x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / net / ethernet / apple / mace.c
blob96dd5300e0e5f500844ba980099139e0487b5d20
1 /*
2 * Network device driver for the MACE ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
5 * Copyright (C) 1996 Paul Mackerras.
6 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/crc32.h>
18 #include <linux/spinlock.h>
19 #include <linux/bitrev.h>
20 #include <linux/slab.h>
21 #include <asm/prom.h>
22 #include <asm/dbdma.h>
23 #include <asm/io.h>
24 #include <asm/pgtable.h>
25 #include <asm/macio.h>
27 #include "mace.h"
29 static int port_aaui = -1;
31 #define N_RX_RING 8
32 #define N_TX_RING 6
33 #define MAX_TX_ACTIVE 1
34 #define NCMDS_TX 1 /* dma commands per element in tx ring */
35 #define RX_BUFLEN (ETH_FRAME_LEN + 8)
36 #define TX_TIMEOUT HZ /* 1 second */
38 /* Chip rev needs workaround on HW & multicast addr change */
39 #define BROKEN_ADDRCHG_REV 0x0941
41 /* Bits in transmit DMA status */
42 #define TX_DMA_ERR 0x80
44 struct mace_data {
45 volatile struct mace __iomem *mace;
46 volatile struct dbdma_regs __iomem *tx_dma;
47 int tx_dma_intr;
48 volatile struct dbdma_regs __iomem *rx_dma;
49 int rx_dma_intr;
50 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
51 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
52 struct sk_buff *rx_bufs[N_RX_RING];
53 int rx_fill;
54 int rx_empty;
55 struct sk_buff *tx_bufs[N_TX_RING];
56 int tx_fill;
57 int tx_empty;
58 unsigned char maccc;
59 unsigned char tx_fullup;
60 unsigned char tx_active;
61 unsigned char tx_bad_runt;
62 struct timer_list tx_timeout;
63 int timeout_active;
64 int port_aaui;
65 int chipid;
66 struct macio_dev *mdev;
67 spinlock_t lock;
71 * Number of bytes of private data per MACE: allow enough for
72 * the rx and tx dma commands plus a branch dma command each,
73 * and another 16 bytes to allow us to align the dma command
74 * buffers on a 16 byte boundary.
76 #define PRIV_BYTES (sizeof(struct mace_data) \
77 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
79 static int mace_open(struct net_device *dev);
80 static int mace_close(struct net_device *dev);
81 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
82 static void mace_set_multicast(struct net_device *dev);
83 static void mace_reset(struct net_device *dev);
84 static int mace_set_address(struct net_device *dev, void *addr);
85 static irqreturn_t mace_interrupt(int irq, void *dev_id);
86 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
87 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
88 static void mace_set_timeout(struct net_device *dev);
89 static void mace_tx_timeout(unsigned long data);
90 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
91 static inline void mace_clean_rings(struct mace_data *mp);
92 static void __mace_set_address(struct net_device *dev, void *addr);
95 * If we can't get a skbuff when we need it, we use this area for DMA.
97 static unsigned char *dummy_buf;
99 static const struct net_device_ops mace_netdev_ops = {
100 .ndo_open = mace_open,
101 .ndo_stop = mace_close,
102 .ndo_start_xmit = mace_xmit_start,
103 .ndo_set_rx_mode = mace_set_multicast,
104 .ndo_set_mac_address = mace_set_address,
105 .ndo_validate_addr = eth_validate_addr,
108 static int mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
110 struct device_node *mace = macio_get_of_node(mdev);
111 struct net_device *dev;
112 struct mace_data *mp;
113 const unsigned char *addr;
114 int j, rev, rc = -EBUSY;
116 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
117 printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
118 mace->full_name);
119 return -ENODEV;
122 addr = of_get_property(mace, "mac-address", NULL);
123 if (addr == NULL) {
124 addr = of_get_property(mace, "local-mac-address", NULL);
125 if (addr == NULL) {
126 printk(KERN_ERR "Can't get mac-address for MACE %s\n",
127 mace->full_name);
128 return -ENODEV;
133 * lazy allocate the driver-wide dummy buffer. (Note that we
134 * never have more than one MACE in the system anyway)
136 if (dummy_buf == NULL) {
137 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
138 if (dummy_buf == NULL)
139 return -ENOMEM;
142 if (macio_request_resources(mdev, "mace")) {
143 printk(KERN_ERR "MACE: can't request IO resources !\n");
144 return -EBUSY;
147 dev = alloc_etherdev(PRIV_BYTES);
148 if (!dev) {
149 rc = -ENOMEM;
150 goto err_release;
152 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
154 mp = netdev_priv(dev);
155 mp->mdev = mdev;
156 macio_set_drvdata(mdev, dev);
158 dev->base_addr = macio_resource_start(mdev, 0);
159 mp->mace = ioremap(dev->base_addr, 0x1000);
160 if (mp->mace == NULL) {
161 printk(KERN_ERR "MACE: can't map IO resources !\n");
162 rc = -ENOMEM;
163 goto err_free;
165 dev->irq = macio_irq(mdev, 0);
167 rev = addr[0] == 0 && addr[1] == 0xA0;
168 for (j = 0; j < 6; ++j) {
169 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
171 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
172 in_8(&mp->mace->chipid_lo);
175 mp = netdev_priv(dev);
176 mp->maccc = ENXMT | ENRCV;
178 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
179 if (mp->tx_dma == NULL) {
180 printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
181 rc = -ENOMEM;
182 goto err_unmap_io;
184 mp->tx_dma_intr = macio_irq(mdev, 1);
186 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
187 if (mp->rx_dma == NULL) {
188 printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
189 rc = -ENOMEM;
190 goto err_unmap_tx_dma;
192 mp->rx_dma_intr = macio_irq(mdev, 2);
194 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
195 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
197 memset((char *) mp->tx_cmds, 0,
198 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
199 init_timer(&mp->tx_timeout);
200 spin_lock_init(&mp->lock);
201 mp->timeout_active = 0;
203 if (port_aaui >= 0)
204 mp->port_aaui = port_aaui;
205 else {
206 /* Apple Network Server uses the AAUI port */
207 if (of_machine_is_compatible("AAPL,ShinerESB"))
208 mp->port_aaui = 1;
209 else {
210 #ifdef CONFIG_MACE_AAUI_PORT
211 mp->port_aaui = 1;
212 #else
213 mp->port_aaui = 0;
214 #endif
218 dev->netdev_ops = &mace_netdev_ops;
221 * Most of what is below could be moved to mace_open()
223 mace_reset(dev);
225 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
226 if (rc) {
227 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
228 goto err_unmap_rx_dma;
230 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
231 if (rc) {
232 printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
233 goto err_free_irq;
235 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
236 if (rc) {
237 printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
238 goto err_free_tx_irq;
241 rc = register_netdev(dev);
242 if (rc) {
243 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
244 goto err_free_rx_irq;
247 printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
248 dev->name, dev->dev_addr,
249 mp->chipid >> 8, mp->chipid & 0xff);
251 return 0;
253 err_free_rx_irq:
254 free_irq(macio_irq(mdev, 2), dev);
255 err_free_tx_irq:
256 free_irq(macio_irq(mdev, 1), dev);
257 err_free_irq:
258 free_irq(macio_irq(mdev, 0), dev);
259 err_unmap_rx_dma:
260 iounmap(mp->rx_dma);
261 err_unmap_tx_dma:
262 iounmap(mp->tx_dma);
263 err_unmap_io:
264 iounmap(mp->mace);
265 err_free:
266 free_netdev(dev);
267 err_release:
268 macio_release_resources(mdev);
270 return rc;
273 static int mace_remove(struct macio_dev *mdev)
275 struct net_device *dev = macio_get_drvdata(mdev);
276 struct mace_data *mp;
278 BUG_ON(dev == NULL);
280 macio_set_drvdata(mdev, NULL);
282 mp = netdev_priv(dev);
284 unregister_netdev(dev);
286 free_irq(dev->irq, dev);
287 free_irq(mp->tx_dma_intr, dev);
288 free_irq(mp->rx_dma_intr, dev);
290 iounmap(mp->rx_dma);
291 iounmap(mp->tx_dma);
292 iounmap(mp->mace);
294 free_netdev(dev);
296 macio_release_resources(mdev);
298 return 0;
301 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
303 int i;
305 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
308 * Yes this looks peculiar, but apparently it needs to be this
309 * way on some machines.
311 for (i = 200; i > 0; --i)
312 if (le32_to_cpu(dma->control) & RUN)
313 udelay(1);
316 static void mace_reset(struct net_device *dev)
318 struct mace_data *mp = netdev_priv(dev);
319 volatile struct mace __iomem *mb = mp->mace;
320 int i;
322 /* soft-reset the chip */
323 i = 200;
324 while (--i) {
325 out_8(&mb->biucc, SWRST);
326 if (in_8(&mb->biucc) & SWRST) {
327 udelay(10);
328 continue;
330 break;
332 if (!i) {
333 printk(KERN_ERR "mace: cannot reset chip!\n");
334 return;
337 out_8(&mb->imr, 0xff); /* disable all intrs for now */
338 i = in_8(&mb->ir);
339 out_8(&mb->maccc, 0); /* turn off tx, rx */
341 out_8(&mb->biucc, XMTSP_64);
342 out_8(&mb->utr, RTRD);
343 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
344 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
345 out_8(&mb->rcvfc, 0);
347 /* load up the hardware address */
348 __mace_set_address(dev, dev->dev_addr);
350 /* clear the multicast filter */
351 if (mp->chipid == BROKEN_ADDRCHG_REV)
352 out_8(&mb->iac, LOGADDR);
353 else {
354 out_8(&mb->iac, ADDRCHG | LOGADDR);
355 while ((in_8(&mb->iac) & ADDRCHG) != 0)
358 for (i = 0; i < 8; ++i)
359 out_8(&mb->ladrf, 0);
361 /* done changing address */
362 if (mp->chipid != BROKEN_ADDRCHG_REV)
363 out_8(&mb->iac, 0);
365 if (mp->port_aaui)
366 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
367 else
368 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
371 static void __mace_set_address(struct net_device *dev, void *addr)
373 struct mace_data *mp = netdev_priv(dev);
374 volatile struct mace __iomem *mb = mp->mace;
375 unsigned char *p = addr;
376 int i;
378 /* load up the hardware address */
379 if (mp->chipid == BROKEN_ADDRCHG_REV)
380 out_8(&mb->iac, PHYADDR);
381 else {
382 out_8(&mb->iac, ADDRCHG | PHYADDR);
383 while ((in_8(&mb->iac) & ADDRCHG) != 0)
386 for (i = 0; i < 6; ++i)
387 out_8(&mb->padr, dev->dev_addr[i] = p[i]);
388 if (mp->chipid != BROKEN_ADDRCHG_REV)
389 out_8(&mb->iac, 0);
392 static int mace_set_address(struct net_device *dev, void *addr)
394 struct mace_data *mp = netdev_priv(dev);
395 volatile struct mace __iomem *mb = mp->mace;
396 unsigned long flags;
398 spin_lock_irqsave(&mp->lock, flags);
400 __mace_set_address(dev, addr);
402 /* note: setting ADDRCHG clears ENRCV */
403 out_8(&mb->maccc, mp->maccc);
405 spin_unlock_irqrestore(&mp->lock, flags);
406 return 0;
409 static inline void mace_clean_rings(struct mace_data *mp)
411 int i;
413 /* free some skb's */
414 for (i = 0; i < N_RX_RING; ++i) {
415 if (mp->rx_bufs[i] != NULL) {
416 dev_kfree_skb(mp->rx_bufs[i]);
417 mp->rx_bufs[i] = NULL;
420 for (i = mp->tx_empty; i != mp->tx_fill; ) {
421 dev_kfree_skb(mp->tx_bufs[i]);
422 if (++i >= N_TX_RING)
423 i = 0;
427 static int mace_open(struct net_device *dev)
429 struct mace_data *mp = netdev_priv(dev);
430 volatile struct mace __iomem *mb = mp->mace;
431 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
432 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
433 volatile struct dbdma_cmd *cp;
434 int i;
435 struct sk_buff *skb;
436 unsigned char *data;
438 /* reset the chip */
439 mace_reset(dev);
441 /* initialize list of sk_buffs for receiving and set up recv dma */
442 mace_clean_rings(mp);
443 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
444 cp = mp->rx_cmds;
445 for (i = 0; i < N_RX_RING - 1; ++i) {
446 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
447 if (!skb) {
448 data = dummy_buf;
449 } else {
450 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
451 data = skb->data;
453 mp->rx_bufs[i] = skb;
454 cp->req_count = cpu_to_le16(RX_BUFLEN);
455 cp->command = cpu_to_le16(INPUT_LAST + INTR_ALWAYS);
456 cp->phy_addr = cpu_to_le32(virt_to_bus(data));
457 cp->xfer_status = 0;
458 ++cp;
460 mp->rx_bufs[i] = NULL;
461 cp->command = cpu_to_le16(DBDMA_STOP);
462 mp->rx_fill = i;
463 mp->rx_empty = 0;
465 /* Put a branch back to the beginning of the receive command list */
466 ++cp;
467 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
468 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->rx_cmds));
470 /* start rx dma */
471 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
472 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
473 out_le32(&rd->control, (RUN << 16) | RUN);
475 /* put a branch at the end of the tx command list */
476 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
477 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
478 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->tx_cmds));
480 /* reset tx dma */
481 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
482 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
483 mp->tx_fill = 0;
484 mp->tx_empty = 0;
485 mp->tx_fullup = 0;
486 mp->tx_active = 0;
487 mp->tx_bad_runt = 0;
489 /* turn it on! */
490 out_8(&mb->maccc, mp->maccc);
491 /* enable all interrupts except receive interrupts */
492 out_8(&mb->imr, RCVINT);
494 return 0;
497 static int mace_close(struct net_device *dev)
499 struct mace_data *mp = netdev_priv(dev);
500 volatile struct mace __iomem *mb = mp->mace;
501 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
502 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
504 /* disable rx and tx */
505 out_8(&mb->maccc, 0);
506 out_8(&mb->imr, 0xff); /* disable all intrs */
508 /* disable rx and tx dma */
509 rd->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
510 td->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
512 mace_clean_rings(mp);
514 return 0;
517 static inline void mace_set_timeout(struct net_device *dev)
519 struct mace_data *mp = netdev_priv(dev);
521 if (mp->timeout_active)
522 del_timer(&mp->tx_timeout);
523 mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
524 mp->tx_timeout.function = mace_tx_timeout;
525 mp->tx_timeout.data = (unsigned long) dev;
526 add_timer(&mp->tx_timeout);
527 mp->timeout_active = 1;
530 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
532 struct mace_data *mp = netdev_priv(dev);
533 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
534 volatile struct dbdma_cmd *cp, *np;
535 unsigned long flags;
536 int fill, next, len;
538 /* see if there's a free slot in the tx ring */
539 spin_lock_irqsave(&mp->lock, flags);
540 fill = mp->tx_fill;
541 next = fill + 1;
542 if (next >= N_TX_RING)
543 next = 0;
544 if (next == mp->tx_empty) {
545 netif_stop_queue(dev);
546 mp->tx_fullup = 1;
547 spin_unlock_irqrestore(&mp->lock, flags);
548 return NETDEV_TX_BUSY; /* can't take it at the moment */
550 spin_unlock_irqrestore(&mp->lock, flags);
552 /* partially fill in the dma command block */
553 len = skb->len;
554 if (len > ETH_FRAME_LEN) {
555 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
556 len = ETH_FRAME_LEN;
558 mp->tx_bufs[fill] = skb;
559 cp = mp->tx_cmds + NCMDS_TX * fill;
560 cp->req_count = cpu_to_le16(len);
561 cp->phy_addr = cpu_to_le32(virt_to_bus(skb->data));
563 np = mp->tx_cmds + NCMDS_TX * next;
564 out_le16(&np->command, DBDMA_STOP);
566 /* poke the tx dma channel */
567 spin_lock_irqsave(&mp->lock, flags);
568 mp->tx_fill = next;
569 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
570 out_le16(&cp->xfer_status, 0);
571 out_le16(&cp->command, OUTPUT_LAST);
572 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
573 ++mp->tx_active;
574 mace_set_timeout(dev);
576 if (++next >= N_TX_RING)
577 next = 0;
578 if (next == mp->tx_empty)
579 netif_stop_queue(dev);
580 spin_unlock_irqrestore(&mp->lock, flags);
582 return NETDEV_TX_OK;
585 static void mace_set_multicast(struct net_device *dev)
587 struct mace_data *mp = netdev_priv(dev);
588 volatile struct mace __iomem *mb = mp->mace;
589 int i;
590 u32 crc;
591 unsigned long flags;
593 spin_lock_irqsave(&mp->lock, flags);
594 mp->maccc &= ~PROM;
595 if (dev->flags & IFF_PROMISC) {
596 mp->maccc |= PROM;
597 } else {
598 unsigned char multicast_filter[8];
599 struct netdev_hw_addr *ha;
601 if (dev->flags & IFF_ALLMULTI) {
602 for (i = 0; i < 8; i++)
603 multicast_filter[i] = 0xff;
604 } else {
605 for (i = 0; i < 8; i++)
606 multicast_filter[i] = 0;
607 netdev_for_each_mc_addr(ha, dev) {
608 crc = ether_crc_le(6, ha->addr);
609 i = crc >> 26; /* bit number in multicast_filter */
610 multicast_filter[i >> 3] |= 1 << (i & 7);
613 #if 0
614 printk("Multicast filter :");
615 for (i = 0; i < 8; i++)
616 printk("%02x ", multicast_filter[i]);
617 printk("\n");
618 #endif
620 if (mp->chipid == BROKEN_ADDRCHG_REV)
621 out_8(&mb->iac, LOGADDR);
622 else {
623 out_8(&mb->iac, ADDRCHG | LOGADDR);
624 while ((in_8(&mb->iac) & ADDRCHG) != 0)
627 for (i = 0; i < 8; ++i)
628 out_8(&mb->ladrf, multicast_filter[i]);
629 if (mp->chipid != BROKEN_ADDRCHG_REV)
630 out_8(&mb->iac, 0);
632 /* reset maccc */
633 out_8(&mb->maccc, mp->maccc);
634 spin_unlock_irqrestore(&mp->lock, flags);
637 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
639 volatile struct mace __iomem *mb = mp->mace;
640 static int mace_babbles, mace_jabbers;
642 if (intr & MPCO)
643 dev->stats.rx_missed_errors += 256;
644 dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
645 if (intr & RNTPCO)
646 dev->stats.rx_length_errors += 256;
647 dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
648 if (intr & CERR)
649 ++dev->stats.tx_heartbeat_errors;
650 if (intr & BABBLE)
651 if (mace_babbles++ < 4)
652 printk(KERN_DEBUG "mace: babbling transmitter\n");
653 if (intr & JABBER)
654 if (mace_jabbers++ < 4)
655 printk(KERN_DEBUG "mace: jabbering transceiver\n");
658 static irqreturn_t mace_interrupt(int irq, void *dev_id)
660 struct net_device *dev = (struct net_device *) dev_id;
661 struct mace_data *mp = netdev_priv(dev);
662 volatile struct mace __iomem *mb = mp->mace;
663 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
664 volatile struct dbdma_cmd *cp;
665 int intr, fs, i, stat, x;
666 int xcount, dstat;
667 unsigned long flags;
668 /* static int mace_last_fs, mace_last_xcount; */
670 spin_lock_irqsave(&mp->lock, flags);
671 intr = in_8(&mb->ir); /* read interrupt register */
672 in_8(&mb->xmtrc); /* get retries */
673 mace_handle_misc_intrs(mp, intr, dev);
675 i = mp->tx_empty;
676 while (in_8(&mb->pr) & XMTSV) {
677 del_timer(&mp->tx_timeout);
678 mp->timeout_active = 0;
680 * Clear any interrupt indication associated with this status
681 * word. This appears to unlatch any error indication from
682 * the DMA controller.
684 intr = in_8(&mb->ir);
685 if (intr != 0)
686 mace_handle_misc_intrs(mp, intr, dev);
687 if (mp->tx_bad_runt) {
688 fs = in_8(&mb->xmtfs);
689 mp->tx_bad_runt = 0;
690 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
691 continue;
693 dstat = le32_to_cpu(td->status);
694 /* stop DMA controller */
695 out_le32(&td->control, RUN << 16);
697 * xcount is the number of complete frames which have been
698 * written to the fifo but for which status has not been read.
700 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
701 if (xcount == 0 || (dstat & DEAD)) {
703 * If a packet was aborted before the DMA controller has
704 * finished transferring it, it seems that there are 2 bytes
705 * which are stuck in some buffer somewhere. These will get
706 * transmitted as soon as we read the frame status (which
707 * reenables the transmit data transfer request). Turning
708 * off the DMA controller and/or resetting the MACE doesn't
709 * help. So we disable auto-padding and FCS transmission
710 * so the two bytes will only be a runt packet which should
711 * be ignored by other stations.
713 out_8(&mb->xmtfc, DXMTFCS);
715 fs = in_8(&mb->xmtfs);
716 if ((fs & XMTSV) == 0) {
717 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
718 fs, xcount, dstat);
719 mace_reset(dev);
721 * XXX mace likes to hang the machine after a xmtfs error.
722 * This is hard to reproduce, resetting *may* help
725 cp = mp->tx_cmds + NCMDS_TX * i;
726 stat = le16_to_cpu(cp->xfer_status);
727 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
729 * Check whether there were in fact 2 bytes written to
730 * the transmit FIFO.
732 udelay(1);
733 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
734 if (x != 0) {
735 /* there were two bytes with an end-of-packet indication */
736 mp->tx_bad_runt = 1;
737 mace_set_timeout(dev);
738 } else {
740 * Either there weren't the two bytes buffered up, or they
741 * didn't have an end-of-packet indication.
742 * We flush the transmit FIFO just in case (by setting the
743 * XMTFWU bit with the transmitter disabled).
745 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
746 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
747 udelay(1);
748 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
749 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
752 /* dma should have finished */
753 if (i == mp->tx_fill) {
754 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
755 fs, xcount, dstat);
756 continue;
758 /* Update stats */
759 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
760 ++dev->stats.tx_errors;
761 if (fs & LCAR)
762 ++dev->stats.tx_carrier_errors;
763 if (fs & (UFLO|LCOL|RTRY))
764 ++dev->stats.tx_aborted_errors;
765 } else {
766 dev->stats.tx_bytes += mp->tx_bufs[i]->len;
767 ++dev->stats.tx_packets;
769 dev_kfree_skb_irq(mp->tx_bufs[i]);
770 --mp->tx_active;
771 if (++i >= N_TX_RING)
772 i = 0;
773 #if 0
774 mace_last_fs = fs;
775 mace_last_xcount = xcount;
776 #endif
779 if (i != mp->tx_empty) {
780 mp->tx_fullup = 0;
781 netif_wake_queue(dev);
783 mp->tx_empty = i;
784 i += mp->tx_active;
785 if (i >= N_TX_RING)
786 i -= N_TX_RING;
787 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
788 do {
789 /* set up the next one */
790 cp = mp->tx_cmds + NCMDS_TX * i;
791 out_le16(&cp->xfer_status, 0);
792 out_le16(&cp->command, OUTPUT_LAST);
793 ++mp->tx_active;
794 if (++i >= N_TX_RING)
795 i = 0;
796 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
797 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
798 mace_set_timeout(dev);
800 spin_unlock_irqrestore(&mp->lock, flags);
801 return IRQ_HANDLED;
804 static void mace_tx_timeout(unsigned long data)
806 struct net_device *dev = (struct net_device *) data;
807 struct mace_data *mp = netdev_priv(dev);
808 volatile struct mace __iomem *mb = mp->mace;
809 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
810 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
811 volatile struct dbdma_cmd *cp;
812 unsigned long flags;
813 int i;
815 spin_lock_irqsave(&mp->lock, flags);
816 mp->timeout_active = 0;
817 if (mp->tx_active == 0 && !mp->tx_bad_runt)
818 goto out;
820 /* update various counters */
821 mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
823 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
825 /* turn off both tx and rx and reset the chip */
826 out_8(&mb->maccc, 0);
827 printk(KERN_ERR "mace: transmit timeout - resetting\n");
828 dbdma_reset(td);
829 mace_reset(dev);
831 /* restart rx dma */
832 cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
833 dbdma_reset(rd);
834 out_le16(&cp->xfer_status, 0);
835 out_le32(&rd->cmdptr, virt_to_bus(cp));
836 out_le32(&rd->control, (RUN << 16) | RUN);
838 /* fix up the transmit side */
839 i = mp->tx_empty;
840 mp->tx_active = 0;
841 ++dev->stats.tx_errors;
842 if (mp->tx_bad_runt) {
843 mp->tx_bad_runt = 0;
844 } else if (i != mp->tx_fill) {
845 dev_kfree_skb(mp->tx_bufs[i]);
846 if (++i >= N_TX_RING)
847 i = 0;
848 mp->tx_empty = i;
850 mp->tx_fullup = 0;
851 netif_wake_queue(dev);
852 if (i != mp->tx_fill) {
853 cp = mp->tx_cmds + NCMDS_TX * i;
854 out_le16(&cp->xfer_status, 0);
855 out_le16(&cp->command, OUTPUT_LAST);
856 out_le32(&td->cmdptr, virt_to_bus(cp));
857 out_le32(&td->control, (RUN << 16) | RUN);
858 ++mp->tx_active;
859 mace_set_timeout(dev);
862 /* turn it back on */
863 out_8(&mb->imr, RCVINT);
864 out_8(&mb->maccc, mp->maccc);
866 out:
867 spin_unlock_irqrestore(&mp->lock, flags);
870 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
872 return IRQ_HANDLED;
875 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
877 struct net_device *dev = (struct net_device *) dev_id;
878 struct mace_data *mp = netdev_priv(dev);
879 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
880 volatile struct dbdma_cmd *cp, *np;
881 int i, nb, stat, next;
882 struct sk_buff *skb;
883 unsigned frame_status;
884 static int mace_lost_status;
885 unsigned char *data;
886 unsigned long flags;
888 spin_lock_irqsave(&mp->lock, flags);
889 for (i = mp->rx_empty; i != mp->rx_fill; ) {
890 cp = mp->rx_cmds + i;
891 stat = le16_to_cpu(cp->xfer_status);
892 if ((stat & ACTIVE) == 0) {
893 next = i + 1;
894 if (next >= N_RX_RING)
895 next = 0;
896 np = mp->rx_cmds + next;
897 if (next != mp->rx_fill &&
898 (le16_to_cpu(np->xfer_status) & ACTIVE) != 0) {
899 printk(KERN_DEBUG "mace: lost a status word\n");
900 ++mace_lost_status;
901 } else
902 break;
904 nb = le16_to_cpu(cp->req_count) - le16_to_cpu(cp->res_count);
905 out_le16(&cp->command, DBDMA_STOP);
906 /* got a packet, have a look at it */
907 skb = mp->rx_bufs[i];
908 if (!skb) {
909 ++dev->stats.rx_dropped;
910 } else if (nb > 8) {
911 data = skb->data;
912 frame_status = (data[nb-3] << 8) + data[nb-4];
913 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
914 ++dev->stats.rx_errors;
915 if (frame_status & RS_OFLO)
916 ++dev->stats.rx_over_errors;
917 if (frame_status & RS_FRAMERR)
918 ++dev->stats.rx_frame_errors;
919 if (frame_status & RS_FCSERR)
920 ++dev->stats.rx_crc_errors;
921 } else {
922 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
923 * FCS on frames with 802.3 headers. This means that Ethernet
924 * frames have 8 extra octets at the end, while 802.3 frames
925 * have only 4. We need to correctly account for this. */
926 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
927 nb -= 4;
928 else /* Ethernet header; mace includes FCS */
929 nb -= 8;
930 skb_put(skb, nb);
931 skb->protocol = eth_type_trans(skb, dev);
932 dev->stats.rx_bytes += skb->len;
933 netif_rx(skb);
934 mp->rx_bufs[i] = NULL;
935 ++dev->stats.rx_packets;
937 } else {
938 ++dev->stats.rx_errors;
939 ++dev->stats.rx_length_errors;
942 /* advance to next */
943 if (++i >= N_RX_RING)
944 i = 0;
946 mp->rx_empty = i;
948 i = mp->rx_fill;
949 for (;;) {
950 next = i + 1;
951 if (next >= N_RX_RING)
952 next = 0;
953 if (next == mp->rx_empty)
954 break;
955 cp = mp->rx_cmds + i;
956 skb = mp->rx_bufs[i];
957 if (!skb) {
958 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
959 if (skb) {
960 skb_reserve(skb, 2);
961 mp->rx_bufs[i] = skb;
964 cp->req_count = cpu_to_le16(RX_BUFLEN);
965 data = skb? skb->data: dummy_buf;
966 cp->phy_addr = cpu_to_le32(virt_to_bus(data));
967 out_le16(&cp->xfer_status, 0);
968 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
969 #if 0
970 if ((le32_to_cpu(rd->status) & ACTIVE) != 0) {
971 out_le32(&rd->control, (PAUSE << 16) | PAUSE);
972 while ((in_le32(&rd->status) & ACTIVE) != 0)
975 #endif
976 i = next;
978 if (i != mp->rx_fill) {
979 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
980 mp->rx_fill = i;
982 spin_unlock_irqrestore(&mp->lock, flags);
983 return IRQ_HANDLED;
986 static const struct of_device_id mace_match[] =
989 .name = "mace",
993 MODULE_DEVICE_TABLE (of, mace_match);
995 static struct macio_driver mace_driver =
997 .driver = {
998 .name = "mace",
999 .owner = THIS_MODULE,
1000 .of_match_table = mace_match,
1002 .probe = mace_probe,
1003 .remove = mace_remove,
1007 static int __init mace_init(void)
1009 return macio_register_driver(&mace_driver);
1012 static void __exit mace_cleanup(void)
1014 macio_unregister_driver(&mace_driver);
1016 kfree(dummy_buf);
1017 dummy_buf = NULL;
1020 MODULE_AUTHOR("Paul Mackerras");
1021 MODULE_DESCRIPTION("PowerMac MACE driver.");
1022 module_param(port_aaui, int, 0);
1023 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1024 MODULE_LICENSE("GPL");
1026 module_init(mace_init);
1027 module_exit(mace_cleanup);