x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / net / ethernet / agere / et131x.c
blob87a11b9f0ea5beab9a97493e23ae901f6d390346
1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *------------------------------------------------------------------------------
12 * SOFTWARE LICENSE
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
38 * Disclaimer
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
82 #include "et131x.h"
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
101 /* ISR defines */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
110 #define INT_MASK_DISABLE 0xffffffff
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER 0x00200000
143 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
146 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS 0xA4
150 #define ET1310_PCI_EEPROM_STATUS 0xB2
151 #define ET1310_PCI_ACK_NACK 0xC0
152 #define ET1310_PCI_REPLAY 0xC2
153 #define ET1310_PCI_L0L1LATENCY 0xCF
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
162 #define PARM_RX_NUM_BUFS_DEF 4
163 #define PARM_RX_TIME_INT_DEF 10
164 #define PARM_RX_MEM_END_DEF 0x2bc
165 #define PARM_TX_TIME_INT_DEF 40
166 #define PARM_TX_NUM_BUFS_DEF 4
167 #define PARM_DMA_CACHE_DEF 0
169 /* RX defines */
170 #define FBR_CHUNKS 32
171 #define MAX_DESC_PER_RING_RX 1024
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK 40
175 #define NIC_DEFAULT_NUM_RFD 1024
176 #define NUM_FBRS 2
178 #define MAX_PACKETS_HANDLED 256
179 #define ET131X_MIN_MTU 64
180 #define ET131X_MAX_MTU 9216
182 #define ALCATEL_MULTICAST_PKT 0x01000000
183 #define ALCATEL_BROADCAST_PKT 0x02000000
185 /* typedefs for Free Buffer Descriptors */
186 struct fbr_desc {
187 u32 addr_lo;
188 u32 addr_hi;
189 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
192 /* Packet Status Ring Descriptors
194 * Word 0:
196 * top 16 bits are from the Alcatel Status Word as enumerated in
197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
199 * 0: hp hash pass
200 * 1: ipa IP checksum assist
201 * 2: ipp IP checksum pass
202 * 3: tcpa TCP checksum assist
203 * 4: tcpp TCP checksum pass
204 * 5: wol WOL Event
205 * 6: rxmac_error RXMAC Error Indicator
206 * 7: drop Drop packet
207 * 8: ft Frame Truncated
208 * 9: jp Jumbo Packet
209 * 10: vp VLAN Packet
210 * 11-15: unused
211 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
212 * 17: asw_RX_DV_event short receive event detected
213 * 18: asw_false_carrier_event bad carrier since last good packet
214 * 19: asw_code_err one or more nibbles signalled as errors
215 * 20: asw_CRC_err CRC error
216 * 21: asw_len_chk_err frame length field incorrect
217 * 22: asw_too_long frame length > 1518 bytes
218 * 23: asw_OK valid CRC + no code error
219 * 24: asw_multicast has a multicast address
220 * 25: asw_broadcast has a broadcast address
221 * 26: asw_dribble_nibble spurious bits after EOP
222 * 27: asw_control_frame is a control frame
223 * 28: asw_pause_frame is a pause frame
224 * 29: asw_unsupported_op unsupported OP code
225 * 30: asw_VLAN_tag VLAN tag detected
226 * 31: asw_long_evt Rx long event
228 * Word 1:
229 * 0-15: length length in bytes
230 * 16-25: bi Buffer Index
231 * 26-27: ri Ring Index
232 * 28-31: reserved
234 struct pkt_stat_desc {
235 u32 word0;
236 u32 word1;
239 /* Typedefs for the RX DMA status word */
241 /* rx status word 0 holds part of the status bits of the Rx DMA engine
242 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
243 * which contains the Free Buffer ring 0 and 1 available offset.
245 * bit 0-9 FBR1 offset
246 * bit 10 Wrap flag for FBR1
247 * bit 16-25 FBR0 offset
248 * bit 26 Wrap flag for FBR0
251 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
252 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
253 * which contains the Packet Status Ring available offset.
255 * bit 0-15 reserved
256 * bit 16-27 PSRoffset
257 * bit 28 PSRwrap
258 * bit 29-31 unused
261 /* struct rx_status_block is a structure representing the status of the Rx
262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
264 struct rx_status_block {
265 u32 word0;
266 u32 word1;
269 /* Structure for look-up table holding free buffer ring pointers, addresses
270 * and state.
272 struct fbr_lookup {
273 void *virt[MAX_DESC_PER_RING_RX];
274 u32 bus_high[MAX_DESC_PER_RING_RX];
275 u32 bus_low[MAX_DESC_PER_RING_RX];
276 void *ring_virtaddr;
277 dma_addr_t ring_physaddr;
278 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
279 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
280 u32 local_full;
281 u32 num_entries;
282 dma_addr_t buffsize;
285 /* struct rx_ring is the structure representing the adaptor's local
286 * reference(s) to the rings
288 struct rx_ring {
289 struct fbr_lookup *fbr[NUM_FBRS];
290 void *ps_ring_virtaddr;
291 dma_addr_t ps_ring_physaddr;
292 u32 local_psr_full;
293 u32 psr_entries;
295 struct rx_status_block *rx_status_block;
296 dma_addr_t rx_status_bus;
298 struct list_head recv_list;
299 u32 num_ready_recv;
301 u32 num_rfd;
303 bool unfinished_receives;
306 /* TX defines */
307 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
309 * 0-15: length of packet
310 * 16-27: VLAN tag
311 * 28: VLAN CFI
312 * 29-31: VLAN priority
314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
316 * 0: last packet in the sequence
317 * 1: first packet in the sequence
318 * 2: interrupt the processor when this pkt sent
319 * 3: Control word - no packet data
320 * 4: Issue half-duplex backpressure : XON/XOFF
321 * 5: send pause frame
322 * 6: Tx frame has error
323 * 7: append CRC
324 * 8: MAC override
325 * 9: pad packet
326 * 10: Packet is a Huge packet
327 * 11: append VLAN tag
328 * 12: IP checksum assist
329 * 13: TCP checksum assist
330 * 14: UDP checksum assist
332 #define TXDESC_FLAG_LASTPKT 0x0001
333 #define TXDESC_FLAG_FIRSTPKT 0x0002
334 #define TXDESC_FLAG_INTPROC 0x0004
336 /* struct tx_desc represents each descriptor on the ring */
337 struct tx_desc {
338 u32 addr_hi;
339 u32 addr_lo;
340 u32 len_vlan; /* control words how to xmit the */
341 u32 flags; /* data (detailed above) */
344 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
345 * by 0x101c / 0x1020. This is a DMA10 type
348 /* TCB (Transmit Control Block: Host Side) */
349 struct tcb {
350 struct tcb *next; /* Next entry in ring */
351 u32 count; /* Used to spot stuck/lost packets */
352 u32 stale; /* Used to spot stuck/lost packets */
353 struct sk_buff *skb; /* Network skb we are tied to */
354 u32 index; /* Ring indexes */
355 u32 index_start;
358 /* Structure representing our local reference(s) to the ring */
359 struct tx_ring {
360 /* TCB (Transmit Control Block) memory and lists */
361 struct tcb *tcb_ring;
363 /* List of TCBs that are ready to be used */
364 struct tcb *tcb_qhead;
365 struct tcb *tcb_qtail;
367 /* list of TCBs that are currently being sent. */
368 struct tcb *send_head;
369 struct tcb *send_tail;
370 int used;
372 /* The actual descriptor ring */
373 struct tx_desc *tx_desc_ring;
374 dma_addr_t tx_desc_ring_pa;
376 /* send_idx indicates where we last wrote to in the descriptor ring. */
377 u32 send_idx;
379 /* The location of the write-back status block */
380 u32 *tx_status;
381 dma_addr_t tx_status_pa;
383 /* Packets since the last IRQ: used for interrupt coalescing */
384 int since_irq;
387 /* Do not change these values: if changed, then change also in respective
388 * TXdma and Rxdma engines
390 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
391 #define NUM_TCB 64
393 /* These values are all superseded by registry entries to facilitate tuning.
394 * Once the desired performance has been achieved, the optimal registry values
395 * should be re-populated to these #defines:
397 #define TX_ERROR_PERIOD 1000
399 #define LO_MARK_PERCENT_FOR_PSR 15
400 #define LO_MARK_PERCENT_FOR_RX 15
402 /* RFD (Receive Frame Descriptor) */
403 struct rfd {
404 struct list_head list_node;
405 struct sk_buff *skb;
406 u32 len; /* total size of receive frame */
407 u16 bufferindex;
408 u8 ringindex;
411 /* Flow Control */
412 #define FLOW_BOTH 0
413 #define FLOW_TXONLY 1
414 #define FLOW_RXONLY 2
415 #define FLOW_NONE 3
417 /* Struct to define some device statistics */
418 struct ce_stats {
419 u32 multicast_pkts_rcvd;
420 u32 rcvd_pkts_dropped;
422 u32 tx_underflows;
423 u32 tx_collisions;
424 u32 tx_excessive_collisions;
425 u32 tx_first_collisions;
426 u32 tx_late_collisions;
427 u32 tx_max_pkt_errs;
428 u32 tx_deferred;
430 u32 rx_overflows;
431 u32 rx_length_errs;
432 u32 rx_align_errs;
433 u32 rx_crc_errs;
434 u32 rx_code_violations;
435 u32 rx_other_errs;
437 u32 interrupt_status;
440 /* The private adapter structure */
441 struct et131x_adapter {
442 struct net_device *netdev;
443 struct pci_dev *pdev;
444 struct mii_bus *mii_bus;
445 struct napi_struct napi;
447 /* Flags that indicate current state of the adapter */
448 u32 flags;
450 /* local link state, to determine if a state change has occurred */
451 int link;
453 /* Configuration */
454 u8 rom_addr[ETH_ALEN];
455 u8 addr[ETH_ALEN];
456 bool has_eeprom;
457 u8 eeprom_data[2];
459 spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
460 spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
461 spinlock_t rcv_lock; /* protects the rx_ring receive list */
463 /* Packet Filter and look ahead size */
464 u32 packet_filter;
466 /* multicast list */
467 u32 multicast_addr_count;
468 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
470 /* Pointer to the device's PCI register space */
471 struct address_map __iomem *regs;
473 /* Registry parameters */
474 u8 wanted_flow; /* Flow we want for 802.3x flow control */
475 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
477 /* Derived from the registry: */
478 u8 flow; /* flow control validated by the far-end */
480 /* Minimize init-time */
481 struct timer_list error_timer;
483 /* variable putting the phy into coma mode when boot up with no cable
484 * plugged in after 5 seconds
486 u8 boot_coma;
488 /* Tx Memory Variables */
489 struct tx_ring tx_ring;
491 /* Rx Memory Variables */
492 struct rx_ring rx_ring;
494 struct ce_stats stats;
497 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
499 u32 reg;
500 int i;
502 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
503 * bits 7,1:0 both equal to 1, at least once after reset.
504 * Subsequent operations need only to check that bits 1:0 are equal
505 * to 1 prior to starting a single byte read/write
507 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
508 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
509 return -EIO;
511 /* I2C idle and Phy Queue Avail both true */
512 if ((reg & 0x3000) == 0x3000) {
513 if (status)
514 *status = reg;
515 return reg & 0xFF;
518 return -ETIMEDOUT;
521 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
523 struct pci_dev *pdev = adapter->pdev;
524 int index = 0;
525 int retries;
526 int err = 0;
527 int writeok = 0;
528 u32 status;
529 u32 val = 0;
531 /* For an EEPROM, an I2C single byte write is defined as a START
532 * condition followed by the device address, EEPROM address, one byte
533 * of data and a STOP condition. The STOP condition will trigger the
534 * EEPROM's internally timed write cycle to the nonvolatile memory.
535 * All inputs are disabled during this write cycle and the EEPROM will
536 * not respond to any access until the internal write is complete.
538 err = eeprom_wait_ready(pdev, NULL);
539 if (err < 0)
540 return err;
542 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
543 * and bits 1:0 both =0. Bit 5 should be set according to the
544 * type of EEPROM being accessed (1=two byte addressing, 0=one
545 * byte addressing).
547 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
548 LBCIF_CONTROL_LBCIF_ENABLE |
549 LBCIF_CONTROL_I2C_WRITE))
550 return -EIO;
552 /* Prepare EEPROM address for Step 3 */
553 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
554 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
555 break;
556 /* Write the data to the LBCIF Data Register (the I2C write
557 * will begin).
559 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
560 break;
561 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
562 * 1:0 are both equal to 1, the I2C write has completed and the
563 * internal write cycle of the EEPROM is about to start.
564 * (bits 1:0 = 01 is a legal state while waiting from both
565 * equal to 1, but bits 1:0 = 10 is invalid and implies that
566 * something is broken).
568 err = eeprom_wait_ready(pdev, &status);
569 if (err < 0)
570 return 0;
572 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
573 * an error has occurred.Don't break here if we are revision
574 * 1, this is so we do a blind write for load bug.
576 if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
577 adapter->pdev->revision == 0)
578 break;
580 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
581 * ACK error has occurred on the address phase of the write.
582 * This could be due to an actual hardware failure or the
583 * EEPROM may still be in its internal write cycle from a
584 * previous write. This write operation was ignored and must be
585 *repeated later.
587 if (status & LBCIF_STATUS_ACK_ERROR) {
588 /* This could be due to an actual hardware failure
589 * or the EEPROM may still be in its internal write
590 * cycle from a previous write. This write operation
591 * was ignored and must be repeated later.
593 udelay(10);
594 continue;
597 writeok = 1;
598 break;
601 udelay(10);
603 while (1) {
604 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
605 LBCIF_CONTROL_LBCIF_ENABLE))
606 writeok = 0;
608 /* Do read until internal ACK_ERROR goes away meaning write
609 * completed
611 do {
612 pci_write_config_dword(pdev,
613 LBCIF_ADDRESS_REGISTER,
614 addr);
615 do {
616 pci_read_config_dword(pdev,
617 LBCIF_DATA_REGISTER,
618 &val);
619 } while ((val & 0x00010000) == 0);
620 } while (val & 0x00040000);
622 if ((val & 0xFF00) != 0xC000 || index == 10000)
623 break;
624 index++;
626 return writeok ? 0 : -EIO;
629 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
631 struct pci_dev *pdev = adapter->pdev;
632 int err;
633 u32 status;
635 /* A single byte read is similar to the single byte write, with the
636 * exception of the data flow:
638 err = eeprom_wait_ready(pdev, NULL);
639 if (err < 0)
640 return err;
641 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
642 * and bits 1:0 both =0. Bit 5 should be set according to the type
643 * of EEPROM being accessed (1=two byte addressing, 0=one byte
644 * addressing).
646 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
647 LBCIF_CONTROL_LBCIF_ENABLE))
648 return -EIO;
649 /* Write the address to the LBCIF Address Register (I2C read will
650 * begin).
652 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
653 return -EIO;
654 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
655 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
656 * has occurred).
658 err = eeprom_wait_ready(pdev, &status);
659 if (err < 0)
660 return err;
661 /* Regardless of error status, read data byte from LBCIF Data
662 * Register.
664 *pdata = err;
666 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
669 static int et131x_init_eeprom(struct et131x_adapter *adapter)
671 struct pci_dev *pdev = adapter->pdev;
672 u8 eestatus;
674 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
676 /* THIS IS A WORKAROUND:
677 * I need to call this function twice to get my card in a
678 * LG M1 Express Dual running. I tried also a msleep before this
679 * function, because I thought there could be some time conditions
680 * but it didn't work. Call the whole function twice also work.
682 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
683 dev_err(&pdev->dev,
684 "Could not read PCI config space for EEPROM Status\n");
685 return -EIO;
688 /* Determine if the error(s) we care about are present. If they are
689 * present we need to fail.
691 if (eestatus & 0x4C) {
692 int write_failed = 0;
694 if (pdev->revision == 0x01) {
695 int i;
696 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
698 /* Re-write the first 4 bytes if we have an eeprom
699 * present and the revision id is 1, this fixes the
700 * corruption seen with 1310 B Silicon
702 for (i = 0; i < 3; i++)
703 if (eeprom_write(adapter, i, eedata[i]) < 0)
704 write_failed = 1;
706 if (pdev->revision != 0x01 || write_failed) {
707 dev_err(&pdev->dev,
708 "Fatal EEPROM Status Error - 0x%04x\n",
709 eestatus);
711 /* This error could mean that there was an error
712 * reading the eeprom or that the eeprom doesn't exist.
713 * We will treat each case the same and not try to
714 * gather additional information that normally would
715 * come from the eeprom, like MAC Address
717 adapter->has_eeprom = 0;
718 return -EIO;
721 adapter->has_eeprom = 1;
723 /* Read the EEPROM for information regarding LED behavior. Refer to
724 * et131x_xcvr_init() for its use.
726 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
727 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
729 if (adapter->eeprom_data[0] != 0xcd)
730 /* Disable all optional features */
731 adapter->eeprom_data[1] = 0x00;
733 return 0;
736 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
738 /* Setup the receive dma configuration register for normal operation */
739 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
740 struct rx_ring *rx_ring = &adapter->rx_ring;
742 if (rx_ring->fbr[1]->buffsize == 4096)
743 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
744 else if (rx_ring->fbr[1]->buffsize == 8192)
745 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
746 else if (rx_ring->fbr[1]->buffsize == 16384)
747 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
749 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
750 if (rx_ring->fbr[0]->buffsize == 256)
751 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
752 else if (rx_ring->fbr[0]->buffsize == 512)
753 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
754 else if (rx_ring->fbr[0]->buffsize == 1024)
755 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
756 writel(csr, &adapter->regs->rxdma.csr);
758 csr = readl(&adapter->regs->rxdma.csr);
759 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
760 udelay(5);
761 csr = readl(&adapter->regs->rxdma.csr);
762 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
763 dev_err(&adapter->pdev->dev,
764 "RX Dma failed to exit halt state. CSR 0x%08x\n",
765 csr);
770 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
772 u32 csr;
773 /* Setup the receive dma configuration register */
774 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
775 &adapter->regs->rxdma.csr);
776 csr = readl(&adapter->regs->rxdma.csr);
777 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
778 udelay(5);
779 csr = readl(&adapter->regs->rxdma.csr);
780 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
781 dev_err(&adapter->pdev->dev,
782 "RX Dma failed to enter halt state. CSR 0x%08x\n",
783 csr);
787 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
789 /* Setup the transmit dma configuration register for normal
790 * operation
792 writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
793 &adapter->regs->txdma.csr);
796 static inline void add_10bit(u32 *v, int n)
798 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
801 static inline void add_12bit(u32 *v, int n)
803 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
806 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
808 struct mac_regs __iomem *macregs = &adapter->regs->mac;
809 u32 station1;
810 u32 station2;
811 u32 ipg;
813 /* First we need to reset everything. Write to MAC configuration
814 * register 1 to perform reset.
816 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
817 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
818 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
819 &macregs->cfg1);
821 /* Next lets configure the MAC Inter-packet gap register */
822 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
823 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
824 writel(ipg, &macregs->ipg);
826 /* Next lets configure the MAC Half Duplex register */
827 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
828 writel(0x00A1F037, &macregs->hfdp);
830 /* Next lets configure the MAC Interface Control register */
831 writel(0, &macregs->if_ctrl);
833 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
835 /* Next lets configure the MAC Station Address register. These
836 * values are read from the EEPROM during initialization and stored
837 * in the adapter structure. We write what is stored in the adapter
838 * structure to the MAC Station Address registers high and low. This
839 * station address is used for generating and checking pause control
840 * packets.
842 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
843 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
844 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
845 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
846 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
847 adapter->addr[2];
848 writel(station1, &macregs->station_addr_1);
849 writel(station2, &macregs->station_addr_2);
851 /* Max ethernet packet in bytes that will be passed by the mac without
852 * being truncated. Allow the MAC to pass 4 more than our max packet
853 * size. This is 4 for the Ethernet CRC.
855 * Packets larger than (registry_jumbo_packet) that do not contain a
856 * VLAN ID will be dropped by the Rx function.
858 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
860 /* clear out MAC config reset */
861 writel(0, &macregs->cfg1);
864 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
866 int32_t delay = 0;
867 struct mac_regs __iomem *mac = &adapter->regs->mac;
868 struct phy_device *phydev = adapter->netdev->phydev;
869 u32 cfg1;
870 u32 cfg2;
871 u32 ifctrl;
872 u32 ctl;
874 ctl = readl(&adapter->regs->txmac.ctl);
875 cfg1 = readl(&mac->cfg1);
876 cfg2 = readl(&mac->cfg2);
877 ifctrl = readl(&mac->if_ctrl);
879 /* Set up the if mode bits */
880 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
881 if (phydev->speed == SPEED_1000) {
882 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
883 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
884 } else {
885 cfg2 |= ET_MAC_CFG2_IFMODE_100;
886 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
889 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
890 ET_MAC_CFG1_TX_FLOW;
892 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
893 if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
894 cfg1 |= ET_MAC_CFG1_RX_FLOW;
895 writel(cfg1, &mac->cfg1);
897 /* Now we need to initialize the MAC Configuration 2 register */
898 /* preamble 7, check length, huge frame off, pad crc, crc enable
899 * full duplex off
901 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
902 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
903 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
904 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
905 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
906 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
908 if (phydev->duplex == DUPLEX_FULL)
909 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
911 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
912 if (phydev->duplex == DUPLEX_HALF)
913 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
915 writel(ifctrl, &mac->if_ctrl);
916 writel(cfg2, &mac->cfg2);
918 do {
919 udelay(10);
920 delay++;
921 cfg1 = readl(&mac->cfg1);
922 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
924 if (delay == 100) {
925 dev_warn(&adapter->pdev->dev,
926 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
927 cfg1);
930 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
931 writel(ctl, &adapter->regs->txmac.ctl);
933 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
934 et131x_rx_dma_enable(adapter);
935 et131x_tx_dma_enable(adapter);
939 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
941 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
943 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
946 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
948 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
949 u32 hash1 = 0;
950 u32 hash2 = 0;
951 u32 hash3 = 0;
952 u32 hash4 = 0;
953 u32 pm_csr;
955 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
956 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
957 * specified) then we should pass NO multi-cast addresses to the
958 * driver.
960 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
961 int i;
963 /* Loop through our multicast array and set up the device */
964 for (i = 0; i < adapter->multicast_addr_count; i++) {
965 u32 result;
967 result = ether_crc(6, adapter->multicast_list[i]);
969 result = (result & 0x3F800000) >> 23;
971 if (result < 32) {
972 hash1 |= (1 << result);
973 } else if ((31 < result) && (result < 64)) {
974 result -= 32;
975 hash2 |= (1 << result);
976 } else if ((63 < result) && (result < 96)) {
977 result -= 64;
978 hash3 |= (1 << result);
979 } else {
980 result -= 96;
981 hash4 |= (1 << result);
986 /* Write out the new hash to the device */
987 pm_csr = readl(&adapter->regs->global.pm_csr);
988 if (!et1310_in_phy_coma(adapter)) {
989 writel(hash1, &rxmac->multi_hash1);
990 writel(hash2, &rxmac->multi_hash2);
991 writel(hash3, &rxmac->multi_hash3);
992 writel(hash4, &rxmac->multi_hash4);
996 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
998 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
999 u32 uni_pf1;
1000 u32 uni_pf2;
1001 u32 uni_pf3;
1002 u32 pm_csr;
1004 /* Set up unicast packet filter reg 3 to be the first two octets of
1005 * the MAC address for both address
1007 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1008 * MAC address for second address
1010 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1011 * MAC address for first address
1013 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1014 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1015 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1016 adapter->addr[1];
1018 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1019 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1020 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1021 adapter->addr[5];
1023 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1024 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1025 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1026 adapter->addr[5];
1028 pm_csr = readl(&adapter->regs->global.pm_csr);
1029 if (!et1310_in_phy_coma(adapter)) {
1030 writel(uni_pf1, &rxmac->uni_pf_addr1);
1031 writel(uni_pf2, &rxmac->uni_pf_addr2);
1032 writel(uni_pf3, &rxmac->uni_pf_addr3);
1036 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1038 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1039 struct phy_device *phydev = adapter->netdev->phydev;
1040 u32 sa_lo;
1041 u32 sa_hi = 0;
1042 u32 pf_ctrl = 0;
1043 u32 __iomem *wolw;
1045 /* Disable the MAC while it is being configured (also disable WOL) */
1046 writel(0x8, &rxmac->ctrl);
1048 /* Initialize WOL to disabled. */
1049 writel(0, &rxmac->crc0);
1050 writel(0, &rxmac->crc12);
1051 writel(0, &rxmac->crc34);
1053 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1054 * its default Values of 0x00000000 because there are not WOL masks
1055 * as of this time.
1057 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1058 writel(0, wolw);
1060 /* Lets setup the WOL Source Address */
1061 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1062 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1063 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1064 adapter->addr[5];
1065 writel(sa_lo, &rxmac->sa_lo);
1067 sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1068 adapter->addr[1];
1069 writel(sa_hi, &rxmac->sa_hi);
1071 /* Disable all Packet Filtering */
1072 writel(0, &rxmac->pf_ctrl);
1074 /* Let's initialize the Unicast Packet filtering address */
1075 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1076 et1310_setup_device_for_unicast(adapter);
1077 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1078 } else {
1079 writel(0, &rxmac->uni_pf_addr1);
1080 writel(0, &rxmac->uni_pf_addr2);
1081 writel(0, &rxmac->uni_pf_addr3);
1084 /* Let's initialize the Multicast hash */
1085 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1086 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1087 et1310_setup_device_for_multicast(adapter);
1090 /* Runt packet filtering. Didn't work in version A silicon. */
1091 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1092 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1094 if (adapter->registry_jumbo_packet > 8192)
1095 /* In order to transmit jumbo packets greater than 8k, the
1096 * FIFO between RxMAC and RxDMA needs to be reduced in size
1097 * to (16k - Jumbo packet size). In order to implement this,
1098 * we must use "cut through" mode in the RxMAC, which chops
1099 * packets down into segments which are (max_size * 16). In
1100 * this case we selected 256 bytes, since this is the size of
1101 * the PCI-Express TLP's that the 1310 uses.
1103 * seg_en on, fc_en off, size 0x10
1105 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1106 else
1107 writel(0, &rxmac->mcif_ctrl_max_seg);
1109 writel(0, &rxmac->mcif_water_mark);
1110 writel(0, &rxmac->mif_ctrl);
1111 writel(0, &rxmac->space_avail);
1113 /* Initialize the the mif_ctrl register
1114 * bit 3: Receive code error. One or more nibbles were signaled as
1115 * errors during the reception of the packet. Clear this
1116 * bit in Gigabit, set it in 100Mbit. This was derived
1117 * experimentally at UNH.
1118 * bit 4: Receive CRC error. The packet's CRC did not match the
1119 * internally generated CRC.
1120 * bit 5: Receive length check error. Indicates that frame length
1121 * field value in the packet does not match the actual data
1122 * byte length and is not a type field.
1123 * bit 16: Receive frame truncated.
1124 * bit 17: Drop packet enable
1126 if (phydev && phydev->speed == SPEED_100)
1127 writel(0x30038, &rxmac->mif_ctrl);
1128 else
1129 writel(0x30030, &rxmac->mif_ctrl);
1131 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1132 * filter is always enabled since it is where the runt packets are
1133 * supposed to be dropped. For version A silicon, runt packet
1134 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1135 * but we still leave the packet filter on.
1137 writel(pf_ctrl, &rxmac->pf_ctrl);
1138 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1141 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1143 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1145 /* We need to update the Control Frame Parameters
1146 * cfpt - control frame pause timer set to 64 (0x40)
1147 * cfep - control frame extended pause timer set to 0x0
1149 if (adapter->flow == FLOW_NONE)
1150 writel(0, &txmac->cf_param);
1151 else
1152 writel(0x40, &txmac->cf_param);
1155 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1157 struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1158 u32 __iomem *reg;
1160 /* initialize all the macstat registers to zero on the device */
1161 for (reg = &macstat->txrx_0_64_byte_frames;
1162 reg <= &macstat->carry_reg2; reg++)
1163 writel(0, reg);
1165 /* Unmask any counters that we want to track the overflow of.
1166 * Initially this will be all counters. It may become clear later
1167 * that we do not need to track all counters.
1169 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1170 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1173 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1174 u8 reg, u16 *value)
1176 struct mac_regs __iomem *mac = &adapter->regs->mac;
1177 int status = 0;
1178 u32 delay = 0;
1179 u32 mii_addr;
1180 u32 mii_cmd;
1181 u32 mii_indicator;
1183 /* Save a local copy of the registers we are dealing with so we can
1184 * set them back
1186 mii_addr = readl(&mac->mii_mgmt_addr);
1187 mii_cmd = readl(&mac->mii_mgmt_cmd);
1189 /* Stop the current operation */
1190 writel(0, &mac->mii_mgmt_cmd);
1192 /* Set up the register we need to read from on the correct PHY */
1193 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1195 writel(0x1, &mac->mii_mgmt_cmd);
1197 do {
1198 udelay(50);
1199 delay++;
1200 mii_indicator = readl(&mac->mii_mgmt_indicator);
1201 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1203 /* If we hit the max delay, we could not read the register */
1204 if (delay == 50) {
1205 dev_warn(&adapter->pdev->dev,
1206 "reg 0x%08x could not be read\n", reg);
1207 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1208 mii_indicator);
1210 status = -EIO;
1211 goto out;
1214 /* If we hit here we were able to read the register and we need to
1215 * return the value to the caller
1217 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1219 out:
1220 /* Stop the read operation */
1221 writel(0, &mac->mii_mgmt_cmd);
1223 /* set the registers we touched back to the state at which we entered
1224 * this function
1226 writel(mii_addr, &mac->mii_mgmt_addr);
1227 writel(mii_cmd, &mac->mii_mgmt_cmd);
1229 return status;
1232 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1234 struct phy_device *phydev = adapter->netdev->phydev;
1236 if (!phydev)
1237 return -EIO;
1239 return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1242 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1243 u16 value)
1245 struct mac_regs __iomem *mac = &adapter->regs->mac;
1246 int status = 0;
1247 u32 delay = 0;
1248 u32 mii_addr;
1249 u32 mii_cmd;
1250 u32 mii_indicator;
1252 /* Save a local copy of the registers we are dealing with so we can
1253 * set them back
1255 mii_addr = readl(&mac->mii_mgmt_addr);
1256 mii_cmd = readl(&mac->mii_mgmt_cmd);
1258 /* Stop the current operation */
1259 writel(0, &mac->mii_mgmt_cmd);
1261 /* Set up the register we need to write to on the correct PHY */
1262 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1264 /* Add the value to write to the registers to the mac */
1265 writel(value, &mac->mii_mgmt_ctrl);
1267 do {
1268 udelay(50);
1269 delay++;
1270 mii_indicator = readl(&mac->mii_mgmt_indicator);
1271 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1273 /* If we hit the max delay, we could not write the register */
1274 if (delay == 100) {
1275 u16 tmp;
1277 dev_warn(&adapter->pdev->dev,
1278 "reg 0x%08x could not be written", reg);
1279 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1280 mii_indicator);
1281 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1282 readl(&mac->mii_mgmt_cmd));
1284 et131x_mii_read(adapter, reg, &tmp);
1286 status = -EIO;
1288 /* Stop the write operation */
1289 writel(0, &mac->mii_mgmt_cmd);
1291 /* set the registers we touched back to the state at which we entered
1292 * this function
1294 writel(mii_addr, &mac->mii_mgmt_addr);
1295 writel(mii_cmd, &mac->mii_mgmt_cmd);
1297 return status;
1300 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1301 u16 regnum,
1302 u16 bitnum,
1303 u8 *value)
1305 u16 reg;
1306 u16 mask = 1 << bitnum;
1308 et131x_mii_read(adapter, regnum, &reg);
1310 *value = (reg & mask) >> bitnum;
1313 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1315 struct phy_device *phydev = adapter->netdev->phydev;
1317 if (phydev->duplex == DUPLEX_HALF) {
1318 adapter->flow = FLOW_NONE;
1319 } else {
1320 char remote_pause, remote_async_pause;
1322 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1323 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1325 if (remote_pause && remote_async_pause) {
1326 adapter->flow = adapter->wanted_flow;
1327 } else if (remote_pause && !remote_async_pause) {
1328 if (adapter->wanted_flow == FLOW_BOTH)
1329 adapter->flow = FLOW_BOTH;
1330 else
1331 adapter->flow = FLOW_NONE;
1332 } else if (!remote_pause && !remote_async_pause) {
1333 adapter->flow = FLOW_NONE;
1334 } else {
1335 if (adapter->wanted_flow == FLOW_BOTH)
1336 adapter->flow = FLOW_RXONLY;
1337 else
1338 adapter->flow = FLOW_NONE;
1343 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1344 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1346 struct ce_stats *stats = &adapter->stats;
1347 struct macstat_regs __iomem *macstat =
1348 &adapter->regs->macstat;
1350 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1351 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1352 stats->tx_deferred += readl(&macstat->tx_deferred);
1353 stats->tx_excessive_collisions +=
1354 readl(&macstat->tx_multiple_collisions);
1355 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1356 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1357 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1359 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1360 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1361 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1362 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1363 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1364 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1365 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1368 /* et1310_handle_macstat_interrupt
1370 * One of the MACSTAT counters has wrapped. Update the local copy of
1371 * the statistics held in the adapter structure, checking the "wrap"
1372 * bit for each counter.
1374 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1376 u32 carry_reg1;
1377 u32 carry_reg2;
1379 /* Read the interrupt bits from the register(s). These are Clear On
1380 * Write.
1382 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1383 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1385 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1386 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1388 /* We need to do update the host copy of all the MAC_STAT counters.
1389 * For each counter, check it's overflow bit. If the overflow bit is
1390 * set, then increment the host version of the count by one complete
1391 * revolution of the counter. This routine is called when the counter
1392 * block indicates that one of the counters has wrapped.
1394 if (carry_reg1 & (1 << 14))
1395 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1396 if (carry_reg1 & (1 << 8))
1397 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1398 if (carry_reg1 & (1 << 7))
1399 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1400 if (carry_reg1 & (1 << 2))
1401 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1402 if (carry_reg1 & (1 << 6))
1403 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1404 if (carry_reg1 & (1 << 3))
1405 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1406 if (carry_reg1 & (1 << 0))
1407 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1408 if (carry_reg2 & (1 << 16))
1409 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1410 if (carry_reg2 & (1 << 15))
1411 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1412 if (carry_reg2 & (1 << 6))
1413 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1414 if (carry_reg2 & (1 << 8))
1415 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1416 if (carry_reg2 & (1 << 5))
1417 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1418 if (carry_reg2 & (1 << 4))
1419 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1420 if (carry_reg2 & (1 << 2))
1421 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1424 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1426 struct net_device *netdev = bus->priv;
1427 struct et131x_adapter *adapter = netdev_priv(netdev);
1428 u16 value;
1429 int ret;
1431 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1433 if (ret < 0)
1434 return ret;
1436 return value;
1439 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1440 int reg, u16 value)
1442 struct net_device *netdev = bus->priv;
1443 struct et131x_adapter *adapter = netdev_priv(netdev);
1445 return et131x_mii_write(adapter, phy_addr, reg, value);
1448 /* et1310_phy_power_switch - PHY power control
1449 * @adapter: device to control
1450 * @down: true for off/false for back on
1452 * one hundred, ten, one thousand megs
1453 * How would you like to have your LAN accessed
1454 * Can't you see that this code processed
1455 * Phy power, phy power..
1457 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1459 u16 data;
1460 struct phy_device *phydev = adapter->netdev->phydev;
1462 et131x_mii_read(adapter, MII_BMCR, &data);
1463 data &= ~BMCR_PDOWN;
1464 if (down)
1465 data |= BMCR_PDOWN;
1466 et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1469 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1470 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1472 u16 lcr2;
1473 struct phy_device *phydev = adapter->netdev->phydev;
1475 /* Set the LED behavior such that LED 1 indicates speed (off =
1476 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1477 * link and activity (on for link, blink off for activity).
1479 * NOTE: Some customizations have been added here for specific
1480 * vendors; The LED behavior is now determined by vendor data in the
1481 * EEPROM. However, the above description is the default.
1483 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1484 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1486 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1487 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1489 if ((adapter->eeprom_data[1] & 0x8) == 0)
1490 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1491 else
1492 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1494 et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1498 /* et131x_configure_global_regs - configure JAGCore global regs */
1499 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1501 struct global_regs __iomem *regs = &adapter->regs->global;
1503 writel(0, &regs->rxq_start_addr);
1504 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1506 if (adapter->registry_jumbo_packet < 2048) {
1507 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1508 * block of RAM that the driver can split between Tx
1509 * and Rx as it desires. Our default is to split it
1510 * 50/50:
1512 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1513 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1514 } else if (adapter->registry_jumbo_packet < 8192) {
1515 /* For jumbo packets > 2k but < 8k, split 50-50. */
1516 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1517 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1518 } else {
1519 /* 9216 is the only packet size greater than 8k that
1520 * is available. The Tx buffer has to be big enough
1521 * for one whole packet on the Tx side. We'll make
1522 * the Tx 9408, and give the rest to Rx
1524 writel(0x01b3, &regs->rxq_end_addr);
1525 writel(0x01b4, &regs->txq_start_addr);
1528 /* Initialize the loopback register. Disable all loopbacks. */
1529 writel(0, &regs->loopback);
1531 writel(0, &regs->msi_config);
1533 /* By default, disable the watchdog timer. It will be enabled when
1534 * a packet is queued.
1536 writel(0, &regs->watchdog_timer);
1539 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1540 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1542 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1543 struct rx_ring *rx_local = &adapter->rx_ring;
1544 struct fbr_desc *fbr_entry;
1545 u32 entry;
1546 u32 psr_num_des;
1547 unsigned long flags;
1548 u8 id;
1550 et131x_rx_dma_disable(adapter);
1552 /* Load the completion writeback physical address */
1553 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1554 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1556 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1558 /* Set the address and parameters of the packet status ring */
1559 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1560 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1561 writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1562 writel(0, &rx_dma->psr_full_offset);
1564 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1565 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1566 &rx_dma->psr_min_des);
1568 spin_lock_irqsave(&adapter->rcv_lock, flags);
1570 /* These local variables track the PSR in the adapter structure */
1571 rx_local->local_psr_full = 0;
1573 for (id = 0; id < NUM_FBRS; id++) {
1574 u32 __iomem *num_des;
1575 u32 __iomem *full_offset;
1576 u32 __iomem *min_des;
1577 u32 __iomem *base_hi;
1578 u32 __iomem *base_lo;
1579 struct fbr_lookup *fbr = rx_local->fbr[id];
1581 if (id == 0) {
1582 num_des = &rx_dma->fbr0_num_des;
1583 full_offset = &rx_dma->fbr0_full_offset;
1584 min_des = &rx_dma->fbr0_min_des;
1585 base_hi = &rx_dma->fbr0_base_hi;
1586 base_lo = &rx_dma->fbr0_base_lo;
1587 } else {
1588 num_des = &rx_dma->fbr1_num_des;
1589 full_offset = &rx_dma->fbr1_full_offset;
1590 min_des = &rx_dma->fbr1_min_des;
1591 base_hi = &rx_dma->fbr1_base_hi;
1592 base_lo = &rx_dma->fbr1_base_lo;
1595 /* Now's the best time to initialize FBR contents */
1596 fbr_entry = fbr->ring_virtaddr;
1597 for (entry = 0; entry < fbr->num_entries; entry++) {
1598 fbr_entry->addr_hi = fbr->bus_high[entry];
1599 fbr_entry->addr_lo = fbr->bus_low[entry];
1600 fbr_entry->word2 = entry;
1601 fbr_entry++;
1604 /* Set the address and parameters of Free buffer ring 1 and 0 */
1605 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1606 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1607 writel(fbr->num_entries - 1, num_des);
1608 writel(ET_DMA10_WRAP, full_offset);
1610 /* This variable tracks the free buffer ring 1 full position,
1611 * so it has to match the above.
1613 fbr->local_full = ET_DMA10_WRAP;
1614 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1615 min_des);
1618 /* Program the number of packets we will receive before generating an
1619 * interrupt.
1620 * For version B silicon, this value gets updated once autoneg is
1621 *complete.
1623 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1625 /* The "time_done" is not working correctly to coalesce interrupts
1626 * after a given time period, but rather is giving us an interrupt
1627 * regardless of whether we have received packets.
1628 * This value gets updated once autoneg is complete.
1630 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1632 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1635 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1637 * Configure the transmit engine with the ring buffers we have created
1638 * and prepare it for use.
1640 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1642 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1643 struct tx_ring *tx_ring = &adapter->tx_ring;
1645 /* Load the hardware with the start of the transmit descriptor ring. */
1646 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1647 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1649 /* Initialise the transmit DMA engine */
1650 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1652 /* Load the completion writeback physical address */
1653 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1654 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1656 *tx_ring->tx_status = 0;
1658 writel(0, &txdma->service_request);
1659 tx_ring->send_idx = 0;
1662 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1663 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1665 et131x_configure_global_regs(adapter);
1666 et1310_config_mac_regs1(adapter);
1668 /* Configure the MMC registers */
1669 /* All we need to do is initialize the Memory Control Register */
1670 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1672 et1310_config_rxmac_regs(adapter);
1673 et1310_config_txmac_regs(adapter);
1675 et131x_config_rx_dma_regs(adapter);
1676 et131x_config_tx_dma_regs(adapter);
1678 et1310_config_macstat_regs(adapter);
1680 et1310_phy_power_switch(adapter, 0);
1681 et131x_xcvr_init(adapter);
1684 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1685 static void et131x_soft_reset(struct et131x_adapter *adapter)
1687 u32 reg;
1689 /* Disable MAC Core */
1690 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1691 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1692 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1693 writel(reg, &adapter->regs->mac.cfg1);
1695 reg = ET_RESET_ALL;
1696 writel(reg, &adapter->regs->global.sw_reset);
1698 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1699 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1700 writel(reg, &adapter->regs->mac.cfg1);
1701 writel(0, &adapter->regs->mac.cfg1);
1704 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1706 u32 mask;
1708 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1709 mask = INT_MASK_ENABLE;
1710 else
1711 mask = INT_MASK_ENABLE_NO_FLOW;
1713 writel(mask, &adapter->regs->global.int_mask);
1716 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1718 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1721 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1723 /* Setup the transmit dma configuration register */
1724 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1725 &adapter->regs->txdma.csr);
1728 static void et131x_enable_txrx(struct net_device *netdev)
1730 struct et131x_adapter *adapter = netdev_priv(netdev);
1732 et131x_rx_dma_enable(adapter);
1733 et131x_tx_dma_enable(adapter);
1735 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1736 et131x_enable_interrupts(adapter);
1738 netif_start_queue(netdev);
1741 static void et131x_disable_txrx(struct net_device *netdev)
1743 struct et131x_adapter *adapter = netdev_priv(netdev);
1745 netif_stop_queue(netdev);
1747 et131x_rx_dma_disable(adapter);
1748 et131x_tx_dma_disable(adapter);
1750 et131x_disable_interrupts(adapter);
1753 static void et131x_init_send(struct et131x_adapter *adapter)
1755 int i;
1756 struct tx_ring *tx_ring = &adapter->tx_ring;
1757 struct tcb *tcb = tx_ring->tcb_ring;
1759 tx_ring->tcb_qhead = tcb;
1761 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1763 for (i = 0; i < NUM_TCB; i++) {
1764 tcb->next = tcb + 1;
1765 tcb++;
1768 tcb--;
1769 tx_ring->tcb_qtail = tcb;
1770 tcb->next = NULL;
1771 /* Curr send queue should now be empty */
1772 tx_ring->send_head = NULL;
1773 tx_ring->send_tail = NULL;
1776 /* et1310_enable_phy_coma
1778 * driver receive an phy status change interrupt while in D0 and check that
1779 * phy_status is down.
1781 * -- gate off JAGCore;
1782 * -- set gigE PHY in Coma mode
1783 * -- wake on phy_interrupt; Perform software reset JAGCore,
1784 * re-initialize jagcore and gigE PHY
1786 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1788 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1790 /* Stop sending packets. */
1791 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1793 /* Wait for outstanding Receive packets */
1794 et131x_disable_txrx(adapter->netdev);
1796 /* Gate off JAGCore 3 clock domains */
1797 pmcsr &= ~ET_PMCSR_INIT;
1798 writel(pmcsr, &adapter->regs->global.pm_csr);
1800 /* Program gigE PHY in to Coma mode */
1801 pmcsr |= ET_PM_PHY_SW_COMA;
1802 writel(pmcsr, &adapter->regs->global.pm_csr);
1805 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1807 u32 pmcsr;
1809 pmcsr = readl(&adapter->regs->global.pm_csr);
1811 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1812 pmcsr |= ET_PMCSR_INIT;
1813 pmcsr &= ~ET_PM_PHY_SW_COMA;
1814 writel(pmcsr, &adapter->regs->global.pm_csr);
1816 /* Restore the GbE PHY speed and duplex modes;
1817 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1820 /* Re-initialize the send structures */
1821 et131x_init_send(adapter);
1823 /* Bring the device back to the state it was during init prior to
1824 * autonegotiation being complete. This way, when we get the auto-neg
1825 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1827 et131x_soft_reset(adapter);
1829 et131x_adapter_setup(adapter);
1831 /* Allow Tx to restart */
1832 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1834 et131x_enable_txrx(adapter->netdev);
1837 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1839 u32 tmp_free_buff_ring = *free_buff_ring;
1841 tmp_free_buff_ring++;
1842 /* This works for all cases where limit < 1024. The 1023 case
1843 * works because 1023++ is 1024 which means the if condition is not
1844 * taken but the carry of the bit into the wrap bit toggles the wrap
1845 * value correctly
1847 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1848 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1849 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1851 /* For the 1023 case */
1852 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1853 *free_buff_ring = tmp_free_buff_ring;
1854 return tmp_free_buff_ring;
1857 /* et131x_rx_dma_memory_alloc
1859 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1860 * and the Packet Status Ring.
1862 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1864 u8 id;
1865 u32 i, j;
1866 u32 bufsize;
1867 u32 psr_size;
1868 u32 fbr_chunksize;
1869 struct rx_ring *rx_ring = &adapter->rx_ring;
1870 struct fbr_lookup *fbr;
1872 /* Alloc memory for the lookup table */
1873 rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1874 if (rx_ring->fbr[0] == NULL)
1875 return -ENOMEM;
1876 rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1877 if (rx_ring->fbr[1] == NULL)
1878 return -ENOMEM;
1880 /* The first thing we will do is configure the sizes of the buffer
1881 * rings. These will change based on jumbo packet support. Larger
1882 * jumbo packets increases the size of each entry in FBR0, and the
1883 * number of entries in FBR0, while at the same time decreasing the
1884 * number of entries in FBR1.
1886 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
1887 * entries are huge in order to accommodate a "jumbo" frame, then it
1888 * will have less entries. Conversely, FBR1 will now be relied upon
1889 * to carry more "normal" frames, thus it's entry size also increases
1890 * and the number of entries goes up too (since it now carries
1891 * "small" + "regular" packets.
1893 * In this scheme, we try to maintain 512 entries between the two
1894 * rings. Also, FBR1 remains a constant size - when it's size doubles
1895 * the number of entries halves. FBR0 increases in size, however.
1897 if (adapter->registry_jumbo_packet < 2048) {
1898 rx_ring->fbr[0]->buffsize = 256;
1899 rx_ring->fbr[0]->num_entries = 512;
1900 rx_ring->fbr[1]->buffsize = 2048;
1901 rx_ring->fbr[1]->num_entries = 512;
1902 } else if (adapter->registry_jumbo_packet < 4096) {
1903 rx_ring->fbr[0]->buffsize = 512;
1904 rx_ring->fbr[0]->num_entries = 1024;
1905 rx_ring->fbr[1]->buffsize = 4096;
1906 rx_ring->fbr[1]->num_entries = 512;
1907 } else {
1908 rx_ring->fbr[0]->buffsize = 1024;
1909 rx_ring->fbr[0]->num_entries = 768;
1910 rx_ring->fbr[1]->buffsize = 16384;
1911 rx_ring->fbr[1]->num_entries = 128;
1914 rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1915 rx_ring->fbr[1]->num_entries;
1917 for (id = 0; id < NUM_FBRS; id++) {
1918 fbr = rx_ring->fbr[id];
1919 /* Allocate an area of memory for Free Buffer Ring */
1920 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1921 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1922 bufsize,
1923 &fbr->ring_physaddr,
1924 GFP_KERNEL);
1925 if (!fbr->ring_virtaddr) {
1926 dev_err(&adapter->pdev->dev,
1927 "Cannot alloc memory for Free Buffer Ring %d\n",
1928 id);
1929 return -ENOMEM;
1933 for (id = 0; id < NUM_FBRS; id++) {
1934 fbr = rx_ring->fbr[id];
1935 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1937 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1938 dma_addr_t fbr_physaddr;
1940 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1941 &adapter->pdev->dev, fbr_chunksize,
1942 &fbr->mem_physaddrs[i],
1943 GFP_KERNEL);
1945 if (!fbr->mem_virtaddrs[i]) {
1946 dev_err(&adapter->pdev->dev,
1947 "Could not alloc memory\n");
1948 return -ENOMEM;
1951 /* See NOTE in "Save Physical Address" comment above */
1952 fbr_physaddr = fbr->mem_physaddrs[i];
1954 for (j = 0; j < FBR_CHUNKS; j++) {
1955 u32 k = (i * FBR_CHUNKS) + j;
1957 /* Save the Virtual address of this index for
1958 * quick access later
1960 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1961 (j * fbr->buffsize);
1963 /* now store the physical address in the
1964 * descriptor so the device can access it
1966 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1967 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1968 fbr_physaddr += fbr->buffsize;
1973 /* Allocate an area of memory for FIFO of Packet Status ring entries */
1974 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1976 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1977 psr_size,
1978 &rx_ring->ps_ring_physaddr,
1979 GFP_KERNEL);
1981 if (!rx_ring->ps_ring_virtaddr) {
1982 dev_err(&adapter->pdev->dev,
1983 "Cannot alloc memory for Packet Status Ring\n");
1984 return -ENOMEM;
1987 /* Allocate an area of memory for writeback of status information */
1988 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1989 sizeof(struct rx_status_block),
1990 &rx_ring->rx_status_bus,
1991 GFP_KERNEL);
1992 if (!rx_ring->rx_status_block) {
1993 dev_err(&adapter->pdev->dev,
1994 "Cannot alloc memory for Status Block\n");
1995 return -ENOMEM;
1997 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1999 /* The RFDs are going to be put on lists later on, so initialize the
2000 * lists now.
2002 INIT_LIST_HEAD(&rx_ring->recv_list);
2003 return 0;
2006 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2008 u8 id;
2009 u32 ii;
2010 u32 bufsize;
2011 u32 psr_size;
2012 struct rfd *rfd;
2013 struct rx_ring *rx_ring = &adapter->rx_ring;
2014 struct fbr_lookup *fbr;
2016 /* Free RFDs and associated packet descriptors */
2017 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2019 while (!list_empty(&rx_ring->recv_list)) {
2020 rfd = list_entry(rx_ring->recv_list.next,
2021 struct rfd, list_node);
2023 list_del(&rfd->list_node);
2024 rfd->skb = NULL;
2025 kfree(rfd);
2028 /* Free Free Buffer Rings */
2029 for (id = 0; id < NUM_FBRS; id++) {
2030 fbr = rx_ring->fbr[id];
2032 if (!fbr || !fbr->ring_virtaddr)
2033 continue;
2035 /* First the packet memory */
2036 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2037 if (fbr->mem_virtaddrs[ii]) {
2038 bufsize = fbr->buffsize * FBR_CHUNKS;
2040 dma_free_coherent(&adapter->pdev->dev,
2041 bufsize,
2042 fbr->mem_virtaddrs[ii],
2043 fbr->mem_physaddrs[ii]);
2045 fbr->mem_virtaddrs[ii] = NULL;
2049 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2051 dma_free_coherent(&adapter->pdev->dev,
2052 bufsize,
2053 fbr->ring_virtaddr,
2054 fbr->ring_physaddr);
2056 fbr->ring_virtaddr = NULL;
2059 /* Free Packet Status Ring */
2060 if (rx_ring->ps_ring_virtaddr) {
2061 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2063 dma_free_coherent(&adapter->pdev->dev, psr_size,
2064 rx_ring->ps_ring_virtaddr,
2065 rx_ring->ps_ring_physaddr);
2067 rx_ring->ps_ring_virtaddr = NULL;
2070 /* Free area of memory for the writeback of status information */
2071 if (rx_ring->rx_status_block) {
2072 dma_free_coherent(&adapter->pdev->dev,
2073 sizeof(struct rx_status_block),
2074 rx_ring->rx_status_block,
2075 rx_ring->rx_status_bus);
2076 rx_ring->rx_status_block = NULL;
2079 /* Free the FBR Lookup Table */
2080 kfree(rx_ring->fbr[0]);
2081 kfree(rx_ring->fbr[1]);
2083 /* Reset Counters */
2084 rx_ring->num_ready_recv = 0;
2087 /* et131x_init_recv - Initialize receive data structures */
2088 static int et131x_init_recv(struct et131x_adapter *adapter)
2090 struct rfd *rfd;
2091 u32 rfdct;
2092 struct rx_ring *rx_ring = &adapter->rx_ring;
2094 /* Setup each RFD */
2095 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2096 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2097 if (!rfd)
2098 return -ENOMEM;
2100 rfd->skb = NULL;
2102 /* Add this RFD to the recv_list */
2103 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2105 /* Increment the available RFD's */
2106 rx_ring->num_ready_recv++;
2109 return 0;
2112 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2113 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2115 struct phy_device *phydev = adapter->netdev->phydev;
2117 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2118 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2120 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2121 writel(0, &adapter->regs->rxdma.max_pkt_time);
2122 writel(1, &adapter->regs->rxdma.num_pkt_done);
2126 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2127 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2129 struct rx_ring *rx_local = &adapter->rx_ring;
2130 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2131 u16 buff_index = rfd->bufferindex;
2132 u8 ring_index = rfd->ringindex;
2133 unsigned long flags;
2134 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2136 /* We don't use any of the OOB data besides status. Otherwise, we
2137 * need to clean up OOB data
2139 if (buff_index < fbr->num_entries) {
2140 u32 free_buff_ring;
2141 u32 __iomem *offset;
2142 struct fbr_desc *next;
2144 if (ring_index == 0)
2145 offset = &rx_dma->fbr0_full_offset;
2146 else
2147 offset = &rx_dma->fbr1_full_offset;
2149 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2150 INDEX10(fbr->local_full);
2152 /* Handle the Free Buffer Ring advancement here. Write
2153 * the PA / Buffer Index for the returned buffer into
2154 * the oldest (next to be freed)FBR entry
2156 next->addr_hi = fbr->bus_high[buff_index];
2157 next->addr_lo = fbr->bus_low[buff_index];
2158 next->word2 = buff_index;
2160 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2161 fbr->num_entries - 1);
2162 writel(free_buff_ring, offset);
2163 } else {
2164 dev_err(&adapter->pdev->dev,
2165 "%s illegal Buffer Index returned\n", __func__);
2168 /* The processing on this RFD is done, so put it back on the tail of
2169 * our list
2171 spin_lock_irqsave(&adapter->rcv_lock, flags);
2172 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2173 rx_local->num_ready_recv++;
2174 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2176 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2179 /* nic_rx_pkts - Checks the hardware for available packets
2181 * Checks the hardware for available packets, using completion ring
2182 * If packets are available, it gets an RFD from the recv_list, attaches
2183 * the packet to it, puts the RFD in the RecvPendList, and also returns
2184 * the pointer to the RFD.
2186 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2188 struct rx_ring *rx_local = &adapter->rx_ring;
2189 struct rx_status_block *status;
2190 struct pkt_stat_desc *psr;
2191 struct rfd *rfd;
2192 unsigned long flags;
2193 struct list_head *element;
2194 u8 ring_index;
2195 u16 buff_index;
2196 u32 len;
2197 u32 word0;
2198 u32 word1;
2199 struct sk_buff *skb;
2200 struct fbr_lookup *fbr;
2202 /* RX Status block is written by the DMA engine prior to every
2203 * interrupt. It contains the next to be used entry in the Packet
2204 * Status Ring, and also the two Free Buffer rings.
2206 status = rx_local->rx_status_block;
2207 word1 = status->word1 >> 16;
2209 /* Check the PSR and wrap bits do not match */
2210 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2211 return NULL; /* Looks like this ring is not updated yet */
2213 /* The packet status ring indicates that data is available. */
2214 psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2215 (rx_local->local_psr_full & 0xFFF);
2217 /* Grab any information that is required once the PSR is advanced,
2218 * since we can no longer rely on the memory being accurate
2220 len = psr->word1 & 0xFFFF;
2221 ring_index = (psr->word1 >> 26) & 0x03;
2222 fbr = rx_local->fbr[ring_index];
2223 buff_index = (psr->word1 >> 16) & 0x3FF;
2224 word0 = psr->word0;
2226 /* Indicate that we have used this PSR entry. */
2227 /* FIXME wrap 12 */
2228 add_12bit(&rx_local->local_psr_full, 1);
2229 if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2230 /* Clear psr full and toggle the wrap bit */
2231 rx_local->local_psr_full &= ~0xFFF;
2232 rx_local->local_psr_full ^= 0x1000;
2235 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2237 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2238 /* Illegal buffer or ring index cannot be used by S/W*/
2239 dev_err(&adapter->pdev->dev,
2240 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2241 rx_local->local_psr_full & 0xFFF, len, buff_index);
2242 return NULL;
2245 /* Get and fill the RFD. */
2246 spin_lock_irqsave(&adapter->rcv_lock, flags);
2248 element = rx_local->recv_list.next;
2249 rfd = list_entry(element, struct rfd, list_node);
2251 if (!rfd) {
2252 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2253 return NULL;
2256 list_del(&rfd->list_node);
2257 rx_local->num_ready_recv--;
2259 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2261 rfd->bufferindex = buff_index;
2262 rfd->ringindex = ring_index;
2264 /* In V1 silicon, there is a bug which screws up filtering of runt
2265 * packets. Therefore runt packet filtering is disabled in the MAC and
2266 * the packets are dropped here. They are also counted here.
2268 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2269 adapter->stats.rx_other_errs++;
2270 rfd->len = 0;
2271 goto out;
2274 if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2275 adapter->stats.multicast_pkts_rcvd++;
2277 rfd->len = len;
2279 skb = dev_alloc_skb(rfd->len + 2);
2280 if (!skb)
2281 return NULL;
2283 adapter->netdev->stats.rx_bytes += rfd->len;
2285 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2287 skb->protocol = eth_type_trans(skb, adapter->netdev);
2288 skb->ip_summed = CHECKSUM_NONE;
2289 netif_receive_skb(skb);
2291 out:
2292 nic_return_rfd(adapter, rfd);
2293 return rfd;
2296 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2298 struct rfd *rfd = NULL;
2299 int count = 0;
2300 int limit = budget;
2301 bool done = true;
2302 struct rx_ring *rx_ring = &adapter->rx_ring;
2304 if (budget > MAX_PACKETS_HANDLED)
2305 limit = MAX_PACKETS_HANDLED;
2307 /* Process up to available RFD's */
2308 while (count < limit) {
2309 if (list_empty(&rx_ring->recv_list)) {
2310 WARN_ON(rx_ring->num_ready_recv != 0);
2311 done = false;
2312 break;
2315 rfd = nic_rx_pkts(adapter);
2317 if (rfd == NULL)
2318 break;
2320 /* Do not receive any packets until a filter has been set.
2321 * Do not receive any packets until we have link.
2322 * If length is zero, return the RFD in order to advance the
2323 * Free buffer ring.
2325 if (!adapter->packet_filter ||
2326 !netif_carrier_ok(adapter->netdev) ||
2327 rfd->len == 0)
2328 continue;
2330 adapter->netdev->stats.rx_packets++;
2332 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2333 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2335 count++;
2338 if (count == limit || !done) {
2339 rx_ring->unfinished_receives = true;
2340 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2341 &adapter->regs->global.watchdog_timer);
2342 } else {
2343 /* Watchdog timer will disable itself if appropriate. */
2344 rx_ring->unfinished_receives = false;
2347 return count;
2350 /* et131x_tx_dma_memory_alloc
2352 * Allocates memory that will be visible both to the device and to the CPU.
2353 * The OS will pass us packets, pointers to which we will insert in the Tx
2354 * Descriptor queue. The device will read this queue to find the packets in
2355 * memory. The device will update the "status" in memory each time it xmits a
2356 * packet.
2358 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2360 int desc_size = 0;
2361 struct tx_ring *tx_ring = &adapter->tx_ring;
2363 /* Allocate memory for the TCB's (Transmit Control Block) */
2364 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2365 GFP_ATOMIC | GFP_DMA);
2366 if (!tx_ring->tcb_ring)
2367 return -ENOMEM;
2369 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2370 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2371 desc_size,
2372 &tx_ring->tx_desc_ring_pa,
2373 GFP_KERNEL);
2374 if (!tx_ring->tx_desc_ring) {
2375 dev_err(&adapter->pdev->dev,
2376 "Cannot alloc memory for Tx Ring\n");
2377 return -ENOMEM;
2380 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2381 sizeof(u32),
2382 &tx_ring->tx_status_pa,
2383 GFP_KERNEL);
2384 if (!tx_ring->tx_status) {
2385 dev_err(&adapter->pdev->dev,
2386 "Cannot alloc memory for Tx status block\n");
2387 return -ENOMEM;
2389 return 0;
2392 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2394 int desc_size = 0;
2395 struct tx_ring *tx_ring = &adapter->tx_ring;
2397 if (tx_ring->tx_desc_ring) {
2398 /* Free memory relating to Tx rings here */
2399 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2400 dma_free_coherent(&adapter->pdev->dev,
2401 desc_size,
2402 tx_ring->tx_desc_ring,
2403 tx_ring->tx_desc_ring_pa);
2404 tx_ring->tx_desc_ring = NULL;
2407 /* Free memory for the Tx status block */
2408 if (tx_ring->tx_status) {
2409 dma_free_coherent(&adapter->pdev->dev,
2410 sizeof(u32),
2411 tx_ring->tx_status,
2412 tx_ring->tx_status_pa);
2414 tx_ring->tx_status = NULL;
2416 /* Free the memory for the tcb structures */
2417 kfree(tx_ring->tcb_ring);
2420 /* nic_send_packet - NIC specific send handler for version B silicon. */
2421 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2423 u32 i;
2424 struct tx_desc desc[24];
2425 u32 frag = 0;
2426 u32 thiscopy, remainder;
2427 struct sk_buff *skb = tcb->skb;
2428 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2429 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2430 struct phy_device *phydev = adapter->netdev->phydev;
2431 dma_addr_t dma_addr;
2432 struct tx_ring *tx_ring = &adapter->tx_ring;
2434 /* Part of the optimizations of this send routine restrict us to
2435 * sending 24 fragments at a pass. In practice we should never see
2436 * more than 5 fragments.
2439 /* nr_frags should be no more than 18. */
2440 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2442 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2444 for (i = 0; i < nr_frags; i++) {
2445 /* If there is something in this element, lets get a
2446 * descriptor from the ring and get the necessary data
2448 if (i == 0) {
2449 /* If the fragments are smaller than a standard MTU,
2450 * then map them to a single descriptor in the Tx
2451 * Desc ring. However, if they're larger, as is
2452 * possible with support for jumbo packets, then
2453 * split them each across 2 descriptors.
2455 * This will work until we determine why the hardware
2456 * doesn't seem to like large fragments.
2458 if (skb_headlen(skb) <= 1514) {
2459 /* Low 16bits are length, high is vlan and
2460 * unused currently so zero
2462 desc[frag].len_vlan = skb_headlen(skb);
2463 dma_addr = dma_map_single(&adapter->pdev->dev,
2464 skb->data,
2465 skb_headlen(skb),
2466 DMA_TO_DEVICE);
2467 desc[frag].addr_lo = lower_32_bits(dma_addr);
2468 desc[frag].addr_hi = upper_32_bits(dma_addr);
2469 frag++;
2470 } else {
2471 desc[frag].len_vlan = skb_headlen(skb) / 2;
2472 dma_addr = dma_map_single(&adapter->pdev->dev,
2473 skb->data,
2474 skb_headlen(skb) / 2,
2475 DMA_TO_DEVICE);
2476 desc[frag].addr_lo = lower_32_bits(dma_addr);
2477 desc[frag].addr_hi = upper_32_bits(dma_addr);
2478 frag++;
2480 desc[frag].len_vlan = skb_headlen(skb) / 2;
2481 dma_addr = dma_map_single(&adapter->pdev->dev,
2482 skb->data +
2483 skb_headlen(skb) / 2,
2484 skb_headlen(skb) / 2,
2485 DMA_TO_DEVICE);
2486 desc[frag].addr_lo = lower_32_bits(dma_addr);
2487 desc[frag].addr_hi = upper_32_bits(dma_addr);
2488 frag++;
2490 } else {
2491 desc[frag].len_vlan = frags[i - 1].size;
2492 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2493 &frags[i - 1],
2495 frags[i - 1].size,
2496 DMA_TO_DEVICE);
2497 desc[frag].addr_lo = lower_32_bits(dma_addr);
2498 desc[frag].addr_hi = upper_32_bits(dma_addr);
2499 frag++;
2503 if (phydev && phydev->speed == SPEED_1000) {
2504 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2505 /* Last element & Interrupt flag */
2506 desc[frag - 1].flags =
2507 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2508 tx_ring->since_irq = 0;
2509 } else { /* Last element */
2510 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2512 } else {
2513 desc[frag - 1].flags =
2514 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2517 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2519 tcb->index_start = tx_ring->send_idx;
2520 tcb->stale = 0;
2522 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2524 if (thiscopy >= frag) {
2525 remainder = 0;
2526 thiscopy = frag;
2527 } else {
2528 remainder = frag - thiscopy;
2531 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2532 desc,
2533 sizeof(struct tx_desc) * thiscopy);
2535 add_10bit(&tx_ring->send_idx, thiscopy);
2537 if (INDEX10(tx_ring->send_idx) == 0 ||
2538 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2539 tx_ring->send_idx &= ~ET_DMA10_MASK;
2540 tx_ring->send_idx ^= ET_DMA10_WRAP;
2543 if (remainder) {
2544 memcpy(tx_ring->tx_desc_ring,
2545 desc + thiscopy,
2546 sizeof(struct tx_desc) * remainder);
2548 add_10bit(&tx_ring->send_idx, remainder);
2551 if (INDEX10(tx_ring->send_idx) == 0) {
2552 if (tx_ring->send_idx)
2553 tcb->index = NUM_DESC_PER_RING_TX - 1;
2554 else
2555 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2556 } else {
2557 tcb->index = tx_ring->send_idx - 1;
2560 spin_lock(&adapter->tcb_send_qlock);
2562 if (tx_ring->send_tail)
2563 tx_ring->send_tail->next = tcb;
2564 else
2565 tx_ring->send_head = tcb;
2567 tx_ring->send_tail = tcb;
2569 WARN_ON(tcb->next != NULL);
2571 tx_ring->used++;
2573 spin_unlock(&adapter->tcb_send_qlock);
2575 /* Write the new write pointer back to the device. */
2576 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2578 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2579 * timer to wake us up if this packet isn't followed by N more.
2581 if (phydev && phydev->speed == SPEED_1000) {
2582 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2583 &adapter->regs->global.watchdog_timer);
2585 return 0;
2588 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2590 int status;
2591 struct tcb *tcb;
2592 unsigned long flags;
2593 struct tx_ring *tx_ring = &adapter->tx_ring;
2595 /* All packets must have at least a MAC address and a protocol type */
2596 if (skb->len < ETH_HLEN)
2597 return -EIO;
2599 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2601 tcb = tx_ring->tcb_qhead;
2603 if (tcb == NULL) {
2604 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2605 return -ENOMEM;
2608 tx_ring->tcb_qhead = tcb->next;
2610 if (tx_ring->tcb_qhead == NULL)
2611 tx_ring->tcb_qtail = NULL;
2613 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2615 tcb->skb = skb;
2616 tcb->next = NULL;
2618 status = nic_send_packet(adapter, tcb);
2620 if (status != 0) {
2621 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2623 if (tx_ring->tcb_qtail)
2624 tx_ring->tcb_qtail->next = tcb;
2625 else
2626 /* Apparently ready Q is empty. */
2627 tx_ring->tcb_qhead = tcb;
2629 tx_ring->tcb_qtail = tcb;
2630 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2631 return status;
2633 WARN_ON(tx_ring->used > NUM_TCB);
2634 return 0;
2637 /* free_send_packet - Recycle a struct tcb */
2638 static inline void free_send_packet(struct et131x_adapter *adapter,
2639 struct tcb *tcb)
2641 unsigned long flags;
2642 struct tx_desc *desc = NULL;
2643 struct net_device_stats *stats = &adapter->netdev->stats;
2644 struct tx_ring *tx_ring = &adapter->tx_ring;
2645 u64 dma_addr;
2647 if (tcb->skb) {
2648 stats->tx_bytes += tcb->skb->len;
2650 /* Iterate through the TX descriptors on the ring
2651 * corresponding to this packet and umap the fragments
2652 * they point to
2654 do {
2655 desc = tx_ring->tx_desc_ring +
2656 INDEX10(tcb->index_start);
2658 dma_addr = desc->addr_lo;
2659 dma_addr |= (u64)desc->addr_hi << 32;
2661 dma_unmap_single(&adapter->pdev->dev,
2662 dma_addr,
2663 desc->len_vlan, DMA_TO_DEVICE);
2665 add_10bit(&tcb->index_start, 1);
2666 if (INDEX10(tcb->index_start) >=
2667 NUM_DESC_PER_RING_TX) {
2668 tcb->index_start &= ~ET_DMA10_MASK;
2669 tcb->index_start ^= ET_DMA10_WRAP;
2671 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2673 dev_kfree_skb_any(tcb->skb);
2676 memset(tcb, 0, sizeof(struct tcb));
2678 /* Add the TCB to the Ready Q */
2679 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2681 stats->tx_packets++;
2683 if (tx_ring->tcb_qtail)
2684 tx_ring->tcb_qtail->next = tcb;
2685 else /* Apparently ready Q is empty. */
2686 tx_ring->tcb_qhead = tcb;
2688 tx_ring->tcb_qtail = tcb;
2690 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2691 WARN_ON(tx_ring->used < 0);
2694 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2695 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2697 struct tcb *tcb;
2698 unsigned long flags;
2699 u32 freed = 0;
2700 struct tx_ring *tx_ring = &adapter->tx_ring;
2702 /* Any packets being sent? Check the first TCB on the send list */
2703 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2705 tcb = tx_ring->send_head;
2707 while (tcb != NULL && freed < NUM_TCB) {
2708 struct tcb *next = tcb->next;
2710 tx_ring->send_head = next;
2712 if (next == NULL)
2713 tx_ring->send_tail = NULL;
2715 tx_ring->used--;
2717 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2719 freed++;
2720 free_send_packet(adapter, tcb);
2722 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2724 tcb = tx_ring->send_head;
2727 WARN_ON(freed == NUM_TCB);
2729 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2731 tx_ring->used = 0;
2734 /* et131x_handle_send_pkts
2736 * Re-claim the send resources, complete sends and get more to send from
2737 * the send wait queue.
2739 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2741 unsigned long flags;
2742 u32 serviced;
2743 struct tcb *tcb;
2744 u32 index;
2745 struct tx_ring *tx_ring = &adapter->tx_ring;
2747 serviced = readl(&adapter->regs->txdma.new_service_complete);
2748 index = INDEX10(serviced);
2750 /* Has the ring wrapped? Process any descriptors that do not have
2751 * the same "wrap" indicator as the current completion indicator
2753 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2755 tcb = tx_ring->send_head;
2757 while (tcb &&
2758 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2759 index < INDEX10(tcb->index)) {
2760 tx_ring->used--;
2761 tx_ring->send_head = tcb->next;
2762 if (tcb->next == NULL)
2763 tx_ring->send_tail = NULL;
2765 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2766 free_send_packet(adapter, tcb);
2767 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2769 /* Goto the next packet */
2770 tcb = tx_ring->send_head;
2772 while (tcb &&
2773 !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2774 index > (tcb->index & ET_DMA10_MASK)) {
2775 tx_ring->used--;
2776 tx_ring->send_head = tcb->next;
2777 if (tcb->next == NULL)
2778 tx_ring->send_tail = NULL;
2780 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2781 free_send_packet(adapter, tcb);
2782 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2784 /* Goto the next packet */
2785 tcb = tx_ring->send_head;
2788 /* Wake up the queue when we hit a low-water mark */
2789 if (tx_ring->used <= NUM_TCB / 3)
2790 netif_wake_queue(adapter->netdev);
2792 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2795 static int et131x_get_regs_len(struct net_device *netdev)
2797 #define ET131X_REGS_LEN 256
2798 return ET131X_REGS_LEN * sizeof(u32);
2801 static void et131x_get_regs(struct net_device *netdev,
2802 struct ethtool_regs *regs, void *regs_data)
2804 struct et131x_adapter *adapter = netdev_priv(netdev);
2805 struct address_map __iomem *aregs = adapter->regs;
2806 u32 *regs_buff = regs_data;
2807 u32 num = 0;
2808 u16 tmp;
2810 memset(regs_data, 0, et131x_get_regs_len(netdev));
2812 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2813 adapter->pdev->device;
2815 /* PHY regs */
2816 et131x_mii_read(adapter, MII_BMCR, &tmp);
2817 regs_buff[num++] = tmp;
2818 et131x_mii_read(adapter, MII_BMSR, &tmp);
2819 regs_buff[num++] = tmp;
2820 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2821 regs_buff[num++] = tmp;
2822 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2823 regs_buff[num++] = tmp;
2824 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2825 regs_buff[num++] = tmp;
2826 et131x_mii_read(adapter, MII_LPA, &tmp);
2827 regs_buff[num++] = tmp;
2828 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2829 regs_buff[num++] = tmp;
2830 /* Autoneg next page transmit reg */
2831 et131x_mii_read(adapter, 0x07, &tmp);
2832 regs_buff[num++] = tmp;
2833 /* Link partner next page reg */
2834 et131x_mii_read(adapter, 0x08, &tmp);
2835 regs_buff[num++] = tmp;
2836 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2837 regs_buff[num++] = tmp;
2838 et131x_mii_read(adapter, MII_STAT1000, &tmp);
2839 regs_buff[num++] = tmp;
2840 et131x_mii_read(adapter, 0x0b, &tmp);
2841 regs_buff[num++] = tmp;
2842 et131x_mii_read(adapter, 0x0c, &tmp);
2843 regs_buff[num++] = tmp;
2844 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2845 regs_buff[num++] = tmp;
2846 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2847 regs_buff[num++] = tmp;
2848 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2849 regs_buff[num++] = tmp;
2851 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2852 regs_buff[num++] = tmp;
2853 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2854 regs_buff[num++] = tmp;
2855 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2856 regs_buff[num++] = tmp;
2857 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2858 regs_buff[num++] = tmp;
2859 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2860 regs_buff[num++] = tmp;
2862 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2863 regs_buff[num++] = tmp;
2864 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2865 regs_buff[num++] = tmp;
2866 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2867 regs_buff[num++] = tmp;
2868 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2869 regs_buff[num++] = tmp;
2870 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2871 regs_buff[num++] = tmp;
2872 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2873 regs_buff[num++] = tmp;
2874 et131x_mii_read(adapter, PHY_LED_1, &tmp);
2875 regs_buff[num++] = tmp;
2876 et131x_mii_read(adapter, PHY_LED_2, &tmp);
2877 regs_buff[num++] = tmp;
2879 /* Global regs */
2880 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2881 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2882 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2883 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2884 regs_buff[num++] = readl(&aregs->global.pm_csr);
2885 regs_buff[num++] = adapter->stats.interrupt_status;
2886 regs_buff[num++] = readl(&aregs->global.int_mask);
2887 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2888 regs_buff[num++] = readl(&aregs->global.int_status_alias);
2889 regs_buff[num++] = readl(&aregs->global.sw_reset);
2890 regs_buff[num++] = readl(&aregs->global.slv_timer);
2891 regs_buff[num++] = readl(&aregs->global.msi_config);
2892 regs_buff[num++] = readl(&aregs->global.loopback);
2893 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2895 /* TXDMA regs */
2896 regs_buff[num++] = readl(&aregs->txdma.csr);
2897 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2898 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2899 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2900 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2901 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2902 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2903 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2904 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2905 regs_buff[num++] = readl(&aregs->txdma.service_request);
2906 regs_buff[num++] = readl(&aregs->txdma.service_complete);
2907 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2908 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2909 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2910 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2911 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2912 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2913 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2914 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2915 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2916 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2917 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2918 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2919 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2920 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2921 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2923 /* RXDMA regs */
2924 regs_buff[num++] = readl(&aregs->rxdma.csr);
2925 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2926 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2927 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2928 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2929 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2930 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2931 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2932 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2933 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2934 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2935 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2936 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2937 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2938 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2939 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2940 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2941 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2942 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2943 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2944 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2945 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2946 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2947 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2948 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2949 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2950 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2951 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2952 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2955 static void et131x_get_drvinfo(struct net_device *netdev,
2956 struct ethtool_drvinfo *info)
2958 struct et131x_adapter *adapter = netdev_priv(netdev);
2960 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2961 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2962 strlcpy(info->bus_info, pci_name(adapter->pdev),
2963 sizeof(info->bus_info));
2966 static const struct ethtool_ops et131x_ethtool_ops = {
2967 .get_drvinfo = et131x_get_drvinfo,
2968 .get_regs_len = et131x_get_regs_len,
2969 .get_regs = et131x_get_regs,
2970 .get_link = ethtool_op_get_link,
2971 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2972 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2975 /* et131x_hwaddr_init - set up the MAC Address */
2976 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2978 /* If have our default mac from init and no mac address from
2979 * EEPROM then we need to generate the last octet and set it on the
2980 * device
2982 if (is_zero_ether_addr(adapter->rom_addr)) {
2983 /* We need to randomly generate the last octet so we
2984 * decrease our chances of setting the mac address to
2985 * same as another one of our cards in the system
2987 get_random_bytes(&adapter->addr[5], 1);
2988 /* We have the default value in the register we are
2989 * working with so we need to copy the current
2990 * address into the permanent address
2992 ether_addr_copy(adapter->rom_addr, adapter->addr);
2993 } else {
2994 /* We do not have an override address, so set the
2995 * current address to the permanent address and add
2996 * it to the device
2998 ether_addr_copy(adapter->addr, adapter->rom_addr);
3002 static int et131x_pci_init(struct et131x_adapter *adapter,
3003 struct pci_dev *pdev)
3005 u16 max_payload;
3006 int i, rc;
3008 rc = et131x_init_eeprom(adapter);
3009 if (rc < 0)
3010 goto out;
3012 if (!pci_is_pcie(pdev)) {
3013 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3014 goto err_out;
3017 /* Program the Ack/Nak latency and replay timers */
3018 max_payload = pdev->pcie_mpss;
3020 if (max_payload < 2) {
3021 static const u16 acknak[2] = { 0x76, 0xD0 };
3022 static const u16 replay[2] = { 0x1E0, 0x2ED };
3024 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3025 acknak[max_payload])) {
3026 dev_err(&pdev->dev,
3027 "Could not write PCI config space for ACK/NAK\n");
3028 goto err_out;
3030 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3031 replay[max_payload])) {
3032 dev_err(&pdev->dev,
3033 "Could not write PCI config space for Replay Timer\n");
3034 goto err_out;
3038 /* l0s and l1 latency timers. We are using default values.
3039 * Representing 001 for L0s and 010 for L1
3041 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3042 dev_err(&pdev->dev,
3043 "Could not write PCI config space for Latency Timers\n");
3044 goto err_out;
3047 /* Change the max read size to 2k */
3048 if (pcie_set_readrq(pdev, 2048)) {
3049 dev_err(&pdev->dev,
3050 "Couldn't change PCI config space for Max read size\n");
3051 goto err_out;
3054 /* Get MAC address from config space if an eeprom exists, otherwise
3055 * the MAC address there will not be valid
3057 if (!adapter->has_eeprom) {
3058 et131x_hwaddr_init(adapter);
3059 return 0;
3062 for (i = 0; i < ETH_ALEN; i++) {
3063 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3064 adapter->rom_addr + i)) {
3065 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3066 goto err_out;
3069 ether_addr_copy(adapter->addr, adapter->rom_addr);
3070 out:
3071 return rc;
3072 err_out:
3073 rc = -EIO;
3074 goto out;
3077 /* et131x_error_timer_handler
3078 * @data: timer-specific variable; here a pointer to our adapter structure
3080 * The routine called when the error timer expires, to track the number of
3081 * recurring errors.
3083 static void et131x_error_timer_handler(unsigned long data)
3085 struct et131x_adapter *adapter = (struct et131x_adapter *)data;
3086 struct phy_device *phydev = adapter->netdev->phydev;
3088 if (et1310_in_phy_coma(adapter)) {
3089 /* Bring the device immediately out of coma, to
3090 * prevent it from sleeping indefinitely, this
3091 * mechanism could be improved!
3093 et1310_disable_phy_coma(adapter);
3094 adapter->boot_coma = 20;
3095 } else {
3096 et1310_update_macstat_host_counters(adapter);
3099 if (!phydev->link && adapter->boot_coma < 11)
3100 adapter->boot_coma++;
3102 if (adapter->boot_coma == 10) {
3103 if (!phydev->link) {
3104 if (!et1310_in_phy_coma(adapter)) {
3105 /* NOTE - This was originally a 'sync with
3106 * interrupt'. How to do that under Linux?
3108 et131x_enable_interrupts(adapter);
3109 et1310_enable_phy_coma(adapter);
3114 /* This is a periodic timer, so reschedule */
3115 mod_timer(&adapter->error_timer, jiffies +
3116 msecs_to_jiffies(TX_ERROR_PERIOD));
3119 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3121 et131x_tx_dma_memory_free(adapter);
3122 et131x_rx_dma_memory_free(adapter);
3125 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3127 int status;
3129 status = et131x_tx_dma_memory_alloc(adapter);
3130 if (status) {
3131 dev_err(&adapter->pdev->dev,
3132 "et131x_tx_dma_memory_alloc FAILED\n");
3133 et131x_tx_dma_memory_free(adapter);
3134 return status;
3137 status = et131x_rx_dma_memory_alloc(adapter);
3138 if (status) {
3139 dev_err(&adapter->pdev->dev,
3140 "et131x_rx_dma_memory_alloc FAILED\n");
3141 et131x_adapter_memory_free(adapter);
3142 return status;
3145 status = et131x_init_recv(adapter);
3146 if (status) {
3147 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3148 et131x_adapter_memory_free(adapter);
3150 return status;
3153 static void et131x_adjust_link(struct net_device *netdev)
3155 struct et131x_adapter *adapter = netdev_priv(netdev);
3156 struct phy_device *phydev = netdev->phydev;
3158 if (!phydev)
3159 return;
3160 if (phydev->link == adapter->link)
3161 return;
3163 /* Check to see if we are in coma mode and if
3164 * so, disable it because we will not be able
3165 * to read PHY values until we are out.
3167 if (et1310_in_phy_coma(adapter))
3168 et1310_disable_phy_coma(adapter);
3170 adapter->link = phydev->link;
3171 phy_print_status(phydev);
3173 if (phydev->link) {
3174 adapter->boot_coma = 20;
3175 if (phydev->speed == SPEED_10) {
3176 u16 register18;
3178 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3179 &register18);
3180 et131x_mii_write(adapter, phydev->mdio.addr,
3181 PHY_MPHY_CONTROL_REG,
3182 register18 | 0x4);
3183 et131x_mii_write(adapter, phydev->mdio.addr,
3184 PHY_INDEX_REG, register18 | 0x8402);
3185 et131x_mii_write(adapter, phydev->mdio.addr,
3186 PHY_DATA_REG, register18 | 511);
3187 et131x_mii_write(adapter, phydev->mdio.addr,
3188 PHY_MPHY_CONTROL_REG, register18);
3191 et1310_config_flow_control(adapter);
3193 if (phydev->speed == SPEED_1000 &&
3194 adapter->registry_jumbo_packet > 2048) {
3195 u16 reg;
3197 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3198 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3199 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3200 et131x_mii_write(adapter, phydev->mdio.addr,
3201 PHY_CONFIG, reg);
3204 et131x_set_rx_dma_timer(adapter);
3205 et1310_config_mac_regs2(adapter);
3206 } else {
3207 adapter->boot_coma = 0;
3209 if (phydev->speed == SPEED_10) {
3210 u16 register18;
3212 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3213 &register18);
3214 et131x_mii_write(adapter, phydev->mdio.addr,
3215 PHY_MPHY_CONTROL_REG,
3216 register18 | 0x4);
3217 et131x_mii_write(adapter, phydev->mdio.addr,
3218 PHY_INDEX_REG, register18 | 0x8402);
3219 et131x_mii_write(adapter, phydev->mdio.addr,
3220 PHY_DATA_REG, register18 | 511);
3221 et131x_mii_write(adapter, phydev->mdio.addr,
3222 PHY_MPHY_CONTROL_REG, register18);
3225 et131x_free_busy_send_packets(adapter);
3226 et131x_init_send(adapter);
3228 /* Bring the device back to the state it was during
3229 * init prior to autonegotiation being complete. This
3230 * way, when we get the auto-neg complete interrupt,
3231 * we can complete init by calling config_mac_regs2.
3233 et131x_soft_reset(adapter);
3235 et131x_adapter_setup(adapter);
3237 et131x_disable_txrx(netdev);
3238 et131x_enable_txrx(netdev);
3242 static int et131x_mii_probe(struct net_device *netdev)
3244 struct et131x_adapter *adapter = netdev_priv(netdev);
3245 struct phy_device *phydev = NULL;
3247 phydev = phy_find_first(adapter->mii_bus);
3248 if (!phydev) {
3249 dev_err(&adapter->pdev->dev, "no PHY found\n");
3250 return -ENODEV;
3253 phydev = phy_connect(netdev, phydev_name(phydev),
3254 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3256 if (IS_ERR(phydev)) {
3257 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3258 return PTR_ERR(phydev);
3261 phydev->supported &= (SUPPORTED_10baseT_Half |
3262 SUPPORTED_10baseT_Full |
3263 SUPPORTED_100baseT_Half |
3264 SUPPORTED_100baseT_Full |
3265 SUPPORTED_Autoneg |
3266 SUPPORTED_MII |
3267 SUPPORTED_TP);
3269 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3270 phydev->supported |= SUPPORTED_1000baseT_Half |
3271 SUPPORTED_1000baseT_Full;
3273 phydev->advertising = phydev->supported;
3274 phydev->autoneg = AUTONEG_ENABLE;
3276 phy_attached_info(phydev);
3278 return 0;
3281 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3282 struct pci_dev *pdev)
3284 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3286 struct et131x_adapter *adapter;
3288 adapter = netdev_priv(netdev);
3289 adapter->pdev = pci_dev_get(pdev);
3290 adapter->netdev = netdev;
3292 spin_lock_init(&adapter->tcb_send_qlock);
3293 spin_lock_init(&adapter->tcb_ready_qlock);
3294 spin_lock_init(&adapter->rcv_lock);
3296 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3298 ether_addr_copy(adapter->addr, default_mac);
3300 return adapter;
3303 static void et131x_pci_remove(struct pci_dev *pdev)
3305 struct net_device *netdev = pci_get_drvdata(pdev);
3306 struct et131x_adapter *adapter = netdev_priv(netdev);
3308 unregister_netdev(netdev);
3309 netif_napi_del(&adapter->napi);
3310 phy_disconnect(netdev->phydev);
3311 mdiobus_unregister(adapter->mii_bus);
3312 mdiobus_free(adapter->mii_bus);
3314 et131x_adapter_memory_free(adapter);
3315 iounmap(adapter->regs);
3316 pci_dev_put(pdev);
3318 free_netdev(netdev);
3319 pci_release_regions(pdev);
3320 pci_disable_device(pdev);
3323 static void et131x_up(struct net_device *netdev)
3325 et131x_enable_txrx(netdev);
3326 phy_start(netdev->phydev);
3329 static void et131x_down(struct net_device *netdev)
3331 /* Save the timestamp for the TX watchdog, prevent a timeout */
3332 netif_trans_update(netdev);
3334 phy_stop(netdev->phydev);
3335 et131x_disable_txrx(netdev);
3338 #ifdef CONFIG_PM_SLEEP
3339 static int et131x_suspend(struct device *dev)
3341 struct pci_dev *pdev = to_pci_dev(dev);
3342 struct net_device *netdev = pci_get_drvdata(pdev);
3344 if (netif_running(netdev)) {
3345 netif_device_detach(netdev);
3346 et131x_down(netdev);
3347 pci_save_state(pdev);
3350 return 0;
3353 static int et131x_resume(struct device *dev)
3355 struct pci_dev *pdev = to_pci_dev(dev);
3356 struct net_device *netdev = pci_get_drvdata(pdev);
3358 if (netif_running(netdev)) {
3359 pci_restore_state(pdev);
3360 et131x_up(netdev);
3361 netif_device_attach(netdev);
3364 return 0;
3366 #endif
3368 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3370 static irqreturn_t et131x_isr(int irq, void *dev_id)
3372 bool handled = true;
3373 bool enable_interrupts = true;
3374 struct net_device *netdev = dev_id;
3375 struct et131x_adapter *adapter = netdev_priv(netdev);
3376 struct address_map __iomem *iomem = adapter->regs;
3377 struct rx_ring *rx_ring = &adapter->rx_ring;
3378 struct tx_ring *tx_ring = &adapter->tx_ring;
3379 u32 status;
3381 if (!netif_device_present(netdev)) {
3382 handled = false;
3383 enable_interrupts = false;
3384 goto out;
3387 et131x_disable_interrupts(adapter);
3389 status = readl(&adapter->regs->global.int_status);
3391 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3392 status &= ~INT_MASK_ENABLE;
3393 else
3394 status &= ~INT_MASK_ENABLE_NO_FLOW;
3396 /* Make sure this is our interrupt */
3397 if (!status) {
3398 handled = false;
3399 et131x_enable_interrupts(adapter);
3400 goto out;
3403 /* This is our interrupt, so process accordingly */
3404 if (status & ET_INTR_WATCHDOG) {
3405 struct tcb *tcb = tx_ring->send_head;
3407 if (tcb)
3408 if (++tcb->stale > 1)
3409 status |= ET_INTR_TXDMA_ISR;
3411 if (rx_ring->unfinished_receives)
3412 status |= ET_INTR_RXDMA_XFR_DONE;
3413 else if (tcb == NULL)
3414 writel(0, &adapter->regs->global.watchdog_timer);
3416 status &= ~ET_INTR_WATCHDOG;
3419 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3420 enable_interrupts = false;
3421 napi_schedule(&adapter->napi);
3424 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3426 if (!status)
3427 goto out;
3429 if (status & ET_INTR_TXDMA_ERR) {
3430 /* Following read also clears the register (COR) */
3431 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3433 dev_warn(&adapter->pdev->dev,
3434 "TXDMA_ERR interrupt, error = %d\n",
3435 txdma_err);
3438 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3439 /* This indicates the number of unused buffers in RXDMA free
3440 * buffer ring 0 is <= the limit you programmed. Free buffer
3441 * resources need to be returned. Free buffers are consumed as
3442 * packets are passed from the network to the host. The host
3443 * becomes aware of the packets from the contents of the packet
3444 * status ring. This ring is queried when the packet done
3445 * interrupt occurs. Packets are then passed to the OS. When
3446 * the OS is done with the packets the resources can be
3447 * returned to the ET1310 for re-use. This interrupt is one
3448 * method of returning resources.
3451 /* If the user has flow control on, then we will
3452 * send a pause packet, otherwise just exit
3454 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3455 u32 pm_csr;
3457 /* Tell the device to send a pause packet via the back
3458 * pressure register (bp req and bp xon/xoff)
3460 pm_csr = readl(&iomem->global.pm_csr);
3461 if (!et1310_in_phy_coma(adapter))
3462 writel(3, &iomem->txmac.bp_ctrl);
3466 /* Handle Packet Status Ring Low Interrupt */
3467 if (status & ET_INTR_RXDMA_STAT_LOW) {
3468 /* Same idea as with the two Free Buffer Rings. Packets going
3469 * from the network to the host each consume a free buffer
3470 * resource and a packet status resource. These resources are
3471 * passed to the OS. When the OS is done with the resources,
3472 * they need to be returned to the ET1310. This is one method
3473 * of returning the resources.
3477 if (status & ET_INTR_RXDMA_ERR) {
3478 /* The rxdma_error interrupt is sent when a time-out on a
3479 * request issued by the JAGCore has occurred or a completion is
3480 * returned with an un-successful status. In both cases the
3481 * request is considered complete. The JAGCore will
3482 * automatically re-try the request in question. Normally
3483 * information on events like these are sent to the host using
3484 * the "Advanced Error Reporting" capability. This interrupt is
3485 * another way of getting similar information. The only thing
3486 * required is to clear the interrupt by reading the ISR in the
3487 * global resources. The JAGCore will do a re-try on the
3488 * request. Normally you should never see this interrupt. If
3489 * you start to see this interrupt occurring frequently then
3490 * something bad has occurred. A reset might be the thing to do.
3492 /* TRAP();*/
3494 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3495 readl(&iomem->txmac.tx_test));
3498 /* Handle the Wake on LAN Event */
3499 if (status & ET_INTR_WOL) {
3500 /* This is a secondary interrupt for wake on LAN. The driver
3501 * should never see this, if it does, something serious is
3502 * wrong.
3504 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3507 if (status & ET_INTR_TXMAC) {
3508 u32 err = readl(&iomem->txmac.err);
3510 /* When any of the errors occur and TXMAC generates an
3511 * interrupt to report these errors, it usually means that
3512 * TXMAC has detected an error in the data stream retrieved
3513 * from the on-chip Tx Q. All of these errors are catastrophic
3514 * and TXMAC won't be able to recover data when these errors
3515 * occur. In a nutshell, the whole Tx path will have to be reset
3516 * and re-configured afterwards.
3518 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3519 err);
3521 /* If we are debugging, we want to see this error, otherwise we
3522 * just want the device to be reset and continue
3526 if (status & ET_INTR_RXMAC) {
3527 /* These interrupts are catastrophic to the device, what we need
3528 * to do is disable the interrupts and set the flag to cause us
3529 * to reset so we can solve this issue.
3531 dev_warn(&adapter->pdev->dev,
3532 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
3533 readl(&iomem->rxmac.err_reg));
3535 dev_warn(&adapter->pdev->dev,
3536 "Enable 0x%08x, Diag 0x%08x\n",
3537 readl(&iomem->rxmac.ctrl),
3538 readl(&iomem->rxmac.rxq_diag));
3540 /* If we are debugging, we want to see this error, otherwise we
3541 * just want the device to be reset and continue
3545 if (status & ET_INTR_MAC_STAT) {
3546 /* This means at least one of the un-masked counters in the
3547 * MAC_STAT block has rolled over. Use this to maintain the top,
3548 * software managed bits of the counter(s).
3550 et1310_handle_macstat_interrupt(adapter);
3553 if (status & ET_INTR_SLV_TIMEOUT) {
3554 /* This means a timeout has occurred on a read or write request
3555 * to one of the JAGCore registers. The Global Resources block
3556 * has terminated the request and on a read request, returned a
3557 * "fake" value. The most likely reasons are: Bad Address or the
3558 * addressed module is in a power-down state and can't respond.
3562 out:
3563 if (enable_interrupts)
3564 et131x_enable_interrupts(adapter);
3566 return IRQ_RETVAL(handled);
3569 static int et131x_poll(struct napi_struct *napi, int budget)
3571 struct et131x_adapter *adapter =
3572 container_of(napi, struct et131x_adapter, napi);
3573 int work_done = et131x_handle_recv_pkts(adapter, budget);
3575 et131x_handle_send_pkts(adapter);
3577 if (work_done < budget) {
3578 napi_complete_done(&adapter->napi, work_done);
3579 et131x_enable_interrupts(adapter);
3582 return work_done;
3585 /* et131x_stats - Return the current device statistics */
3586 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3588 struct et131x_adapter *adapter = netdev_priv(netdev);
3589 struct net_device_stats *stats = &adapter->netdev->stats;
3590 struct ce_stats *devstat = &adapter->stats;
3592 stats->rx_errors = devstat->rx_length_errs +
3593 devstat->rx_align_errs +
3594 devstat->rx_crc_errs +
3595 devstat->rx_code_violations +
3596 devstat->rx_other_errs;
3597 stats->tx_errors = devstat->tx_max_pkt_errs;
3598 stats->multicast = devstat->multicast_pkts_rcvd;
3599 stats->collisions = devstat->tx_collisions;
3601 stats->rx_length_errors = devstat->rx_length_errs;
3602 stats->rx_over_errors = devstat->rx_overflows;
3603 stats->rx_crc_errors = devstat->rx_crc_errs;
3604 stats->rx_dropped = devstat->rcvd_pkts_dropped;
3606 /* NOTE: Not used, can't find analogous statistics */
3607 /* stats->rx_frame_errors = devstat->; */
3608 /* stats->rx_fifo_errors = devstat->; */
3609 /* stats->rx_missed_errors = devstat->; */
3611 /* stats->tx_aborted_errors = devstat->; */
3612 /* stats->tx_carrier_errors = devstat->; */
3613 /* stats->tx_fifo_errors = devstat->; */
3614 /* stats->tx_heartbeat_errors = devstat->; */
3615 /* stats->tx_window_errors = devstat->; */
3616 return stats;
3619 static int et131x_open(struct net_device *netdev)
3621 struct et131x_adapter *adapter = netdev_priv(netdev);
3622 struct pci_dev *pdev = adapter->pdev;
3623 unsigned int irq = pdev->irq;
3624 int result;
3626 /* Start the timer to track NIC errors */
3627 init_timer(&adapter->error_timer);
3628 adapter->error_timer.expires = jiffies +
3629 msecs_to_jiffies(TX_ERROR_PERIOD);
3630 adapter->error_timer.function = et131x_error_timer_handler;
3631 adapter->error_timer.data = (unsigned long)adapter;
3632 add_timer(&adapter->error_timer);
3634 result = request_irq(irq, et131x_isr,
3635 IRQF_SHARED, netdev->name, netdev);
3636 if (result) {
3637 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3638 return result;
3641 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3643 napi_enable(&adapter->napi);
3645 et131x_up(netdev);
3647 return result;
3650 static int et131x_close(struct net_device *netdev)
3652 struct et131x_adapter *adapter = netdev_priv(netdev);
3654 et131x_down(netdev);
3655 napi_disable(&adapter->napi);
3657 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3658 free_irq(adapter->pdev->irq, netdev);
3660 /* Stop the error timer */
3661 return del_timer_sync(&adapter->error_timer);
3664 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3665 int cmd)
3667 if (!netdev->phydev)
3668 return -EINVAL;
3670 return phy_mii_ioctl(netdev->phydev, reqbuf, cmd);
3673 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3674 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3676 int filter = adapter->packet_filter;
3677 u32 ctrl;
3678 u32 pf_ctrl;
3680 ctrl = readl(&adapter->regs->rxmac.ctrl);
3681 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3683 /* Default to disabled packet filtering */
3684 ctrl |= 0x04;
3686 /* Set us to be in promiscuous mode so we receive everything, this
3687 * is also true when we get a packet filter of 0
3689 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3690 pf_ctrl &= ~7; /* Clear filter bits */
3691 else {
3692 /* Set us up with Multicast packet filtering. Three cases are
3693 * possible - (1) we have a multi-cast list, (2) we receive ALL
3694 * multicast entries or (3) we receive none.
3696 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3697 pf_ctrl &= ~2; /* Multicast filter bit */
3698 else {
3699 et1310_setup_device_for_multicast(adapter);
3700 pf_ctrl |= 2;
3701 ctrl &= ~0x04;
3704 /* Set us up with Unicast packet filtering */
3705 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3706 et1310_setup_device_for_unicast(adapter);
3707 pf_ctrl |= 4;
3708 ctrl &= ~0x04;
3711 /* Set us up with Broadcast packet filtering */
3712 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3713 pf_ctrl |= 1; /* Broadcast filter bit */
3714 ctrl &= ~0x04;
3715 } else {
3716 pf_ctrl &= ~1;
3719 /* Setup the receive mac configuration registers - Packet
3720 * Filter control + the enable / disable for packet filter
3721 * in the control reg.
3723 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3724 writel(ctrl, &adapter->regs->rxmac.ctrl);
3726 return 0;
3729 static void et131x_multicast(struct net_device *netdev)
3731 struct et131x_adapter *adapter = netdev_priv(netdev);
3732 int packet_filter;
3733 struct netdev_hw_addr *ha;
3734 int i;
3736 /* Before we modify the platform-independent filter flags, store them
3737 * locally. This allows us to determine if anything's changed and if
3738 * we even need to bother the hardware
3740 packet_filter = adapter->packet_filter;
3742 /* Clear the 'multicast' flag locally; because we only have a single
3743 * flag to check multicast, and multiple multicast addresses can be
3744 * set, this is the easiest way to determine if more than one
3745 * multicast address is being set.
3747 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3749 /* Check the net_device flags and set the device independent flags
3750 * accordingly
3752 if (netdev->flags & IFF_PROMISC)
3753 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3754 else
3755 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3757 if ((netdev->flags & IFF_ALLMULTI) ||
3758 (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3759 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3761 if (netdev_mc_count(netdev) < 1) {
3762 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3763 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3764 } else {
3765 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3768 /* Set values in the private adapter struct */
3769 i = 0;
3770 netdev_for_each_mc_addr(ha, netdev) {
3771 if (i == NIC_MAX_MCAST_LIST)
3772 break;
3773 ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3775 adapter->multicast_addr_count = i;
3777 /* Are the new flags different from the previous ones? If not, then no
3778 * action is required
3780 * NOTE - This block will always update the multicast_list with the
3781 * hardware, even if the addresses aren't the same.
3783 if (packet_filter != adapter->packet_filter)
3784 et131x_set_packet_filter(adapter);
3787 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3789 struct et131x_adapter *adapter = netdev_priv(netdev);
3790 struct tx_ring *tx_ring = &adapter->tx_ring;
3792 /* stop the queue if it's getting full */
3793 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3794 netif_stop_queue(netdev);
3796 /* Save the timestamp for the TX timeout watchdog */
3797 netif_trans_update(netdev);
3799 /* TCB is not available */
3800 if (tx_ring->used >= NUM_TCB)
3801 goto drop_err;
3803 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3804 !netif_carrier_ok(netdev))
3805 goto drop_err;
3807 if (send_packet(skb, adapter))
3808 goto drop_err;
3810 return NETDEV_TX_OK;
3812 drop_err:
3813 dev_kfree_skb_any(skb);
3814 adapter->netdev->stats.tx_dropped++;
3815 return NETDEV_TX_OK;
3818 /* et131x_tx_timeout - Timeout handler
3820 * The handler called when a Tx request times out. The timeout period is
3821 * specified by the 'tx_timeo" element in the net_device structure (see
3822 * et131x_alloc_device() to see how this value is set).
3824 static void et131x_tx_timeout(struct net_device *netdev)
3826 struct et131x_adapter *adapter = netdev_priv(netdev);
3827 struct tx_ring *tx_ring = &adapter->tx_ring;
3828 struct tcb *tcb;
3829 unsigned long flags;
3831 /* If the device is closed, ignore the timeout */
3832 if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3833 return;
3835 /* Any nonrecoverable hardware error?
3836 * Checks adapter->flags for any failure in phy reading
3838 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3839 return;
3841 /* Hardware failure? */
3842 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3843 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3844 return;
3847 /* Is send stuck? */
3848 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3849 tcb = tx_ring->send_head;
3850 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3852 if (tcb) {
3853 tcb->count++;
3855 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3856 dev_warn(&adapter->pdev->dev,
3857 "Send stuck - reset. tcb->WrIndex %x\n",
3858 tcb->index);
3860 adapter->netdev->stats.tx_errors++;
3862 /* perform reset of tx/rx */
3863 et131x_disable_txrx(netdev);
3864 et131x_enable_txrx(netdev);
3869 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3871 int result = 0;
3872 struct et131x_adapter *adapter = netdev_priv(netdev);
3874 et131x_disable_txrx(netdev);
3876 netdev->mtu = new_mtu;
3878 et131x_adapter_memory_free(adapter);
3880 /* Set the config parameter for Jumbo Packet support */
3881 adapter->registry_jumbo_packet = new_mtu + 14;
3882 et131x_soft_reset(adapter);
3884 result = et131x_adapter_memory_alloc(adapter);
3885 if (result != 0) {
3886 dev_warn(&adapter->pdev->dev,
3887 "Change MTU failed; couldn't re-alloc DMA memory\n");
3888 return result;
3891 et131x_init_send(adapter);
3892 et131x_hwaddr_init(adapter);
3893 ether_addr_copy(netdev->dev_addr, adapter->addr);
3895 /* Init the device with the new settings */
3896 et131x_adapter_setup(adapter);
3897 et131x_enable_txrx(netdev);
3899 return result;
3902 static const struct net_device_ops et131x_netdev_ops = {
3903 .ndo_open = et131x_open,
3904 .ndo_stop = et131x_close,
3905 .ndo_start_xmit = et131x_tx,
3906 .ndo_set_rx_mode = et131x_multicast,
3907 .ndo_tx_timeout = et131x_tx_timeout,
3908 .ndo_change_mtu = et131x_change_mtu,
3909 .ndo_set_mac_address = eth_mac_addr,
3910 .ndo_validate_addr = eth_validate_addr,
3911 .ndo_get_stats = et131x_stats,
3912 .ndo_do_ioctl = et131x_ioctl,
3915 static int et131x_pci_setup(struct pci_dev *pdev,
3916 const struct pci_device_id *ent)
3918 struct net_device *netdev;
3919 struct et131x_adapter *adapter;
3920 int rc;
3922 rc = pci_enable_device(pdev);
3923 if (rc < 0) {
3924 dev_err(&pdev->dev, "pci_enable_device() failed\n");
3925 goto out;
3928 /* Perform some basic PCI checks */
3929 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3930 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3931 rc = -ENODEV;
3932 goto err_disable;
3935 rc = pci_request_regions(pdev, DRIVER_NAME);
3936 if (rc < 0) {
3937 dev_err(&pdev->dev, "Can't get PCI resources\n");
3938 goto err_disable;
3941 pci_set_master(pdev);
3943 /* Check the DMA addressing support of this device */
3944 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3945 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3946 dev_err(&pdev->dev, "No usable DMA addressing method\n");
3947 rc = -EIO;
3948 goto err_release_res;
3951 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3952 if (!netdev) {
3953 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3954 rc = -ENOMEM;
3955 goto err_release_res;
3958 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3959 netdev->netdev_ops = &et131x_netdev_ops;
3960 netdev->min_mtu = ET131X_MIN_MTU;
3961 netdev->max_mtu = ET131X_MAX_MTU;
3963 SET_NETDEV_DEV(netdev, &pdev->dev);
3964 netdev->ethtool_ops = &et131x_ethtool_ops;
3966 adapter = et131x_adapter_init(netdev, pdev);
3968 rc = et131x_pci_init(adapter, pdev);
3969 if (rc < 0)
3970 goto err_free_dev;
3972 /* Map the bus-relative registers to system virtual memory */
3973 adapter->regs = pci_ioremap_bar(pdev, 0);
3974 if (!adapter->regs) {
3975 dev_err(&pdev->dev, "Cannot map device registers\n");
3976 rc = -ENOMEM;
3977 goto err_free_dev;
3980 /* If Phy COMA mode was enabled when we went down, disable it here. */
3981 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
3983 et131x_soft_reset(adapter);
3984 et131x_disable_interrupts(adapter);
3986 rc = et131x_adapter_memory_alloc(adapter);
3987 if (rc < 0) {
3988 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3989 goto err_iounmap;
3992 et131x_init_send(adapter);
3994 netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3996 ether_addr_copy(netdev->dev_addr, adapter->addr);
3998 rc = -ENOMEM;
4000 adapter->mii_bus = mdiobus_alloc();
4001 if (!adapter->mii_bus) {
4002 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4003 goto err_mem_free;
4006 adapter->mii_bus->name = "et131x_eth_mii";
4007 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4008 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4009 adapter->mii_bus->priv = netdev;
4010 adapter->mii_bus->read = et131x_mdio_read;
4011 adapter->mii_bus->write = et131x_mdio_write;
4013 rc = mdiobus_register(adapter->mii_bus);
4014 if (rc < 0) {
4015 dev_err(&pdev->dev, "failed to register MII bus\n");
4016 goto err_mdio_free;
4019 rc = et131x_mii_probe(netdev);
4020 if (rc < 0) {
4021 dev_err(&pdev->dev, "failed to probe MII bus\n");
4022 goto err_mdio_unregister;
4025 et131x_adapter_setup(adapter);
4027 /* Init variable for counting how long we do not have link status */
4028 adapter->boot_coma = 0;
4029 et1310_disable_phy_coma(adapter);
4031 /* We can enable interrupts now
4033 * NOTE - Because registration of interrupt handler is done in the
4034 * device's open(), defer enabling device interrupts to that
4035 * point
4038 rc = register_netdev(netdev);
4039 if (rc < 0) {
4040 dev_err(&pdev->dev, "register_netdev() failed\n");
4041 goto err_phy_disconnect;
4044 /* Register the net_device struct with the PCI subsystem. Save a copy
4045 * of the PCI config space for this device now that the device has
4046 * been initialized, just in case it needs to be quickly restored.
4048 pci_set_drvdata(pdev, netdev);
4049 out:
4050 return rc;
4052 err_phy_disconnect:
4053 phy_disconnect(netdev->phydev);
4054 err_mdio_unregister:
4055 mdiobus_unregister(adapter->mii_bus);
4056 err_mdio_free:
4057 mdiobus_free(adapter->mii_bus);
4058 err_mem_free:
4059 et131x_adapter_memory_free(adapter);
4060 err_iounmap:
4061 iounmap(adapter->regs);
4062 err_free_dev:
4063 pci_dev_put(pdev);
4064 free_netdev(netdev);
4065 err_release_res:
4066 pci_release_regions(pdev);
4067 err_disable:
4068 pci_disable_device(pdev);
4069 goto out;
4072 static const struct pci_device_id et131x_pci_table[] = {
4073 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4074 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4075 { 0,}
4077 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4079 static struct pci_driver et131x_driver = {
4080 .name = DRIVER_NAME,
4081 .id_table = et131x_pci_table,
4082 .probe = et131x_pci_setup,
4083 .remove = et131x_pci_remove,
4084 .driver.pm = &et131x_pm_ops,
4087 module_pci_driver(et131x_driver);