i
= 0; i
< patt_count
; i
++) {
422 err
= do_sync_erase(ubi
, pnum
);
426 /* Make sure the PEB contains only 0xFF bytes */
427 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
431 err
= ubi_check_pattern(ubi
->peb_buf
, 0xFF, ubi
->peb_size
);
433 ubi_err(ubi
, "erased PEB %d, but a non-0xFF byte found",
439 /* Write a pattern and check it */
440 memset(ubi
->peb_buf
, patterns
[i
], ubi
->peb_size
);
441 err
= ubi_io_write(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
445 memset(ubi
->peb_buf
, ~patterns
[i
], ubi
->peb_size
);
446 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
450 err
= ubi_check_pattern(ubi
->peb_buf
, patterns
[i
],
453 ubi_err(ubi
, "pattern %x checking failed for PEB %d",
461 ubi_msg(ubi
, "PEB %d passed torture test, do not mark it as bad", pnum
);
464 mutex_unlock(&ubi
->buf_mutex
);
465 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
)) {
467 * If a bit-flip or data integrity error was detected, the test
468 * has not passed because it happened on a freshly erased
469 * physical eraseblock which means something is wrong with it.
471 ubi_err(ubi
, "read problems on freshly erased PEB %d, must be bad",
479 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
480 * @ubi: UBI device description object
481 * @pnum: physical eraseblock number to prepare
483 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
484 * algorithm: the PEB is first filled with zeroes, then it is erased. And
485 * filling with zeroes starts from the end of the PEB. This was observed with
486 * Spansion S29GL512N NOR flash.
488 * This means that in case of a power cut we may end up with intact data at the
489 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
490 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
491 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
492 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
494 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
495 * magic numbers in order to invalidate them and prevent the failures. Returns
496 * zero in case of success and a negative error code in case of failure.
498 static int nor_erase_prepare(struct ubi_device
*ubi
, int pnum
)
504 struct ubi_ec_hdr ec_hdr
;
505 struct ubi_vid_io_buf vidb
;
508 * Note, we cannot generally define VID header buffers on stack,
509 * because of the way we deal with these buffers (see the header
510 * comment in this file). But we know this is a NOR-specific piece of
511 * code, so we can do this. But yes, this is error-prone and we should
512 * (pre-)allocate VID header buffer instead.
514 struct ubi_vid_hdr vid_hdr
;
517 * If VID or EC is valid, we have to corrupt them before erasing.
518 * It is important to first invalidate the EC header, and then the VID
519 * header. Otherwise a power cut may lead to valid EC header and
520 * invalid VID header, in which case UBI will treat this PEB as
521 * corrupted and will try to preserve it, and print scary warnings.
523 addr
= (loff_t
)pnum
* ubi
->peb_size
;
524 err
= ubi_io_read_ec_hdr(ubi
, pnum
, &ec_hdr
, 0);
525 if (err
!= UBI_IO_BAD_HDR_EBADMSG
&& err
!= UBI_IO_BAD_HDR
&&
527 err
= mtd_write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
532 ubi_init_vid_buf(ubi
, &vidb
, &vid_hdr
);
533 ubi_assert(&vid_hdr
== ubi_get_vid_hdr(&vidb
));
535 err
= ubi_io_read_vid_hdr(ubi
, pnum
, &vidb
, 0);
536 if (err
!= UBI_IO_BAD_HDR_EBADMSG
&& err
!= UBI_IO_BAD_HDR
&&
538 addr
+= ubi
->vid_hdr_aloffset
;
539 err
= mtd_write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
547 * The PEB contains a valid VID or EC header, but we cannot invalidate
548 * it. Supposedly the flash media or the driver is screwed up, so
551 ubi_err(ubi
, "cannot invalidate PEB %d, write returned %d", pnum
, err
);
552 ubi_dump_flash(ubi
, pnum
, 0, ubi
->peb_size
);
557 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
558 * @ubi: UBI device description object
559 * @pnum: physical eraseblock number to erase
560 * @torture: if this physical eraseblock has to be tortured
562 * This function synchronously erases physical eraseblock @pnum. If @torture
563 * flag is not zero, the physical eraseblock is checked by means of writing
564 * different patterns to it and reading them back. If the torturing is enabled,
565 * the physical eraseblock is erased more than once.
567 * This function returns the number of erasures made in case of success, %-EIO
568 * if the erasure failed or the torturing test failed, and other negative error
569 * codes in case of other errors. Note, %-EIO means that the physical
572 int ubi_io_sync_erase(struct ubi_device
*ubi
, int pnum
, int torture
)
576 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
578 err
= self_check_not_bad(ubi
, pnum
);
583 ubi_err(ubi
, "read-only mode");
587 if (ubi
->nor_flash
) {
588 err
= nor_erase_prepare(ubi
, pnum
);
594 ret
= torture_peb(ubi
, pnum
);
599 err
= do_sync_erase(ubi
, pnum
);
607 * ubi_io_is_bad - check if a physical eraseblock is bad.
608 * @ubi: UBI device description object
609 * @pnum: the physical eraseblock number to check
611 * This function returns a positive number if the physical eraseblock is bad,
612 * zero if not, and a negative error code if an error occurred.
614 int ubi_io_is_bad(const struct ubi_device
*ubi
, int pnum
)
616 struct mtd_info
*mtd
= ubi
->mtd
;
618 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
620 if (ubi
->bad_allowed
) {
623 ret
= mtd_block_isbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
625 ubi_err(ubi
, "error %d while checking if PEB %d is bad",
628 dbg_io("PEB %d is bad", pnum
);
636 * ubi_io_mark_bad - mark a physical eraseblock as bad.
637 * @ubi: UBI device description object
638 * @pnum: the physical eraseblock number to mark
640 * This function returns zero in case of success and a negative error code in
643 int ubi_io_mark_bad(const struct ubi_device
*ubi
, int pnum
)
646 struct mtd_info
*mtd
= ubi
->mtd
;
648 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
651 ubi_err(ubi
, "read-only mode");
655 if (!ubi
->bad_allowed
)
658 err
= mtd_block_markbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
660 ubi_err(ubi
, "cannot mark PEB %d bad, error %d", pnum
, err
);
665 * validate_ec_hdr - validate an erase counter header.
666 * @ubi: UBI device description object
667 * @ec_hdr: the erase counter header to check
669 * This function returns zero if the erase counter header is OK, and %1 if
672 static int validate_ec_hdr(const struct ubi_device
*ubi
,
673 const struct ubi_ec_hdr
*ec_hdr
)
676 int vid_hdr_offset
, leb_start
;
678 ec
= be64_to_cpu(ec_hdr
->ec
);
679 vid_hdr_offset
= be32_to_cpu(ec_hdr
->vid_hdr_offset
);
680 leb_start
= be32_to_cpu(ec_hdr
->data_offset
);
682 if (ec_hdr
->version
!= UBI_VERSION
) {
683 ubi_err(ubi
, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
684 UBI_VERSION
, (int)ec_hdr
->version
);
688 if (vid_hdr_offset
!= ubi
->vid_hdr_offset
) {
689 ubi_err(ubi
, "bad VID header offset %d, expected %d",
690 vid_hdr_offset
, ubi
->vid_hdr_offset
);
694 if (leb_start
!= ubi
->leb_start
) {
695 ubi_err(ubi
, "bad data offset %d, expected %d",
696 leb_start
, ubi
->leb_start
);
700 if (ec
< 0 || ec
> UBI_MAX_ERASECOUNTER
) {
701 ubi_err(ubi
, "bad erase counter %lld", ec
);
708 ubi_err(ubi
, "bad EC header");
709 ubi_dump_ec_hdr(ec_hdr
);
715 * ubi_io_read_ec_hdr - read and check an erase counter header.
716 * @ubi: UBI device description object
717 * @pnum: physical eraseblock to read from
718 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
720 * @verbose: be verbose if the header is corrupted or was not found
722 * This function reads erase counter header from physical eraseblock @pnum and
723 * stores it in @ec_hdr. This function also checks CRC checksum of the read
724 * erase counter header. The following codes may be returned:
726 * o %0 if the CRC checksum is correct and the header was successfully read;
727 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
728 * and corrected by the flash driver; this is harmless but may indicate that
729 * this eraseblock may become bad soon (but may be not);
730 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
731 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
732 * a data integrity error (uncorrectable ECC error in case of NAND);
733 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
734 * o a negative error code in case of failure.
736 int ubi_io_read_ec_hdr(struct ubi_device
*ubi
, int pnum
,
737 struct ubi_ec_hdr
*ec_hdr
, int verbose
)
740 uint32_t crc
, magic
, hdr_crc
;
742 dbg_io("read EC header from PEB %d", pnum
);
743 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
745 read_err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
747 if (read_err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(read_err
))
751 * We read all the data, but either a correctable bit-flip
752 * occurred, or MTD reported a data integrity error
753 * (uncorrectable ECC error in case of NAND). The former is
754 * harmless, the later may mean that the read data is
755 * corrupted. But we have a CRC check-sum and we will detect
756 * this. If the EC header is still OK, we just report this as
757 * there was a bit-flip, to force scrubbing.
761 magic
= be32_to_cpu(ec_hdr
->magic
);
762 if (magic
!= UBI_EC_HDR_MAGIC
) {
763 if (mtd_is_eccerr(read_err
))
764 return UBI_IO_BAD_HDR_EBADMSG
;
767 * The magic field is wrong. Let's check if we have read all
768 * 0xFF. If yes, this physical eraseblock is assumed to be
771 if (ubi_check_pattern(ec_hdr
, 0xFF, UBI_EC_HDR_SIZE
)) {
772 /* The physical eraseblock is supposedly empty */
774 ubi_warn(ubi
, "no EC header found at PEB %d, only 0xFF bytes",
776 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
781 return UBI_IO_FF_BITFLIPS
;
785 * This is not a valid erase counter header, and these are not
786 * 0xFF bytes. Report that the header is corrupted.
789 ubi_warn(ubi
, "bad magic number at PEB %d: %08x instead of %08x",
790 pnum
, magic
, UBI_EC_HDR_MAGIC
);
791 ubi_dump_ec_hdr(ec_hdr
);
793 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
794 pnum
, magic
, UBI_EC_HDR_MAGIC
);
795 return UBI_IO_BAD_HDR
;
798 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
799 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
801 if (hdr_crc
!= crc
) {
803 ubi_warn(ubi
, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
805 ubi_dump_ec_hdr(ec_hdr
);
807 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
811 return UBI_IO_BAD_HDR
;
813 return UBI_IO_BAD_HDR_EBADMSG
;
816 /* And of course validate what has just been read from the media */
817 err
= validate_ec_hdr(ubi
, ec_hdr
);
819 ubi_err(ubi
, "validation failed for PEB %d", pnum
);
824 * If there was %-EBADMSG, but the header CRC is still OK, report about
825 * a bit-flip to force scrubbing on this PEB.
827 return read_err
? UBI_IO_BITFLIPS
: 0;
831 * ubi_io_write_ec_hdr - write an erase counter header.
832 * @ubi: UBI device description object
833 * @pnum: physical eraseblock to write to
834 * @ec_hdr: the erase counter header to write
836 * This function writes erase counter header described by @ec_hdr to physical
837 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
838 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
841 * This function returns zero in case of success and a negative error code in
842 * case of failure. If %-EIO is returned, the physical eraseblock most probably
845 int ubi_io_write_ec_hdr(struct ubi_device
*ubi
, int pnum
,
846 struct ubi_ec_hdr
*ec_hdr
)
851 dbg_io("write EC header to PEB %d", pnum
);
852 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
854 ec_hdr
->magic
= cpu_to_be32(UBI_EC_HDR_MAGIC
);
855 ec_hdr
->version
= UBI_VERSION
;
856 ec_hdr
->vid_hdr_offset
= cpu_to_be32(ubi
->vid_hdr_offset
);
857 ec_hdr
->data_offset
= cpu_to_be32(ubi
->leb_start
);
858 ec_hdr
->image_seq
= cpu_to_be32(ubi
->image_seq
);
859 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
860 ec_hdr
->hdr_crc
= cpu_to_be32(crc
);
862 err
= self_check_ec_hdr(ubi
, pnum
, ec_hdr
);
866 if (ubi_dbg_power_cut(ubi
, POWER_CUT_EC_WRITE
))
869 err
= ubi_io_write(ubi
, ec_hdr
, pnum
, 0, ubi
->ec_hdr_alsize
);
874 * validate_vid_hdr - validate a volume identifier header.
875 * @ubi: UBI device description object
876 * @vid_hdr: the volume identifier header to check
878 * This function checks that data stored in the volume identifier header
879 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
881 static int validate_vid_hdr(const struct ubi_device
*ubi
,
882 const struct ubi_vid_hdr
*vid_hdr
)
884 int vol_type
= vid_hdr
->vol_type
;
885 int copy_flag
= vid_hdr
->copy_flag
;
886 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
887 int lnum
= be32_to_cpu(vid_hdr
->lnum
);
888 int compat
= vid_hdr
->compat
;
889 int data_size
= be32_to_cpu(vid_hdr
->data_size
);
890 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
891 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
892 int data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
893 int usable_leb_size
= ubi
->leb_size
- data_pad
;
895 if (copy_flag
!= 0 && copy_flag
!= 1) {
896 ubi_err(ubi
, "bad copy_flag");
900 if (vol_id
< 0 || lnum
< 0 || data_size
< 0 || used_ebs
< 0 ||
902 ubi_err(ubi
, "negative values");
906 if (vol_id
>= UBI_MAX_VOLUMES
&& vol_id
< UBI_INTERNAL_VOL_START
) {
907 ubi_err(ubi
, "bad vol_id");
911 if (vol_id
< UBI_INTERNAL_VOL_START
&& compat
!= 0) {
912 ubi_err(ubi
, "bad compat");
916 if (vol_id
>= UBI_INTERNAL_VOL_START
&& compat
!= UBI_COMPAT_DELETE
&&
917 compat
!= UBI_COMPAT_RO
&& compat
!= UBI_COMPAT_PRESERVE
&&
918 compat
!= UBI_COMPAT_REJECT
) {
919 ubi_err(ubi
, "bad compat");
923 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
924 ubi_err(ubi
, "bad vol_type");
928 if (data_pad
>= ubi
->leb_size
/ 2) {
929 ubi_err(ubi
, "bad data_pad");
933 if (data_size
> ubi
->leb_size
) {
934 ubi_err(ubi
, "bad data_size");
938 if (vol_type
== UBI_VID_STATIC
) {
940 * Although from high-level point of view static volumes may
941 * contain zero bytes of data, but no VID headers can contain
942 * zero at these fields, because they empty volumes do not have
943 * mapped logical eraseblocks.
946 ubi_err(ubi
, "zero used_ebs");
949 if (data_size
== 0) {
950 ubi_err(ubi
, "zero data_size");
953 if (lnum
< used_ebs
- 1) {
954 if (data_size
!= usable_leb_size
) {
955 ubi_err(ubi
, "bad data_size");
958 } else if (lnum
== used_ebs
- 1) {
959 if (data_size
== 0) {
960 ubi_err(ubi
, "bad data_size at last LEB");
964 ubi_err(ubi
, "too high lnum");
968 if (copy_flag
== 0) {
970 ubi_err(ubi
, "non-zero data CRC");
973 if (data_size
!= 0) {
974 ubi_err(ubi
, "non-zero data_size");
978 if (data_size
== 0) {
979 ubi_err(ubi
, "zero data_size of copy");
984 ubi_err(ubi
, "bad used_ebs");
992 ubi_err(ubi
, "bad VID header");
993 ubi_dump_vid_hdr(vid_hdr
);
999 * ubi_io_read_vid_hdr - read and check a volume identifier header.
1000 * @ubi: UBI device description object
1001 * @pnum: physical eraseblock number to read from
1002 * @vidb: the volume identifier buffer to store data in
1003 * @verbose: be verbose if the header is corrupted or wasn't found
1005 * This function reads the volume identifier header from physical eraseblock
1006 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
1007 * volume identifier header. The error codes are the same as in
1008 * 'ubi_io_read_ec_hdr()'.
1010 * Note, the implementation of this function is also very similar to
1011 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1013 int ubi_io_read_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1014 struct ubi_vid_io_buf
*vidb
, int verbose
)
1017 uint32_t crc
, magic
, hdr_crc
;
1018 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1019 void *p
= vidb
->buffer
;
1021 dbg_io("read VID header from PEB %d", pnum
);
1022 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1024 read_err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1025 ubi
->vid_hdr_shift
+ UBI_VID_HDR_SIZE
);
1026 if (read_err
&& read_err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(read_err
))
1029 magic
= be32_to_cpu(vid_hdr
->magic
);
1030 if (magic
!= UBI_VID_HDR_MAGIC
) {
1031 if (mtd_is_eccerr(read_err
))
1032 return UBI_IO_BAD_HDR_EBADMSG
;
1034 if (ubi_check_pattern(vid_hdr
, 0xFF, UBI_VID_HDR_SIZE
)) {
1036 ubi_warn(ubi
, "no VID header found at PEB %d, only 0xFF bytes",
1038 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1043 return UBI_IO_FF_BITFLIPS
;
1047 ubi_warn(ubi
, "bad magic number at PEB %d: %08x instead of %08x",
1048 pnum
, magic
, UBI_VID_HDR_MAGIC
);
1049 ubi_dump_vid_hdr(vid_hdr
);
1051 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1052 pnum
, magic
, UBI_VID_HDR_MAGIC
);
1053 return UBI_IO_BAD_HDR
;
1056 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1057 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1059 if (hdr_crc
!= crc
) {
1061 ubi_warn(ubi
, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1062 pnum
, crc
, hdr_crc
);
1063 ubi_dump_vid_hdr(vid_hdr
);
1065 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1066 pnum
, crc
, hdr_crc
);
1068 return UBI_IO_BAD_HDR
;
1070 return UBI_IO_BAD_HDR_EBADMSG
;
1073 err
= validate_vid_hdr(ubi
, vid_hdr
);
1075 ubi_err(ubi
, "validation failed for PEB %d", pnum
);
1079 return read_err
? UBI_IO_BITFLIPS
: 0;
1083 * ubi_io_write_vid_hdr - write a volume identifier header.
1084 * @ubi: UBI device description object
1085 * @pnum: the physical eraseblock number to write to
1086 * @vidb: the volume identifier buffer to write
1088 * This function writes the volume identifier header described by @vid_hdr to
1089 * physical eraseblock @pnum. This function automatically fills the
1090 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1091 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1093 * This function returns zero in case of success and a negative error code in
1094 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1097 int ubi_io_write_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1098 struct ubi_vid_io_buf
*vidb
)
1100 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1103 void *p
= vidb
->buffer
;
1105 dbg_io("write VID header to PEB %d", pnum
);
1106 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1108 err
= self_check_peb_ec_hdr(ubi
, pnum
);
1112 vid_hdr
->magic
= cpu_to_be32(UBI_VID_HDR_MAGIC
);
1113 vid_hdr
->version
= UBI_VERSION
;
1114 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1115 vid_hdr
->hdr_crc
= cpu_to_be32(crc
);
1117 err
= self_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1121 if (ubi_dbg_power_cut(ubi
, POWER_CUT_VID_WRITE
))
1124 err
= ubi_io_write(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1125 ubi
->vid_hdr_alsize
);
1130 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1131 * @ubi: UBI device description object
1132 * @pnum: physical eraseblock number to check
1134 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1135 * it is bad and a negative error code if an error occurred.
1137 static int self_check_not_bad(const struct ubi_device
*ubi
, int pnum
)
1141 if (!ubi_dbg_chk_io(ubi
))
1144 err
= ubi_io_is_bad(ubi
, pnum
);
1148 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1150 return err
> 0 ? -EINVAL
: err
;
1154 * self_check_ec_hdr - check if an erase counter header is all right.
1155 * @ubi: UBI device description object
1156 * @pnum: physical eraseblock number the erase counter header belongs to
1157 * @ec_hdr: the erase counter header to check
1159 * This function returns zero if the erase counter header contains valid
1160 * values, and %-EINVAL if not.
1162 static int self_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
1163 const struct ubi_ec_hdr
*ec_hdr
)
1168 if (!ubi_dbg_chk_io(ubi
))
1171 magic
= be32_to_cpu(ec_hdr
->magic
);
1172 if (magic
!= UBI_EC_HDR_MAGIC
) {
1173 ubi_err(ubi
, "bad magic %#08x, must be %#08x",
1174 magic
, UBI_EC_HDR_MAGIC
);
1178 err
= validate_ec_hdr(ubi
, ec_hdr
);
1180 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1187 ubi_dump_ec_hdr(ec_hdr
);
1193 * self_check_peb_ec_hdr - check erase counter header.
1194 * @ubi: UBI device description object
1195 * @pnum: the physical eraseblock number to check
1197 * This function returns zero if the erase counter header is all right and and
1198 * a negative error code if not or if an error occurred.
1200 static int self_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
)
1203 uint32_t crc
, hdr_crc
;
1204 struct ubi_ec_hdr
*ec_hdr
;
1206 if (!ubi_dbg_chk_io(ubi
))
1209 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1213 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
1214 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
1217 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
1218 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
1219 if (hdr_crc
!= crc
) {
1220 ubi_err(ubi
, "bad CRC, calculated %#08x, read %#08x",
1222 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1223 ubi_dump_ec_hdr(ec_hdr
);
1229 err
= self_check_ec_hdr(ubi
, pnum
, ec_hdr
);
1237 * self_check_vid_hdr - check that a volume identifier header is all right.
1238 * @ubi: UBI device description object
1239 * @pnum: physical eraseblock number the volume identifier header belongs to
1240 * @vid_hdr: the volume identifier header to check
1242 * This function returns zero if the volume identifier header is all right, and
1245 static int self_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
1246 const struct ubi_vid_hdr
*vid_hdr
)
1251 if (!ubi_dbg_chk_io(ubi
))
1254 magic
= be32_to_cpu(vid_hdr
->magic
);
1255 if (magic
!= UBI_VID_HDR_MAGIC
) {
1256 ubi_err(ubi
, "bad VID header magic %#08x at PEB %d, must be %#08x",
1257 magic
, pnum
, UBI_VID_HDR_MAGIC
);
1261 err
= validate_vid_hdr(ubi
, vid_hdr
);
1263 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1270 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1271 ubi_dump_vid_hdr(vid_hdr
);
1278 * self_check_peb_vid_hdr - check volume identifier header.
1279 * @ubi: UBI device description object
1280 * @pnum: the physical eraseblock number to check
1282 * This function returns zero if the volume identifier header is all right,
1283 * and a negative error code if not or if an error occurred.
1285 static int self_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
)
1288 uint32_t crc
, hdr_crc
;
1289 struct ubi_vid_io_buf
*vidb
;
1290 struct ubi_vid_hdr
*vid_hdr
;
1293 if (!ubi_dbg_chk_io(ubi
))
1296 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1300 vid_hdr
= ubi_get_vid_hdr(vidb
);
1302 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1303 ubi
->vid_hdr_alsize
);
1304 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
1307 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1308 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1309 if (hdr_crc
!= crc
) {
1310 ubi_err(ubi
, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1311 pnum
, crc
, hdr_crc
);
1312 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1313 ubi_dump_vid_hdr(vid_hdr
);
1319 err
= self_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1322 ubi_free_vid_buf(vidb
);
1327 * self_check_write - make sure write succeeded.
1328 * @ubi: UBI device description object
1329 * @buf: buffer with data which were written
1330 * @pnum: physical eraseblock number the data were written to
1331 * @offset: offset within the physical eraseblock the data were written to
1332 * @len: how many bytes were written
1334 * This functions reads data which were recently written and compares it with
1335 * the original data buffer - the data have to match. Returns zero if the data
1336 * match and a negative error code if not or in case of failure.
1338 static int self_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
1339 int offset
, int len
)
1344 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1346 if (!ubi_dbg_chk_io(ubi
))
1349 buf1
= __vmalloc(len
, GFP_NOFS
, PAGE_KERNEL
);
1351 ubi_err(ubi
, "cannot allocate memory to check writes");
1355 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf1
);
1356 if (err
&& !mtd_is_bitflip(err
))
1359 for (i
= 0; i
< len
; i
++) {
1360 uint8_t c
= ((uint8_t *)buf
)[i
];
1361 uint8_t c1
= ((uint8_t *)buf1
)[i
];
1367 ubi_err(ubi
, "self-check failed for PEB %d:%d, len %d",
1369 ubi_msg(ubi
, "data differ at position %d", i
);
1370 dump_len
= max_t(int, 128, len
- i
);
1371 ubi_msg(ubi
, "hex dump of the original buffer from %d to %d",
1373 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1374 buf
+ i
, dump_len
, 1);
1375 ubi_msg(ubi
, "hex dump of the read buffer from %d to %d",
1377 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1378 buf1
+ i
, dump_len
, 1);
1393 * ubi_self_check_all_ff - check that a region of flash is empty.
1394 * @ubi: UBI device description object
1395 * @pnum: the physical eraseblock number to check
1396 * @offset: the starting offset within the physical eraseblock to check
1397 * @len: the length of the region to check
1399 * This function returns zero if only 0xFF bytes are present at offset
1400 * @offset of the physical eraseblock @pnum, and a negative error code if not
1401 * or if an error occurred.
1403 int ubi_self_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
, int len
)
1408 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1410 if (!ubi_dbg_chk_io(ubi
))
1413 buf
= __vmalloc(len
, GFP_NOFS
, PAGE_KERNEL
);
1415 ubi_err(ubi
, "cannot allocate memory to check for 0xFFs");
1419 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf
);
1420 if (err
&& !mtd_is_bitflip(err
)) {
1421 ubi_err(ubi
, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1422 err
, len
, pnum
, offset
, read
);
1426 err
= ubi_check_pattern(buf
, 0xFF, len
);
1428 ubi_err(ubi
, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1437 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1438 ubi_msg(ubi
, "hex dump of the %d-%d region", offset
, offset
+ len
);
1439 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1, buf
, len
, 1);