1 /* drivers/net/ethernet/freescale/gianfar.c
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
88 #include <linux/net_tstamp.h>
93 #include <asm/mpc85xx.h>
96 #include <linux/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
110 #define TX_TIMEOUT (5*HZ)
112 const char gfar_driver_version
[] = "2.0";
114 static int gfar_enet_open(struct net_device
*dev
);
115 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
116 static void gfar_reset_task(struct work_struct
*work
);
117 static void gfar_timeout(struct net_device
*dev
);
118 static int gfar_close(struct net_device
*dev
);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q
*rx_queue
,
121 static int gfar_set_mac_address(struct net_device
*dev
);
122 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
123 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
124 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
125 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
126 static void adjust_link(struct net_device
*dev
);
127 static noinline
void gfar_update_link_state(struct gfar_private
*priv
);
128 static int init_phy(struct net_device
*dev
);
129 static int gfar_probe(struct platform_device
*ofdev
);
130 static int gfar_remove(struct platform_device
*ofdev
);
131 static void free_skb_resources(struct gfar_private
*priv
);
132 static void gfar_set_multi(struct net_device
*dev
);
133 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
134 static void gfar_configure_serdes(struct net_device
*dev
);
135 static int gfar_poll_rx(struct napi_struct
*napi
, int budget
);
136 static int gfar_poll_tx(struct napi_struct
*napi
, int budget
);
137 static int gfar_poll_rx_sq(struct napi_struct
*napi
, int budget
);
138 static int gfar_poll_tx_sq(struct napi_struct
*napi
, int budget
);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device
*dev
);
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
144 static void gfar_process_frame(struct net_device
*ndev
, struct sk_buff
*skb
);
145 static void gfar_halt_nodisable(struct gfar_private
*priv
);
146 static void gfar_clear_exact_match(struct net_device
*dev
);
147 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
149 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
160 bdp
->bufPtr
= cpu_to_be32(buf
);
162 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
163 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
164 lstatus
|= BD_LFLAG(RXBD_WRAP
);
168 bdp
->lstatus
= cpu_to_be32(lstatus
);
171 static void gfar_init_bds(struct net_device
*ndev
)
173 struct gfar_private
*priv
= netdev_priv(ndev
);
174 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
175 struct gfar_priv_tx_q
*tx_queue
= NULL
;
176 struct gfar_priv_rx_q
*rx_queue
= NULL
;
181 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
182 tx_queue
= priv
->tx_queue
[i
];
183 /* Initialize some variables in our dev structure */
184 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
185 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
186 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
187 tx_queue
->skb_curtx
= 0;
188 tx_queue
->skb_dirtytx
= 0;
190 /* Initialize Transmit Descriptor Ring */
191 txbdp
= tx_queue
->tx_bd_base
;
192 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
198 /* Set the last descriptor in the ring to indicate wrap */
200 txbdp
->status
= cpu_to_be16(be16_to_cpu(txbdp
->status
) |
204 rfbptr
= ®s
->rfbptr0
;
205 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
206 rx_queue
= priv
->rx_queue
[i
];
208 rx_queue
->next_to_clean
= 0;
209 rx_queue
->next_to_use
= 0;
210 rx_queue
->next_to_alloc
= 0;
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
215 gfar_alloc_rx_buffs(rx_queue
, gfar_rxbd_unused(rx_queue
));
217 rx_queue
->rfbptr
= rfbptr
;
222 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
227 struct gfar_private
*priv
= netdev_priv(ndev
);
228 struct device
*dev
= priv
->dev
;
229 struct gfar_priv_tx_q
*tx_queue
= NULL
;
230 struct gfar_priv_rx_q
*rx_queue
= NULL
;
232 priv
->total_tx_ring_size
= 0;
233 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
234 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
236 priv
->total_rx_ring_size
= 0;
237 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
238 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
240 /* Allocate memory for the buffer descriptors */
241 vaddr
= dma_alloc_coherent(dev
,
242 (priv
->total_tx_ring_size
*
243 sizeof(struct txbd8
)) +
244 (priv
->total_rx_ring_size
*
245 sizeof(struct rxbd8
)),
250 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
251 tx_queue
= priv
->tx_queue
[i
];
252 tx_queue
->tx_bd_base
= vaddr
;
253 tx_queue
->tx_bd_dma_base
= addr
;
254 tx_queue
->dev
= ndev
;
255 /* enet DMA only understands physical addresses */
256 addr
+= sizeof(struct txbd8
) * tx_queue
->tx_ring_size
;
257 vaddr
+= sizeof(struct txbd8
) * tx_queue
->tx_ring_size
;
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
262 rx_queue
= priv
->rx_queue
[i
];
263 rx_queue
->rx_bd_base
= vaddr
;
264 rx_queue
->rx_bd_dma_base
= addr
;
265 rx_queue
->ndev
= ndev
;
267 addr
+= sizeof(struct rxbd8
) * rx_queue
->rx_ring_size
;
268 vaddr
+= sizeof(struct rxbd8
) * rx_queue
->rx_ring_size
;
271 /* Setup the skbuff rings */
272 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
273 tx_queue
= priv
->tx_queue
[i
];
274 tx_queue
->tx_skbuff
=
275 kmalloc_array(tx_queue
->tx_ring_size
,
276 sizeof(*tx_queue
->tx_skbuff
),
278 if (!tx_queue
->tx_skbuff
)
281 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++)
282 tx_queue
->tx_skbuff
[j
] = NULL
;
285 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
286 rx_queue
= priv
->rx_queue
[i
];
287 rx_queue
->rx_buff
= kcalloc(rx_queue
->rx_ring_size
,
288 sizeof(*rx_queue
->rx_buff
),
290 if (!rx_queue
->rx_buff
)
299 free_skb_resources(priv
);
303 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
305 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
309 baddr
= ®s
->tbase0
;
310 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
311 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
315 baddr
= ®s
->rbase0
;
316 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
317 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
322 static void gfar_init_rqprm(struct gfar_private
*priv
)
324 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
328 baddr
= ®s
->rqprm0
;
329 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
330 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_ring_size
|
331 (DEFAULT_RX_LFC_THR
<< FBTHR_SHIFT
));
336 static void gfar_rx_offload_en(struct gfar_private
*priv
)
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv
->uses_rxfcb
= 0;
341 if (priv
->ndev
->features
& (NETIF_F_RXCSUM
| NETIF_F_HW_VLAN_CTAG_RX
))
342 priv
->uses_rxfcb
= 1;
344 if (priv
->hwts_rx_en
|| priv
->rx_filer_enable
)
345 priv
->uses_rxfcb
= 1;
348 static void gfar_mac_rx_config(struct gfar_private
*priv
)
350 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
353 if (priv
->rx_filer_enable
) {
354 rctrl
|= RCTRL_FILREN
| RCTRL_PRSDEP_INIT
;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv
->poll_mode
== GFAR_SQ_POLLING
)
357 gfar_write(®s
->rir0
, DEFAULT_2RXQ_RIR0
);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(®s
->rir0
, DEFAULT_8RXQ_RIR0
);
362 /* Restore PROMISC mode */
363 if (priv
->ndev
->flags
& IFF_PROMISC
)
366 if (priv
->ndev
->features
& NETIF_F_RXCSUM
)
367 rctrl
|= RCTRL_CHECKSUMMING
;
369 if (priv
->extended_hash
)
370 rctrl
|= RCTRL_EXTHASH
| RCTRL_EMEN
;
373 rctrl
&= ~RCTRL_PAL_MASK
;
374 rctrl
|= RCTRL_PADDING(priv
->padding
);
377 /* Enable HW time stamping if requested from user space */
378 if (priv
->hwts_rx_en
)
379 rctrl
|= RCTRL_PRSDEP_INIT
| RCTRL_TS_ENABLE
;
381 if (priv
->ndev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
382 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
384 /* Clear the LFC bit */
385 gfar_write(®s
->rctrl
, rctrl
);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv
);
388 gfar_write(®s
->ptv
, DEFAULT_LFC_PTVVAL
);
391 /* Init rctrl based on our settings */
392 gfar_write(®s
->rctrl
, rctrl
);
395 static void gfar_mac_tx_config(struct gfar_private
*priv
)
397 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
400 if (priv
->ndev
->features
& NETIF_F_IP_CSUM
)
401 tctrl
|= TCTRL_INIT_CSUM
;
403 if (priv
->prio_sched_en
)
404 tctrl
|= TCTRL_TXSCHED_PRIO
;
406 tctrl
|= TCTRL_TXSCHED_WRRS
;
407 gfar_write(®s
->tr03wt
, DEFAULT_WRRS_WEIGHT
);
408 gfar_write(®s
->tr47wt
, DEFAULT_WRRS_WEIGHT
);
411 if (priv
->ndev
->features
& NETIF_F_HW_VLAN_CTAG_TX
)
412 tctrl
|= TCTRL_VLINS
;
414 gfar_write(®s
->tctrl
, tctrl
);
417 static void gfar_configure_coalescing(struct gfar_private
*priv
,
418 unsigned long tx_mask
, unsigned long rx_mask
)
420 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
423 if (priv
->mode
== MQ_MG_MODE
) {
426 baddr
= ®s
->txic0
;
427 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
428 gfar_write(baddr
+ i
, 0);
429 if (likely(priv
->tx_queue
[i
]->txcoalescing
))
430 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
433 baddr
= ®s
->rxic0
;
434 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
435 gfar_write(baddr
+ i
, 0);
436 if (likely(priv
->rx_queue
[i
]->rxcoalescing
))
437 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
443 gfar_write(®s
->txic
, 0);
444 if (likely(priv
->tx_queue
[0]->txcoalescing
))
445 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
447 gfar_write(®s
->rxic
, 0);
448 if (unlikely(priv
->rx_queue
[0]->rxcoalescing
))
449 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
453 void gfar_configure_coalescing_all(struct gfar_private
*priv
)
455 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
458 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
460 struct gfar_private
*priv
= netdev_priv(dev
);
461 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
462 unsigned long tx_packets
= 0, tx_bytes
= 0;
465 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
466 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
467 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
468 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
471 dev
->stats
.rx_packets
= rx_packets
;
472 dev
->stats
.rx_bytes
= rx_bytes
;
473 dev
->stats
.rx_dropped
= rx_dropped
;
475 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
476 tx_bytes
+= priv
->tx_queue
[i
]->stats
.tx_bytes
;
477 tx_packets
+= priv
->tx_queue
[i
]->stats
.tx_packets
;
480 dev
->stats
.tx_bytes
= tx_bytes
;
481 dev
->stats
.tx_packets
= tx_packets
;
486 static int gfar_set_mac_addr(struct net_device
*dev
, void *p
)
488 eth_mac_addr(dev
, p
);
490 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
495 static const struct net_device_ops gfar_netdev_ops
= {
496 .ndo_open
= gfar_enet_open
,
497 .ndo_start_xmit
= gfar_start_xmit
,
498 .ndo_stop
= gfar_close
,
499 .ndo_change_mtu
= gfar_change_mtu
,
500 .ndo_set_features
= gfar_set_features
,
501 .ndo_set_rx_mode
= gfar_set_multi
,
502 .ndo_tx_timeout
= gfar_timeout
,
503 .ndo_do_ioctl
= gfar_ioctl
,
504 .ndo_get_stats
= gfar_get_stats
,
505 .ndo_set_mac_address
= gfar_set_mac_addr
,
506 .ndo_validate_addr
= eth_validate_addr
,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller
= gfar_netpoll
,
512 static void gfar_ints_disable(struct gfar_private
*priv
)
515 for (i
= 0; i
< priv
->num_grps
; i
++) {
516 struct gfar __iomem
*regs
= priv
->gfargrp
[i
].regs
;
518 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
520 /* Initialize IMASK */
521 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
525 static void gfar_ints_enable(struct gfar_private
*priv
)
528 for (i
= 0; i
< priv
->num_grps
; i
++) {
529 struct gfar __iomem
*regs
= priv
->gfargrp
[i
].regs
;
530 /* Unmask the interrupts we look for */
531 gfar_write(®s
->imask
, IMASK_DEFAULT
);
535 static int gfar_alloc_tx_queues(struct gfar_private
*priv
)
539 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
540 priv
->tx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_tx_q
),
542 if (!priv
->tx_queue
[i
])
545 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
546 priv
->tx_queue
[i
]->qindex
= i
;
547 priv
->tx_queue
[i
]->dev
= priv
->ndev
;
548 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
553 static int gfar_alloc_rx_queues(struct gfar_private
*priv
)
557 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
558 priv
->rx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_rx_q
),
560 if (!priv
->rx_queue
[i
])
563 priv
->rx_queue
[i
]->qindex
= i
;
564 priv
->rx_queue
[i
]->ndev
= priv
->ndev
;
569 static void gfar_free_tx_queues(struct gfar_private
*priv
)
573 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
574 kfree(priv
->tx_queue
[i
]);
577 static void gfar_free_rx_queues(struct gfar_private
*priv
)
581 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
582 kfree(priv
->rx_queue
[i
]);
585 static void unmap_group_regs(struct gfar_private
*priv
)
589 for (i
= 0; i
< MAXGROUPS
; i
++)
590 if (priv
->gfargrp
[i
].regs
)
591 iounmap(priv
->gfargrp
[i
].regs
);
594 static void free_gfar_dev(struct gfar_private
*priv
)
598 for (i
= 0; i
< priv
->num_grps
; i
++)
599 for (j
= 0; j
< GFAR_NUM_IRQS
; j
++) {
600 kfree(priv
->gfargrp
[i
].irqinfo
[j
]);
601 priv
->gfargrp
[i
].irqinfo
[j
] = NULL
;
604 free_netdev(priv
->ndev
);
607 static void disable_napi(struct gfar_private
*priv
)
611 for (i
= 0; i
< priv
->num_grps
; i
++) {
612 napi_disable(&priv
->gfargrp
[i
].napi_rx
);
613 napi_disable(&priv
->gfargrp
[i
].napi_tx
);
617 static void enable_napi(struct gfar_private
*priv
)
621 for (i
= 0; i
< priv
->num_grps
; i
++) {
622 napi_enable(&priv
->gfargrp
[i
].napi_rx
);
623 napi_enable(&priv
->gfargrp
[i
].napi_tx
);
627 static int gfar_parse_group(struct device_node
*np
,
628 struct gfar_private
*priv
, const char *model
)
630 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[priv
->num_grps
];
633 for (i
= 0; i
< GFAR_NUM_IRQS
; i
++) {
634 grp
->irqinfo
[i
] = kzalloc(sizeof(struct gfar_irqinfo
),
636 if (!grp
->irqinfo
[i
])
640 grp
->regs
= of_iomap(np
, 0);
644 gfar_irq(grp
, TX
)->irq
= irq_of_parse_and_map(np
, 0);
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model
&& strcasecmp(model
, "FEC")) {
648 gfar_irq(grp
, RX
)->irq
= irq_of_parse_and_map(np
, 1);
649 gfar_irq(grp
, ER
)->irq
= irq_of_parse_and_map(np
, 2);
650 if (!gfar_irq(grp
, TX
)->irq
||
651 !gfar_irq(grp
, RX
)->irq
||
652 !gfar_irq(grp
, ER
)->irq
)
657 spin_lock_init(&grp
->grplock
);
658 if (priv
->mode
== MQ_MG_MODE
) {
659 u32 rxq_mask
, txq_mask
;
662 grp
->rx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
663 grp
->tx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
665 ret
= of_property_read_u32(np
, "fsl,rx-bit-map", &rxq_mask
);
667 grp
->rx_bit_map
= rxq_mask
?
668 rxq_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
671 ret
= of_property_read_u32(np
, "fsl,tx-bit-map", &txq_mask
);
673 grp
->tx_bit_map
= txq_mask
?
674 txq_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
677 if (priv
->poll_mode
== GFAR_SQ_POLLING
) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp
->rx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
680 grp
->tx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
683 grp
->rx_bit_map
= 0xFF;
684 grp
->tx_bit_map
= 0xFF;
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
690 grp
->rx_bit_map
= bitrev8(grp
->rx_bit_map
);
691 grp
->tx_bit_map
= bitrev8(grp
->tx_bit_map
);
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
696 for_each_set_bit(i
, &grp
->rx_bit_map
, priv
->num_rx_queues
) {
698 grp
->rx_queue
= priv
->rx_queue
[i
];
699 grp
->num_rx_queues
++;
700 grp
->rstat
|= (RSTAT_CLEAR_RHALT
>> i
);
701 priv
->rqueue
|= ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
702 priv
->rx_queue
[i
]->grp
= grp
;
705 for_each_set_bit(i
, &grp
->tx_bit_map
, priv
->num_tx_queues
) {
707 grp
->tx_queue
= priv
->tx_queue
[i
];
708 grp
->num_tx_queues
++;
709 grp
->tstat
|= (TSTAT_CLEAR_THALT
>> i
);
710 priv
->tqueue
|= (TQUEUE_EN0
>> i
);
711 priv
->tx_queue
[i
]->grp
= grp
;
719 static int gfar_of_group_count(struct device_node
*np
)
721 struct device_node
*child
;
724 for_each_available_child_of_node(np
, child
)
725 if (!of_node_cmp(child
->name
, "queue-group"))
731 static int gfar_of_init(struct platform_device
*ofdev
, struct net_device
**pdev
)
735 const void *mac_addr
;
737 struct net_device
*dev
= NULL
;
738 struct gfar_private
*priv
= NULL
;
739 struct device_node
*np
= ofdev
->dev
.of_node
;
740 struct device_node
*child
= NULL
;
743 unsigned int num_tx_qs
, num_rx_qs
;
744 unsigned short mode
, poll_mode
;
749 if (of_device_is_compatible(np
, "fsl,etsec2")) {
751 poll_mode
= GFAR_SQ_POLLING
;
754 poll_mode
= GFAR_SQ_POLLING
;
757 if (mode
== SQ_SG_MODE
) {
760 } else { /* MQ_MG_MODE */
761 /* get the actual number of supported groups */
762 unsigned int num_grps
= gfar_of_group_count(np
);
764 if (num_grps
== 0 || num_grps
> MAXGROUPS
) {
765 dev_err(&ofdev
->dev
, "Invalid # of int groups(%d)\n",
767 pr_err("Cannot do alloc_etherdev, aborting\n");
771 if (poll_mode
== GFAR_SQ_POLLING
) {
772 num_tx_qs
= num_grps
; /* one txq per int group */
773 num_rx_qs
= num_grps
; /* one rxq per int group */
774 } else { /* GFAR_MQ_POLLING */
775 u32 tx_queues
, rx_queues
;
778 /* parse the num of HW tx and rx queues */
779 ret
= of_property_read_u32(np
, "fsl,num_tx_queues",
781 num_tx_qs
= ret
? 1 : tx_queues
;
783 ret
= of_property_read_u32(np
, "fsl,num_rx_queues",
785 num_rx_qs
= ret
? 1 : rx_queues
;
789 if (num_tx_qs
> MAX_TX_QS
) {
790 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 num_tx_qs
, MAX_TX_QS
);
792 pr_err("Cannot do alloc_etherdev, aborting\n");
796 if (num_rx_qs
> MAX_RX_QS
) {
797 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 num_rx_qs
, MAX_RX_QS
);
799 pr_err("Cannot do alloc_etherdev, aborting\n");
803 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
808 priv
= netdev_priv(dev
);
812 priv
->poll_mode
= poll_mode
;
814 priv
->num_tx_queues
= num_tx_qs
;
815 netif_set_real_num_rx_queues(dev
, num_rx_qs
);
816 priv
->num_rx_queues
= num_rx_qs
;
818 err
= gfar_alloc_tx_queues(priv
);
820 goto tx_alloc_failed
;
822 err
= gfar_alloc_rx_queues(priv
);
824 goto rx_alloc_failed
;
826 err
= of_property_read_string(np
, "model", &model
);
828 pr_err("Device model property missing, aborting\n");
829 goto rx_alloc_failed
;
832 /* Init Rx queue filer rule set linked list */
833 INIT_LIST_HEAD(&priv
->rx_list
.list
);
834 priv
->rx_list
.count
= 0;
835 mutex_init(&priv
->rx_queue_access
);
837 for (i
= 0; i
< MAXGROUPS
; i
++)
838 priv
->gfargrp
[i
].regs
= NULL
;
840 /* Parse and initialize group specific information */
841 if (priv
->mode
== MQ_MG_MODE
) {
842 for_each_available_child_of_node(np
, child
) {
843 if (of_node_cmp(child
->name
, "queue-group"))
846 err
= gfar_parse_group(child
, priv
, model
);
850 } else { /* SQ_SG_MODE */
851 err
= gfar_parse_group(np
, priv
, model
);
856 if (of_property_read_bool(np
, "bd-stash")) {
857 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
858 priv
->bd_stash_en
= 1;
861 err
= of_property_read_u32(np
, "rx-stash-len", &stash_len
);
864 priv
->rx_stash_size
= stash_len
;
866 err
= of_property_read_u32(np
, "rx-stash-idx", &stash_idx
);
869 priv
->rx_stash_index
= stash_idx
;
871 if (stash_len
|| stash_idx
)
872 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
874 mac_addr
= of_get_mac_address(np
);
877 memcpy(dev
->dev_addr
, mac_addr
, ETH_ALEN
);
879 if (model
&& !strcasecmp(model
, "TSEC"))
880 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_GIGABIT
|
881 FSL_GIANFAR_DEV_HAS_COALESCE
|
882 FSL_GIANFAR_DEV_HAS_RMON
|
883 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
885 if (model
&& !strcasecmp(model
, "eTSEC"))
886 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_GIGABIT
|
887 FSL_GIANFAR_DEV_HAS_COALESCE
|
888 FSL_GIANFAR_DEV_HAS_RMON
|
889 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
890 FSL_GIANFAR_DEV_HAS_CSUM
|
891 FSL_GIANFAR_DEV_HAS_VLAN
|
892 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
893 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
|
894 FSL_GIANFAR_DEV_HAS_TIMER
|
895 FSL_GIANFAR_DEV_HAS_RX_FILER
;
897 err
= of_property_read_string(np
, "phy-connection-type", &ctype
);
899 /* We only care about rgmii-id. The rest are autodetected */
900 if (err
== 0 && !strcmp(ctype
, "rgmii-id"))
901 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
903 priv
->interface
= PHY_INTERFACE_MODE_MII
;
905 if (of_find_property(np
, "fsl,magic-packet", NULL
))
906 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
908 if (of_get_property(np
, "fsl,wake-on-filer", NULL
))
909 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER
;
911 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
913 /* In the case of a fixed PHY, the DT node associated
914 * to the PHY is the Ethernet MAC DT node.
916 if (!priv
->phy_node
&& of_phy_is_fixed_link(np
)) {
917 err
= of_phy_register_fixed_link(np
);
921 priv
->phy_node
= of_node_get(np
);
924 /* Find the TBI PHY. If it's not there, we don't support SGMII */
925 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
930 unmap_group_regs(priv
);
932 gfar_free_rx_queues(priv
);
934 gfar_free_tx_queues(priv
);
939 static int gfar_hwtstamp_set(struct net_device
*netdev
, struct ifreq
*ifr
)
941 struct hwtstamp_config config
;
942 struct gfar_private
*priv
= netdev_priv(netdev
);
944 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
947 /* reserved for future extensions */
951 switch (config
.tx_type
) {
952 case HWTSTAMP_TX_OFF
:
953 priv
->hwts_tx_en
= 0;
956 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
958 priv
->hwts_tx_en
= 1;
964 switch (config
.rx_filter
) {
965 case HWTSTAMP_FILTER_NONE
:
966 if (priv
->hwts_rx_en
) {
967 priv
->hwts_rx_en
= 0;
972 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
974 if (!priv
->hwts_rx_en
) {
975 priv
->hwts_rx_en
= 1;
978 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
982 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
986 static int gfar_hwtstamp_get(struct net_device
*netdev
, struct ifreq
*ifr
)
988 struct hwtstamp_config config
;
989 struct gfar_private
*priv
= netdev_priv(netdev
);
992 config
.tx_type
= priv
->hwts_tx_en
? HWTSTAMP_TX_ON
: HWTSTAMP_TX_OFF
;
993 config
.rx_filter
= (priv
->hwts_rx_en
?
994 HWTSTAMP_FILTER_ALL
: HWTSTAMP_FILTER_NONE
);
996 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
1000 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1002 struct phy_device
*phydev
= dev
->phydev
;
1004 if (!netif_running(dev
))
1007 if (cmd
== SIOCSHWTSTAMP
)
1008 return gfar_hwtstamp_set(dev
, rq
);
1009 if (cmd
== SIOCGHWTSTAMP
)
1010 return gfar_hwtstamp_get(dev
, rq
);
1015 return phy_mii_ioctl(phydev
, rq
, cmd
);
1018 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
1021 u32 rqfpr
= FPR_FILER_MASK
;
1025 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
1026 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1027 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1028 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1031 rqfcr
= RQFCR_CMP_NOMATCH
;
1032 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1033 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1034 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1037 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
1039 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1040 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1041 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1044 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
1046 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1047 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1048 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1053 static void gfar_init_filer_table(struct gfar_private
*priv
)
1056 u32 rqfar
= MAX_FILER_IDX
;
1058 u32 rqfpr
= FPR_FILER_MASK
;
1061 rqfcr
= RQFCR_CMP_MATCH
;
1062 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1063 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1064 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1066 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
1067 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
1068 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
1069 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
1070 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
1071 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
1073 /* cur_filer_idx indicated the first non-masked rule */
1074 priv
->cur_filer_idx
= rqfar
;
1076 /* Rest are masked rules */
1077 rqfcr
= RQFCR_CMP_NOMATCH
;
1078 for (i
= 0; i
< rqfar
; i
++) {
1079 priv
->ftp_rqfcr
[i
] = rqfcr
;
1080 priv
->ftp_rqfpr
[i
] = rqfpr
;
1081 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
1086 static void __gfar_detect_errata_83xx(struct gfar_private
*priv
)
1088 unsigned int pvr
= mfspr(SPRN_PVR
);
1089 unsigned int svr
= mfspr(SPRN_SVR
);
1090 unsigned int mod
= (svr
>> 16) & 0xfff6; /* w/o E suffix */
1091 unsigned int rev
= svr
& 0xffff;
1093 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
>= 0x0020) ||
1095 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
1096 priv
->errata
|= GFAR_ERRATA_74
;
1098 /* MPC8313 and MPC837x all rev */
1099 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
1100 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
1101 priv
->errata
|= GFAR_ERRATA_76
;
1103 /* MPC8313 Rev < 2.0 */
1104 if (pvr
== 0x80850010 && mod
== 0x80b0 && rev
< 0x0020)
1105 priv
->errata
|= GFAR_ERRATA_12
;
1108 static void __gfar_detect_errata_85xx(struct gfar_private
*priv
)
1110 unsigned int svr
= mfspr(SPRN_SVR
);
1112 if ((SVR_SOC_VER(svr
) == SVR_8548
) && (SVR_REV(svr
) == 0x20))
1113 priv
->errata
|= GFAR_ERRATA_12
;
1114 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115 if (((SVR_SOC_VER(svr
) == SVR_P2020
) && (SVR_REV(svr
) < 0x20)) ||
1116 ((SVR_SOC_VER(svr
) == SVR_P2010
) && (SVR_REV(svr
) < 0x20)) ||
1117 ((SVR_SOC_VER(svr
) == SVR_8548
) && (SVR_REV(svr
) < 0x31)))
1118 priv
->errata
|= GFAR_ERRATA_76
; /* aka eTSEC 20 */
1122 static void gfar_detect_errata(struct gfar_private
*priv
)
1124 struct device
*dev
= &priv
->ofdev
->dev
;
1126 /* no plans to fix */
1127 priv
->errata
|= GFAR_ERRATA_A002
;
1130 if (pvr_version_is(PVR_VER_E500V1
) || pvr_version_is(PVR_VER_E500V2
))
1131 __gfar_detect_errata_85xx(priv
);
1132 else /* non-mpc85xx parts, i.e. e300 core based */
1133 __gfar_detect_errata_83xx(priv
);
1137 dev_info(dev
, "enabled errata workarounds, flags: 0x%x\n",
1141 void gfar_mac_reset(struct gfar_private
*priv
)
1143 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1146 /* Reset MAC layer */
1147 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
1149 /* We need to delay at least 3 TX clocks */
1152 /* the soft reset bit is not self-resetting, so we need to
1153 * clear it before resuming normal operation
1155 gfar_write(®s
->maccfg1
, 0);
1159 gfar_rx_offload_en(priv
);
1161 /* Initialize the max receive frame/buffer lengths */
1162 gfar_write(®s
->maxfrm
, GFAR_JUMBO_FRAME_SIZE
);
1163 gfar_write(®s
->mrblr
, GFAR_RXB_SIZE
);
1165 /* Initialize the Minimum Frame Length Register */
1166 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1168 /* Initialize MACCFG2. */
1169 tempval
= MACCFG2_INIT_SETTINGS
;
1171 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1173 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1175 if (gfar_has_errata(priv
, GFAR_ERRATA_74
))
1176 tempval
|= MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
;
1178 gfar_write(®s
->maccfg2
, tempval
);
1180 /* Clear mac addr hash registers */
1181 gfar_write(®s
->igaddr0
, 0);
1182 gfar_write(®s
->igaddr1
, 0);
1183 gfar_write(®s
->igaddr2
, 0);
1184 gfar_write(®s
->igaddr3
, 0);
1185 gfar_write(®s
->igaddr4
, 0);
1186 gfar_write(®s
->igaddr5
, 0);
1187 gfar_write(®s
->igaddr6
, 0);
1188 gfar_write(®s
->igaddr7
, 0);
1190 gfar_write(®s
->gaddr0
, 0);
1191 gfar_write(®s
->gaddr1
, 0);
1192 gfar_write(®s
->gaddr2
, 0);
1193 gfar_write(®s
->gaddr3
, 0);
1194 gfar_write(®s
->gaddr4
, 0);
1195 gfar_write(®s
->gaddr5
, 0);
1196 gfar_write(®s
->gaddr6
, 0);
1197 gfar_write(®s
->gaddr7
, 0);
1199 if (priv
->extended_hash
)
1200 gfar_clear_exact_match(priv
->ndev
);
1202 gfar_mac_rx_config(priv
);
1204 gfar_mac_tx_config(priv
);
1206 gfar_set_mac_address(priv
->ndev
);
1208 gfar_set_multi(priv
->ndev
);
1210 /* clear ievent and imask before configuring coalescing */
1211 gfar_ints_disable(priv
);
1213 /* Configure the coalescing support */
1214 gfar_configure_coalescing_all(priv
);
1217 static void gfar_hw_init(struct gfar_private
*priv
)
1219 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1222 /* Stop the DMA engine now, in case it was running before
1223 * (The firmware could have used it, and left it running).
1227 gfar_mac_reset(priv
);
1229 /* Zero out the rmon mib registers if it has them */
1230 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1231 memset_io(&(regs
->rmon
), 0, sizeof(struct rmon_mib
));
1233 /* Mask off the CAM interrupts */
1234 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1235 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1238 /* Initialize ECNTRL */
1239 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
1241 /* Set the extraction length and index */
1242 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
1243 ATTRELI_EI(priv
->rx_stash_index
);
1245 gfar_write(®s
->attreli
, attrs
);
1247 /* Start with defaults, and add stashing
1248 * depending on driver parameters
1250 attrs
= ATTR_INIT_SETTINGS
;
1252 if (priv
->bd_stash_en
)
1253 attrs
|= ATTR_BDSTASH
;
1255 if (priv
->rx_stash_size
!= 0)
1256 attrs
|= ATTR_BUFSTASH
;
1258 gfar_write(®s
->attr
, attrs
);
1261 gfar_write(®s
->fifo_tx_thr
, DEFAULT_FIFO_TX_THR
);
1262 gfar_write(®s
->fifo_tx_starve
, DEFAULT_FIFO_TX_STARVE
);
1263 gfar_write(®s
->fifo_tx_starve_shutoff
, DEFAULT_FIFO_TX_STARVE_OFF
);
1265 /* Program the interrupt steering regs, only for MG devices */
1266 if (priv
->num_grps
> 1)
1267 gfar_write_isrg(priv
);
1270 static void gfar_init_addr_hash_table(struct gfar_private
*priv
)
1272 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1274 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
1275 priv
->extended_hash
= 1;
1276 priv
->hash_width
= 9;
1278 priv
->hash_regs
[0] = ®s
->igaddr0
;
1279 priv
->hash_regs
[1] = ®s
->igaddr1
;
1280 priv
->hash_regs
[2] = ®s
->igaddr2
;
1281 priv
->hash_regs
[3] = ®s
->igaddr3
;
1282 priv
->hash_regs
[4] = ®s
->igaddr4
;
1283 priv
->hash_regs
[5] = ®s
->igaddr5
;
1284 priv
->hash_regs
[6] = ®s
->igaddr6
;
1285 priv
->hash_regs
[7] = ®s
->igaddr7
;
1286 priv
->hash_regs
[8] = ®s
->gaddr0
;
1287 priv
->hash_regs
[9] = ®s
->gaddr1
;
1288 priv
->hash_regs
[10] = ®s
->gaddr2
;
1289 priv
->hash_regs
[11] = ®s
->gaddr3
;
1290 priv
->hash_regs
[12] = ®s
->gaddr4
;
1291 priv
->hash_regs
[13] = ®s
->gaddr5
;
1292 priv
->hash_regs
[14] = ®s
->gaddr6
;
1293 priv
->hash_regs
[15] = ®s
->gaddr7
;
1296 priv
->extended_hash
= 0;
1297 priv
->hash_width
= 8;
1299 priv
->hash_regs
[0] = ®s
->gaddr0
;
1300 priv
->hash_regs
[1] = ®s
->gaddr1
;
1301 priv
->hash_regs
[2] = ®s
->gaddr2
;
1302 priv
->hash_regs
[3] = ®s
->gaddr3
;
1303 priv
->hash_regs
[4] = ®s
->gaddr4
;
1304 priv
->hash_regs
[5] = ®s
->gaddr5
;
1305 priv
->hash_regs
[6] = ®s
->gaddr6
;
1306 priv
->hash_regs
[7] = ®s
->gaddr7
;
1310 /* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1313 static int gfar_probe(struct platform_device
*ofdev
)
1315 struct device_node
*np
= ofdev
->dev
.of_node
;
1316 struct net_device
*dev
= NULL
;
1317 struct gfar_private
*priv
= NULL
;
1320 err
= gfar_of_init(ofdev
, &dev
);
1325 priv
= netdev_priv(dev
);
1327 priv
->ofdev
= ofdev
;
1328 priv
->dev
= &ofdev
->dev
;
1329 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
1331 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
1333 platform_set_drvdata(ofdev
, priv
);
1335 gfar_detect_errata(priv
);
1337 /* Set the dev->base_addr to the gfar reg region */
1338 dev
->base_addr
= (unsigned long) priv
->gfargrp
[0].regs
;
1340 /* Fill in the dev structure */
1341 dev
->watchdog_timeo
= TX_TIMEOUT
;
1342 /* MTU range: 50 - 9586 */
1345 dev
->max_mtu
= GFAR_JUMBO_FRAME_SIZE
- ETH_HLEN
;
1346 dev
->netdev_ops
= &gfar_netdev_ops
;
1347 dev
->ethtool_ops
= &gfar_ethtool_ops
;
1349 /* Register for napi ...We are registering NAPI for each grp */
1350 for (i
= 0; i
< priv
->num_grps
; i
++) {
1351 if (priv
->poll_mode
== GFAR_SQ_POLLING
) {
1352 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_rx
,
1353 gfar_poll_rx_sq
, GFAR_DEV_WEIGHT
);
1354 netif_tx_napi_add(dev
, &priv
->gfargrp
[i
].napi_tx
,
1355 gfar_poll_tx_sq
, 2);
1357 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_rx
,
1358 gfar_poll_rx
, GFAR_DEV_WEIGHT
);
1359 netif_tx_napi_add(dev
, &priv
->gfargrp
[i
].napi_tx
,
1364 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
1365 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1367 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1368 NETIF_F_RXCSUM
| NETIF_F_HIGHDMA
;
1371 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
1372 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_TX
|
1373 NETIF_F_HW_VLAN_CTAG_RX
;
1374 dev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
;
1377 dev
->priv_flags
|= IFF_LIVE_ADDR_CHANGE
;
1379 gfar_init_addr_hash_table(priv
);
1381 /* Insert receive time stamps into padding alignment bytes */
1382 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1385 if (dev
->features
& NETIF_F_IP_CSUM
||
1386 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1387 dev
->needed_headroom
= GMAC_FCB_LEN
;
1389 /* Initializing some of the rx/tx queue level parameters */
1390 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1391 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1392 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1393 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1394 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1397 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1398 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1399 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1400 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1403 /* Always enable rx filer if available */
1404 priv
->rx_filer_enable
=
1405 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RX_FILER
) ? 1 : 0;
1406 /* Enable most messages by default */
1407 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1408 /* use pritority h/w tx queue scheduling for single queue devices */
1409 if (priv
->num_tx_queues
== 1)
1410 priv
->prio_sched_en
= 1;
1412 set_bit(GFAR_DOWN
, &priv
->state
);
1416 /* Carrier starts down, phylib will bring it up */
1417 netif_carrier_off(dev
);
1419 err
= register_netdev(dev
);
1422 pr_err("%s: Cannot register net device, aborting\n", dev
->name
);
1426 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
)
1427 priv
->wol_supported
|= GFAR_WOL_MAGIC
;
1429 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER
) &&
1430 priv
->rx_filer_enable
)
1431 priv
->wol_supported
|= GFAR_WOL_FILER_UCAST
;
1433 device_set_wakeup_capable(&ofdev
->dev
, priv
->wol_supported
);
1435 /* fill out IRQ number and name fields */
1436 for (i
= 0; i
< priv
->num_grps
; i
++) {
1437 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[i
];
1438 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1439 sprintf(gfar_irq(grp
, TX
)->name
, "%s%s%c%s",
1440 dev
->name
, "_g", '0' + i
, "_tx");
1441 sprintf(gfar_irq(grp
, RX
)->name
, "%s%s%c%s",
1442 dev
->name
, "_g", '0' + i
, "_rx");
1443 sprintf(gfar_irq(grp
, ER
)->name
, "%s%s%c%s",
1444 dev
->name
, "_g", '0' + i
, "_er");
1446 strcpy(gfar_irq(grp
, TX
)->name
, dev
->name
);
1449 /* Initialize the filer table */
1450 gfar_init_filer_table(priv
);
1452 /* Print out the device info */
1453 netdev_info(dev
, "mac: %pM\n", dev
->dev_addr
);
1455 /* Even more device info helps when determining which kernel
1456 * provided which set of benchmarks.
1458 netdev_info(dev
, "Running with NAPI enabled\n");
1459 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1460 netdev_info(dev
, "RX BD ring size for Q[%d]: %d\n",
1461 i
, priv
->rx_queue
[i
]->rx_ring_size
);
1462 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
1463 netdev_info(dev
, "TX BD ring size for Q[%d]: %d\n",
1464 i
, priv
->tx_queue
[i
]->tx_ring_size
);
1469 if (of_phy_is_fixed_link(np
))
1470 of_phy_deregister_fixed_link(np
);
1471 unmap_group_regs(priv
);
1472 gfar_free_rx_queues(priv
);
1473 gfar_free_tx_queues(priv
);
1474 of_node_put(priv
->phy_node
);
1475 of_node_put(priv
->tbi_node
);
1476 free_gfar_dev(priv
);
1480 static int gfar_remove(struct platform_device
*ofdev
)
1482 struct gfar_private
*priv
= platform_get_drvdata(ofdev
);
1483 struct device_node
*np
= ofdev
->dev
.of_node
;
1485 of_node_put(priv
->phy_node
);
1486 of_node_put(priv
->tbi_node
);
1488 unregister_netdev(priv
->ndev
);
1490 if (of_phy_is_fixed_link(np
))
1491 of_phy_deregister_fixed_link(np
);
1493 unmap_group_regs(priv
);
1494 gfar_free_rx_queues(priv
);
1495 gfar_free_tx_queues(priv
);
1496 free_gfar_dev(priv
);
1503 static void __gfar_filer_disable(struct gfar_private
*priv
)
1505 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1508 temp
= gfar_read(®s
->rctrl
);
1509 temp
&= ~(RCTRL_FILREN
| RCTRL_PRSDEP_INIT
);
1510 gfar_write(®s
->rctrl
, temp
);
1513 static void __gfar_filer_enable(struct gfar_private
*priv
)
1515 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1518 temp
= gfar_read(®s
->rctrl
);
1519 temp
|= RCTRL_FILREN
| RCTRL_PRSDEP_INIT
;
1520 gfar_write(®s
->rctrl
, temp
);
1523 /* Filer rules implementing wol capabilities */
1524 static void gfar_filer_config_wol(struct gfar_private
*priv
)
1529 __gfar_filer_disable(priv
);
1531 /* clear the filer table, reject any packet by default */
1532 rqfcr
= RQFCR_RJE
| RQFCR_CMP_MATCH
;
1533 for (i
= 0; i
<= MAX_FILER_IDX
; i
++)
1534 gfar_write_filer(priv
, i
, rqfcr
, 0);
1537 if (priv
->wol_opts
& GFAR_WOL_FILER_UCAST
) {
1538 /* unicast packet, accept it */
1539 struct net_device
*ndev
= priv
->ndev
;
1540 /* get the default rx queue index */
1541 u8 qindex
= (u8
)priv
->gfargrp
[0].rx_queue
->qindex
;
1542 u32 dest_mac_addr
= (ndev
->dev_addr
[0] << 16) |
1543 (ndev
->dev_addr
[1] << 8) |
1546 rqfcr
= (qindex
<< 10) | RQFCR_AND
|
1547 RQFCR_CMP_EXACT
| RQFCR_PID_DAH
;
1549 gfar_write_filer(priv
, i
++, rqfcr
, dest_mac_addr
);
1551 dest_mac_addr
= (ndev
->dev_addr
[3] << 16) |
1552 (ndev
->dev_addr
[4] << 8) |
1554 rqfcr
= (qindex
<< 10) | RQFCR_GPI
|
1555 RQFCR_CMP_EXACT
| RQFCR_PID_DAL
;
1556 gfar_write_filer(priv
, i
++, rqfcr
, dest_mac_addr
);
1559 __gfar_filer_enable(priv
);
1562 static void gfar_filer_restore_table(struct gfar_private
*priv
)
1567 __gfar_filer_disable(priv
);
1569 for (i
= 0; i
<= MAX_FILER_IDX
; i
++) {
1570 rqfcr
= priv
->ftp_rqfcr
[i
];
1571 rqfpr
= priv
->ftp_rqfpr
[i
];
1572 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
1575 __gfar_filer_enable(priv
);
1578 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1579 static void gfar_start_wol_filer(struct gfar_private
*priv
)
1581 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1585 /* Enable Rx hw queues */
1586 gfar_write(®s
->rqueue
, priv
->rqueue
);
1588 /* Initialize DMACTRL to have WWR and WOP */
1589 tempval
= gfar_read(®s
->dmactrl
);
1590 tempval
|= DMACTRL_INIT_SETTINGS
;
1591 gfar_write(®s
->dmactrl
, tempval
);
1593 /* Make sure we aren't stopped */
1594 tempval
= gfar_read(®s
->dmactrl
);
1595 tempval
&= ~DMACTRL_GRS
;
1596 gfar_write(®s
->dmactrl
, tempval
);
1598 for (i
= 0; i
< priv
->num_grps
; i
++) {
1599 regs
= priv
->gfargrp
[i
].regs
;
1600 /* Clear RHLT, so that the DMA starts polling now */
1601 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1602 /* enable the Filer General Purpose Interrupt */
1603 gfar_write(®s
->imask
, IMASK_FGPI
);
1607 tempval
= gfar_read(®s
->maccfg1
);
1608 tempval
|= MACCFG1_RX_EN
;
1609 gfar_write(®s
->maccfg1
, tempval
);
1612 static int gfar_suspend(struct device
*dev
)
1614 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1615 struct net_device
*ndev
= priv
->ndev
;
1616 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1618 u16 wol
= priv
->wol_opts
;
1620 if (!netif_running(ndev
))
1624 netif_tx_lock(ndev
);
1625 netif_device_detach(ndev
);
1626 netif_tx_unlock(ndev
);
1630 if (wol
& GFAR_WOL_MAGIC
) {
1631 /* Enable interrupt on Magic Packet */
1632 gfar_write(®s
->imask
, IMASK_MAG
);
1634 /* Enable Magic Packet mode */
1635 tempval
= gfar_read(®s
->maccfg2
);
1636 tempval
|= MACCFG2_MPEN
;
1637 gfar_write(®s
->maccfg2
, tempval
);
1639 /* re-enable the Rx block */
1640 tempval
= gfar_read(®s
->maccfg1
);
1641 tempval
|= MACCFG1_RX_EN
;
1642 gfar_write(®s
->maccfg1
, tempval
);
1644 } else if (wol
& GFAR_WOL_FILER_UCAST
) {
1645 gfar_filer_config_wol(priv
);
1646 gfar_start_wol_filer(priv
);
1649 phy_stop(ndev
->phydev
);
1655 static int gfar_resume(struct device
*dev
)
1657 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1658 struct net_device
*ndev
= priv
->ndev
;
1659 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1661 u16 wol
= priv
->wol_opts
;
1663 if (!netif_running(ndev
))
1666 if (wol
& GFAR_WOL_MAGIC
) {
1667 /* Disable Magic Packet mode */
1668 tempval
= gfar_read(®s
->maccfg2
);
1669 tempval
&= ~MACCFG2_MPEN
;
1670 gfar_write(®s
->maccfg2
, tempval
);
1672 } else if (wol
& GFAR_WOL_FILER_UCAST
) {
1673 /* need to stop rx only, tx is already down */
1675 gfar_filer_restore_table(priv
);
1678 phy_start(ndev
->phydev
);
1683 netif_device_attach(ndev
);
1689 static int gfar_restore(struct device
*dev
)
1691 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1692 struct net_device
*ndev
= priv
->ndev
;
1694 if (!netif_running(ndev
)) {
1695 netif_device_attach(ndev
);
1700 gfar_init_bds(ndev
);
1702 gfar_mac_reset(priv
);
1704 gfar_init_tx_rx_base(priv
);
1710 priv
->oldduplex
= -1;
1713 phy_start(ndev
->phydev
);
1715 netif_device_attach(ndev
);
1721 static struct dev_pm_ops gfar_pm_ops
= {
1722 .suspend
= gfar_suspend
,
1723 .resume
= gfar_resume
,
1724 .freeze
= gfar_suspend
,
1725 .thaw
= gfar_resume
,
1726 .restore
= gfar_restore
,
1729 #define GFAR_PM_OPS (&gfar_pm_ops)
1733 #define GFAR_PM_OPS NULL
1737 /* Reads the controller's registers to determine what interface
1738 * connects it to the PHY.
1740 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1742 struct gfar_private
*priv
= netdev_priv(dev
);
1743 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1746 ecntrl
= gfar_read(®s
->ecntrl
);
1748 if (ecntrl
& ECNTRL_SGMII_MODE
)
1749 return PHY_INTERFACE_MODE_SGMII
;
1751 if (ecntrl
& ECNTRL_TBI_MODE
) {
1752 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1753 return PHY_INTERFACE_MODE_RTBI
;
1755 return PHY_INTERFACE_MODE_TBI
;
1758 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1759 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
) {
1760 return PHY_INTERFACE_MODE_RMII
;
1763 phy_interface_t interface
= priv
->interface
;
1765 /* This isn't autodetected right now, so it must
1766 * be set by the device tree or platform code.
1768 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1769 return PHY_INTERFACE_MODE_RGMII_ID
;
1771 return PHY_INTERFACE_MODE_RGMII
;
1775 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1776 return PHY_INTERFACE_MODE_GMII
;
1778 return PHY_INTERFACE_MODE_MII
;
1782 /* Initializes driver's PHY state, and attaches to the PHY.
1783 * Returns 0 on success.
1785 static int init_phy(struct net_device
*dev
)
1787 struct gfar_private
*priv
= netdev_priv(dev
);
1788 uint gigabit_support
=
1789 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1790 GFAR_SUPPORTED_GBIT
: 0;
1791 phy_interface_t interface
;
1792 struct phy_device
*phydev
;
1796 priv
->oldduplex
= -1;
1798 interface
= gfar_get_interface(dev
);
1800 phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1803 dev_err(&dev
->dev
, "could not attach to PHY\n");
1807 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1808 gfar_configure_serdes(dev
);
1810 /* Remove any features not supported by the controller */
1811 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1812 phydev
->advertising
= phydev
->supported
;
1814 /* Add support for flow control, but don't advertise it by default */
1815 phydev
->supported
|= (SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
1820 /* Initialize TBI PHY interface for communicating with the
1821 * SERDES lynx PHY on the chip. We communicate with this PHY
1822 * through the MDIO bus on each controller, treating it as a
1823 * "normal" PHY at the address found in the TBIPA register. We assume
1824 * that the TBIPA register is valid. Either the MDIO bus code will set
1825 * it to a value that doesn't conflict with other PHYs on the bus, or the
1826 * value doesn't matter, as there are no other PHYs on the bus.
1828 static void gfar_configure_serdes(struct net_device
*dev
)
1830 struct gfar_private
*priv
= netdev_priv(dev
);
1831 struct phy_device
*tbiphy
;
1833 if (!priv
->tbi_node
) {
1834 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1835 "device tree specify a tbi-handle\n");
1839 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1841 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1845 /* If the link is already up, we must already be ok, and don't need to
1846 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1847 * everything for us? Resetting it takes the link down and requires
1848 * several seconds for it to come back.
1850 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
) {
1851 put_device(&tbiphy
->mdio
.dev
);
1855 /* Single clk mode, mii mode off(for serdes communication) */
1856 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1858 phy_write(tbiphy
, MII_ADVERTISE
,
1859 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1860 ADVERTISE_1000XPSE_ASYM
);
1862 phy_write(tbiphy
, MII_BMCR
,
1863 BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_FULLDPLX
|
1866 put_device(&tbiphy
->mdio
.dev
);
1869 static int __gfar_is_rx_idle(struct gfar_private
*priv
)
1873 /* Normaly TSEC should not hang on GRS commands, so we should
1874 * actually wait for IEVENT_GRSC flag.
1876 if (!gfar_has_errata(priv
, GFAR_ERRATA_A002
))
1879 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1880 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1881 * and the Rx can be safely reset.
1883 res
= gfar_read((void __iomem
*)priv
->gfargrp
[0].regs
+ 0xd1c);
1885 if ((res
& 0xffff) == (res
>> 16))
1891 /* Halt the receive and transmit queues */
1892 static void gfar_halt_nodisable(struct gfar_private
*priv
)
1894 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1896 unsigned int timeout
;
1899 gfar_ints_disable(priv
);
1901 if (gfar_is_dma_stopped(priv
))
1904 /* Stop the DMA, and wait for it to stop */
1905 tempval
= gfar_read(®s
->dmactrl
);
1906 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1907 gfar_write(®s
->dmactrl
, tempval
);
1911 while (!(stopped
= gfar_is_dma_stopped(priv
)) && timeout
) {
1917 stopped
= gfar_is_dma_stopped(priv
);
1919 if (!stopped
&& !gfar_is_rx_dma_stopped(priv
) &&
1920 !__gfar_is_rx_idle(priv
))
1924 /* Halt the receive and transmit queues */
1925 void gfar_halt(struct gfar_private
*priv
)
1927 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1930 /* Dissable the Rx/Tx hw queues */
1931 gfar_write(®s
->rqueue
, 0);
1932 gfar_write(®s
->tqueue
, 0);
1936 gfar_halt_nodisable(priv
);
1938 /* Disable Rx/Tx DMA */
1939 tempval
= gfar_read(®s
->maccfg1
);
1940 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1941 gfar_write(®s
->maccfg1
, tempval
);
1944 void stop_gfar(struct net_device
*dev
)
1946 struct gfar_private
*priv
= netdev_priv(dev
);
1948 netif_tx_stop_all_queues(dev
);
1950 smp_mb__before_atomic();
1951 set_bit(GFAR_DOWN
, &priv
->state
);
1952 smp_mb__after_atomic();
1956 /* disable ints and gracefully shut down Rx/Tx DMA */
1959 phy_stop(dev
->phydev
);
1961 free_skb_resources(priv
);
1964 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1966 struct txbd8
*txbdp
;
1967 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1970 txbdp
= tx_queue
->tx_bd_base
;
1972 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1973 if (!tx_queue
->tx_skbuff
[i
])
1976 dma_unmap_single(priv
->dev
, be32_to_cpu(txbdp
->bufPtr
),
1977 be16_to_cpu(txbdp
->length
), DMA_TO_DEVICE
);
1979 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1982 dma_unmap_page(priv
->dev
, be32_to_cpu(txbdp
->bufPtr
),
1983 be16_to_cpu(txbdp
->length
),
1987 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1988 tx_queue
->tx_skbuff
[i
] = NULL
;
1990 kfree(tx_queue
->tx_skbuff
);
1991 tx_queue
->tx_skbuff
= NULL
;
1994 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1998 struct rxbd8
*rxbdp
= rx_queue
->rx_bd_base
;
2001 dev_kfree_skb(rx_queue
->skb
);
2003 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
2004 struct gfar_rx_buff
*rxb
= &rx_queue
->rx_buff
[i
];
2013 dma_unmap_page(rx_queue
->dev
, rxb
->dma
,
2014 PAGE_SIZE
, DMA_FROM_DEVICE
);
2015 __free_page(rxb
->page
);
2020 kfree(rx_queue
->rx_buff
);
2021 rx_queue
->rx_buff
= NULL
;
2024 /* If there are any tx skbs or rx skbs still around, free them.
2025 * Then free tx_skbuff and rx_skbuff
2027 static void free_skb_resources(struct gfar_private
*priv
)
2029 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2030 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2033 /* Go through all the buffer descriptors and free their data buffers */
2034 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
2035 struct netdev_queue
*txq
;
2037 tx_queue
= priv
->tx_queue
[i
];
2038 txq
= netdev_get_tx_queue(tx_queue
->dev
, tx_queue
->qindex
);
2039 if (tx_queue
->tx_skbuff
)
2040 free_skb_tx_queue(tx_queue
);
2041 netdev_tx_reset_queue(txq
);
2044 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
2045 rx_queue
= priv
->rx_queue
[i
];
2046 if (rx_queue
->rx_buff
)
2047 free_skb_rx_queue(rx_queue
);
2050 dma_free_coherent(priv
->dev
,
2051 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
2052 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
2053 priv
->tx_queue
[0]->tx_bd_base
,
2054 priv
->tx_queue
[0]->tx_bd_dma_base
);
2057 void gfar_start(struct gfar_private
*priv
)
2059 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2063 /* Enable Rx/Tx hw queues */
2064 gfar_write(®s
->rqueue
, priv
->rqueue
);
2065 gfar_write(®s
->tqueue
, priv
->tqueue
);
2067 /* Initialize DMACTRL to have WWR and WOP */
2068 tempval
= gfar_read(®s
->dmactrl
);
2069 tempval
|= DMACTRL_INIT_SETTINGS
;
2070 gfar_write(®s
->dmactrl
, tempval
);
2072 /* Make sure we aren't stopped */
2073 tempval
= gfar_read(®s
->dmactrl
);
2074 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
2075 gfar_write(®s
->dmactrl
, tempval
);
2077 for (i
= 0; i
< priv
->num_grps
; i
++) {
2078 regs
= priv
->gfargrp
[i
].regs
;
2079 /* Clear THLT/RHLT, so that the DMA starts polling now */
2080 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
2081 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
2084 /* Enable Rx/Tx DMA */
2085 tempval
= gfar_read(®s
->maccfg1
);
2086 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
2087 gfar_write(®s
->maccfg1
, tempval
);
2089 gfar_ints_enable(priv
);
2091 netif_trans_update(priv
->ndev
); /* prevent tx timeout */
2094 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
2096 free_irq(gfar_irq(grp
, TX
)->irq
, grp
);
2097 free_irq(gfar_irq(grp
, RX
)->irq
, grp
);
2098 free_irq(gfar_irq(grp
, ER
)->irq
, grp
);
2101 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
2103 struct gfar_private
*priv
= grp
->priv
;
2104 struct net_device
*dev
= priv
->ndev
;
2107 /* If the device has multiple interrupts, register for
2108 * them. Otherwise, only register for the one
2110 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2111 /* Install our interrupt handlers for Error,
2112 * Transmit, and Receive
2114 err
= request_irq(gfar_irq(grp
, ER
)->irq
, gfar_error
, 0,
2115 gfar_irq(grp
, ER
)->name
, grp
);
2117 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2118 gfar_irq(grp
, ER
)->irq
);
2122 enable_irq_wake(gfar_irq(grp
, ER
)->irq
);
2124 err
= request_irq(gfar_irq(grp
, TX
)->irq
, gfar_transmit
, 0,
2125 gfar_irq(grp
, TX
)->name
, grp
);
2127 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2128 gfar_irq(grp
, TX
)->irq
);
2131 err
= request_irq(gfar_irq(grp
, RX
)->irq
, gfar_receive
, 0,
2132 gfar_irq(grp
, RX
)->name
, grp
);
2134 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2135 gfar_irq(grp
, RX
)->irq
);
2138 enable_irq_wake(gfar_irq(grp
, RX
)->irq
);
2141 err
= request_irq(gfar_irq(grp
, TX
)->irq
, gfar_interrupt
, 0,
2142 gfar_irq(grp
, TX
)->name
, grp
);
2144 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2145 gfar_irq(grp
, TX
)->irq
);
2148 enable_irq_wake(gfar_irq(grp
, TX
)->irq
);
2154 free_irq(gfar_irq(grp
, TX
)->irq
, grp
);
2156 free_irq(gfar_irq(grp
, ER
)->irq
, grp
);
2162 static void gfar_free_irq(struct gfar_private
*priv
)
2167 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2168 for (i
= 0; i
< priv
->num_grps
; i
++)
2169 free_grp_irqs(&priv
->gfargrp
[i
]);
2171 for (i
= 0; i
< priv
->num_grps
; i
++)
2172 free_irq(gfar_irq(&priv
->gfargrp
[i
], TX
)->irq
,
2177 static int gfar_request_irq(struct gfar_private
*priv
)
2181 for (i
= 0; i
< priv
->num_grps
; i
++) {
2182 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
2184 for (j
= 0; j
< i
; j
++)
2185 free_grp_irqs(&priv
->gfargrp
[j
]);
2193 /* Bring the controller up and running */
2194 int startup_gfar(struct net_device
*ndev
)
2196 struct gfar_private
*priv
= netdev_priv(ndev
);
2199 gfar_mac_reset(priv
);
2201 err
= gfar_alloc_skb_resources(ndev
);
2205 gfar_init_tx_rx_base(priv
);
2207 smp_mb__before_atomic();
2208 clear_bit(GFAR_DOWN
, &priv
->state
);
2209 smp_mb__after_atomic();
2211 /* Start Rx/Tx DMA and enable the interrupts */
2214 /* force link state update after mac reset */
2217 priv
->oldduplex
= -1;
2219 phy_start(ndev
->phydev
);
2223 netif_tx_wake_all_queues(ndev
);
2228 /* Called when something needs to use the ethernet device
2229 * Returns 0 for success.
2231 static int gfar_enet_open(struct net_device
*dev
)
2233 struct gfar_private
*priv
= netdev_priv(dev
);
2236 err
= init_phy(dev
);
2240 err
= gfar_request_irq(priv
);
2244 err
= startup_gfar(dev
);
2251 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
2253 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
2255 memset(fcb
, 0, GMAC_FCB_LEN
);
2260 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
,
2263 /* If we're here, it's a IP packet with a TCP or UDP
2264 * payload. We set it to checksum, using a pseudo-header
2267 u8 flags
= TXFCB_DEFAULT
;
2269 /* Tell the controller what the protocol is
2270 * And provide the already calculated phcs
2272 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
2274 fcb
->phcs
= (__force __be16
)(udp_hdr(skb
)->check
);
2276 fcb
->phcs
= (__force __be16
)(tcp_hdr(skb
)->check
);
2278 /* l3os is the distance between the start of the
2279 * frame (skb->data) and the start of the IP hdr.
2280 * l4os is the distance between the start of the
2281 * l3 hdr and the l4 hdr
2283 fcb
->l3os
= (u8
)(skb_network_offset(skb
) - fcb_length
);
2284 fcb
->l4os
= skb_network_header_len(skb
);
2289 static inline void gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
2291 fcb
->flags
|= TXFCB_VLN
;
2292 fcb
->vlctl
= cpu_to_be16(skb_vlan_tag_get(skb
));
2295 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
2296 struct txbd8
*base
, int ring_size
)
2298 struct txbd8
*new_bd
= bdp
+ stride
;
2300 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
2303 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
2306 return skip_txbd(bdp
, 1, base
, ring_size
);
2309 /* eTSEC12: csum generation not supported for some fcb offsets */
2310 static inline bool gfar_csum_errata_12(struct gfar_private
*priv
,
2311 unsigned long fcb_addr
)
2313 return (gfar_has_errata(priv
, GFAR_ERRATA_12
) &&
2314 (fcb_addr
% 0x20) > 0x18);
2317 /* eTSEC76: csum generation for frames larger than 2500 may
2318 * cause excess delays before start of transmission
2320 static inline bool gfar_csum_errata_76(struct gfar_private
*priv
,
2323 return (gfar_has_errata(priv
, GFAR_ERRATA_76
) &&
2327 /* This is called by the kernel when a frame is ready for transmission.
2328 * It is pointed to by the dev->hard_start_xmit function pointer
2330 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2332 struct gfar_private
*priv
= netdev_priv(dev
);
2333 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2334 struct netdev_queue
*txq
;
2335 struct gfar __iomem
*regs
= NULL
;
2336 struct txfcb
*fcb
= NULL
;
2337 struct txbd8
*txbdp
, *txbdp_start
, *base
, *txbdp_tstamp
= NULL
;
2341 int do_tstamp
, do_csum
, do_vlan
;
2343 unsigned int nr_frags
, nr_txbds
, bytes_sent
, fcb_len
= 0;
2345 rq
= skb
->queue_mapping
;
2346 tx_queue
= priv
->tx_queue
[rq
];
2347 txq
= netdev_get_tx_queue(dev
, rq
);
2348 base
= tx_queue
->tx_bd_base
;
2349 regs
= tx_queue
->grp
->regs
;
2351 do_csum
= (CHECKSUM_PARTIAL
== skb
->ip_summed
);
2352 do_vlan
= skb_vlan_tag_present(skb
);
2353 do_tstamp
= (skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
2356 if (do_csum
|| do_vlan
)
2357 fcb_len
= GMAC_FCB_LEN
;
2359 /* check if time stamp should be generated */
2360 if (unlikely(do_tstamp
))
2361 fcb_len
= GMAC_FCB_LEN
+ GMAC_TXPAL_LEN
;
2363 /* make space for additional header when fcb is needed */
2364 if (fcb_len
&& unlikely(skb_headroom(skb
) < fcb_len
)) {
2365 struct sk_buff
*skb_new
;
2367 skb_new
= skb_realloc_headroom(skb
, fcb_len
);
2369 dev
->stats
.tx_errors
++;
2370 dev_kfree_skb_any(skb
);
2371 return NETDEV_TX_OK
;
2375 skb_set_owner_w(skb_new
, skb
->sk
);
2376 dev_consume_skb_any(skb
);
2380 /* total number of fragments in the SKB */
2381 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2383 /* calculate the required number of TxBDs for this skb */
2384 if (unlikely(do_tstamp
))
2385 nr_txbds
= nr_frags
+ 2;
2387 nr_txbds
= nr_frags
+ 1;
2389 /* check if there is space to queue this packet */
2390 if (nr_txbds
> tx_queue
->num_txbdfree
) {
2391 /* no space, stop the queue */
2392 netif_tx_stop_queue(txq
);
2393 dev
->stats
.tx_fifo_errors
++;
2394 return NETDEV_TX_BUSY
;
2397 /* Update transmit stats */
2398 bytes_sent
= skb
->len
;
2399 tx_queue
->stats
.tx_bytes
+= bytes_sent
;
2400 /* keep Tx bytes on wire for BQL accounting */
2401 GFAR_CB(skb
)->bytes_sent
= bytes_sent
;
2402 tx_queue
->stats
.tx_packets
++;
2404 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
2405 lstatus
= be32_to_cpu(txbdp
->lstatus
);
2407 /* Add TxPAL between FCB and frame if required */
2408 if (unlikely(do_tstamp
)) {
2409 skb_push(skb
, GMAC_TXPAL_LEN
);
2410 memset(skb
->data
, 0, GMAC_TXPAL_LEN
);
2413 /* Add TxFCB if required */
2415 fcb
= gfar_add_fcb(skb
);
2416 lstatus
|= BD_LFLAG(TXBD_TOE
);
2419 /* Set up checksumming */
2421 gfar_tx_checksum(skb
, fcb
, fcb_len
);
2423 if (unlikely(gfar_csum_errata_12(priv
, (unsigned long)fcb
)) ||
2424 unlikely(gfar_csum_errata_76(priv
, skb
->len
))) {
2425 __skb_pull(skb
, GMAC_FCB_LEN
);
2426 skb_checksum_help(skb
);
2427 if (do_vlan
|| do_tstamp
) {
2428 /* put back a new fcb for vlan/tstamp TOE */
2429 fcb
= gfar_add_fcb(skb
);
2431 /* Tx TOE not used */
2432 lstatus
&= ~(BD_LFLAG(TXBD_TOE
));
2439 gfar_tx_vlan(skb
, fcb
);
2441 bufaddr
= dma_map_single(priv
->dev
, skb
->data
, skb_headlen(skb
),
2443 if (unlikely(dma_mapping_error(priv
->dev
, bufaddr
)))
2446 txbdp_start
->bufPtr
= cpu_to_be32(bufaddr
);
2448 /* Time stamp insertion requires one additional TxBD */
2449 if (unlikely(do_tstamp
))
2450 txbdp_tstamp
= txbdp
= next_txbd(txbdp
, base
,
2451 tx_queue
->tx_ring_size
);
2453 if (likely(!nr_frags
)) {
2454 if (likely(!do_tstamp
))
2455 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2457 u32 lstatus_start
= lstatus
;
2459 /* Place the fragment addresses and lengths into the TxBDs */
2460 frag
= &skb_shinfo(skb
)->frags
[0];
2461 for (i
= 0; i
< nr_frags
; i
++, frag
++) {
2464 /* Point at the next BD, wrapping as needed */
2465 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2467 size
= skb_frag_size(frag
);
2469 lstatus
= be32_to_cpu(txbdp
->lstatus
) | size
|
2470 BD_LFLAG(TXBD_READY
);
2472 /* Handle the last BD specially */
2473 if (i
== nr_frags
- 1)
2474 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2476 bufaddr
= skb_frag_dma_map(priv
->dev
, frag
, 0,
2477 size
, DMA_TO_DEVICE
);
2478 if (unlikely(dma_mapping_error(priv
->dev
, bufaddr
)))
2481 /* set the TxBD length and buffer pointer */
2482 txbdp
->bufPtr
= cpu_to_be32(bufaddr
);
2483 txbdp
->lstatus
= cpu_to_be32(lstatus
);
2486 lstatus
= lstatus_start
;
2489 /* If time stamping is requested one additional TxBD must be set up. The
2490 * first TxBD points to the FCB and must have a data length of
2491 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2492 * the full frame length.
2494 if (unlikely(do_tstamp
)) {
2495 u32 lstatus_ts
= be32_to_cpu(txbdp_tstamp
->lstatus
);
2497 bufaddr
= be32_to_cpu(txbdp_start
->bufPtr
);
2500 lstatus_ts
|= BD_LFLAG(TXBD_READY
) |
2501 (skb_headlen(skb
) - fcb_len
);
2503 lstatus_ts
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2505 txbdp_tstamp
->bufPtr
= cpu_to_be32(bufaddr
);
2506 txbdp_tstamp
->lstatus
= cpu_to_be32(lstatus_ts
);
2507 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | GMAC_FCB_LEN
;
2509 /* Setup tx hardware time stamping */
2510 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2513 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2516 netdev_tx_sent_queue(txq
, bytes_sent
);
2520 txbdp_start
->lstatus
= cpu_to_be32(lstatus
);
2522 gfar_wmb(); /* force lstatus write before tx_skbuff */
2524 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2526 /* Update the current skb pointer to the next entry we will use
2527 * (wrapping if necessary)
2529 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2530 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2532 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2534 /* We can work in parallel with gfar_clean_tx_ring(), except
2535 * when modifying num_txbdfree. Note that we didn't grab the lock
2536 * when we were reading the num_txbdfree and checking for available
2537 * space, that's because outside of this function it can only grow.
2539 spin_lock_bh(&tx_queue
->txlock
);
2540 /* reduce TxBD free count */
2541 tx_queue
->num_txbdfree
-= (nr_txbds
);
2542 spin_unlock_bh(&tx_queue
->txlock
);
2544 /* If the next BD still needs to be cleaned up, then the bds
2545 * are full. We need to tell the kernel to stop sending us stuff.
2547 if (!tx_queue
->num_txbdfree
) {
2548 netif_tx_stop_queue(txq
);
2550 dev
->stats
.tx_fifo_errors
++;
2553 /* Tell the DMA to go go go */
2554 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2556 return NETDEV_TX_OK
;
2559 txbdp
= next_txbd(txbdp_start
, base
, tx_queue
->tx_ring_size
);
2561 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2562 for (i
= 0; i
< nr_frags
; i
++) {
2563 lstatus
= be32_to_cpu(txbdp
->lstatus
);
2564 if (!(lstatus
& BD_LFLAG(TXBD_READY
)))
2567 lstatus
&= ~BD_LFLAG(TXBD_READY
);
2568 txbdp
->lstatus
= cpu_to_be32(lstatus
);
2569 bufaddr
= be32_to_cpu(txbdp
->bufPtr
);
2570 dma_unmap_page(priv
->dev
, bufaddr
, be16_to_cpu(txbdp
->length
),
2572 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2575 dev_kfree_skb_any(skb
);
2576 return NETDEV_TX_OK
;
2579 /* Stops the kernel queue, and halts the controller */
2580 static int gfar_close(struct net_device
*dev
)
2582 struct gfar_private
*priv
= netdev_priv(dev
);
2584 cancel_work_sync(&priv
->reset_task
);
2587 /* Disconnect from the PHY */
2588 phy_disconnect(dev
->phydev
);
2590 gfar_free_irq(priv
);
2595 /* Changes the mac address if the controller is not running. */
2596 static int gfar_set_mac_address(struct net_device
*dev
)
2598 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2603 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2605 struct gfar_private
*priv
= netdev_priv(dev
);
2607 while (test_and_set_bit_lock(GFAR_RESETTING
, &priv
->state
))
2610 if (dev
->flags
& IFF_UP
)
2615 if (dev
->flags
& IFF_UP
)
2618 clear_bit_unlock(GFAR_RESETTING
, &priv
->state
);
2623 void reset_gfar(struct net_device
*ndev
)
2625 struct gfar_private
*priv
= netdev_priv(ndev
);
2627 while (test_and_set_bit_lock(GFAR_RESETTING
, &priv
->state
))
2633 clear_bit_unlock(GFAR_RESETTING
, &priv
->state
);
2636 /* gfar_reset_task gets scheduled when a packet has not been
2637 * transmitted after a set amount of time.
2638 * For now, assume that clearing out all the structures, and
2639 * starting over will fix the problem.
2641 static void gfar_reset_task(struct work_struct
*work
)
2643 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2645 reset_gfar(priv
->ndev
);
2648 static void gfar_timeout(struct net_device
*dev
)
2650 struct gfar_private
*priv
= netdev_priv(dev
);
2652 dev
->stats
.tx_errors
++;
2653 schedule_work(&priv
->reset_task
);
2656 /* Interrupt Handler for Transmit complete */
2657 static void gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2659 struct net_device
*dev
= tx_queue
->dev
;
2660 struct netdev_queue
*txq
;
2661 struct gfar_private
*priv
= netdev_priv(dev
);
2662 struct txbd8
*bdp
, *next
= NULL
;
2663 struct txbd8
*lbdp
= NULL
;
2664 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2665 struct sk_buff
*skb
;
2667 int tx_ring_size
= tx_queue
->tx_ring_size
;
2668 int frags
= 0, nr_txbds
= 0;
2671 int tqi
= tx_queue
->qindex
;
2672 unsigned int bytes_sent
= 0;
2676 txq
= netdev_get_tx_queue(dev
, tqi
);
2677 bdp
= tx_queue
->dirty_tx
;
2678 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2680 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2682 frags
= skb_shinfo(skb
)->nr_frags
;
2684 /* When time stamping, one additional TxBD must be freed.
2685 * Also, we need to dma_unmap_single() the TxPAL.
2687 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2688 nr_txbds
= frags
+ 2;
2690 nr_txbds
= frags
+ 1;
2692 lbdp
= skip_txbd(bdp
, nr_txbds
- 1, base
, tx_ring_size
);
2694 lstatus
= be32_to_cpu(lbdp
->lstatus
);
2696 /* Only clean completed frames */
2697 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2698 (lstatus
& BD_LENGTH_MASK
))
2701 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2702 next
= next_txbd(bdp
, base
, tx_ring_size
);
2703 buflen
= be16_to_cpu(next
->length
) +
2704 GMAC_FCB_LEN
+ GMAC_TXPAL_LEN
;
2706 buflen
= be16_to_cpu(bdp
->length
);
2708 dma_unmap_single(priv
->dev
, be32_to_cpu(bdp
->bufPtr
),
2709 buflen
, DMA_TO_DEVICE
);
2711 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2712 struct skb_shared_hwtstamps shhwtstamps
;
2713 u64
*ns
= (u64
*)(((uintptr_t)skb
->data
+ 0x10) &
2716 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
2717 shhwtstamps
.hwtstamp
= ns_to_ktime(be64_to_cpu(*ns
));
2718 skb_pull(skb
, GMAC_FCB_LEN
+ GMAC_TXPAL_LEN
);
2719 skb_tstamp_tx(skb
, &shhwtstamps
);
2720 gfar_clear_txbd_status(bdp
);
2724 gfar_clear_txbd_status(bdp
);
2725 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2727 for (i
= 0; i
< frags
; i
++) {
2728 dma_unmap_page(priv
->dev
, be32_to_cpu(bdp
->bufPtr
),
2729 be16_to_cpu(bdp
->length
),
2731 gfar_clear_txbd_status(bdp
);
2732 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2735 bytes_sent
+= GFAR_CB(skb
)->bytes_sent
;
2737 dev_kfree_skb_any(skb
);
2739 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2741 skb_dirtytx
= (skb_dirtytx
+ 1) &
2742 TX_RING_MOD_MASK(tx_ring_size
);
2745 spin_lock(&tx_queue
->txlock
);
2746 tx_queue
->num_txbdfree
+= nr_txbds
;
2747 spin_unlock(&tx_queue
->txlock
);
2750 /* If we freed a buffer, we can restart transmission, if necessary */
2751 if (tx_queue
->num_txbdfree
&&
2752 netif_tx_queue_stopped(txq
) &&
2753 !(test_bit(GFAR_DOWN
, &priv
->state
)))
2754 netif_wake_subqueue(priv
->ndev
, tqi
);
2756 /* Update dirty indicators */
2757 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2758 tx_queue
->dirty_tx
= bdp
;
2760 netdev_tx_completed_queue(txq
, howmany
, bytes_sent
);
2763 static bool gfar_new_page(struct gfar_priv_rx_q
*rxq
, struct gfar_rx_buff
*rxb
)
2768 page
= dev_alloc_page();
2769 if (unlikely(!page
))
2772 addr
= dma_map_page(rxq
->dev
, page
, 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
2773 if (unlikely(dma_mapping_error(rxq
->dev
, addr
))) {
2781 rxb
->page_offset
= 0;
2786 static void gfar_rx_alloc_err(struct gfar_priv_rx_q
*rx_queue
)
2788 struct gfar_private
*priv
= netdev_priv(rx_queue
->ndev
);
2789 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2791 netdev_err(rx_queue
->ndev
, "Can't alloc RX buffers\n");
2792 atomic64_inc(&estats
->rx_alloc_err
);
2795 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q
*rx_queue
,
2799 struct gfar_rx_buff
*rxb
;
2802 i
= rx_queue
->next_to_use
;
2803 bdp
= &rx_queue
->rx_bd_base
[i
];
2804 rxb
= &rx_queue
->rx_buff
[i
];
2806 while (alloc_cnt
--) {
2807 /* try reuse page */
2808 if (unlikely(!rxb
->page
)) {
2809 if (unlikely(!gfar_new_page(rx_queue
, rxb
))) {
2810 gfar_rx_alloc_err(rx_queue
);
2815 /* Setup the new RxBD */
2816 gfar_init_rxbdp(rx_queue
, bdp
,
2817 rxb
->dma
+ rxb
->page_offset
+ RXBUF_ALIGNMENT
);
2819 /* Update to the next pointer */
2823 if (unlikely(++i
== rx_queue
->rx_ring_size
)) {
2825 bdp
= rx_queue
->rx_bd_base
;
2826 rxb
= rx_queue
->rx_buff
;
2830 rx_queue
->next_to_use
= i
;
2831 rx_queue
->next_to_alloc
= i
;
2834 static void count_errors(u32 lstatus
, struct net_device
*ndev
)
2836 struct gfar_private
*priv
= netdev_priv(ndev
);
2837 struct net_device_stats
*stats
= &ndev
->stats
;
2838 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2840 /* If the packet was truncated, none of the other errors matter */
2841 if (lstatus
& BD_LFLAG(RXBD_TRUNCATED
)) {
2842 stats
->rx_length_errors
++;
2844 atomic64_inc(&estats
->rx_trunc
);
2848 /* Count the errors, if there were any */
2849 if (lstatus
& BD_LFLAG(RXBD_LARGE
| RXBD_SHORT
)) {
2850 stats
->rx_length_errors
++;
2852 if (lstatus
& BD_LFLAG(RXBD_LARGE
))
2853 atomic64_inc(&estats
->rx_large
);
2855 atomic64_inc(&estats
->rx_short
);
2857 if (lstatus
& BD_LFLAG(RXBD_NONOCTET
)) {
2858 stats
->rx_frame_errors
++;
2859 atomic64_inc(&estats
->rx_nonoctet
);
2861 if (lstatus
& BD_LFLAG(RXBD_CRCERR
)) {
2862 atomic64_inc(&estats
->rx_crcerr
);
2863 stats
->rx_crc_errors
++;
2865 if (lstatus
& BD_LFLAG(RXBD_OVERRUN
)) {
2866 atomic64_inc(&estats
->rx_overrun
);
2867 stats
->rx_over_errors
++;
2871 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2873 struct gfar_priv_grp
*grp
= (struct gfar_priv_grp
*)grp_id
;
2874 unsigned long flags
;
2877 ievent
= gfar_read(&grp
->regs
->ievent
);
2879 if (unlikely(ievent
& IEVENT_FGPI
)) {
2880 gfar_write(&grp
->regs
->ievent
, IEVENT_FGPI
);
2884 if (likely(napi_schedule_prep(&grp
->napi_rx
))) {
2885 spin_lock_irqsave(&grp
->grplock
, flags
);
2886 imask
= gfar_read(&grp
->regs
->imask
);
2887 imask
&= IMASK_RX_DISABLED
;
2888 gfar_write(&grp
->regs
->imask
, imask
);
2889 spin_unlock_irqrestore(&grp
->grplock
, flags
);
2890 __napi_schedule(&grp
->napi_rx
);
2892 /* Clear IEVENT, so interrupts aren't called again
2893 * because of the packets that have already arrived.
2895 gfar_write(&grp
->regs
->ievent
, IEVENT_RX_MASK
);
2901 /* Interrupt Handler for Transmit complete */
2902 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2904 struct gfar_priv_grp
*grp
= (struct gfar_priv_grp
*)grp_id
;
2905 unsigned long flags
;
2908 if (likely(napi_schedule_prep(&grp
->napi_tx
))) {
2909 spin_lock_irqsave(&grp
->grplock
, flags
);
2910 imask
= gfar_read(&grp
->regs
->imask
);
2911 imask
&= IMASK_TX_DISABLED
;
2912 gfar_write(&grp
->regs
->imask
, imask
);
2913 spin_unlock_irqrestore(&grp
->grplock
, flags
);
2914 __napi_schedule(&grp
->napi_tx
);
2916 /* Clear IEVENT, so interrupts aren't called again
2917 * because of the packets that have already arrived.
2919 gfar_write(&grp
->regs
->ievent
, IEVENT_TX_MASK
);
2925 static bool gfar_add_rx_frag(struct gfar_rx_buff
*rxb
, u32 lstatus
,
2926 struct sk_buff
*skb
, bool first
)
2928 unsigned int size
= lstatus
& BD_LENGTH_MASK
;
2929 struct page
*page
= rxb
->page
;
2930 bool last
= !!(lstatus
& BD_LFLAG(RXBD_LAST
));
2932 /* Remove the FCS from the packet length */
2934 size
-= ETH_FCS_LEN
;
2936 if (likely(first
)) {
2939 /* the last fragments' length contains the full frame length */
2943 /* in case the last fragment consisted only of the FCS */
2945 skb_add_rx_frag(skb
, skb_shinfo(skb
)->nr_frags
, page
,
2946 rxb
->page_offset
+ RXBUF_ALIGNMENT
,
2947 size
, GFAR_RXB_TRUESIZE
);
2950 /* try reuse page */
2951 if (unlikely(page_count(page
) != 1 || page_is_pfmemalloc(page
)))
2954 /* change offset to the other half */
2955 rxb
->page_offset
^= GFAR_RXB_TRUESIZE
;
2962 static void gfar_reuse_rx_page(struct gfar_priv_rx_q
*rxq
,
2963 struct gfar_rx_buff
*old_rxb
)
2965 struct gfar_rx_buff
*new_rxb
;
2966 u16 nta
= rxq
->next_to_alloc
;
2968 new_rxb
= &rxq
->rx_buff
[nta
];
2970 /* find next buf that can reuse a page */
2972 rxq
->next_to_alloc
= (nta
< rxq
->rx_ring_size
) ? nta
: 0;
2974 /* copy page reference */
2975 *new_rxb
= *old_rxb
;
2977 /* sync for use by the device */
2978 dma_sync_single_range_for_device(rxq
->dev
, old_rxb
->dma
,
2979 old_rxb
->page_offset
,
2980 GFAR_RXB_TRUESIZE
, DMA_FROM_DEVICE
);
2983 static struct sk_buff
*gfar_get_next_rxbuff(struct gfar_priv_rx_q
*rx_queue
,
2984 u32 lstatus
, struct sk_buff
*skb
)
2986 struct gfar_rx_buff
*rxb
= &rx_queue
->rx_buff
[rx_queue
->next_to_clean
];
2987 struct page
*page
= rxb
->page
;
2991 void *buff_addr
= page_address(page
) + rxb
->page_offset
;
2993 skb
= build_skb(buff_addr
, GFAR_SKBFRAG_SIZE
);
2994 if (unlikely(!skb
)) {
2995 gfar_rx_alloc_err(rx_queue
);
2998 skb_reserve(skb
, RXBUF_ALIGNMENT
);
3002 dma_sync_single_range_for_cpu(rx_queue
->dev
, rxb
->dma
, rxb
->page_offset
,
3003 GFAR_RXB_TRUESIZE
, DMA_FROM_DEVICE
);
3005 if (gfar_add_rx_frag(rxb
, lstatus
, skb
, first
)) {
3006 /* reuse the free half of the page */
3007 gfar_reuse_rx_page(rx_queue
, rxb
);
3009 /* page cannot be reused, unmap it */
3010 dma_unmap_page(rx_queue
->dev
, rxb
->dma
,
3011 PAGE_SIZE
, DMA_FROM_DEVICE
);
3014 /* clear rxb content */
3020 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
3022 /* If valid headers were found, and valid sums
3023 * were verified, then we tell the kernel that no
3024 * checksumming is necessary. Otherwise, it is [FIXME]
3026 if ((be16_to_cpu(fcb
->flags
) & RXFCB_CSUM_MASK
) ==
3027 (RXFCB_CIP
| RXFCB_CTU
))
3028 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3030 skb_checksum_none_assert(skb
);
3033 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3034 static void gfar_process_frame(struct net_device
*ndev
, struct sk_buff
*skb
)
3036 struct gfar_private
*priv
= netdev_priv(ndev
);
3037 struct rxfcb
*fcb
= NULL
;
3039 /* fcb is at the beginning if exists */
3040 fcb
= (struct rxfcb
*)skb
->data
;
3042 /* Remove the FCB from the skb
3043 * Remove the padded bytes, if there are any
3045 if (priv
->uses_rxfcb
)
3046 skb_pull(skb
, GMAC_FCB_LEN
);
3048 /* Get receive timestamp from the skb */
3049 if (priv
->hwts_rx_en
) {
3050 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
3051 u64
*ns
= (u64
*) skb
->data
;
3053 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
3054 shhwtstamps
->hwtstamp
= ns_to_ktime(be64_to_cpu(*ns
));
3058 skb_pull(skb
, priv
->padding
);
3060 if (ndev
->features
& NETIF_F_RXCSUM
)
3061 gfar_rx_checksum(skb
, fcb
);
3063 /* Tell the skb what kind of packet this is */
3064 skb
->protocol
= eth_type_trans(skb
, ndev
);
3066 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3067 * Even if vlan rx accel is disabled, on some chips
3068 * RXFCB_VLN is pseudo randomly set.
3070 if (ndev
->features
& NETIF_F_HW_VLAN_CTAG_RX
&&
3071 be16_to_cpu(fcb
->flags
) & RXFCB_VLN
)
3072 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
),
3073 be16_to_cpu(fcb
->vlctl
));
3076 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3077 * until the budget/quota has been reached. Returns the number
3080 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
3082 struct net_device
*ndev
= rx_queue
->ndev
;
3083 struct gfar_private
*priv
= netdev_priv(ndev
);
3086 struct sk_buff
*skb
= rx_queue
->skb
;
3087 int cleaned_cnt
= gfar_rxbd_unused(rx_queue
);
3088 unsigned int total_bytes
= 0, total_pkts
= 0;
3090 /* Get the first full descriptor */
3091 i
= rx_queue
->next_to_clean
;
3093 while (rx_work_limit
--) {
3096 if (cleaned_cnt
>= GFAR_RX_BUFF_ALLOC
) {
3097 gfar_alloc_rx_buffs(rx_queue
, cleaned_cnt
);
3101 bdp
= &rx_queue
->rx_bd_base
[i
];
3102 lstatus
= be32_to_cpu(bdp
->lstatus
);
3103 if (lstatus
& BD_LFLAG(RXBD_EMPTY
))
3106 /* order rx buffer descriptor reads */
3109 /* fetch next to clean buffer from the ring */
3110 skb
= gfar_get_next_rxbuff(rx_queue
, lstatus
, skb
);
3117 if (unlikely(++i
== rx_queue
->rx_ring_size
))
3120 rx_queue
->next_to_clean
= i
;
3122 /* fetch next buffer if not the last in frame */
3123 if (!(lstatus
& BD_LFLAG(RXBD_LAST
)))
3126 if (unlikely(lstatus
& BD_LFLAG(RXBD_ERR
))) {
3127 count_errors(lstatus
, ndev
);
3129 /* discard faulty buffer */
3132 rx_queue
->stats
.rx_dropped
++;
3136 /* Increment the number of packets */
3138 total_bytes
+= skb
->len
;
3140 skb_record_rx_queue(skb
, rx_queue
->qindex
);
3142 gfar_process_frame(ndev
, skb
);
3144 /* Send the packet up the stack */
3145 napi_gro_receive(&rx_queue
->grp
->napi_rx
, skb
);
3150 /* Store incomplete frames for completion */
3151 rx_queue
->skb
= skb
;
3153 rx_queue
->stats
.rx_packets
+= total_pkts
;
3154 rx_queue
->stats
.rx_bytes
+= total_bytes
;
3157 gfar_alloc_rx_buffs(rx_queue
, cleaned_cnt
);
3159 /* Update Last Free RxBD pointer for LFC */
3160 if (unlikely(priv
->tx_actual_en
)) {
3161 u32 bdp_dma
= gfar_rxbd_dma_lastfree(rx_queue
);
3163 gfar_write(rx_queue
->rfbptr
, bdp_dma
);
3169 static int gfar_poll_rx_sq(struct napi_struct
*napi
, int budget
)
3171 struct gfar_priv_grp
*gfargrp
=
3172 container_of(napi
, struct gfar_priv_grp
, napi_rx
);
3173 struct gfar __iomem
*regs
= gfargrp
->regs
;
3174 struct gfar_priv_rx_q
*rx_queue
= gfargrp
->rx_queue
;
3177 /* Clear IEVENT, so interrupts aren't called again
3178 * because of the packets that have already arrived
3180 gfar_write(®s
->ievent
, IEVENT_RX_MASK
);
3182 work_done
= gfar_clean_rx_ring(rx_queue
, budget
);
3184 if (work_done
< budget
) {
3186 napi_complete_done(napi
, work_done
);
3187 /* Clear the halt bit in RSTAT */
3188 gfar_write(®s
->rstat
, gfargrp
->rstat
);
3190 spin_lock_irq(&gfargrp
->grplock
);
3191 imask
= gfar_read(®s
->imask
);
3192 imask
|= IMASK_RX_DEFAULT
;
3193 gfar_write(®s
->imask
, imask
);
3194 spin_unlock_irq(&gfargrp
->grplock
);
3200 static int gfar_poll_tx_sq(struct napi_struct
*napi
, int budget
)
3202 struct gfar_priv_grp
*gfargrp
=
3203 container_of(napi
, struct gfar_priv_grp
, napi_tx
);
3204 struct gfar __iomem
*regs
= gfargrp
->regs
;
3205 struct gfar_priv_tx_q
*tx_queue
= gfargrp
->tx_queue
;
3208 /* Clear IEVENT, so interrupts aren't called again
3209 * because of the packets that have already arrived
3211 gfar_write(®s
->ievent
, IEVENT_TX_MASK
);
3213 /* run Tx cleanup to completion */
3214 if (tx_queue
->tx_skbuff
[tx_queue
->skb_dirtytx
])
3215 gfar_clean_tx_ring(tx_queue
);
3217 napi_complete(napi
);
3219 spin_lock_irq(&gfargrp
->grplock
);
3220 imask
= gfar_read(®s
->imask
);
3221 imask
|= IMASK_TX_DEFAULT
;
3222 gfar_write(®s
->imask
, imask
);
3223 spin_unlock_irq(&gfargrp
->grplock
);
3228 static int gfar_poll_rx(struct napi_struct
*napi
, int budget
)
3230 struct gfar_priv_grp
*gfargrp
=
3231 container_of(napi
, struct gfar_priv_grp
, napi_rx
);
3232 struct gfar_private
*priv
= gfargrp
->priv
;
3233 struct gfar __iomem
*regs
= gfargrp
->regs
;
3234 struct gfar_priv_rx_q
*rx_queue
= NULL
;
3235 int work_done
= 0, work_done_per_q
= 0;
3236 int i
, budget_per_q
= 0;
3237 unsigned long rstat_rxf
;
3240 /* Clear IEVENT, so interrupts aren't called again
3241 * because of the packets that have already arrived
3243 gfar_write(®s
->ievent
, IEVENT_RX_MASK
);
3245 rstat_rxf
= gfar_read(®s
->rstat
) & RSTAT_RXF_MASK
;
3247 num_act_queues
= bitmap_weight(&rstat_rxf
, MAX_RX_QS
);
3249 budget_per_q
= budget
/num_act_queues
;
3251 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
3252 /* skip queue if not active */
3253 if (!(rstat_rxf
& (RSTAT_CLEAR_RXF0
>> i
)))
3256 rx_queue
= priv
->rx_queue
[i
];
3258 gfar_clean_rx_ring(rx_queue
, budget_per_q
);
3259 work_done
+= work_done_per_q
;
3261 /* finished processing this queue */
3262 if (work_done_per_q
< budget_per_q
) {
3263 /* clear active queue hw indication */
3264 gfar_write(®s
->rstat
,
3265 RSTAT_CLEAR_RXF0
>> i
);
3268 if (!num_act_queues
)
3273 if (!num_act_queues
) {
3275 napi_complete_done(napi
, work_done
);
3277 /* Clear the halt bit in RSTAT */
3278 gfar_write(®s
->rstat
, gfargrp
->rstat
);
3280 spin_lock_irq(&gfargrp
->grplock
);
3281 imask
= gfar_read(®s
->imask
);
3282 imask
|= IMASK_RX_DEFAULT
;
3283 gfar_write(®s
->imask
, imask
);
3284 spin_unlock_irq(&gfargrp
->grplock
);
3290 static int gfar_poll_tx(struct napi_struct
*napi
, int budget
)
3292 struct gfar_priv_grp
*gfargrp
=
3293 container_of(napi
, struct gfar_priv_grp
, napi_tx
);
3294 struct gfar_private
*priv
= gfargrp
->priv
;
3295 struct gfar __iomem
*regs
= gfargrp
->regs
;
3296 struct gfar_priv_tx_q
*tx_queue
= NULL
;
3297 int has_tx_work
= 0;
3300 /* Clear IEVENT, so interrupts aren't called again
3301 * because of the packets that have already arrived
3303 gfar_write(®s
->ievent
, IEVENT_TX_MASK
);
3305 for_each_set_bit(i
, &gfargrp
->tx_bit_map
, priv
->num_tx_queues
) {
3306 tx_queue
= priv
->tx_queue
[i
];
3307 /* run Tx cleanup to completion */
3308 if (tx_queue
->tx_skbuff
[tx_queue
->skb_dirtytx
]) {
3309 gfar_clean_tx_ring(tx_queue
);
3316 napi_complete(napi
);
3318 spin_lock_irq(&gfargrp
->grplock
);
3319 imask
= gfar_read(®s
->imask
);
3320 imask
|= IMASK_TX_DEFAULT
;
3321 gfar_write(®s
->imask
, imask
);
3322 spin_unlock_irq(&gfargrp
->grplock
);
3329 #ifdef CONFIG_NET_POLL_CONTROLLER
3330 /* Polling 'interrupt' - used by things like netconsole to send skbs
3331 * without having to re-enable interrupts. It's not called while
3332 * the interrupt routine is executing.
3334 static void gfar_netpoll(struct net_device
*dev
)
3336 struct gfar_private
*priv
= netdev_priv(dev
);
3339 /* If the device has multiple interrupts, run tx/rx */
3340 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
3341 for (i
= 0; i
< priv
->num_grps
; i
++) {
3342 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[i
];
3344 disable_irq(gfar_irq(grp
, TX
)->irq
);
3345 disable_irq(gfar_irq(grp
, RX
)->irq
);
3346 disable_irq(gfar_irq(grp
, ER
)->irq
);
3347 gfar_interrupt(gfar_irq(grp
, TX
)->irq
, grp
);
3348 enable_irq(gfar_irq(grp
, ER
)->irq
);
3349 enable_irq(gfar_irq(grp
, RX
)->irq
);
3350 enable_irq(gfar_irq(grp
, TX
)->irq
);
3353 for (i
= 0; i
< priv
->num_grps
; i
++) {
3354 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[i
];
3356 disable_irq(gfar_irq(grp
, TX
)->irq
);
3357 gfar_interrupt(gfar_irq(grp
, TX
)->irq
, grp
);
3358 enable_irq(gfar_irq(grp
, TX
)->irq
);
3364 /* The interrupt handler for devices with one interrupt */
3365 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
3367 struct gfar_priv_grp
*gfargrp
= grp_id
;
3369 /* Save ievent for future reference */
3370 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
3372 /* Check for reception */
3373 if (events
& IEVENT_RX_MASK
)
3374 gfar_receive(irq
, grp_id
);
3376 /* Check for transmit completion */
3377 if (events
& IEVENT_TX_MASK
)
3378 gfar_transmit(irq
, grp_id
);
3380 /* Check for errors */
3381 if (events
& IEVENT_ERR_MASK
)
3382 gfar_error(irq
, grp_id
);
3387 /* Called every time the controller might need to be made
3388 * aware of new link state. The PHY code conveys this
3389 * information through variables in the phydev structure, and this
3390 * function converts those variables into the appropriate
3391 * register values, and can bring down the device if needed.
3393 static void adjust_link(struct net_device
*dev
)
3395 struct gfar_private
*priv
= netdev_priv(dev
);
3396 struct phy_device
*phydev
= dev
->phydev
;
3398 if (unlikely(phydev
->link
!= priv
->oldlink
||
3399 (phydev
->link
&& (phydev
->duplex
!= priv
->oldduplex
||
3400 phydev
->speed
!= priv
->oldspeed
))))
3401 gfar_update_link_state(priv
);
3404 /* Update the hash table based on the current list of multicast
3405 * addresses we subscribe to. Also, change the promiscuity of
3406 * the device based on the flags (this function is called
3407 * whenever dev->flags is changed
3409 static void gfar_set_multi(struct net_device
*dev
)
3411 struct netdev_hw_addr
*ha
;
3412 struct gfar_private
*priv
= netdev_priv(dev
);
3413 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3416 if (dev
->flags
& IFF_PROMISC
) {
3417 /* Set RCTRL to PROM */
3418 tempval
= gfar_read(®s
->rctrl
);
3419 tempval
|= RCTRL_PROM
;
3420 gfar_write(®s
->rctrl
, tempval
);
3422 /* Set RCTRL to not PROM */
3423 tempval
= gfar_read(®s
->rctrl
);
3424 tempval
&= ~(RCTRL_PROM
);
3425 gfar_write(®s
->rctrl
, tempval
);
3428 if (dev
->flags
& IFF_ALLMULTI
) {
3429 /* Set the hash to rx all multicast frames */
3430 gfar_write(®s
->igaddr0
, 0xffffffff);
3431 gfar_write(®s
->igaddr1
, 0xffffffff);
3432 gfar_write(®s
->igaddr2
, 0xffffffff);
3433 gfar_write(®s
->igaddr3
, 0xffffffff);
3434 gfar_write(®s
->igaddr4
, 0xffffffff);
3435 gfar_write(®s
->igaddr5
, 0xffffffff);
3436 gfar_write(®s
->igaddr6
, 0xffffffff);
3437 gfar_write(®s
->igaddr7
, 0xffffffff);
3438 gfar_write(®s
->gaddr0
, 0xffffffff);
3439 gfar_write(®s
->gaddr1
, 0xffffffff);
3440 gfar_write(®s
->gaddr2
, 0xffffffff);
3441 gfar_write(®s
->gaddr3
, 0xffffffff);
3442 gfar_write(®s
->gaddr4
, 0xffffffff);
3443 gfar_write(®s
->gaddr5
, 0xffffffff);
3444 gfar_write(®s
->gaddr6
, 0xffffffff);
3445 gfar_write(®s
->gaddr7
, 0xffffffff);
3450 /* zero out the hash */
3451 gfar_write(®s
->igaddr0
, 0x0);
3452 gfar_write(®s
->igaddr1
, 0x0);
3453 gfar_write(®s
->igaddr2
, 0x0);
3454 gfar_write(®s
->igaddr3
, 0x0);
3455 gfar_write(®s
->igaddr4
, 0x0);
3456 gfar_write(®s
->igaddr5
, 0x0);
3457 gfar_write(®s
->igaddr6
, 0x0);
3458 gfar_write(®s
->igaddr7
, 0x0);
3459 gfar_write(®s
->gaddr0
, 0x0);
3460 gfar_write(®s
->gaddr1
, 0x0);
3461 gfar_write(®s
->gaddr2
, 0x0);
3462 gfar_write(®s
->gaddr3
, 0x0);
3463 gfar_write(®s
->gaddr4
, 0x0);
3464 gfar_write(®s
->gaddr5
, 0x0);
3465 gfar_write(®s
->gaddr6
, 0x0);
3466 gfar_write(®s
->gaddr7
, 0x0);
3468 /* If we have extended hash tables, we need to
3469 * clear the exact match registers to prepare for
3472 if (priv
->extended_hash
) {
3473 em_num
= GFAR_EM_NUM
+ 1;
3474 gfar_clear_exact_match(dev
);
3481 if (netdev_mc_empty(dev
))
3484 /* Parse the list, and set the appropriate bits */
3485 netdev_for_each_mc_addr(ha
, dev
) {
3487 gfar_set_mac_for_addr(dev
, idx
, ha
->addr
);
3490 gfar_set_hash_for_addr(dev
, ha
->addr
);
3496 /* Clears each of the exact match registers to zero, so they
3497 * don't interfere with normal reception
3499 static void gfar_clear_exact_match(struct net_device
*dev
)
3502 static const u8 zero_arr
[ETH_ALEN
] = {0, 0, 0, 0, 0, 0};
3504 for (idx
= 1; idx
< GFAR_EM_NUM
+ 1; idx
++)
3505 gfar_set_mac_for_addr(dev
, idx
, zero_arr
);
3508 /* Set the appropriate hash bit for the given addr */
3509 /* The algorithm works like so:
3510 * 1) Take the Destination Address (ie the multicast address), and
3511 * do a CRC on it (little endian), and reverse the bits of the
3513 * 2) Use the 8 most significant bits as a hash into a 256-entry
3514 * table. The table is controlled through 8 32-bit registers:
3515 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3516 * gaddr7. This means that the 3 most significant bits in the
3517 * hash index which gaddr register to use, and the 5 other bits
3518 * indicate which bit (assuming an IBM numbering scheme, which
3519 * for PowerPC (tm) is usually the case) in the register holds
3522 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
3525 struct gfar_private
*priv
= netdev_priv(dev
);
3526 u32 result
= ether_crc(ETH_ALEN
, addr
);
3527 int width
= priv
->hash_width
;
3528 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
3529 u8 whichreg
= result
>> (32 - width
+ 5);
3530 u32 value
= (1 << (31-whichbit
));
3532 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
3534 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
3538 /* There are multiple MAC Address register pairs on some controllers
3539 * This function sets the numth pair to a given address
3541 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
3544 struct gfar_private
*priv
= netdev_priv(dev
);
3545 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3547 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
3551 /* For a station address of 0x12345678ABCD in transmission
3552 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3553 * MACnADDR2 is set to 0x34120000.
3555 tempval
= (addr
[5] << 24) | (addr
[4] << 16) |
3556 (addr
[3] << 8) | addr
[2];
3558 gfar_write(macptr
, tempval
);
3560 tempval
= (addr
[1] << 24) | (addr
[0] << 16);
3562 gfar_write(macptr
+1, tempval
);
3565 /* GFAR error interrupt handler */
3566 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
3568 struct gfar_priv_grp
*gfargrp
= grp_id
;
3569 struct gfar __iomem
*regs
= gfargrp
->regs
;
3570 struct gfar_private
*priv
= gfargrp
->priv
;
3571 struct net_device
*dev
= priv
->ndev
;
3573 /* Save ievent for future reference */
3574 u32 events
= gfar_read(®s
->ievent
);
3577 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
3579 /* Magic Packet is not an error. */
3580 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
3581 (events
& IEVENT_MAG
))
3582 events
&= ~IEVENT_MAG
;
3585 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
3587 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3588 events
, gfar_read(®s
->imask
));
3590 /* Update the error counters */
3591 if (events
& IEVENT_TXE
) {
3592 dev
->stats
.tx_errors
++;
3594 if (events
& IEVENT_LC
)
3595 dev
->stats
.tx_window_errors
++;
3596 if (events
& IEVENT_CRL
)
3597 dev
->stats
.tx_aborted_errors
++;
3598 if (events
& IEVENT_XFUN
) {
3599 netif_dbg(priv
, tx_err
, dev
,
3600 "TX FIFO underrun, packet dropped\n");
3601 dev
->stats
.tx_dropped
++;
3602 atomic64_inc(&priv
->extra_stats
.tx_underrun
);
3604 schedule_work(&priv
->reset_task
);
3606 netif_dbg(priv
, tx_err
, dev
, "Transmit Error\n");
3608 if (events
& IEVENT_BSY
) {
3609 dev
->stats
.rx_over_errors
++;
3610 atomic64_inc(&priv
->extra_stats
.rx_bsy
);
3612 netif_dbg(priv
, rx_err
, dev
, "busy error (rstat: %x)\n",
3613 gfar_read(®s
->rstat
));
3615 if (events
& IEVENT_BABR
) {
3616 dev
->stats
.rx_errors
++;
3617 atomic64_inc(&priv
->extra_stats
.rx_babr
);
3619 netif_dbg(priv
, rx_err
, dev
, "babbling RX error\n");
3621 if (events
& IEVENT_EBERR
) {
3622 atomic64_inc(&priv
->extra_stats
.eberr
);
3623 netif_dbg(priv
, rx_err
, dev
, "bus error\n");
3625 if (events
& IEVENT_RXC
)
3626 netif_dbg(priv
, rx_status
, dev
, "control frame\n");
3628 if (events
& IEVENT_BABT
) {
3629 atomic64_inc(&priv
->extra_stats
.tx_babt
);
3630 netif_dbg(priv
, tx_err
, dev
, "babbling TX error\n");
3635 static u32
gfar_get_flowctrl_cfg(struct gfar_private
*priv
)
3637 struct net_device
*ndev
= priv
->ndev
;
3638 struct phy_device
*phydev
= ndev
->phydev
;
3641 if (!phydev
->duplex
)
3644 if (!priv
->pause_aneg_en
) {
3645 if (priv
->tx_pause_en
)
3646 val
|= MACCFG1_TX_FLOW
;
3647 if (priv
->rx_pause_en
)
3648 val
|= MACCFG1_RX_FLOW
;
3650 u16 lcl_adv
, rmt_adv
;
3652 /* get link partner capabilities */
3655 rmt_adv
= LPA_PAUSE_CAP
;
3656 if (phydev
->asym_pause
)
3657 rmt_adv
|= LPA_PAUSE_ASYM
;
3660 if (phydev
->advertising
& ADVERTISED_Pause
)
3661 lcl_adv
|= ADVERTISE_PAUSE_CAP
;
3662 if (phydev
->advertising
& ADVERTISED_Asym_Pause
)
3663 lcl_adv
|= ADVERTISE_PAUSE_ASYM
;
3665 flowctrl
= mii_resolve_flowctrl_fdx(lcl_adv
, rmt_adv
);
3666 if (flowctrl
& FLOW_CTRL_TX
)
3667 val
|= MACCFG1_TX_FLOW
;
3668 if (flowctrl
& FLOW_CTRL_RX
)
3669 val
|= MACCFG1_RX_FLOW
;
3675 static noinline
void gfar_update_link_state(struct gfar_private
*priv
)
3677 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3678 struct net_device
*ndev
= priv
->ndev
;
3679 struct phy_device
*phydev
= ndev
->phydev
;
3680 struct gfar_priv_rx_q
*rx_queue
= NULL
;
3683 if (unlikely(test_bit(GFAR_RESETTING
, &priv
->state
)))
3687 u32 tempval1
= gfar_read(®s
->maccfg1
);
3688 u32 tempval
= gfar_read(®s
->maccfg2
);
3689 u32 ecntrl
= gfar_read(®s
->ecntrl
);
3690 u32 tx_flow_oldval
= (tempval
& MACCFG1_TX_FLOW
);
3692 if (phydev
->duplex
!= priv
->oldduplex
) {
3693 if (!(phydev
->duplex
))
3694 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
3696 tempval
|= MACCFG2_FULL_DUPLEX
;
3698 priv
->oldduplex
= phydev
->duplex
;
3701 if (phydev
->speed
!= priv
->oldspeed
) {
3702 switch (phydev
->speed
) {
3705 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
3707 ecntrl
&= ~(ECNTRL_R100
);
3712 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
3714 /* Reduced mode distinguishes
3715 * between 10 and 100
3717 if (phydev
->speed
== SPEED_100
)
3718 ecntrl
|= ECNTRL_R100
;
3720 ecntrl
&= ~(ECNTRL_R100
);
3723 netif_warn(priv
, link
, priv
->ndev
,
3724 "Ack! Speed (%d) is not 10/100/1000!\n",
3729 priv
->oldspeed
= phydev
->speed
;
3732 tempval1
&= ~(MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
3733 tempval1
|= gfar_get_flowctrl_cfg(priv
);
3735 /* Turn last free buffer recording on */
3736 if ((tempval1
& MACCFG1_TX_FLOW
) && !tx_flow_oldval
) {
3737 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
3740 rx_queue
= priv
->rx_queue
[i
];
3741 bdp_dma
= gfar_rxbd_dma_lastfree(rx_queue
);
3742 gfar_write(rx_queue
->rfbptr
, bdp_dma
);
3745 priv
->tx_actual_en
= 1;
3748 if (unlikely(!(tempval1
& MACCFG1_TX_FLOW
) && tx_flow_oldval
))
3749 priv
->tx_actual_en
= 0;
3751 gfar_write(®s
->maccfg1
, tempval1
);
3752 gfar_write(®s
->maccfg2
, tempval
);
3753 gfar_write(®s
->ecntrl
, ecntrl
);
3758 } else if (priv
->oldlink
) {
3761 priv
->oldduplex
= -1;
3764 if (netif_msg_link(priv
))
3765 phy_print_status(phydev
);
3768 static const struct of_device_id gfar_match
[] =
3772 .compatible
= "gianfar",
3775 .compatible
= "fsl,etsec2",
3779 MODULE_DEVICE_TABLE(of
, gfar_match
);
3781 /* Structure for a device driver */
3782 static struct platform_driver gfar_driver
= {
3784 .name
= "fsl-gianfar",
3786 .of_match_table
= gfar_match
,
3788 .probe
= gfar_probe
,
3789 .remove
= gfar_remove
,
3792 module_platform_driver(gfar_driver
);