2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
65 #include <asm/cacheflush.h>
69 static void set_multicast_list(struct net_device
*ndev
);
70 static void fec_enet_itr_coal_init(struct net_device
*ndev
);
72 #define DRIVER_NAME "fec"
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE (1 << 5)
78 #define FEC_ENET_RSEM_V 0x84
79 #define FEC_ENET_RSFL_V 16
80 #define FEC_ENET_RAEM_V 0x8
81 #define FEC_ENET_RAFL_V 0x8
82 #define FEC_ENET_OPD_V 0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
85 static struct platform_device_id fec_devtype
[] = {
87 /* keep it for coldfire */
92 .driver_data
= FEC_QUIRK_USE_GASKET
,
98 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
|
99 FEC_QUIRK_SINGLE_MDIO
| FEC_QUIRK_HAS_RACC
,
102 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
103 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
104 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_ERR006358
|
107 .name
= "mvf600-fec",
108 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_RACC
,
110 .name
= "imx6sx-fec",
111 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
112 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
113 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_HAS_AVB
|
114 FEC_QUIRK_ERR007885
| FEC_QUIRK_BUG_CAPTURE
|
115 FEC_QUIRK_HAS_RACC
| FEC_QUIRK_HAS_COALESCE
,
117 .name
= "imx6ul-fec",
118 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
119 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
120 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_BUG_CAPTURE
|
121 FEC_QUIRK_HAS_RACC
| FEC_QUIRK_HAS_COALESCE
,
126 MODULE_DEVICE_TABLE(platform
, fec_devtype
);
129 IMX25_FEC
= 1, /* runs on i.mx25/50/53 */
130 IMX27_FEC
, /* runs on i.mx27/35/51 */
138 static const struct of_device_id fec_dt_ids
[] = {
139 { .compatible
= "fsl,imx25-fec", .data
= &fec_devtype
[IMX25_FEC
], },
140 { .compatible
= "fsl,imx27-fec", .data
= &fec_devtype
[IMX27_FEC
], },
141 { .compatible
= "fsl,imx28-fec", .data
= &fec_devtype
[IMX28_FEC
], },
142 { .compatible
= "fsl,imx6q-fec", .data
= &fec_devtype
[IMX6Q_FEC
], },
143 { .compatible
= "fsl,mvf600-fec", .data
= &fec_devtype
[MVF600_FEC
], },
144 { .compatible
= "fsl,imx6sx-fec", .data
= &fec_devtype
[IMX6SX_FEC
], },
145 { .compatible
= "fsl,imx6ul-fec", .data
= &fec_devtype
[IMX6UL_FEC
], },
148 MODULE_DEVICE_TABLE(of
, fec_dt_ids
);
150 static unsigned char macaddr
[ETH_ALEN
];
151 module_param_array(macaddr
, byte
, NULL
, 0);
152 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
154 #if defined(CONFIG_M5272)
156 * Some hardware gets it MAC address out of local flash memory.
157 * if this is non-zero then assume it is the address to get MAC from.
159 #if defined(CONFIG_NETtel)
160 #define FEC_FLASHMAC 0xf0006006
161 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
162 #define FEC_FLASHMAC 0xf0006000
163 #elif defined(CONFIG_CANCam)
164 #define FEC_FLASHMAC 0xf0020000
165 #elif defined (CONFIG_M5272C3)
166 #define FEC_FLASHMAC (0xffe04000 + 4)
167 #elif defined(CONFIG_MOD5272)
168 #define FEC_FLASHMAC 0xffc0406b
170 #define FEC_FLASHMAC 0
172 #endif /* CONFIG_M5272 */
174 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176 #define PKT_MAXBUF_SIZE 1522
177 #define PKT_MINBUF_SIZE 64
178 #define PKT_MAXBLR_SIZE 1536
180 /* FEC receive acceleration */
181 #define FEC_RACC_IPDIS (1 << 1)
182 #define FEC_RACC_PRODIS (1 << 2)
183 #define FEC_RACC_SHIFT16 BIT(7)
184 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
187 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
188 * size bits. Other FEC hardware does not, so we need to take that into
189 * account when setting it.
191 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
192 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
193 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
195 #define OPT_FRAME_SIZE 0
198 /* FEC MII MMFR bits definition */
199 #define FEC_MMFR_ST (1 << 30)
200 #define FEC_MMFR_OP_READ (2 << 28)
201 #define FEC_MMFR_OP_WRITE (1 << 28)
202 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
203 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
204 #define FEC_MMFR_TA (2 << 16)
205 #define FEC_MMFR_DATA(v) (v & 0xffff)
206 /* FEC ECR bits definition */
207 #define FEC_ECR_MAGICEN (1 << 2)
208 #define FEC_ECR_SLEEP (1 << 3)
210 #define FEC_MII_TIMEOUT 30000 /* us */
212 /* Transmitter timeout */
213 #define TX_TIMEOUT (2 * HZ)
215 #define FEC_PAUSE_FLAG_AUTONEG 0x1
216 #define FEC_PAUSE_FLAG_ENABLE 0x2
217 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
218 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
219 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
221 #define COPYBREAK_DEFAULT 256
223 #define TSO_HEADER_SIZE 128
224 /* Max number of allowed TCP segments for software TSO */
225 #define FEC_MAX_TSO_SEGS 100
226 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
228 #define IS_TSO_HEADER(txq, addr) \
229 ((addr >= txq->tso_hdrs_dma) && \
230 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
234 static struct bufdesc
*fec_enet_get_nextdesc(struct bufdesc
*bdp
,
235 struct bufdesc_prop
*bd
)
237 return (bdp
>= bd
->last
) ? bd
->base
238 : (struct bufdesc
*)(((unsigned)bdp
) + bd
->dsize
);
241 static struct bufdesc
*fec_enet_get_prevdesc(struct bufdesc
*bdp
,
242 struct bufdesc_prop
*bd
)
244 return (bdp
<= bd
->base
) ? bd
->last
245 : (struct bufdesc
*)(((unsigned)bdp
) - bd
->dsize
);
248 static int fec_enet_get_bd_index(struct bufdesc
*bdp
,
249 struct bufdesc_prop
*bd
)
251 return ((const char *)bdp
- (const char *)bd
->base
) >> bd
->dsize_log2
;
254 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q
*txq
)
258 entries
= (((const char *)txq
->dirty_tx
-
259 (const char *)txq
->bd
.cur
) >> txq
->bd
.dsize_log2
) - 1;
261 return entries
>= 0 ? entries
: entries
+ txq
->bd
.ring_size
;
264 static void swap_buffer(void *bufaddr
, int len
)
267 unsigned int *buf
= bufaddr
;
269 for (i
= 0; i
< len
; i
+= 4, buf
++)
273 static void swap_buffer2(void *dst_buf
, void *src_buf
, int len
)
276 unsigned int *src
= src_buf
;
277 unsigned int *dst
= dst_buf
;
279 for (i
= 0; i
< len
; i
+= 4, src
++, dst
++)
283 static void fec_dump(struct net_device
*ndev
)
285 struct fec_enet_private
*fep
= netdev_priv(ndev
);
287 struct fec_enet_priv_tx_q
*txq
;
290 netdev_info(ndev
, "TX ring dump\n");
291 pr_info("Nr SC addr len SKB\n");
293 txq
= fep
->tx_queue
[0];
297 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
299 bdp
== txq
->bd
.cur
? 'S' : ' ',
300 bdp
== txq
->dirty_tx
? 'H' : ' ',
301 fec16_to_cpu(bdp
->cbd_sc
),
302 fec32_to_cpu(bdp
->cbd_bufaddr
),
303 fec16_to_cpu(bdp
->cbd_datlen
),
304 txq
->tx_skbuff
[index
]);
305 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
307 } while (bdp
!= txq
->bd
.base
);
310 static inline bool is_ipv4_pkt(struct sk_buff
*skb
)
312 return skb
->protocol
== htons(ETH_P_IP
) && ip_hdr(skb
)->version
== 4;
316 fec_enet_clear_csum(struct sk_buff
*skb
, struct net_device
*ndev
)
318 /* Only run for packets requiring a checksum. */
319 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
322 if (unlikely(skb_cow_head(skb
, 0)))
325 if (is_ipv4_pkt(skb
))
326 ip_hdr(skb
)->check
= 0;
327 *(__sum16
*)(skb
->head
+ skb
->csum_start
+ skb
->csum_offset
) = 0;
332 static struct bufdesc
*
333 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q
*txq
,
335 struct net_device
*ndev
)
337 struct fec_enet_private
*fep
= netdev_priv(ndev
);
338 struct bufdesc
*bdp
= txq
->bd
.cur
;
339 struct bufdesc_ex
*ebdp
;
340 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
342 unsigned short status
;
343 unsigned int estatus
= 0;
344 skb_frag_t
*this_frag
;
350 for (frag
= 0; frag
< nr_frags
; frag
++) {
351 this_frag
= &skb_shinfo(skb
)->frags
[frag
];
352 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
353 ebdp
= (struct bufdesc_ex
*)bdp
;
355 status
= fec16_to_cpu(bdp
->cbd_sc
);
356 status
&= ~BD_ENET_TX_STATS
;
357 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
358 frag_len
= skb_shinfo(skb
)->frags
[frag
].size
;
360 /* Handle the last BD specially */
361 if (frag
== nr_frags
- 1) {
362 status
|= (BD_ENET_TX_INTR
| BD_ENET_TX_LAST
);
363 if (fep
->bufdesc_ex
) {
364 estatus
|= BD_ENET_TX_INT
;
365 if (unlikely(skb_shinfo(skb
)->tx_flags
&
366 SKBTX_HW_TSTAMP
&& fep
->hwts_tx_en
))
367 estatus
|= BD_ENET_TX_TS
;
371 if (fep
->bufdesc_ex
) {
372 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
373 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
374 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
375 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
377 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
380 bufaddr
= page_address(this_frag
->page
.p
) + this_frag
->page_offset
;
382 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
383 if (((unsigned long) bufaddr
) & fep
->tx_align
||
384 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
385 memcpy(txq
->tx_bounce
[index
], bufaddr
, frag_len
);
386 bufaddr
= txq
->tx_bounce
[index
];
388 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
389 swap_buffer(bufaddr
, frag_len
);
392 addr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
, frag_len
,
394 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
396 netdev_err(ndev
, "Tx DMA memory map failed\n");
397 goto dma_mapping_error
;
400 bdp
->cbd_bufaddr
= cpu_to_fec32(addr
);
401 bdp
->cbd_datlen
= cpu_to_fec16(frag_len
);
402 /* Make sure the updates to rest of the descriptor are
403 * performed before transferring ownership.
406 bdp
->cbd_sc
= cpu_to_fec16(status
);
412 for (i
= 0; i
< frag
; i
++) {
413 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
414 dma_unmap_single(&fep
->pdev
->dev
, fec32_to_cpu(bdp
->cbd_bufaddr
),
415 fec16_to_cpu(bdp
->cbd_datlen
), DMA_TO_DEVICE
);
417 return ERR_PTR(-ENOMEM
);
420 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q
*txq
,
421 struct sk_buff
*skb
, struct net_device
*ndev
)
423 struct fec_enet_private
*fep
= netdev_priv(ndev
);
424 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
425 struct bufdesc
*bdp
, *last_bdp
;
428 unsigned short status
;
429 unsigned short buflen
;
430 unsigned int estatus
= 0;
434 entries_free
= fec_enet_get_free_txdesc_num(txq
);
435 if (entries_free
< MAX_SKB_FRAGS
+ 1) {
436 dev_kfree_skb_any(skb
);
438 netdev_err(ndev
, "NOT enough BD for SG!\n");
442 /* Protocol checksum off-load for TCP and UDP. */
443 if (fec_enet_clear_csum(skb
, ndev
)) {
444 dev_kfree_skb_any(skb
);
448 /* Fill in a Tx ring entry */
451 status
= fec16_to_cpu(bdp
->cbd_sc
);
452 status
&= ~BD_ENET_TX_STATS
;
454 /* Set buffer length and buffer pointer */
456 buflen
= skb_headlen(skb
);
458 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
459 if (((unsigned long) bufaddr
) & fep
->tx_align
||
460 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
461 memcpy(txq
->tx_bounce
[index
], skb
->data
, buflen
);
462 bufaddr
= txq
->tx_bounce
[index
];
464 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
465 swap_buffer(bufaddr
, buflen
);
468 /* Push the data cache so the CPM does not get stale memory data. */
469 addr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
, buflen
, DMA_TO_DEVICE
);
470 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
471 dev_kfree_skb_any(skb
);
473 netdev_err(ndev
, "Tx DMA memory map failed\n");
478 last_bdp
= fec_enet_txq_submit_frag_skb(txq
, skb
, ndev
);
479 if (IS_ERR(last_bdp
)) {
480 dma_unmap_single(&fep
->pdev
->dev
, addr
,
481 buflen
, DMA_TO_DEVICE
);
482 dev_kfree_skb_any(skb
);
486 status
|= (BD_ENET_TX_INTR
| BD_ENET_TX_LAST
);
487 if (fep
->bufdesc_ex
) {
488 estatus
= BD_ENET_TX_INT
;
489 if (unlikely(skb_shinfo(skb
)->tx_flags
&
490 SKBTX_HW_TSTAMP
&& fep
->hwts_tx_en
))
491 estatus
|= BD_ENET_TX_TS
;
494 bdp
->cbd_bufaddr
= cpu_to_fec32(addr
);
495 bdp
->cbd_datlen
= cpu_to_fec16(buflen
);
497 if (fep
->bufdesc_ex
) {
499 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
501 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
503 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
505 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
506 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
508 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
509 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
512 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
515 index
= fec_enet_get_bd_index(last_bdp
, &txq
->bd
);
516 /* Save skb pointer */
517 txq
->tx_skbuff
[index
] = skb
;
519 /* Make sure the updates to rest of the descriptor are performed before
520 * transferring ownership.
524 /* Send it on its way. Tell FEC it's ready, interrupt when done,
525 * it's the last BD of the frame, and to put the CRC on the end.
527 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_TC
);
528 bdp
->cbd_sc
= cpu_to_fec16(status
);
530 /* If this was the last BD in the ring, start at the beginning again. */
531 bdp
= fec_enet_get_nextdesc(last_bdp
, &txq
->bd
);
533 skb_tx_timestamp(skb
);
535 /* Make sure the update to bdp and tx_skbuff are performed before
541 /* Trigger transmission start */
542 writel(0, txq
->bd
.reg_desc_active
);
548 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q
*txq
, struct sk_buff
*skb
,
549 struct net_device
*ndev
,
550 struct bufdesc
*bdp
, int index
, char *data
,
551 int size
, bool last_tcp
, bool is_last
)
553 struct fec_enet_private
*fep
= netdev_priv(ndev
);
554 struct bufdesc_ex
*ebdp
= container_of(bdp
, struct bufdesc_ex
, desc
);
555 unsigned short status
;
556 unsigned int estatus
= 0;
559 status
= fec16_to_cpu(bdp
->cbd_sc
);
560 status
&= ~BD_ENET_TX_STATS
;
562 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
564 if (((unsigned long) data
) & fep
->tx_align
||
565 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
566 memcpy(txq
->tx_bounce
[index
], data
, size
);
567 data
= txq
->tx_bounce
[index
];
569 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
570 swap_buffer(data
, size
);
573 addr
= dma_map_single(&fep
->pdev
->dev
, data
, size
, DMA_TO_DEVICE
);
574 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
575 dev_kfree_skb_any(skb
);
577 netdev_err(ndev
, "Tx DMA memory map failed\n");
578 return NETDEV_TX_BUSY
;
581 bdp
->cbd_datlen
= cpu_to_fec16(size
);
582 bdp
->cbd_bufaddr
= cpu_to_fec32(addr
);
584 if (fep
->bufdesc_ex
) {
585 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
586 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
587 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
588 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
590 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
593 /* Handle the last BD specially */
595 status
|= (BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
597 status
|= BD_ENET_TX_INTR
;
599 ebdp
->cbd_esc
|= cpu_to_fec32(BD_ENET_TX_INT
);
602 bdp
->cbd_sc
= cpu_to_fec16(status
);
608 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q
*txq
,
609 struct sk_buff
*skb
, struct net_device
*ndev
,
610 struct bufdesc
*bdp
, int index
)
612 struct fec_enet_private
*fep
= netdev_priv(ndev
);
613 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
614 struct bufdesc_ex
*ebdp
= container_of(bdp
, struct bufdesc_ex
, desc
);
616 unsigned long dmabuf
;
617 unsigned short status
;
618 unsigned int estatus
= 0;
620 status
= fec16_to_cpu(bdp
->cbd_sc
);
621 status
&= ~BD_ENET_TX_STATS
;
622 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
624 bufaddr
= txq
->tso_hdrs
+ index
* TSO_HEADER_SIZE
;
625 dmabuf
= txq
->tso_hdrs_dma
+ index
* TSO_HEADER_SIZE
;
626 if (((unsigned long)bufaddr
) & fep
->tx_align
||
627 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
628 memcpy(txq
->tx_bounce
[index
], skb
->data
, hdr_len
);
629 bufaddr
= txq
->tx_bounce
[index
];
631 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
632 swap_buffer(bufaddr
, hdr_len
);
634 dmabuf
= dma_map_single(&fep
->pdev
->dev
, bufaddr
,
635 hdr_len
, DMA_TO_DEVICE
);
636 if (dma_mapping_error(&fep
->pdev
->dev
, dmabuf
)) {
637 dev_kfree_skb_any(skb
);
639 netdev_err(ndev
, "Tx DMA memory map failed\n");
640 return NETDEV_TX_BUSY
;
644 bdp
->cbd_bufaddr
= cpu_to_fec32(dmabuf
);
645 bdp
->cbd_datlen
= cpu_to_fec16(hdr_len
);
647 if (fep
->bufdesc_ex
) {
648 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
649 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
650 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
651 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
653 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
656 bdp
->cbd_sc
= cpu_to_fec16(status
);
661 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q
*txq
,
663 struct net_device
*ndev
)
665 struct fec_enet_private
*fep
= netdev_priv(ndev
);
666 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
667 int total_len
, data_left
;
668 struct bufdesc
*bdp
= txq
->bd
.cur
;
670 unsigned int index
= 0;
673 if (tso_count_descs(skb
) >= fec_enet_get_free_txdesc_num(txq
)) {
674 dev_kfree_skb_any(skb
);
676 netdev_err(ndev
, "NOT enough BD for TSO!\n");
680 /* Protocol checksum off-load for TCP and UDP. */
681 if (fec_enet_clear_csum(skb
, ndev
)) {
682 dev_kfree_skb_any(skb
);
686 /* Initialize the TSO handler, and prepare the first payload */
687 tso_start(skb
, &tso
);
689 total_len
= skb
->len
- hdr_len
;
690 while (total_len
> 0) {
693 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
694 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
695 total_len
-= data_left
;
697 /* prepare packet headers: MAC + IP + TCP */
698 hdr
= txq
->tso_hdrs
+ index
* TSO_HEADER_SIZE
;
699 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
700 ret
= fec_enet_txq_put_hdr_tso(txq
, skb
, ndev
, bdp
, index
);
704 while (data_left
> 0) {
707 size
= min_t(int, tso
.size
, data_left
);
708 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
709 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
710 ret
= fec_enet_txq_put_data_tso(txq
, skb
, ndev
,
719 tso_build_data(skb
, &tso
, size
);
722 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
725 /* Save skb pointer */
726 txq
->tx_skbuff
[index
] = skb
;
728 skb_tx_timestamp(skb
);
731 /* Trigger transmission start */
732 if (!(fep
->quirks
& FEC_QUIRK_ERR007885
) ||
733 !readl(txq
->bd
.reg_desc_active
) ||
734 !readl(txq
->bd
.reg_desc_active
) ||
735 !readl(txq
->bd
.reg_desc_active
) ||
736 !readl(txq
->bd
.reg_desc_active
))
737 writel(0, txq
->bd
.reg_desc_active
);
742 /* TODO: Release all used data descriptors for TSO */
747 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
749 struct fec_enet_private
*fep
= netdev_priv(ndev
);
751 unsigned short queue
;
752 struct fec_enet_priv_tx_q
*txq
;
753 struct netdev_queue
*nq
;
756 queue
= skb_get_queue_mapping(skb
);
757 txq
= fep
->tx_queue
[queue
];
758 nq
= netdev_get_tx_queue(ndev
, queue
);
761 ret
= fec_enet_txq_submit_tso(txq
, skb
, ndev
);
763 ret
= fec_enet_txq_submit_skb(txq
, skb
, ndev
);
767 entries_free
= fec_enet_get_free_txdesc_num(txq
);
768 if (entries_free
<= txq
->tx_stop_threshold
)
769 netif_tx_stop_queue(nq
);
774 /* Init RX & TX buffer descriptors
776 static void fec_enet_bd_init(struct net_device
*dev
)
778 struct fec_enet_private
*fep
= netdev_priv(dev
);
779 struct fec_enet_priv_tx_q
*txq
;
780 struct fec_enet_priv_rx_q
*rxq
;
785 for (q
= 0; q
< fep
->num_rx_queues
; q
++) {
786 /* Initialize the receive buffer descriptors. */
787 rxq
= fep
->rx_queue
[q
];
790 for (i
= 0; i
< rxq
->bd
.ring_size
; i
++) {
792 /* Initialize the BD for every fragment in the page. */
793 if (bdp
->cbd_bufaddr
)
794 bdp
->cbd_sc
= cpu_to_fec16(BD_ENET_RX_EMPTY
);
796 bdp
->cbd_sc
= cpu_to_fec16(0);
797 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
800 /* Set the last buffer to wrap */
801 bdp
= fec_enet_get_prevdesc(bdp
, &rxq
->bd
);
802 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
804 rxq
->bd
.cur
= rxq
->bd
.base
;
807 for (q
= 0; q
< fep
->num_tx_queues
; q
++) {
808 /* ...and the same for transmit */
809 txq
= fep
->tx_queue
[q
];
813 for (i
= 0; i
< txq
->bd
.ring_size
; i
++) {
814 /* Initialize the BD for every fragment in the page. */
815 bdp
->cbd_sc
= cpu_to_fec16(0);
816 if (txq
->tx_skbuff
[i
]) {
817 dev_kfree_skb_any(txq
->tx_skbuff
[i
]);
818 txq
->tx_skbuff
[i
] = NULL
;
820 bdp
->cbd_bufaddr
= cpu_to_fec32(0);
821 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
824 /* Set the last buffer to wrap */
825 bdp
= fec_enet_get_prevdesc(bdp
, &txq
->bd
);
826 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
831 static void fec_enet_active_rxring(struct net_device
*ndev
)
833 struct fec_enet_private
*fep
= netdev_priv(ndev
);
836 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
837 writel(0, fep
->rx_queue
[i
]->bd
.reg_desc_active
);
840 static void fec_enet_enable_ring(struct net_device
*ndev
)
842 struct fec_enet_private
*fep
= netdev_priv(ndev
);
843 struct fec_enet_priv_tx_q
*txq
;
844 struct fec_enet_priv_rx_q
*rxq
;
847 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
848 rxq
= fep
->rx_queue
[i
];
849 writel(rxq
->bd
.dma
, fep
->hwp
+ FEC_R_DES_START(i
));
850 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE(i
));
854 writel(RCMR_MATCHEN
| RCMR_CMP(i
),
855 fep
->hwp
+ FEC_RCMR(i
));
858 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
859 txq
= fep
->tx_queue
[i
];
860 writel(txq
->bd
.dma
, fep
->hwp
+ FEC_X_DES_START(i
));
864 writel(DMA_CLASS_EN
| IDLE_SLOPE(i
),
865 fep
->hwp
+ FEC_DMA_CFG(i
));
869 static void fec_enet_reset_skb(struct net_device
*ndev
)
871 struct fec_enet_private
*fep
= netdev_priv(ndev
);
872 struct fec_enet_priv_tx_q
*txq
;
875 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
876 txq
= fep
->tx_queue
[i
];
878 for (j
= 0; j
< txq
->bd
.ring_size
; j
++) {
879 if (txq
->tx_skbuff
[j
]) {
880 dev_kfree_skb_any(txq
->tx_skbuff
[j
]);
881 txq
->tx_skbuff
[j
] = NULL
;
888 * This function is called to start or restart the FEC during a link
889 * change, transmit timeout, or to reconfigure the FEC. The network
890 * packet processing for this device must be stopped before this call.
893 fec_restart(struct net_device
*ndev
)
895 struct fec_enet_private
*fep
= netdev_priv(ndev
);
898 u32 rcntl
= OPT_FRAME_SIZE
| 0x04;
899 u32 ecntl
= 0x2; /* ETHEREN */
901 /* Whack a reset. We should wait for this.
902 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
903 * instead of reset MAC itself.
905 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
906 writel(0, fep
->hwp
+ FEC_ECNTRL
);
908 writel(1, fep
->hwp
+ FEC_ECNTRL
);
913 * enet-mac reset will reset mac address registers too,
914 * so need to reconfigure it.
916 memcpy(&temp_mac
, ndev
->dev_addr
, ETH_ALEN
);
917 writel((__force u32
)cpu_to_be32(temp_mac
[0]),
918 fep
->hwp
+ FEC_ADDR_LOW
);
919 writel((__force u32
)cpu_to_be32(temp_mac
[1]),
920 fep
->hwp
+ FEC_ADDR_HIGH
);
922 /* Clear any outstanding interrupt. */
923 writel(0xffffffff, fep
->hwp
+ FEC_IEVENT
);
925 fec_enet_bd_init(ndev
);
927 fec_enet_enable_ring(ndev
);
929 /* Reset tx SKB buffers. */
930 fec_enet_reset_skb(ndev
);
932 /* Enable MII mode */
933 if (fep
->full_duplex
== DUPLEX_FULL
) {
935 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
939 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
943 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
945 #if !defined(CONFIG_M5272)
946 if (fep
->quirks
& FEC_QUIRK_HAS_RACC
) {
947 val
= readl(fep
->hwp
+ FEC_RACC
);
948 /* align IP header */
949 val
|= FEC_RACC_SHIFT16
;
950 if (fep
->csum_flags
& FLAG_RX_CSUM_ENABLED
)
951 /* set RX checksum */
952 val
|= FEC_RACC_OPTIONS
;
954 val
&= ~FEC_RACC_OPTIONS
;
955 writel(val
, fep
->hwp
+ FEC_RACC
);
956 writel(PKT_MAXBUF_SIZE
, fep
->hwp
+ FEC_FTRL
);
961 * The phy interface and speed need to get configured
962 * differently on enet-mac.
964 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
965 /* Enable flow control and length check */
966 rcntl
|= 0x40000000 | 0x00000020;
968 /* RGMII, RMII or MII */
969 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII
||
970 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_ID
||
971 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_RXID
||
972 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_TXID
)
974 else if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
979 /* 1G, 100M or 10M */
981 if (ndev
->phydev
->speed
== SPEED_1000
)
983 else if (ndev
->phydev
->speed
== SPEED_100
)
989 #ifdef FEC_MIIGSK_ENR
990 if (fep
->quirks
& FEC_QUIRK_USE_GASKET
) {
992 /* disable the gasket and wait */
993 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
994 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
998 * configure the gasket:
999 * RMII, 50 MHz, no loopback, no echo
1000 * MII, 25 MHz, no loopback, no echo
1002 cfgr
= (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
1003 ? BM_MIIGSK_CFGR_RMII
: BM_MIIGSK_CFGR_MII
;
1004 if (ndev
->phydev
&& ndev
->phydev
->speed
== SPEED_10
)
1005 cfgr
|= BM_MIIGSK_CFGR_FRCONT_10M
;
1006 writel(cfgr
, fep
->hwp
+ FEC_MIIGSK_CFGR
);
1008 /* re-enable the gasket */
1009 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
1014 #if !defined(CONFIG_M5272)
1015 /* enable pause frame*/
1016 if ((fep
->pause_flag
& FEC_PAUSE_FLAG_ENABLE
) ||
1017 ((fep
->pause_flag
& FEC_PAUSE_FLAG_AUTONEG
) &&
1018 ndev
->phydev
&& ndev
->phydev
->pause
)) {
1019 rcntl
|= FEC_ENET_FCE
;
1021 /* set FIFO threshold parameter to reduce overrun */
1022 writel(FEC_ENET_RSEM_V
, fep
->hwp
+ FEC_R_FIFO_RSEM
);
1023 writel(FEC_ENET_RSFL_V
, fep
->hwp
+ FEC_R_FIFO_RSFL
);
1024 writel(FEC_ENET_RAEM_V
, fep
->hwp
+ FEC_R_FIFO_RAEM
);
1025 writel(FEC_ENET_RAFL_V
, fep
->hwp
+ FEC_R_FIFO_RAFL
);
1028 writel(FEC_ENET_OPD_V
, fep
->hwp
+ FEC_OPD
);
1030 rcntl
&= ~FEC_ENET_FCE
;
1032 #endif /* !defined(CONFIG_M5272) */
1034 writel(rcntl
, fep
->hwp
+ FEC_R_CNTRL
);
1036 /* Setup multicast filter. */
1037 set_multicast_list(ndev
);
1038 #ifndef CONFIG_M5272
1039 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
1040 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
1043 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
1044 /* enable ENET endian swap */
1046 /* enable ENET store and forward mode */
1047 writel(1 << 8, fep
->hwp
+ FEC_X_WMRK
);
1050 if (fep
->bufdesc_ex
)
1053 #ifndef CONFIG_M5272
1054 /* Enable the MIB statistic event counters */
1055 writel(0 << 31, fep
->hwp
+ FEC_MIB_CTRLSTAT
);
1058 /* And last, enable the transmit and receive processing */
1059 writel(ecntl
, fep
->hwp
+ FEC_ECNTRL
);
1060 fec_enet_active_rxring(ndev
);
1062 if (fep
->bufdesc_ex
)
1063 fec_ptp_start_cyclecounter(ndev
);
1065 /* Enable interrupts we wish to service */
1067 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1069 writel(FEC_ENET_MII
, fep
->hwp
+ FEC_IMASK
);
1071 /* Init the interrupt coalescing */
1072 fec_enet_itr_coal_init(ndev
);
1077 fec_stop(struct net_device
*ndev
)
1079 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1080 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
1081 u32 rmii_mode
= readl(fep
->hwp
+ FEC_R_CNTRL
) & (1 << 8);
1084 /* We cannot expect a graceful transmit stop without link !!! */
1086 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
1088 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
1089 netdev_err(ndev
, "Graceful transmit stop did not complete!\n");
1092 /* Whack a reset. We should wait for this.
1093 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1094 * instead of reset MAC itself.
1096 if (!(fep
->wol_flag
& FEC_WOL_FLAG_SLEEP_ON
)) {
1097 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
1098 writel(0, fep
->hwp
+ FEC_ECNTRL
);
1100 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1103 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1105 writel(FEC_DEFAULT_IMASK
| FEC_ENET_WAKEUP
, fep
->hwp
+ FEC_IMASK
);
1106 val
= readl(fep
->hwp
+ FEC_ECNTRL
);
1107 val
|= (FEC_ECR_MAGICEN
| FEC_ECR_SLEEP
);
1108 writel(val
, fep
->hwp
+ FEC_ECNTRL
);
1110 if (pdata
&& pdata
->sleep_mode_enable
)
1111 pdata
->sleep_mode_enable(true);
1113 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1115 /* We have to keep ENET enabled to have MII interrupt stay working */
1116 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
&&
1117 !(fep
->wol_flag
& FEC_WOL_FLAG_SLEEP_ON
)) {
1118 writel(2, fep
->hwp
+ FEC_ECNTRL
);
1119 writel(rmii_mode
, fep
->hwp
+ FEC_R_CNTRL
);
1125 fec_timeout(struct net_device
*ndev
)
1127 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1131 ndev
->stats
.tx_errors
++;
1133 schedule_work(&fep
->tx_timeout_work
);
1136 static void fec_enet_timeout_work(struct work_struct
*work
)
1138 struct fec_enet_private
*fep
=
1139 container_of(work
, struct fec_enet_private
, tx_timeout_work
);
1140 struct net_device
*ndev
= fep
->netdev
;
1143 if (netif_device_present(ndev
) || netif_running(ndev
)) {
1144 napi_disable(&fep
->napi
);
1145 netif_tx_lock_bh(ndev
);
1147 netif_wake_queue(ndev
);
1148 netif_tx_unlock_bh(ndev
);
1149 napi_enable(&fep
->napi
);
1155 fec_enet_hwtstamp(struct fec_enet_private
*fep
, unsigned ts
,
1156 struct skb_shared_hwtstamps
*hwtstamps
)
1158 unsigned long flags
;
1161 spin_lock_irqsave(&fep
->tmreg_lock
, flags
);
1162 ns
= timecounter_cyc2time(&fep
->tc
, ts
);
1163 spin_unlock_irqrestore(&fep
->tmreg_lock
, flags
);
1165 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
1166 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
1170 fec_enet_tx_queue(struct net_device
*ndev
, u16 queue_id
)
1172 struct fec_enet_private
*fep
;
1173 struct bufdesc
*bdp
;
1174 unsigned short status
;
1175 struct sk_buff
*skb
;
1176 struct fec_enet_priv_tx_q
*txq
;
1177 struct netdev_queue
*nq
;
1181 fep
= netdev_priv(ndev
);
1183 queue_id
= FEC_ENET_GET_QUQUE(queue_id
);
1185 txq
= fep
->tx_queue
[queue_id
];
1186 /* get next bdp of dirty_tx */
1187 nq
= netdev_get_tx_queue(ndev
, queue_id
);
1188 bdp
= txq
->dirty_tx
;
1190 /* get next bdp of dirty_tx */
1191 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
1193 while (bdp
!= READ_ONCE(txq
->bd
.cur
)) {
1194 /* Order the load of bd.cur and cbd_sc */
1196 status
= fec16_to_cpu(READ_ONCE(bdp
->cbd_sc
));
1197 if (status
& BD_ENET_TX_READY
)
1200 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
1202 skb
= txq
->tx_skbuff
[index
];
1203 txq
->tx_skbuff
[index
] = NULL
;
1204 if (!IS_TSO_HEADER(txq
, fec32_to_cpu(bdp
->cbd_bufaddr
)))
1205 dma_unmap_single(&fep
->pdev
->dev
,
1206 fec32_to_cpu(bdp
->cbd_bufaddr
),
1207 fec16_to_cpu(bdp
->cbd_datlen
),
1209 bdp
->cbd_bufaddr
= cpu_to_fec32(0);
1213 /* Check for errors. */
1214 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
1215 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
1217 ndev
->stats
.tx_errors
++;
1218 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
1219 ndev
->stats
.tx_heartbeat_errors
++;
1220 if (status
& BD_ENET_TX_LC
) /* Late collision */
1221 ndev
->stats
.tx_window_errors
++;
1222 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
1223 ndev
->stats
.tx_aborted_errors
++;
1224 if (status
& BD_ENET_TX_UN
) /* Underrun */
1225 ndev
->stats
.tx_fifo_errors
++;
1226 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
1227 ndev
->stats
.tx_carrier_errors
++;
1229 ndev
->stats
.tx_packets
++;
1230 ndev
->stats
.tx_bytes
+= skb
->len
;
1233 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
) &&
1235 struct skb_shared_hwtstamps shhwtstamps
;
1236 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
1238 fec_enet_hwtstamp(fep
, fec32_to_cpu(ebdp
->ts
), &shhwtstamps
);
1239 skb_tstamp_tx(skb
, &shhwtstamps
);
1242 /* Deferred means some collisions occurred during transmit,
1243 * but we eventually sent the packet OK.
1245 if (status
& BD_ENET_TX_DEF
)
1246 ndev
->stats
.collisions
++;
1248 /* Free the sk buffer associated with this last transmit */
1249 dev_kfree_skb_any(skb
);
1251 /* Make sure the update to bdp and tx_skbuff are performed
1255 txq
->dirty_tx
= bdp
;
1257 /* Update pointer to next buffer descriptor to be transmitted */
1258 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
1260 /* Since we have freed up a buffer, the ring is no longer full
1262 if (netif_queue_stopped(ndev
)) {
1263 entries_free
= fec_enet_get_free_txdesc_num(txq
);
1264 if (entries_free
>= txq
->tx_wake_threshold
)
1265 netif_tx_wake_queue(nq
);
1269 /* ERR006538: Keep the transmitter going */
1270 if (bdp
!= txq
->bd
.cur
&&
1271 readl(txq
->bd
.reg_desc_active
) == 0)
1272 writel(0, txq
->bd
.reg_desc_active
);
1276 fec_enet_tx(struct net_device
*ndev
)
1278 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1280 /* First process class A queue, then Class B and Best Effort queue */
1281 for_each_set_bit(queue_id
, &fep
->work_tx
, FEC_ENET_MAX_TX_QS
) {
1282 clear_bit(queue_id
, &fep
->work_tx
);
1283 fec_enet_tx_queue(ndev
, queue_id
);
1289 fec_enet_new_rxbdp(struct net_device
*ndev
, struct bufdesc
*bdp
, struct sk_buff
*skb
)
1291 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1294 off
= ((unsigned long)skb
->data
) & fep
->rx_align
;
1296 skb_reserve(skb
, fep
->rx_align
+ 1 - off
);
1298 bdp
->cbd_bufaddr
= cpu_to_fec32(dma_map_single(&fep
->pdev
->dev
, skb
->data
, FEC_ENET_RX_FRSIZE
- fep
->rx_align
, DMA_FROM_DEVICE
));
1299 if (dma_mapping_error(&fep
->pdev
->dev
, fec32_to_cpu(bdp
->cbd_bufaddr
))) {
1300 if (net_ratelimit())
1301 netdev_err(ndev
, "Rx DMA memory map failed\n");
1308 static bool fec_enet_copybreak(struct net_device
*ndev
, struct sk_buff
**skb
,
1309 struct bufdesc
*bdp
, u32 length
, bool swap
)
1311 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1312 struct sk_buff
*new_skb
;
1314 if (length
> fep
->rx_copybreak
)
1317 new_skb
= netdev_alloc_skb(ndev
, length
);
1321 dma_sync_single_for_cpu(&fep
->pdev
->dev
,
1322 fec32_to_cpu(bdp
->cbd_bufaddr
),
1323 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1326 memcpy(new_skb
->data
, (*skb
)->data
, length
);
1328 swap_buffer2(new_skb
->data
, (*skb
)->data
, length
);
1334 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1335 * When we update through the ring, if the next incoming buffer has
1336 * not been given to the system, we just set the empty indicator,
1337 * effectively tossing the packet.
1340 fec_enet_rx_queue(struct net_device
*ndev
, int budget
, u16 queue_id
)
1342 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1343 struct fec_enet_priv_rx_q
*rxq
;
1344 struct bufdesc
*bdp
;
1345 unsigned short status
;
1346 struct sk_buff
*skb_new
= NULL
;
1347 struct sk_buff
*skb
;
1350 int pkt_received
= 0;
1351 struct bufdesc_ex
*ebdp
= NULL
;
1352 bool vlan_packet_rcvd
= false;
1356 bool need_swap
= fep
->quirks
& FEC_QUIRK_SWAP_FRAME
;
1361 queue_id
= FEC_ENET_GET_QUQUE(queue_id
);
1362 rxq
= fep
->rx_queue
[queue_id
];
1364 /* First, grab all of the stats for the incoming packet.
1365 * These get messed up if we get called due to a busy condition.
1369 while (!((status
= fec16_to_cpu(bdp
->cbd_sc
)) & BD_ENET_RX_EMPTY
)) {
1371 if (pkt_received
>= budget
)
1375 writel(FEC_ENET_RXF
, fep
->hwp
+ FEC_IEVENT
);
1377 /* Check for errors. */
1378 status
^= BD_ENET_RX_LAST
;
1379 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
1380 BD_ENET_RX_CR
| BD_ENET_RX_OV
| BD_ENET_RX_LAST
|
1382 ndev
->stats
.rx_errors
++;
1383 if (status
& BD_ENET_RX_OV
) {
1385 ndev
->stats
.rx_fifo_errors
++;
1386 goto rx_processing_done
;
1388 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
1389 | BD_ENET_RX_LAST
)) {
1390 /* Frame too long or too short. */
1391 ndev
->stats
.rx_length_errors
++;
1392 if (status
& BD_ENET_RX_LAST
)
1393 netdev_err(ndev
, "rcv is not +last\n");
1395 if (status
& BD_ENET_RX_CR
) /* CRC Error */
1396 ndev
->stats
.rx_crc_errors
++;
1397 /* Report late collisions as a frame error. */
1398 if (status
& (BD_ENET_RX_NO
| BD_ENET_RX_CL
))
1399 ndev
->stats
.rx_frame_errors
++;
1400 goto rx_processing_done
;
1403 /* Process the incoming frame. */
1404 ndev
->stats
.rx_packets
++;
1405 pkt_len
= fec16_to_cpu(bdp
->cbd_datlen
);
1406 ndev
->stats
.rx_bytes
+= pkt_len
;
1408 index
= fec_enet_get_bd_index(bdp
, &rxq
->bd
);
1409 skb
= rxq
->rx_skbuff
[index
];
1411 /* The packet length includes FCS, but we don't want to
1412 * include that when passing upstream as it messes up
1413 * bridging applications.
1415 is_copybreak
= fec_enet_copybreak(ndev
, &skb
, bdp
, pkt_len
- 4,
1417 if (!is_copybreak
) {
1418 skb_new
= netdev_alloc_skb(ndev
, FEC_ENET_RX_FRSIZE
);
1419 if (unlikely(!skb_new
)) {
1420 ndev
->stats
.rx_dropped
++;
1421 goto rx_processing_done
;
1423 dma_unmap_single(&fep
->pdev
->dev
,
1424 fec32_to_cpu(bdp
->cbd_bufaddr
),
1425 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1429 prefetch(skb
->data
- NET_IP_ALIGN
);
1430 skb_put(skb
, pkt_len
- 4);
1433 if (!is_copybreak
&& need_swap
)
1434 swap_buffer(data
, pkt_len
);
1436 #if !defined(CONFIG_M5272)
1437 if (fep
->quirks
& FEC_QUIRK_HAS_RACC
)
1438 data
= skb_pull_inline(skb
, 2);
1441 /* Extract the enhanced buffer descriptor */
1443 if (fep
->bufdesc_ex
)
1444 ebdp
= (struct bufdesc_ex
*)bdp
;
1446 /* If this is a VLAN packet remove the VLAN Tag */
1447 vlan_packet_rcvd
= false;
1448 if ((ndev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
1450 (ebdp
->cbd_esc
& cpu_to_fec32(BD_ENET_RX_VLAN
))) {
1451 /* Push and remove the vlan tag */
1452 struct vlan_hdr
*vlan_header
=
1453 (struct vlan_hdr
*) (data
+ ETH_HLEN
);
1454 vlan_tag
= ntohs(vlan_header
->h_vlan_TCI
);
1456 vlan_packet_rcvd
= true;
1458 memmove(skb
->data
+ VLAN_HLEN
, data
, ETH_ALEN
* 2);
1459 skb_pull(skb
, VLAN_HLEN
);
1462 skb
->protocol
= eth_type_trans(skb
, ndev
);
1464 /* Get receive timestamp from the skb */
1465 if (fep
->hwts_rx_en
&& fep
->bufdesc_ex
)
1466 fec_enet_hwtstamp(fep
, fec32_to_cpu(ebdp
->ts
),
1467 skb_hwtstamps(skb
));
1469 if (fep
->bufdesc_ex
&&
1470 (fep
->csum_flags
& FLAG_RX_CSUM_ENABLED
)) {
1471 if (!(ebdp
->cbd_esc
& cpu_to_fec32(FLAG_RX_CSUM_ERROR
))) {
1472 /* don't check it */
1473 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1475 skb_checksum_none_assert(skb
);
1479 /* Handle received VLAN packets */
1480 if (vlan_packet_rcvd
)
1481 __vlan_hwaccel_put_tag(skb
,
1485 napi_gro_receive(&fep
->napi
, skb
);
1488 dma_sync_single_for_device(&fep
->pdev
->dev
,
1489 fec32_to_cpu(bdp
->cbd_bufaddr
),
1490 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1493 rxq
->rx_skbuff
[index
] = skb_new
;
1494 fec_enet_new_rxbdp(ndev
, bdp
, skb_new
);
1498 /* Clear the status flags for this buffer */
1499 status
&= ~BD_ENET_RX_STATS
;
1501 /* Mark the buffer empty */
1502 status
|= BD_ENET_RX_EMPTY
;
1504 if (fep
->bufdesc_ex
) {
1505 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
1507 ebdp
->cbd_esc
= cpu_to_fec32(BD_ENET_RX_INT
);
1511 /* Make sure the updates to rest of the descriptor are
1512 * performed before transferring ownership.
1515 bdp
->cbd_sc
= cpu_to_fec16(status
);
1517 /* Update BD pointer to next entry */
1518 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
1520 /* Doing this here will keep the FEC running while we process
1521 * incoming frames. On a heavily loaded network, we should be
1522 * able to keep up at the expense of system resources.
1524 writel(0, rxq
->bd
.reg_desc_active
);
1527 return pkt_received
;
1531 fec_enet_rx(struct net_device
*ndev
, int budget
)
1533 int pkt_received
= 0;
1535 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1537 for_each_set_bit(queue_id
, &fep
->work_rx
, FEC_ENET_MAX_RX_QS
) {
1540 ret
= fec_enet_rx_queue(ndev
,
1541 budget
- pkt_received
, queue_id
);
1543 if (ret
< budget
- pkt_received
)
1544 clear_bit(queue_id
, &fep
->work_rx
);
1546 pkt_received
+= ret
;
1548 return pkt_received
;
1552 fec_enet_collect_events(struct fec_enet_private
*fep
, uint int_events
)
1554 if (int_events
== 0)
1557 if (int_events
& FEC_ENET_RXF
)
1558 fep
->work_rx
|= (1 << 2);
1559 if (int_events
& FEC_ENET_RXF_1
)
1560 fep
->work_rx
|= (1 << 0);
1561 if (int_events
& FEC_ENET_RXF_2
)
1562 fep
->work_rx
|= (1 << 1);
1564 if (int_events
& FEC_ENET_TXF
)
1565 fep
->work_tx
|= (1 << 2);
1566 if (int_events
& FEC_ENET_TXF_1
)
1567 fep
->work_tx
|= (1 << 0);
1568 if (int_events
& FEC_ENET_TXF_2
)
1569 fep
->work_tx
|= (1 << 1);
1575 fec_enet_interrupt(int irq
, void *dev_id
)
1577 struct net_device
*ndev
= dev_id
;
1578 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1580 irqreturn_t ret
= IRQ_NONE
;
1582 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
1583 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
1584 fec_enet_collect_events(fep
, int_events
);
1586 if ((fep
->work_tx
|| fep
->work_rx
) && fep
->link
) {
1589 if (napi_schedule_prep(&fep
->napi
)) {
1590 /* Disable the NAPI interrupts */
1591 writel(FEC_NAPI_IMASK
, fep
->hwp
+ FEC_IMASK
);
1592 __napi_schedule(&fep
->napi
);
1596 if (int_events
& FEC_ENET_MII
) {
1598 complete(&fep
->mdio_done
);
1602 fec_ptp_check_pps_event(fep
);
1607 static int fec_enet_rx_napi(struct napi_struct
*napi
, int budget
)
1609 struct net_device
*ndev
= napi
->dev
;
1610 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1613 pkts
= fec_enet_rx(ndev
, budget
);
1617 if (pkts
< budget
) {
1618 napi_complete_done(napi
, pkts
);
1619 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1624 /* ------------------------------------------------------------------------- */
1625 static void fec_get_mac(struct net_device
*ndev
)
1627 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1628 struct fec_platform_data
*pdata
= dev_get_platdata(&fep
->pdev
->dev
);
1629 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1632 * try to get mac address in following order:
1634 * 1) module parameter via kernel command line in form
1635 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1640 * 2) from device tree data
1642 if (!is_valid_ether_addr(iap
)) {
1643 struct device_node
*np
= fep
->pdev
->dev
.of_node
;
1645 const char *mac
= of_get_mac_address(np
);
1647 iap
= (unsigned char *) mac
;
1652 * 3) from flash or fuse (via platform data)
1654 if (!is_valid_ether_addr(iap
)) {
1657 iap
= (unsigned char *)FEC_FLASHMAC
;
1660 iap
= (unsigned char *)&pdata
->mac
;
1665 * 4) FEC mac registers set by bootloader
1667 if (!is_valid_ether_addr(iap
)) {
1668 *((__be32
*) &tmpaddr
[0]) =
1669 cpu_to_be32(readl(fep
->hwp
+ FEC_ADDR_LOW
));
1670 *((__be16
*) &tmpaddr
[4]) =
1671 cpu_to_be16(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
1676 * 5) random mac address
1678 if (!is_valid_ether_addr(iap
)) {
1679 /* Report it and use a random ethernet address instead */
1680 netdev_err(ndev
, "Invalid MAC address: %pM\n", iap
);
1681 eth_hw_addr_random(ndev
);
1682 netdev_info(ndev
, "Using random MAC address: %pM\n",
1687 memcpy(ndev
->dev_addr
, iap
, ETH_ALEN
);
1689 /* Adjust MAC if using macaddr */
1691 ndev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->dev_id
;
1694 /* ------------------------------------------------------------------------- */
1699 static void fec_enet_adjust_link(struct net_device
*ndev
)
1701 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1702 struct phy_device
*phy_dev
= ndev
->phydev
;
1703 int status_change
= 0;
1705 /* Prevent a state halted on mii error */
1706 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
1707 phy_dev
->state
= PHY_RESUMING
;
1712 * If the netdev is down, or is going down, we're not interested
1713 * in link state events, so just mark our idea of the link as down
1714 * and ignore the event.
1716 if (!netif_running(ndev
) || !netif_device_present(ndev
)) {
1718 } else if (phy_dev
->link
) {
1720 fep
->link
= phy_dev
->link
;
1724 if (fep
->full_duplex
!= phy_dev
->duplex
) {
1725 fep
->full_duplex
= phy_dev
->duplex
;
1729 if (phy_dev
->speed
!= fep
->speed
) {
1730 fep
->speed
= phy_dev
->speed
;
1734 /* if any of the above changed restart the FEC */
1735 if (status_change
) {
1736 napi_disable(&fep
->napi
);
1737 netif_tx_lock_bh(ndev
);
1739 netif_wake_queue(ndev
);
1740 netif_tx_unlock_bh(ndev
);
1741 napi_enable(&fep
->napi
);
1745 napi_disable(&fep
->napi
);
1746 netif_tx_lock_bh(ndev
);
1748 netif_tx_unlock_bh(ndev
);
1749 napi_enable(&fep
->napi
);
1750 fep
->link
= phy_dev
->link
;
1756 phy_print_status(phy_dev
);
1759 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
1761 struct fec_enet_private
*fep
= bus
->priv
;
1762 struct device
*dev
= &fep
->pdev
->dev
;
1763 unsigned long time_left
;
1766 ret
= pm_runtime_get_sync(dev
);
1770 fep
->mii_timeout
= 0;
1771 reinit_completion(&fep
->mdio_done
);
1773 /* start a read op */
1774 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
1775 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
1776 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
1778 /* wait for end of transfer */
1779 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
1780 usecs_to_jiffies(FEC_MII_TIMEOUT
));
1781 if (time_left
== 0) {
1782 fep
->mii_timeout
= 1;
1783 netdev_err(fep
->netdev
, "MDIO read timeout\n");
1788 ret
= FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
1791 pm_runtime_mark_last_busy(dev
);
1792 pm_runtime_put_autosuspend(dev
);
1797 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
1800 struct fec_enet_private
*fep
= bus
->priv
;
1801 struct device
*dev
= &fep
->pdev
->dev
;
1802 unsigned long time_left
;
1805 ret
= pm_runtime_get_sync(dev
);
1811 fep
->mii_timeout
= 0;
1812 reinit_completion(&fep
->mdio_done
);
1814 /* start a write op */
1815 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
1816 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
1817 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
1818 fep
->hwp
+ FEC_MII_DATA
);
1820 /* wait for end of transfer */
1821 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
1822 usecs_to_jiffies(FEC_MII_TIMEOUT
));
1823 if (time_left
== 0) {
1824 fep
->mii_timeout
= 1;
1825 netdev_err(fep
->netdev
, "MDIO write timeout\n");
1829 pm_runtime_mark_last_busy(dev
);
1830 pm_runtime_put_autosuspend(dev
);
1835 static int fec_enet_clk_enable(struct net_device
*ndev
, bool enable
)
1837 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1841 ret
= clk_prepare_enable(fep
->clk_ahb
);
1845 ret
= clk_prepare_enable(fep
->clk_enet_out
);
1847 goto failed_clk_enet_out
;
1850 mutex_lock(&fep
->ptp_clk_mutex
);
1851 ret
= clk_prepare_enable(fep
->clk_ptp
);
1853 mutex_unlock(&fep
->ptp_clk_mutex
);
1854 goto failed_clk_ptp
;
1856 fep
->ptp_clk_on
= true;
1858 mutex_unlock(&fep
->ptp_clk_mutex
);
1861 ret
= clk_prepare_enable(fep
->clk_ref
);
1863 goto failed_clk_ref
;
1865 clk_disable_unprepare(fep
->clk_ahb
);
1866 clk_disable_unprepare(fep
->clk_enet_out
);
1868 mutex_lock(&fep
->ptp_clk_mutex
);
1869 clk_disable_unprepare(fep
->clk_ptp
);
1870 fep
->ptp_clk_on
= false;
1871 mutex_unlock(&fep
->ptp_clk_mutex
);
1873 clk_disable_unprepare(fep
->clk_ref
);
1880 clk_disable_unprepare(fep
->clk_ref
);
1882 if (fep
->clk_enet_out
)
1883 clk_disable_unprepare(fep
->clk_enet_out
);
1884 failed_clk_enet_out
:
1885 clk_disable_unprepare(fep
->clk_ahb
);
1890 static int fec_enet_mii_probe(struct net_device
*ndev
)
1892 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1893 struct phy_device
*phy_dev
= NULL
;
1894 char mdio_bus_id
[MII_BUS_ID_SIZE
];
1895 char phy_name
[MII_BUS_ID_SIZE
+ 3];
1897 int dev_id
= fep
->dev_id
;
1899 if (fep
->phy_node
) {
1900 phy_dev
= of_phy_connect(ndev
, fep
->phy_node
,
1901 &fec_enet_adjust_link
, 0,
1902 fep
->phy_interface
);
1906 /* check for attached phy */
1907 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
1908 if (!mdiobus_is_registered_device(fep
->mii_bus
, phy_id
))
1912 strlcpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
1916 if (phy_id
>= PHY_MAX_ADDR
) {
1917 netdev_info(ndev
, "no PHY, assuming direct connection to switch\n");
1918 strlcpy(mdio_bus_id
, "fixed-0", MII_BUS_ID_SIZE
);
1922 snprintf(phy_name
, sizeof(phy_name
),
1923 PHY_ID_FMT
, mdio_bus_id
, phy_id
);
1924 phy_dev
= phy_connect(ndev
, phy_name
, &fec_enet_adjust_link
,
1925 fep
->phy_interface
);
1928 if (IS_ERR(phy_dev
)) {
1929 netdev_err(ndev
, "could not attach to PHY\n");
1930 return PTR_ERR(phy_dev
);
1933 /* mask with MAC supported features */
1934 if (fep
->quirks
& FEC_QUIRK_HAS_GBIT
) {
1935 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
1936 phy_dev
->supported
&= ~SUPPORTED_1000baseT_Half
;
1937 #if !defined(CONFIG_M5272)
1938 phy_dev
->supported
|= SUPPORTED_Pause
;
1942 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
1944 phy_dev
->advertising
= phy_dev
->supported
;
1947 fep
->full_duplex
= 0;
1949 phy_attached_info(phy_dev
);
1954 static int fec_enet_mii_init(struct platform_device
*pdev
)
1956 static struct mii_bus
*fec0_mii_bus
;
1957 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1958 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1959 struct device_node
*node
;
1961 u32 mii_speed
, holdtime
;
1964 * The i.MX28 dual fec interfaces are not equal.
1965 * Here are the differences:
1967 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1968 * - fec0 acts as the 1588 time master while fec1 is slave
1969 * - external phys can only be configured by fec0
1971 * That is to say fec1 can not work independently. It only works
1972 * when fec0 is working. The reason behind this design is that the
1973 * second interface is added primarily for Switch mode.
1975 * Because of the last point above, both phys are attached on fec0
1976 * mdio interface in board design, and need to be configured by
1979 if ((fep
->quirks
& FEC_QUIRK_SINGLE_MDIO
) && fep
->dev_id
> 0) {
1980 /* fec1 uses fec0 mii_bus */
1981 if (mii_cnt
&& fec0_mii_bus
) {
1982 fep
->mii_bus
= fec0_mii_bus
;
1989 fep
->mii_timeout
= 0;
1992 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1994 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1995 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1996 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1999 mii_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk_ipg
), 5000000);
2000 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
)
2002 if (mii_speed
> 63) {
2004 "fec clock (%lu) to fast to get right mii speed\n",
2005 clk_get_rate(fep
->clk_ipg
));
2011 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2012 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2013 * versions are RAZ there, so just ignore the difference and write the
2015 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2016 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2018 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2019 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2020 * holdtime cannot result in a value greater than 3.
2022 holdtime
= DIV_ROUND_UP(clk_get_rate(fep
->clk_ipg
), 100000000) - 1;
2024 fep
->phy_speed
= mii_speed
<< 1 | holdtime
<< 8;
2026 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
2028 fep
->mii_bus
= mdiobus_alloc();
2029 if (fep
->mii_bus
== NULL
) {
2034 fep
->mii_bus
->name
= "fec_enet_mii_bus";
2035 fep
->mii_bus
->read
= fec_enet_mdio_read
;
2036 fep
->mii_bus
->write
= fec_enet_mdio_write
;
2037 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
2038 pdev
->name
, fep
->dev_id
+ 1);
2039 fep
->mii_bus
->priv
= fep
;
2040 fep
->mii_bus
->parent
= &pdev
->dev
;
2042 node
= of_get_child_by_name(pdev
->dev
.of_node
, "mdio");
2044 err
= of_mdiobus_register(fep
->mii_bus
, node
);
2047 err
= mdiobus_register(fep
->mii_bus
);
2051 goto err_out_free_mdiobus
;
2055 /* save fec0 mii_bus */
2056 if (fep
->quirks
& FEC_QUIRK_SINGLE_MDIO
)
2057 fec0_mii_bus
= fep
->mii_bus
;
2061 err_out_free_mdiobus
:
2062 mdiobus_free(fep
->mii_bus
);
2067 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
2069 if (--mii_cnt
== 0) {
2070 mdiobus_unregister(fep
->mii_bus
);
2071 mdiobus_free(fep
->mii_bus
);
2075 static void fec_enet_get_drvinfo(struct net_device
*ndev
,
2076 struct ethtool_drvinfo
*info
)
2078 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2080 strlcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
,
2081 sizeof(info
->driver
));
2082 strlcpy(info
->version
, "Revision: 1.0", sizeof(info
->version
));
2083 strlcpy(info
->bus_info
, dev_name(&ndev
->dev
), sizeof(info
->bus_info
));
2086 static int fec_enet_get_regs_len(struct net_device
*ndev
)
2088 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2092 r
= platform_get_resource(fep
->pdev
, IORESOURCE_MEM
, 0);
2094 s
= resource_size(r
);
2099 /* List of registers that can be safety be read to dump them with ethtool */
2100 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2101 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2102 static u32 fec_enet_register_offset
[] = {
2103 FEC_IEVENT
, FEC_IMASK
, FEC_R_DES_ACTIVE_0
, FEC_X_DES_ACTIVE_0
,
2104 FEC_ECNTRL
, FEC_MII_DATA
, FEC_MII_SPEED
, FEC_MIB_CTRLSTAT
, FEC_R_CNTRL
,
2105 FEC_X_CNTRL
, FEC_ADDR_LOW
, FEC_ADDR_HIGH
, FEC_OPD
, FEC_TXIC0
, FEC_TXIC1
,
2106 FEC_TXIC2
, FEC_RXIC0
, FEC_RXIC1
, FEC_RXIC2
, FEC_HASH_TABLE_HIGH
,
2107 FEC_HASH_TABLE_LOW
, FEC_GRP_HASH_TABLE_HIGH
, FEC_GRP_HASH_TABLE_LOW
,
2108 FEC_X_WMRK
, FEC_R_BOUND
, FEC_R_FSTART
, FEC_R_DES_START_1
,
2109 FEC_X_DES_START_1
, FEC_R_BUFF_SIZE_1
, FEC_R_DES_START_2
,
2110 FEC_X_DES_START_2
, FEC_R_BUFF_SIZE_2
, FEC_R_DES_START_0
,
2111 FEC_X_DES_START_0
, FEC_R_BUFF_SIZE_0
, FEC_R_FIFO_RSFL
, FEC_R_FIFO_RSEM
,
2112 FEC_R_FIFO_RAEM
, FEC_R_FIFO_RAFL
, FEC_RACC
, FEC_RCMR_1
, FEC_RCMR_2
,
2113 FEC_DMA_CFG_1
, FEC_DMA_CFG_2
, FEC_R_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_1
,
2114 FEC_R_DES_ACTIVE_2
, FEC_X_DES_ACTIVE_2
, FEC_QOS_SCHEME
,
2115 RMON_T_DROP
, RMON_T_PACKETS
, RMON_T_BC_PKT
, RMON_T_MC_PKT
,
2116 RMON_T_CRC_ALIGN
, RMON_T_UNDERSIZE
, RMON_T_OVERSIZE
, RMON_T_FRAG
,
2117 RMON_T_JAB
, RMON_T_COL
, RMON_T_P64
, RMON_T_P65TO127
, RMON_T_P128TO255
,
2118 RMON_T_P256TO511
, RMON_T_P512TO1023
, RMON_T_P1024TO2047
,
2119 RMON_T_P_GTE2048
, RMON_T_OCTETS
,
2120 IEEE_T_DROP
, IEEE_T_FRAME_OK
, IEEE_T_1COL
, IEEE_T_MCOL
, IEEE_T_DEF
,
2121 IEEE_T_LCOL
, IEEE_T_EXCOL
, IEEE_T_MACERR
, IEEE_T_CSERR
, IEEE_T_SQE
,
2122 IEEE_T_FDXFC
, IEEE_T_OCTETS_OK
,
2123 RMON_R_PACKETS
, RMON_R_BC_PKT
, RMON_R_MC_PKT
, RMON_R_CRC_ALIGN
,
2124 RMON_R_UNDERSIZE
, RMON_R_OVERSIZE
, RMON_R_FRAG
, RMON_R_JAB
,
2125 RMON_R_RESVD_O
, RMON_R_P64
, RMON_R_P65TO127
, RMON_R_P128TO255
,
2126 RMON_R_P256TO511
, RMON_R_P512TO1023
, RMON_R_P1024TO2047
,
2127 RMON_R_P_GTE2048
, RMON_R_OCTETS
,
2128 IEEE_R_DROP
, IEEE_R_FRAME_OK
, IEEE_R_CRC
, IEEE_R_ALIGN
, IEEE_R_MACERR
,
2129 IEEE_R_FDXFC
, IEEE_R_OCTETS_OK
2132 static u32 fec_enet_register_offset
[] = {
2133 FEC_ECNTRL
, FEC_IEVENT
, FEC_IMASK
, FEC_IVEC
, FEC_R_DES_ACTIVE_0
,
2134 FEC_R_DES_ACTIVE_1
, FEC_R_DES_ACTIVE_2
, FEC_X_DES_ACTIVE_0
,
2135 FEC_X_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_2
, FEC_MII_DATA
, FEC_MII_SPEED
,
2136 FEC_R_BOUND
, FEC_R_FSTART
, FEC_X_WMRK
, FEC_X_FSTART
, FEC_R_CNTRL
,
2137 FEC_MAX_FRM_LEN
, FEC_X_CNTRL
, FEC_ADDR_LOW
, FEC_ADDR_HIGH
,
2138 FEC_GRP_HASH_TABLE_HIGH
, FEC_GRP_HASH_TABLE_LOW
, FEC_R_DES_START_0
,
2139 FEC_R_DES_START_1
, FEC_R_DES_START_2
, FEC_X_DES_START_0
,
2140 FEC_X_DES_START_1
, FEC_X_DES_START_2
, FEC_R_BUFF_SIZE_0
,
2141 FEC_R_BUFF_SIZE_1
, FEC_R_BUFF_SIZE_2
2145 static void fec_enet_get_regs(struct net_device
*ndev
,
2146 struct ethtool_regs
*regs
, void *regbuf
)
2148 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2149 u32 __iomem
*theregs
= (u32 __iomem
*)fep
->hwp
;
2150 u32
*buf
= (u32
*)regbuf
;
2153 memset(buf
, 0, regs
->len
);
2155 for (i
= 0; i
< ARRAY_SIZE(fec_enet_register_offset
); i
++) {
2156 off
= fec_enet_register_offset
[i
] / 4;
2157 buf
[off
] = readl(&theregs
[off
]);
2161 static int fec_enet_get_ts_info(struct net_device
*ndev
,
2162 struct ethtool_ts_info
*info
)
2164 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2166 if (fep
->bufdesc_ex
) {
2168 info
->so_timestamping
= SOF_TIMESTAMPING_TX_SOFTWARE
|
2169 SOF_TIMESTAMPING_RX_SOFTWARE
|
2170 SOF_TIMESTAMPING_SOFTWARE
|
2171 SOF_TIMESTAMPING_TX_HARDWARE
|
2172 SOF_TIMESTAMPING_RX_HARDWARE
|
2173 SOF_TIMESTAMPING_RAW_HARDWARE
;
2175 info
->phc_index
= ptp_clock_index(fep
->ptp_clock
);
2177 info
->phc_index
= -1;
2179 info
->tx_types
= (1 << HWTSTAMP_TX_OFF
) |
2180 (1 << HWTSTAMP_TX_ON
);
2182 info
->rx_filters
= (1 << HWTSTAMP_FILTER_NONE
) |
2183 (1 << HWTSTAMP_FILTER_ALL
);
2186 return ethtool_op_get_ts_info(ndev
, info
);
2190 #if !defined(CONFIG_M5272)
2192 static void fec_enet_get_pauseparam(struct net_device
*ndev
,
2193 struct ethtool_pauseparam
*pause
)
2195 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2197 pause
->autoneg
= (fep
->pause_flag
& FEC_PAUSE_FLAG_AUTONEG
) != 0;
2198 pause
->tx_pause
= (fep
->pause_flag
& FEC_PAUSE_FLAG_ENABLE
) != 0;
2199 pause
->rx_pause
= pause
->tx_pause
;
2202 static int fec_enet_set_pauseparam(struct net_device
*ndev
,
2203 struct ethtool_pauseparam
*pause
)
2205 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2210 if (pause
->tx_pause
!= pause
->rx_pause
) {
2212 "hardware only support enable/disable both tx and rx");
2216 fep
->pause_flag
= 0;
2218 /* tx pause must be same as rx pause */
2219 fep
->pause_flag
|= pause
->rx_pause
? FEC_PAUSE_FLAG_ENABLE
: 0;
2220 fep
->pause_flag
|= pause
->autoneg
? FEC_PAUSE_FLAG_AUTONEG
: 0;
2222 if (pause
->rx_pause
|| pause
->autoneg
) {
2223 ndev
->phydev
->supported
|= ADVERTISED_Pause
;
2224 ndev
->phydev
->advertising
|= ADVERTISED_Pause
;
2226 ndev
->phydev
->supported
&= ~ADVERTISED_Pause
;
2227 ndev
->phydev
->advertising
&= ~ADVERTISED_Pause
;
2230 if (pause
->autoneg
) {
2231 if (netif_running(ndev
))
2233 phy_start_aneg(ndev
->phydev
);
2235 if (netif_running(ndev
)) {
2236 napi_disable(&fep
->napi
);
2237 netif_tx_lock_bh(ndev
);
2239 netif_wake_queue(ndev
);
2240 netif_tx_unlock_bh(ndev
);
2241 napi_enable(&fep
->napi
);
2247 static const struct fec_stat
{
2248 char name
[ETH_GSTRING_LEN
];
2252 { "tx_dropped", RMON_T_DROP
},
2253 { "tx_packets", RMON_T_PACKETS
},
2254 { "tx_broadcast", RMON_T_BC_PKT
},
2255 { "tx_multicast", RMON_T_MC_PKT
},
2256 { "tx_crc_errors", RMON_T_CRC_ALIGN
},
2257 { "tx_undersize", RMON_T_UNDERSIZE
},
2258 { "tx_oversize", RMON_T_OVERSIZE
},
2259 { "tx_fragment", RMON_T_FRAG
},
2260 { "tx_jabber", RMON_T_JAB
},
2261 { "tx_collision", RMON_T_COL
},
2262 { "tx_64byte", RMON_T_P64
},
2263 { "tx_65to127byte", RMON_T_P65TO127
},
2264 { "tx_128to255byte", RMON_T_P128TO255
},
2265 { "tx_256to511byte", RMON_T_P256TO511
},
2266 { "tx_512to1023byte", RMON_T_P512TO1023
},
2267 { "tx_1024to2047byte", RMON_T_P1024TO2047
},
2268 { "tx_GTE2048byte", RMON_T_P_GTE2048
},
2269 { "tx_octets", RMON_T_OCTETS
},
2272 { "IEEE_tx_drop", IEEE_T_DROP
},
2273 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK
},
2274 { "IEEE_tx_1col", IEEE_T_1COL
},
2275 { "IEEE_tx_mcol", IEEE_T_MCOL
},
2276 { "IEEE_tx_def", IEEE_T_DEF
},
2277 { "IEEE_tx_lcol", IEEE_T_LCOL
},
2278 { "IEEE_tx_excol", IEEE_T_EXCOL
},
2279 { "IEEE_tx_macerr", IEEE_T_MACERR
},
2280 { "IEEE_tx_cserr", IEEE_T_CSERR
},
2281 { "IEEE_tx_sqe", IEEE_T_SQE
},
2282 { "IEEE_tx_fdxfc", IEEE_T_FDXFC
},
2283 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK
},
2286 { "rx_packets", RMON_R_PACKETS
},
2287 { "rx_broadcast", RMON_R_BC_PKT
},
2288 { "rx_multicast", RMON_R_MC_PKT
},
2289 { "rx_crc_errors", RMON_R_CRC_ALIGN
},
2290 { "rx_undersize", RMON_R_UNDERSIZE
},
2291 { "rx_oversize", RMON_R_OVERSIZE
},
2292 { "rx_fragment", RMON_R_FRAG
},
2293 { "rx_jabber", RMON_R_JAB
},
2294 { "rx_64byte", RMON_R_P64
},
2295 { "rx_65to127byte", RMON_R_P65TO127
},
2296 { "rx_128to255byte", RMON_R_P128TO255
},
2297 { "rx_256to511byte", RMON_R_P256TO511
},
2298 { "rx_512to1023byte", RMON_R_P512TO1023
},
2299 { "rx_1024to2047byte", RMON_R_P1024TO2047
},
2300 { "rx_GTE2048byte", RMON_R_P_GTE2048
},
2301 { "rx_octets", RMON_R_OCTETS
},
2304 { "IEEE_rx_drop", IEEE_R_DROP
},
2305 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK
},
2306 { "IEEE_rx_crc", IEEE_R_CRC
},
2307 { "IEEE_rx_align", IEEE_R_ALIGN
},
2308 { "IEEE_rx_macerr", IEEE_R_MACERR
},
2309 { "IEEE_rx_fdxfc", IEEE_R_FDXFC
},
2310 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK
},
2313 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2315 static void fec_enet_update_ethtool_stats(struct net_device
*dev
)
2317 struct fec_enet_private
*fep
= netdev_priv(dev
);
2320 for (i
= 0; i
< ARRAY_SIZE(fec_stats
); i
++)
2321 fep
->ethtool_stats
[i
] = readl(fep
->hwp
+ fec_stats
[i
].offset
);
2324 static void fec_enet_get_ethtool_stats(struct net_device
*dev
,
2325 struct ethtool_stats
*stats
, u64
*data
)
2327 struct fec_enet_private
*fep
= netdev_priv(dev
);
2329 if (netif_running(dev
))
2330 fec_enet_update_ethtool_stats(dev
);
2332 memcpy(data
, fep
->ethtool_stats
, FEC_STATS_SIZE
);
2335 static void fec_enet_get_strings(struct net_device
*netdev
,
2336 u32 stringset
, u8
*data
)
2339 switch (stringset
) {
2341 for (i
= 0; i
< ARRAY_SIZE(fec_stats
); i
++)
2342 memcpy(data
+ i
* ETH_GSTRING_LEN
,
2343 fec_stats
[i
].name
, ETH_GSTRING_LEN
);
2348 static int fec_enet_get_sset_count(struct net_device
*dev
, int sset
)
2352 return ARRAY_SIZE(fec_stats
);
2358 #else /* !defined(CONFIG_M5272) */
2359 #define FEC_STATS_SIZE 0
2360 static inline void fec_enet_update_ethtool_stats(struct net_device
*dev
)
2363 #endif /* !defined(CONFIG_M5272) */
2365 /* ITR clock source is enet system clock (clk_ahb).
2366 * TCTT unit is cycle_ns * 64 cycle
2367 * So, the ICTT value = X us / (cycle_ns * 64)
2369 static int fec_enet_us_to_itr_clock(struct net_device
*ndev
, int us
)
2371 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2373 return us
* (fep
->itr_clk_rate
/ 64000) / 1000;
2376 /* Set threshold for interrupt coalescing */
2377 static void fec_enet_itr_coal_set(struct net_device
*ndev
)
2379 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2382 /* Must be greater than zero to avoid unpredictable behavior */
2383 if (!fep
->rx_time_itr
|| !fep
->rx_pkts_itr
||
2384 !fep
->tx_time_itr
|| !fep
->tx_pkts_itr
)
2387 /* Select enet system clock as Interrupt Coalescing
2388 * timer Clock Source
2390 rx_itr
= FEC_ITR_CLK_SEL
;
2391 tx_itr
= FEC_ITR_CLK_SEL
;
2393 /* set ICFT and ICTT */
2394 rx_itr
|= FEC_ITR_ICFT(fep
->rx_pkts_itr
);
2395 rx_itr
|= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev
, fep
->rx_time_itr
));
2396 tx_itr
|= FEC_ITR_ICFT(fep
->tx_pkts_itr
);
2397 tx_itr
|= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev
, fep
->tx_time_itr
));
2399 rx_itr
|= FEC_ITR_EN
;
2400 tx_itr
|= FEC_ITR_EN
;
2402 writel(tx_itr
, fep
->hwp
+ FEC_TXIC0
);
2403 writel(rx_itr
, fep
->hwp
+ FEC_RXIC0
);
2404 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
2405 writel(tx_itr
, fep
->hwp
+ FEC_TXIC1
);
2406 writel(rx_itr
, fep
->hwp
+ FEC_RXIC1
);
2407 writel(tx_itr
, fep
->hwp
+ FEC_TXIC2
);
2408 writel(rx_itr
, fep
->hwp
+ FEC_RXIC2
);
2413 fec_enet_get_coalesce(struct net_device
*ndev
, struct ethtool_coalesce
*ec
)
2415 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2417 if (!(fep
->quirks
& FEC_QUIRK_HAS_COALESCE
))
2420 ec
->rx_coalesce_usecs
= fep
->rx_time_itr
;
2421 ec
->rx_max_coalesced_frames
= fep
->rx_pkts_itr
;
2423 ec
->tx_coalesce_usecs
= fep
->tx_time_itr
;
2424 ec
->tx_max_coalesced_frames
= fep
->tx_pkts_itr
;
2430 fec_enet_set_coalesce(struct net_device
*ndev
, struct ethtool_coalesce
*ec
)
2432 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2435 if (!(fep
->quirks
& FEC_QUIRK_HAS_COALESCE
))
2438 if (ec
->rx_max_coalesced_frames
> 255) {
2439 pr_err("Rx coalesced frames exceed hardware limitation\n");
2443 if (ec
->tx_max_coalesced_frames
> 255) {
2444 pr_err("Tx coalesced frame exceed hardware limitation\n");
2448 cycle
= fec_enet_us_to_itr_clock(ndev
, fep
->rx_time_itr
);
2449 if (cycle
> 0xFFFF) {
2450 pr_err("Rx coalesced usec exceed hardware limitation\n");
2454 cycle
= fec_enet_us_to_itr_clock(ndev
, fep
->tx_time_itr
);
2455 if (cycle
> 0xFFFF) {
2456 pr_err("Rx coalesced usec exceed hardware limitation\n");
2460 fep
->rx_time_itr
= ec
->rx_coalesce_usecs
;
2461 fep
->rx_pkts_itr
= ec
->rx_max_coalesced_frames
;
2463 fep
->tx_time_itr
= ec
->tx_coalesce_usecs
;
2464 fep
->tx_pkts_itr
= ec
->tx_max_coalesced_frames
;
2466 fec_enet_itr_coal_set(ndev
);
2471 static void fec_enet_itr_coal_init(struct net_device
*ndev
)
2473 struct ethtool_coalesce ec
;
2475 ec
.rx_coalesce_usecs
= FEC_ITR_ICTT_DEFAULT
;
2476 ec
.rx_max_coalesced_frames
= FEC_ITR_ICFT_DEFAULT
;
2478 ec
.tx_coalesce_usecs
= FEC_ITR_ICTT_DEFAULT
;
2479 ec
.tx_max_coalesced_frames
= FEC_ITR_ICFT_DEFAULT
;
2481 fec_enet_set_coalesce(ndev
, &ec
);
2484 static int fec_enet_get_tunable(struct net_device
*netdev
,
2485 const struct ethtool_tunable
*tuna
,
2488 struct fec_enet_private
*fep
= netdev_priv(netdev
);
2492 case ETHTOOL_RX_COPYBREAK
:
2493 *(u32
*)data
= fep
->rx_copybreak
;
2503 static int fec_enet_set_tunable(struct net_device
*netdev
,
2504 const struct ethtool_tunable
*tuna
,
2507 struct fec_enet_private
*fep
= netdev_priv(netdev
);
2511 case ETHTOOL_RX_COPYBREAK
:
2512 fep
->rx_copybreak
= *(u32
*)data
;
2523 fec_enet_get_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2525 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2527 if (fep
->wol_flag
& FEC_WOL_HAS_MAGIC_PACKET
) {
2528 wol
->supported
= WAKE_MAGIC
;
2529 wol
->wolopts
= fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
? WAKE_MAGIC
: 0;
2531 wol
->supported
= wol
->wolopts
= 0;
2536 fec_enet_set_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2538 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2540 if (!(fep
->wol_flag
& FEC_WOL_HAS_MAGIC_PACKET
))
2543 if (wol
->wolopts
& ~WAKE_MAGIC
)
2546 device_set_wakeup_enable(&ndev
->dev
, wol
->wolopts
& WAKE_MAGIC
);
2547 if (device_may_wakeup(&ndev
->dev
)) {
2548 fep
->wol_flag
|= FEC_WOL_FLAG_ENABLE
;
2549 if (fep
->irq
[0] > 0)
2550 enable_irq_wake(fep
->irq
[0]);
2552 fep
->wol_flag
&= (~FEC_WOL_FLAG_ENABLE
);
2553 if (fep
->irq
[0] > 0)
2554 disable_irq_wake(fep
->irq
[0]);
2560 static const struct ethtool_ops fec_enet_ethtool_ops
= {
2561 .get_drvinfo
= fec_enet_get_drvinfo
,
2562 .get_regs_len
= fec_enet_get_regs_len
,
2563 .get_regs
= fec_enet_get_regs
,
2564 .nway_reset
= phy_ethtool_nway_reset
,
2565 .get_link
= ethtool_op_get_link
,
2566 .get_coalesce
= fec_enet_get_coalesce
,
2567 .set_coalesce
= fec_enet_set_coalesce
,
2568 #ifndef CONFIG_M5272
2569 .get_pauseparam
= fec_enet_get_pauseparam
,
2570 .set_pauseparam
= fec_enet_set_pauseparam
,
2571 .get_strings
= fec_enet_get_strings
,
2572 .get_ethtool_stats
= fec_enet_get_ethtool_stats
,
2573 .get_sset_count
= fec_enet_get_sset_count
,
2575 .get_ts_info
= fec_enet_get_ts_info
,
2576 .get_tunable
= fec_enet_get_tunable
,
2577 .set_tunable
= fec_enet_set_tunable
,
2578 .get_wol
= fec_enet_get_wol
,
2579 .set_wol
= fec_enet_set_wol
,
2580 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
2581 .set_link_ksettings
= phy_ethtool_set_link_ksettings
,
2584 static int fec_enet_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
2586 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2587 struct phy_device
*phydev
= ndev
->phydev
;
2589 if (!netif_running(ndev
))
2595 if (fep
->bufdesc_ex
) {
2596 if (cmd
== SIOCSHWTSTAMP
)
2597 return fec_ptp_set(ndev
, rq
);
2598 if (cmd
== SIOCGHWTSTAMP
)
2599 return fec_ptp_get(ndev
, rq
);
2602 return phy_mii_ioctl(phydev
, rq
, cmd
);
2605 static void fec_enet_free_buffers(struct net_device
*ndev
)
2607 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2609 struct sk_buff
*skb
;
2610 struct bufdesc
*bdp
;
2611 struct fec_enet_priv_tx_q
*txq
;
2612 struct fec_enet_priv_rx_q
*rxq
;
2615 for (q
= 0; q
< fep
->num_rx_queues
; q
++) {
2616 rxq
= fep
->rx_queue
[q
];
2618 for (i
= 0; i
< rxq
->bd
.ring_size
; i
++) {
2619 skb
= rxq
->rx_skbuff
[i
];
2620 rxq
->rx_skbuff
[i
] = NULL
;
2622 dma_unmap_single(&fep
->pdev
->dev
,
2623 fec32_to_cpu(bdp
->cbd_bufaddr
),
2624 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
2628 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
2632 for (q
= 0; q
< fep
->num_tx_queues
; q
++) {
2633 txq
= fep
->tx_queue
[q
];
2635 for (i
= 0; i
< txq
->bd
.ring_size
; i
++) {
2636 kfree(txq
->tx_bounce
[i
]);
2637 txq
->tx_bounce
[i
] = NULL
;
2638 skb
= txq
->tx_skbuff
[i
];
2639 txq
->tx_skbuff
[i
] = NULL
;
2645 static void fec_enet_free_queue(struct net_device
*ndev
)
2647 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2649 struct fec_enet_priv_tx_q
*txq
;
2651 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2652 if (fep
->tx_queue
[i
] && fep
->tx_queue
[i
]->tso_hdrs
) {
2653 txq
= fep
->tx_queue
[i
];
2654 dma_free_coherent(NULL
,
2655 txq
->bd
.ring_size
* TSO_HEADER_SIZE
,
2660 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
2661 kfree(fep
->rx_queue
[i
]);
2662 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2663 kfree(fep
->tx_queue
[i
]);
2666 static int fec_enet_alloc_queue(struct net_device
*ndev
)
2668 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2671 struct fec_enet_priv_tx_q
*txq
;
2673 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
2674 txq
= kzalloc(sizeof(*txq
), GFP_KERNEL
);
2680 fep
->tx_queue
[i
] = txq
;
2681 txq
->bd
.ring_size
= TX_RING_SIZE
;
2682 fep
->total_tx_ring_size
+= fep
->tx_queue
[i
]->bd
.ring_size
;
2684 txq
->tx_stop_threshold
= FEC_MAX_SKB_DESCS
;
2685 txq
->tx_wake_threshold
=
2686 (txq
->bd
.ring_size
- txq
->tx_stop_threshold
) / 2;
2688 txq
->tso_hdrs
= dma_alloc_coherent(NULL
,
2689 txq
->bd
.ring_size
* TSO_HEADER_SIZE
,
2692 if (!txq
->tso_hdrs
) {
2698 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
2699 fep
->rx_queue
[i
] = kzalloc(sizeof(*fep
->rx_queue
[i
]),
2701 if (!fep
->rx_queue
[i
]) {
2706 fep
->rx_queue
[i
]->bd
.ring_size
= RX_RING_SIZE
;
2707 fep
->total_rx_ring_size
+= fep
->rx_queue
[i
]->bd
.ring_size
;
2712 fec_enet_free_queue(ndev
);
2717 fec_enet_alloc_rxq_buffers(struct net_device
*ndev
, unsigned int queue
)
2719 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2721 struct sk_buff
*skb
;
2722 struct bufdesc
*bdp
;
2723 struct fec_enet_priv_rx_q
*rxq
;
2725 rxq
= fep
->rx_queue
[queue
];
2727 for (i
= 0; i
< rxq
->bd
.ring_size
; i
++) {
2728 skb
= netdev_alloc_skb(ndev
, FEC_ENET_RX_FRSIZE
);
2732 if (fec_enet_new_rxbdp(ndev
, bdp
, skb
)) {
2737 rxq
->rx_skbuff
[i
] = skb
;
2738 bdp
->cbd_sc
= cpu_to_fec16(BD_ENET_RX_EMPTY
);
2740 if (fep
->bufdesc_ex
) {
2741 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
2742 ebdp
->cbd_esc
= cpu_to_fec32(BD_ENET_RX_INT
);
2745 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
2748 /* Set the last buffer to wrap. */
2749 bdp
= fec_enet_get_prevdesc(bdp
, &rxq
->bd
);
2750 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
2754 fec_enet_free_buffers(ndev
);
2759 fec_enet_alloc_txq_buffers(struct net_device
*ndev
, unsigned int queue
)
2761 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2763 struct bufdesc
*bdp
;
2764 struct fec_enet_priv_tx_q
*txq
;
2766 txq
= fep
->tx_queue
[queue
];
2768 for (i
= 0; i
< txq
->bd
.ring_size
; i
++) {
2769 txq
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
2770 if (!txq
->tx_bounce
[i
])
2773 bdp
->cbd_sc
= cpu_to_fec16(0);
2774 bdp
->cbd_bufaddr
= cpu_to_fec32(0);
2776 if (fep
->bufdesc_ex
) {
2777 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
2778 ebdp
->cbd_esc
= cpu_to_fec32(BD_ENET_TX_INT
);
2781 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
2784 /* Set the last buffer to wrap. */
2785 bdp
= fec_enet_get_prevdesc(bdp
, &txq
->bd
);
2786 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
2791 fec_enet_free_buffers(ndev
);
2795 static int fec_enet_alloc_buffers(struct net_device
*ndev
)
2797 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2800 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
2801 if (fec_enet_alloc_rxq_buffers(ndev
, i
))
2804 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2805 if (fec_enet_alloc_txq_buffers(ndev
, i
))
2811 fec_enet_open(struct net_device
*ndev
)
2813 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2816 ret
= pm_runtime_get_sync(&fep
->pdev
->dev
);
2820 pinctrl_pm_select_default_state(&fep
->pdev
->dev
);
2821 ret
= fec_enet_clk_enable(ndev
, true);
2825 /* I should reset the ring buffers here, but I don't yet know
2826 * a simple way to do that.
2829 ret
= fec_enet_alloc_buffers(ndev
);
2831 goto err_enet_alloc
;
2833 /* Init MAC prior to mii bus probe */
2836 /* Probe and connect to PHY when open the interface */
2837 ret
= fec_enet_mii_probe(ndev
);
2839 goto err_enet_mii_probe
;
2841 if (fep
->quirks
& FEC_QUIRK_ERR006687
)
2842 imx6q_cpuidle_fec_irqs_used();
2844 napi_enable(&fep
->napi
);
2845 phy_start(ndev
->phydev
);
2846 netif_tx_start_all_queues(ndev
);
2848 device_set_wakeup_enable(&ndev
->dev
, fep
->wol_flag
&
2849 FEC_WOL_FLAG_ENABLE
);
2854 fec_enet_free_buffers(ndev
);
2856 fec_enet_clk_enable(ndev
, false);
2858 pm_runtime_mark_last_busy(&fep
->pdev
->dev
);
2859 pm_runtime_put_autosuspend(&fep
->pdev
->dev
);
2860 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
2865 fec_enet_close(struct net_device
*ndev
)
2867 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2869 phy_stop(ndev
->phydev
);
2871 if (netif_device_present(ndev
)) {
2872 napi_disable(&fep
->napi
);
2873 netif_tx_disable(ndev
);
2877 phy_disconnect(ndev
->phydev
);
2879 if (fep
->quirks
& FEC_QUIRK_ERR006687
)
2880 imx6q_cpuidle_fec_irqs_unused();
2882 fec_enet_update_ethtool_stats(ndev
);
2884 fec_enet_clk_enable(ndev
, false);
2885 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
2886 pm_runtime_mark_last_busy(&fep
->pdev
->dev
);
2887 pm_runtime_put_autosuspend(&fep
->pdev
->dev
);
2889 fec_enet_free_buffers(ndev
);
2894 /* Set or clear the multicast filter for this adaptor.
2895 * Skeleton taken from sunlance driver.
2896 * The CPM Ethernet implementation allows Multicast as well as individual
2897 * MAC address filtering. Some of the drivers check to make sure it is
2898 * a group multicast address, and discard those that are not. I guess I
2899 * will do the same for now, but just remove the test if you want
2900 * individual filtering as well (do the upper net layers want or support
2901 * this kind of feature?).
2904 #define FEC_HASH_BITS 6 /* #bits in hash */
2905 #define CRC32_POLY 0xEDB88320
2907 static void set_multicast_list(struct net_device
*ndev
)
2909 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2910 struct netdev_hw_addr
*ha
;
2911 unsigned int i
, bit
, data
, crc
, tmp
;
2913 unsigned int hash_high
= 0, hash_low
= 0;
2915 if (ndev
->flags
& IFF_PROMISC
) {
2916 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
2918 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
2922 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
2924 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
2926 if (ndev
->flags
& IFF_ALLMULTI
) {
2927 /* Catch all multicast addresses, so set the
2930 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
2931 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
2936 /* Add the addresses in hash register */
2937 netdev_for_each_mc_addr(ha
, ndev
) {
2938 /* calculate crc32 value of mac address */
2941 for (i
= 0; i
< ndev
->addr_len
; i
++) {
2943 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
2945 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
2949 /* only upper 6 bits (FEC_HASH_BITS) are used
2950 * which point to specific bit in he hash registers
2952 hash
= (crc
>> (32 - FEC_HASH_BITS
)) & 0x3f;
2955 hash_high
|= 1 << (hash
- 32);
2957 hash_low
|= 1 << hash
;
2960 writel(hash_high
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
2961 writel(hash_low
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
2964 /* Set a MAC change in hardware. */
2966 fec_set_mac_address(struct net_device
*ndev
, void *p
)
2968 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2969 struct sockaddr
*addr
= p
;
2972 if (!is_valid_ether_addr(addr
->sa_data
))
2973 return -EADDRNOTAVAIL
;
2974 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
2977 /* Add netif status check here to avoid system hang in below case:
2978 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2979 * After ethx down, fec all clocks are gated off and then register
2980 * access causes system hang.
2982 if (!netif_running(ndev
))
2985 writel(ndev
->dev_addr
[3] | (ndev
->dev_addr
[2] << 8) |
2986 (ndev
->dev_addr
[1] << 16) | (ndev
->dev_addr
[0] << 24),
2987 fep
->hwp
+ FEC_ADDR_LOW
);
2988 writel((ndev
->dev_addr
[5] << 16) | (ndev
->dev_addr
[4] << 24),
2989 fep
->hwp
+ FEC_ADDR_HIGH
);
2993 #ifdef CONFIG_NET_POLL_CONTROLLER
2995 * fec_poll_controller - FEC Poll controller function
2996 * @dev: The FEC network adapter
2998 * Polled functionality used by netconsole and others in non interrupt mode
3001 static void fec_poll_controller(struct net_device
*dev
)
3004 struct fec_enet_private
*fep
= netdev_priv(dev
);
3006 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
3007 if (fep
->irq
[i
] > 0) {
3008 disable_irq(fep
->irq
[i
]);
3009 fec_enet_interrupt(fep
->irq
[i
], dev
);
3010 enable_irq(fep
->irq
[i
]);
3016 static inline void fec_enet_set_netdev_features(struct net_device
*netdev
,
3017 netdev_features_t features
)
3019 struct fec_enet_private
*fep
= netdev_priv(netdev
);
3020 netdev_features_t changed
= features
^ netdev
->features
;
3022 netdev
->features
= features
;
3024 /* Receive checksum has been changed */
3025 if (changed
& NETIF_F_RXCSUM
) {
3026 if (features
& NETIF_F_RXCSUM
)
3027 fep
->csum_flags
|= FLAG_RX_CSUM_ENABLED
;
3029 fep
->csum_flags
&= ~FLAG_RX_CSUM_ENABLED
;
3033 static int fec_set_features(struct net_device
*netdev
,
3034 netdev_features_t features
)
3036 struct fec_enet_private
*fep
= netdev_priv(netdev
);
3037 netdev_features_t changed
= features
^ netdev
->features
;
3039 if (netif_running(netdev
) && changed
& NETIF_F_RXCSUM
) {
3040 napi_disable(&fep
->napi
);
3041 netif_tx_lock_bh(netdev
);
3043 fec_enet_set_netdev_features(netdev
, features
);
3044 fec_restart(netdev
);
3045 netif_tx_wake_all_queues(netdev
);
3046 netif_tx_unlock_bh(netdev
);
3047 napi_enable(&fep
->napi
);
3049 fec_enet_set_netdev_features(netdev
, features
);
3055 static const struct net_device_ops fec_netdev_ops
= {
3056 .ndo_open
= fec_enet_open
,
3057 .ndo_stop
= fec_enet_close
,
3058 .ndo_start_xmit
= fec_enet_start_xmit
,
3059 .ndo_set_rx_mode
= set_multicast_list
,
3060 .ndo_validate_addr
= eth_validate_addr
,
3061 .ndo_tx_timeout
= fec_timeout
,
3062 .ndo_set_mac_address
= fec_set_mac_address
,
3063 .ndo_do_ioctl
= fec_enet_ioctl
,
3064 #ifdef CONFIG_NET_POLL_CONTROLLER
3065 .ndo_poll_controller
= fec_poll_controller
,
3067 .ndo_set_features
= fec_set_features
,
3070 static const unsigned short offset_des_active_rxq
[] = {
3071 FEC_R_DES_ACTIVE_0
, FEC_R_DES_ACTIVE_1
, FEC_R_DES_ACTIVE_2
3074 static const unsigned short offset_des_active_txq
[] = {
3075 FEC_X_DES_ACTIVE_0
, FEC_X_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_2
3079 * XXX: We need to clean up on failure exits here.
3082 static int fec_enet_init(struct net_device
*ndev
)
3084 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3085 struct bufdesc
*cbd_base
;
3089 unsigned dsize
= fep
->bufdesc_ex
? sizeof(struct bufdesc_ex
) :
3090 sizeof(struct bufdesc
);
3091 unsigned dsize_log2
= __fls(dsize
);
3093 WARN_ON(dsize
!= (1 << dsize_log2
));
3094 #if defined(CONFIG_ARM)
3095 fep
->rx_align
= 0xf;
3096 fep
->tx_align
= 0xf;
3098 fep
->rx_align
= 0x3;
3099 fep
->tx_align
= 0x3;
3102 fec_enet_alloc_queue(ndev
);
3104 bd_size
= (fep
->total_tx_ring_size
+ fep
->total_rx_ring_size
) * dsize
;
3106 /* Allocate memory for buffer descriptors. */
3107 cbd_base
= dmam_alloc_coherent(&fep
->pdev
->dev
, bd_size
, &bd_dma
,
3113 memset(cbd_base
, 0, bd_size
);
3115 /* Get the Ethernet address */
3117 /* make sure MAC we just acquired is programmed into the hw */
3118 fec_set_mac_address(ndev
, NULL
);
3120 /* Set receive and transmit descriptor base. */
3121 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
3122 struct fec_enet_priv_rx_q
*rxq
= fep
->rx_queue
[i
];
3123 unsigned size
= dsize
* rxq
->bd
.ring_size
;
3126 rxq
->bd
.base
= cbd_base
;
3127 rxq
->bd
.cur
= cbd_base
;
3128 rxq
->bd
.dma
= bd_dma
;
3129 rxq
->bd
.dsize
= dsize
;
3130 rxq
->bd
.dsize_log2
= dsize_log2
;
3131 rxq
->bd
.reg_desc_active
= fep
->hwp
+ offset_des_active_rxq
[i
];
3133 cbd_base
= (struct bufdesc
*)(((void *)cbd_base
) + size
);
3134 rxq
->bd
.last
= (struct bufdesc
*)(((void *)cbd_base
) - dsize
);
3137 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
3138 struct fec_enet_priv_tx_q
*txq
= fep
->tx_queue
[i
];
3139 unsigned size
= dsize
* txq
->bd
.ring_size
;
3142 txq
->bd
.base
= cbd_base
;
3143 txq
->bd
.cur
= cbd_base
;
3144 txq
->bd
.dma
= bd_dma
;
3145 txq
->bd
.dsize
= dsize
;
3146 txq
->bd
.dsize_log2
= dsize_log2
;
3147 txq
->bd
.reg_desc_active
= fep
->hwp
+ offset_des_active_txq
[i
];
3149 cbd_base
= (struct bufdesc
*)(((void *)cbd_base
) + size
);
3150 txq
->bd
.last
= (struct bufdesc
*)(((void *)cbd_base
) - dsize
);
3154 /* The FEC Ethernet specific entries in the device structure */
3155 ndev
->watchdog_timeo
= TX_TIMEOUT
;
3156 ndev
->netdev_ops
= &fec_netdev_ops
;
3157 ndev
->ethtool_ops
= &fec_enet_ethtool_ops
;
3159 writel(FEC_RX_DISABLED_IMASK
, fep
->hwp
+ FEC_IMASK
);
3160 netif_napi_add(ndev
, &fep
->napi
, fec_enet_rx_napi
, NAPI_POLL_WEIGHT
);
3162 if (fep
->quirks
& FEC_QUIRK_HAS_VLAN
)
3163 /* enable hw VLAN support */
3164 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
;
3166 if (fep
->quirks
& FEC_QUIRK_HAS_CSUM
) {
3167 ndev
->gso_max_segs
= FEC_MAX_TSO_SEGS
;
3169 /* enable hw accelerator */
3170 ndev
->features
|= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
3171 | NETIF_F_RXCSUM
| NETIF_F_SG
| NETIF_F_TSO
);
3172 fep
->csum_flags
|= FLAG_RX_CSUM_ENABLED
;
3175 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
3177 fep
->rx_align
= 0x3f;
3180 ndev
->hw_features
= ndev
->features
;
3184 fec_enet_update_ethtool_stats(ndev
);
3190 static void fec_reset_phy(struct platform_device
*pdev
)
3193 bool active_high
= false;
3195 struct device_node
*np
= pdev
->dev
.of_node
;
3200 of_property_read_u32(np
, "phy-reset-duration", &msec
);
3201 /* A sane reset duration should not be longer than 1s */
3205 phy_reset
= of_get_named_gpio(np
, "phy-reset-gpios", 0);
3206 if (!gpio_is_valid(phy_reset
))
3209 active_high
= of_property_read_bool(np
, "phy-reset-active-high");
3211 err
= devm_gpio_request_one(&pdev
->dev
, phy_reset
,
3212 active_high
? GPIOF_OUT_INIT_HIGH
: GPIOF_OUT_INIT_LOW
,
3215 dev_err(&pdev
->dev
, "failed to get phy-reset-gpios: %d\n", err
);
3222 usleep_range(msec
* 1000, msec
* 1000 + 1000);
3224 gpio_set_value_cansleep(phy_reset
, !active_high
);
3226 #else /* CONFIG_OF */
3227 static void fec_reset_phy(struct platform_device
*pdev
)
3230 * In case of platform probe, the reset has been done
3234 #endif /* CONFIG_OF */
3237 fec_enet_get_queue_num(struct platform_device
*pdev
, int *num_tx
, int *num_rx
)
3239 struct device_node
*np
= pdev
->dev
.of_node
;
3241 *num_tx
= *num_rx
= 1;
3243 if (!np
|| !of_device_is_available(np
))
3246 /* parse the num of tx and rx queues */
3247 of_property_read_u32(np
, "fsl,num-tx-queues", num_tx
);
3249 of_property_read_u32(np
, "fsl,num-rx-queues", num_rx
);
3251 if (*num_tx
< 1 || *num_tx
> FEC_ENET_MAX_TX_QS
) {
3252 dev_warn(&pdev
->dev
, "Invalid num_tx(=%d), fall back to 1\n",
3258 if (*num_rx
< 1 || *num_rx
> FEC_ENET_MAX_RX_QS
) {
3259 dev_warn(&pdev
->dev
, "Invalid num_rx(=%d), fall back to 1\n",
3268 fec_probe(struct platform_device
*pdev
)
3270 struct fec_enet_private
*fep
;
3271 struct fec_platform_data
*pdata
;
3272 struct net_device
*ndev
;
3273 int i
, irq
, ret
= 0;
3275 const struct of_device_id
*of_id
;
3277 struct device_node
*np
= pdev
->dev
.of_node
, *phy_node
;
3281 fec_enet_get_queue_num(pdev
, &num_tx_qs
, &num_rx_qs
);
3283 /* Init network device */
3284 ndev
= alloc_etherdev_mqs(sizeof(struct fec_enet_private
) +
3285 FEC_STATS_SIZE
, num_tx_qs
, num_rx_qs
);
3289 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
3291 /* setup board info structure */
3292 fep
= netdev_priv(ndev
);
3294 of_id
= of_match_device(fec_dt_ids
, &pdev
->dev
);
3296 pdev
->id_entry
= of_id
->data
;
3297 fep
->quirks
= pdev
->id_entry
->driver_data
;
3300 fep
->num_rx_queues
= num_rx_qs
;
3301 fep
->num_tx_queues
= num_tx_qs
;
3303 #if !defined(CONFIG_M5272)
3304 /* default enable pause frame auto negotiation */
3305 if (fep
->quirks
& FEC_QUIRK_HAS_GBIT
)
3306 fep
->pause_flag
|= FEC_PAUSE_FLAG_AUTONEG
;
3309 /* Select default pin state */
3310 pinctrl_pm_select_default_state(&pdev
->dev
);
3312 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3313 fep
->hwp
= devm_ioremap_resource(&pdev
->dev
, r
);
3314 if (IS_ERR(fep
->hwp
)) {
3315 ret
= PTR_ERR(fep
->hwp
);
3316 goto failed_ioremap
;
3320 fep
->dev_id
= dev_id
++;
3322 platform_set_drvdata(pdev
, ndev
);
3324 if ((of_machine_is_compatible("fsl,imx6q") ||
3325 of_machine_is_compatible("fsl,imx6dl")) &&
3326 !of_property_read_bool(np
, "fsl,err006687-workaround-present"))
3327 fep
->quirks
|= FEC_QUIRK_ERR006687
;
3329 if (of_get_property(np
, "fsl,magic-packet", NULL
))
3330 fep
->wol_flag
|= FEC_WOL_HAS_MAGIC_PACKET
;
3332 phy_node
= of_parse_phandle(np
, "phy-handle", 0);
3333 if (!phy_node
&& of_phy_is_fixed_link(np
)) {
3334 ret
= of_phy_register_fixed_link(np
);
3337 "broken fixed-link specification\n");
3340 phy_node
= of_node_get(np
);
3342 fep
->phy_node
= phy_node
;
3344 ret
= of_get_phy_mode(pdev
->dev
.of_node
);
3346 pdata
= dev_get_platdata(&pdev
->dev
);
3348 fep
->phy_interface
= pdata
->phy
;
3350 fep
->phy_interface
= PHY_INTERFACE_MODE_MII
;
3352 fep
->phy_interface
= ret
;
3355 fep
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
3356 if (IS_ERR(fep
->clk_ipg
)) {
3357 ret
= PTR_ERR(fep
->clk_ipg
);
3361 fep
->clk_ahb
= devm_clk_get(&pdev
->dev
, "ahb");
3362 if (IS_ERR(fep
->clk_ahb
)) {
3363 ret
= PTR_ERR(fep
->clk_ahb
);
3367 fep
->itr_clk_rate
= clk_get_rate(fep
->clk_ahb
);
3369 /* enet_out is optional, depends on board */
3370 fep
->clk_enet_out
= devm_clk_get(&pdev
->dev
, "enet_out");
3371 if (IS_ERR(fep
->clk_enet_out
))
3372 fep
->clk_enet_out
= NULL
;
3374 fep
->ptp_clk_on
= false;
3375 mutex_init(&fep
->ptp_clk_mutex
);
3377 /* clk_ref is optional, depends on board */
3378 fep
->clk_ref
= devm_clk_get(&pdev
->dev
, "enet_clk_ref");
3379 if (IS_ERR(fep
->clk_ref
))
3380 fep
->clk_ref
= NULL
;
3382 fep
->bufdesc_ex
= fep
->quirks
& FEC_QUIRK_HAS_BUFDESC_EX
;
3383 fep
->clk_ptp
= devm_clk_get(&pdev
->dev
, "ptp");
3384 if (IS_ERR(fep
->clk_ptp
)) {
3385 fep
->clk_ptp
= NULL
;
3386 fep
->bufdesc_ex
= false;
3389 ret
= fec_enet_clk_enable(ndev
, true);
3393 ret
= clk_prepare_enable(fep
->clk_ipg
);
3395 goto failed_clk_ipg
;
3397 fep
->reg_phy
= devm_regulator_get(&pdev
->dev
, "phy");
3398 if (!IS_ERR(fep
->reg_phy
)) {
3399 ret
= regulator_enable(fep
->reg_phy
);
3402 "Failed to enable phy regulator: %d\n", ret
);
3403 goto failed_regulator
;
3406 fep
->reg_phy
= NULL
;
3409 pm_runtime_set_autosuspend_delay(&pdev
->dev
, FEC_MDIO_PM_TIMEOUT
);
3410 pm_runtime_use_autosuspend(&pdev
->dev
);
3411 pm_runtime_get_noresume(&pdev
->dev
);
3412 pm_runtime_set_active(&pdev
->dev
);
3413 pm_runtime_enable(&pdev
->dev
);
3415 fec_reset_phy(pdev
);
3417 if (fep
->bufdesc_ex
)
3420 ret
= fec_enet_init(ndev
);
3424 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
3425 irq
= platform_get_irq(pdev
, i
);
3432 ret
= devm_request_irq(&pdev
->dev
, irq
, fec_enet_interrupt
,
3433 0, pdev
->name
, ndev
);
3440 init_completion(&fep
->mdio_done
);
3441 ret
= fec_enet_mii_init(pdev
);
3443 goto failed_mii_init
;
3445 /* Carrier starts down, phylib will bring it up */
3446 netif_carrier_off(ndev
);
3447 fec_enet_clk_enable(ndev
, false);
3448 pinctrl_pm_select_sleep_state(&pdev
->dev
);
3450 ret
= register_netdev(ndev
);
3452 goto failed_register
;
3454 device_init_wakeup(&ndev
->dev
, fep
->wol_flag
&
3455 FEC_WOL_HAS_MAGIC_PACKET
);
3457 if (fep
->bufdesc_ex
&& fep
->ptp_clock
)
3458 netdev_info(ndev
, "registered PHC device %d\n", fep
->dev_id
);
3460 fep
->rx_copybreak
= COPYBREAK_DEFAULT
;
3461 INIT_WORK(&fep
->tx_timeout_work
, fec_enet_timeout_work
);
3463 pm_runtime_mark_last_busy(&pdev
->dev
);
3464 pm_runtime_put_autosuspend(&pdev
->dev
);
3469 fec_enet_mii_remove(fep
);
3475 regulator_disable(fep
->reg_phy
);
3477 clk_disable_unprepare(fep
->clk_ipg
);
3479 fec_enet_clk_enable(ndev
, false);
3481 if (of_phy_is_fixed_link(np
))
3482 of_phy_deregister_fixed_link(np
);
3484 of_node_put(phy_node
);
3492 fec_drv_remove(struct platform_device
*pdev
)
3494 struct net_device
*ndev
= platform_get_drvdata(pdev
);
3495 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3496 struct device_node
*np
= pdev
->dev
.of_node
;
3498 cancel_work_sync(&fep
->tx_timeout_work
);
3500 unregister_netdev(ndev
);
3501 fec_enet_mii_remove(fep
);
3503 regulator_disable(fep
->reg_phy
);
3504 if (of_phy_is_fixed_link(np
))
3505 of_phy_deregister_fixed_link(np
);
3506 of_node_put(fep
->phy_node
);
3512 static int __maybe_unused
fec_suspend(struct device
*dev
)
3514 struct net_device
*ndev
= dev_get_drvdata(dev
);
3515 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3518 if (netif_running(ndev
)) {
3519 if (fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
)
3520 fep
->wol_flag
|= FEC_WOL_FLAG_SLEEP_ON
;
3521 phy_stop(ndev
->phydev
);
3522 napi_disable(&fep
->napi
);
3523 netif_tx_lock_bh(ndev
);
3524 netif_device_detach(ndev
);
3525 netif_tx_unlock_bh(ndev
);
3527 fec_enet_clk_enable(ndev
, false);
3528 if (!(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
))
3529 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
3533 if (fep
->reg_phy
&& !(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
))
3534 regulator_disable(fep
->reg_phy
);
3536 /* SOC supply clock to phy, when clock is disabled, phy link down
3537 * SOC control phy regulator, when regulator is disabled, phy link down
3539 if (fep
->clk_enet_out
|| fep
->reg_phy
)
3545 static int __maybe_unused
fec_resume(struct device
*dev
)
3547 struct net_device
*ndev
= dev_get_drvdata(dev
);
3548 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3549 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
3553 if (fep
->reg_phy
&& !(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
)) {
3554 ret
= regulator_enable(fep
->reg_phy
);
3560 if (netif_running(ndev
)) {
3561 ret
= fec_enet_clk_enable(ndev
, true);
3566 if (fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
) {
3567 if (pdata
&& pdata
->sleep_mode_enable
)
3568 pdata
->sleep_mode_enable(false);
3569 val
= readl(fep
->hwp
+ FEC_ECNTRL
);
3570 val
&= ~(FEC_ECR_MAGICEN
| FEC_ECR_SLEEP
);
3571 writel(val
, fep
->hwp
+ FEC_ECNTRL
);
3572 fep
->wol_flag
&= ~FEC_WOL_FLAG_SLEEP_ON
;
3574 pinctrl_pm_select_default_state(&fep
->pdev
->dev
);
3577 netif_tx_lock_bh(ndev
);
3578 netif_device_attach(ndev
);
3579 netif_tx_unlock_bh(ndev
);
3580 napi_enable(&fep
->napi
);
3581 phy_start(ndev
->phydev
);
3589 regulator_disable(fep
->reg_phy
);
3593 static int __maybe_unused
fec_runtime_suspend(struct device
*dev
)
3595 struct net_device
*ndev
= dev_get_drvdata(dev
);
3596 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3598 clk_disable_unprepare(fep
->clk_ipg
);
3603 static int __maybe_unused
fec_runtime_resume(struct device
*dev
)
3605 struct net_device
*ndev
= dev_get_drvdata(dev
);
3606 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3608 return clk_prepare_enable(fep
->clk_ipg
);
3611 static const struct dev_pm_ops fec_pm_ops
= {
3612 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend
, fec_resume
)
3613 SET_RUNTIME_PM_OPS(fec_runtime_suspend
, fec_runtime_resume
, NULL
)
3616 static struct platform_driver fec_driver
= {
3618 .name
= DRIVER_NAME
,
3620 .of_match_table
= fec_dt_ids
,
3622 .id_table
= fec_devtype
,
3624 .remove
= fec_drv_remove
,
3627 module_platform_driver(fec_driver
);
3629 MODULE_ALIAS("platform:"DRIVER_NAME
);
3630 MODULE_LICENSE("GPL");