1 /*******************************************************************************
2 * Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2006 Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 ******************************************************************************/
24 /* ethtool support for e1000 */
27 #include <linux/jiffies.h>
28 #include <linux/uaccess.h>
30 enum {NETDEV_STATS
, E1000_STATS
};
33 char stat_string
[ETH_GSTRING_LEN
];
39 #define E1000_STAT(m) E1000_STATS, \
40 sizeof(((struct e1000_adapter *)0)->m), \
41 offsetof(struct e1000_adapter, m)
42 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
43 sizeof(((struct net_device *)0)->m), \
44 offsetof(struct net_device, m)
46 static const struct e1000_stats e1000_gstrings_stats
[] = {
47 { "rx_packets", E1000_STAT(stats
.gprc
) },
48 { "tx_packets", E1000_STAT(stats
.gptc
) },
49 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
50 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
51 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
52 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
53 { "rx_multicast", E1000_STAT(stats
.mprc
) },
54 { "tx_multicast", E1000_STAT(stats
.mptc
) },
55 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
56 { "tx_errors", E1000_STAT(stats
.txerrc
) },
57 { "tx_dropped", E1000_NETDEV_STAT(stats
.tx_dropped
) },
58 { "multicast", E1000_STAT(stats
.mprc
) },
59 { "collisions", E1000_STAT(stats
.colc
) },
60 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
61 { "rx_over_errors", E1000_NETDEV_STAT(stats
.rx_over_errors
) },
62 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
63 { "rx_frame_errors", E1000_NETDEV_STAT(stats
.rx_frame_errors
) },
64 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
65 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
66 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
67 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
68 { "tx_fifo_errors", E1000_NETDEV_STAT(stats
.tx_fifo_errors
) },
69 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats
.tx_heartbeat_errors
) },
70 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
71 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
72 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
73 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
74 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
76 { "tx_restart_queue", E1000_STAT(restart_queue
) },
77 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
78 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
79 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
80 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
82 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
83 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
84 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
85 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
86 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
89 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
90 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
91 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
92 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
95 #define E1000_QUEUE_STATS_LEN 0
96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
99 "Register test (offline)", "Eeprom test (offline)",
100 "Interrupt test (offline)", "Loopback test (offline)",
101 "Link test (on/offline)"
104 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106 static int e1000_get_settings(struct net_device
*netdev
,
107 struct ethtool_cmd
*ecmd
)
109 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
110 struct e1000_hw
*hw
= &adapter
->hw
;
112 if (hw
->media_type
== e1000_media_type_copper
) {
113 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
114 SUPPORTED_10baseT_Full
|
115 SUPPORTED_100baseT_Half
|
116 SUPPORTED_100baseT_Full
|
117 SUPPORTED_1000baseT_Full
|
120 ecmd
->advertising
= ADVERTISED_TP
;
122 if (hw
->autoneg
== 1) {
123 ecmd
->advertising
|= ADVERTISED_Autoneg
;
124 /* the e1000 autoneg seems to match ethtool nicely */
125 ecmd
->advertising
|= hw
->autoneg_advertised
;
128 ecmd
->port
= PORT_TP
;
129 ecmd
->phy_address
= hw
->phy_addr
;
131 if (hw
->mac_type
== e1000_82543
)
132 ecmd
->transceiver
= XCVR_EXTERNAL
;
134 ecmd
->transceiver
= XCVR_INTERNAL
;
137 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
141 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
145 ecmd
->port
= PORT_FIBRE
;
147 if (hw
->mac_type
>= e1000_82545
)
148 ecmd
->transceiver
= XCVR_INTERNAL
;
150 ecmd
->transceiver
= XCVR_EXTERNAL
;
153 if (er32(STATUS
) & E1000_STATUS_LU
) {
154 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
155 &adapter
->link_duplex
);
156 ethtool_cmd_speed_set(ecmd
, adapter
->link_speed
);
158 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
159 * and HALF_DUPLEX != DUPLEX_HALF
161 if (adapter
->link_duplex
== FULL_DUPLEX
)
162 ecmd
->duplex
= DUPLEX_FULL
;
164 ecmd
->duplex
= DUPLEX_HALF
;
166 ethtool_cmd_speed_set(ecmd
, SPEED_UNKNOWN
);
167 ecmd
->duplex
= DUPLEX_UNKNOWN
;
170 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
171 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
173 /* MDI-X => 1; MDI => 0 */
174 if ((hw
->media_type
== e1000_media_type_copper
) &&
175 netif_carrier_ok(netdev
))
176 ecmd
->eth_tp_mdix
= (!!adapter
->phy_info
.mdix_mode
?
177 ETH_TP_MDI_X
: ETH_TP_MDI
);
179 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
181 if (hw
->mdix
== AUTO_ALL_MODES
)
182 ecmd
->eth_tp_mdix_ctrl
= ETH_TP_MDI_AUTO
;
184 ecmd
->eth_tp_mdix_ctrl
= hw
->mdix
;
188 static int e1000_set_settings(struct net_device
*netdev
,
189 struct ethtool_cmd
*ecmd
)
191 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
192 struct e1000_hw
*hw
= &adapter
->hw
;
194 /* MDI setting is only allowed when autoneg enabled because
195 * some hardware doesn't allow MDI setting when speed or
198 if (ecmd
->eth_tp_mdix_ctrl
) {
199 if (hw
->media_type
!= e1000_media_type_copper
)
202 if ((ecmd
->eth_tp_mdix_ctrl
!= ETH_TP_MDI_AUTO
) &&
203 (ecmd
->autoneg
!= AUTONEG_ENABLE
)) {
204 e_err(drv
, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
209 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
212 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
214 if (hw
->media_type
== e1000_media_type_fiber
)
215 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
219 hw
->autoneg_advertised
= ecmd
->advertising
|
222 ecmd
->advertising
= hw
->autoneg_advertised
;
224 u32 speed
= ethtool_cmd_speed(ecmd
);
225 /* calling this overrides forced MDI setting */
226 if (e1000_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
227 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
232 /* MDI-X => 2; MDI => 1; Auto => 3 */
233 if (ecmd
->eth_tp_mdix_ctrl
) {
234 if (ecmd
->eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO
)
235 hw
->mdix
= AUTO_ALL_MODES
;
237 hw
->mdix
= ecmd
->eth_tp_mdix_ctrl
;
242 if (netif_running(adapter
->netdev
)) {
246 e1000_reset(adapter
);
248 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
252 static u32
e1000_get_link(struct net_device
*netdev
)
254 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
256 /* If the link is not reported up to netdev, interrupts are disabled,
257 * and so the physical link state may have changed since we last
258 * looked. Set get_link_status to make sure that the true link
259 * state is interrogated, rather than pulling a cached and possibly
260 * stale link state from the driver.
262 if (!netif_carrier_ok(netdev
))
263 adapter
->hw
.get_link_status
= 1;
265 return e1000_has_link(adapter
);
268 static void e1000_get_pauseparam(struct net_device
*netdev
,
269 struct ethtool_pauseparam
*pause
)
271 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
272 struct e1000_hw
*hw
= &adapter
->hw
;
275 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
277 if (hw
->fc
== E1000_FC_RX_PAUSE
) {
279 } else if (hw
->fc
== E1000_FC_TX_PAUSE
) {
281 } else if (hw
->fc
== E1000_FC_FULL
) {
287 static int e1000_set_pauseparam(struct net_device
*netdev
,
288 struct ethtool_pauseparam
*pause
)
290 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
291 struct e1000_hw
*hw
= &adapter
->hw
;
294 adapter
->fc_autoneg
= pause
->autoneg
;
296 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
299 if (pause
->rx_pause
&& pause
->tx_pause
)
300 hw
->fc
= E1000_FC_FULL
;
301 else if (pause
->rx_pause
&& !pause
->tx_pause
)
302 hw
->fc
= E1000_FC_RX_PAUSE
;
303 else if (!pause
->rx_pause
&& pause
->tx_pause
)
304 hw
->fc
= E1000_FC_TX_PAUSE
;
305 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
306 hw
->fc
= E1000_FC_NONE
;
308 hw
->original_fc
= hw
->fc
;
310 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
311 if (netif_running(adapter
->netdev
)) {
315 e1000_reset(adapter
);
318 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
319 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
321 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
325 static u32
e1000_get_msglevel(struct net_device
*netdev
)
327 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
329 return adapter
->msg_enable
;
332 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
334 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
336 adapter
->msg_enable
= data
;
339 static int e1000_get_regs_len(struct net_device
*netdev
)
341 #define E1000_REGS_LEN 32
342 return E1000_REGS_LEN
* sizeof(u32
);
345 static void e1000_get_regs(struct net_device
*netdev
, struct ethtool_regs
*regs
,
348 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
349 struct e1000_hw
*hw
= &adapter
->hw
;
353 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
355 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
357 regs_buff
[0] = er32(CTRL
);
358 regs_buff
[1] = er32(STATUS
);
360 regs_buff
[2] = er32(RCTL
);
361 regs_buff
[3] = er32(RDLEN
);
362 regs_buff
[4] = er32(RDH
);
363 regs_buff
[5] = er32(RDT
);
364 regs_buff
[6] = er32(RDTR
);
366 regs_buff
[7] = er32(TCTL
);
367 regs_buff
[8] = er32(TDLEN
);
368 regs_buff
[9] = er32(TDH
);
369 regs_buff
[10] = er32(TDT
);
370 regs_buff
[11] = er32(TIDV
);
372 regs_buff
[12] = hw
->phy_type
; /* PHY type (IGP=1, M88=0) */
373 if (hw
->phy_type
== e1000_phy_igp
) {
374 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
375 IGP01E1000_PHY_AGC_A
);
376 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
377 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
378 regs_buff
[13] = (u32
)phy_data
; /* cable length */
379 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
380 IGP01E1000_PHY_AGC_B
);
381 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
382 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
383 regs_buff
[14] = (u32
)phy_data
; /* cable length */
384 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
385 IGP01E1000_PHY_AGC_C
);
386 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
387 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
388 regs_buff
[15] = (u32
)phy_data
; /* cable length */
389 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
390 IGP01E1000_PHY_AGC_D
);
391 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
392 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
393 regs_buff
[16] = (u32
)phy_data
; /* cable length */
394 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
395 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
396 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
397 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
398 regs_buff
[18] = (u32
)phy_data
; /* cable polarity */
399 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
400 IGP01E1000_PHY_PCS_INIT_REG
);
401 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
402 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
403 regs_buff
[19] = (u32
)phy_data
; /* cable polarity */
404 regs_buff
[20] = 0; /* polarity correction enabled (always) */
405 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
406 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
407 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
409 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
410 regs_buff
[13] = (u32
)phy_data
; /* cable length */
411 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
412 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
413 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
414 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
415 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
416 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
417 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
418 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
419 /* phy receive errors */
420 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
421 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
423 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
424 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
425 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
426 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
427 if (hw
->mac_type
>= e1000_82540
&&
428 hw
->media_type
== e1000_media_type_copper
) {
429 regs_buff
[26] = er32(MANC
);
433 static int e1000_get_eeprom_len(struct net_device
*netdev
)
435 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
436 struct e1000_hw
*hw
= &adapter
->hw
;
438 return hw
->eeprom
.word_size
* 2;
441 static int e1000_get_eeprom(struct net_device
*netdev
,
442 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
444 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
445 struct e1000_hw
*hw
= &adapter
->hw
;
447 int first_word
, last_word
;
451 if (eeprom
->len
== 0)
454 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
456 first_word
= eeprom
->offset
>> 1;
457 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
459 eeprom_buff
= kmalloc(sizeof(u16
) *
460 (last_word
- first_word
+ 1), GFP_KERNEL
);
464 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
465 ret_val
= e1000_read_eeprom(hw
, first_word
,
466 last_word
- first_word
+ 1,
469 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
470 ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
477 /* Device's eeprom is always little-endian, word addressable */
478 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
479 le16_to_cpus(&eeprom_buff
[i
]);
481 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
488 static int e1000_set_eeprom(struct net_device
*netdev
,
489 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
491 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
492 struct e1000_hw
*hw
= &adapter
->hw
;
495 int max_len
, first_word
, last_word
, ret_val
= 0;
498 if (eeprom
->len
== 0)
501 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
504 max_len
= hw
->eeprom
.word_size
* 2;
506 first_word
= eeprom
->offset
>> 1;
507 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
508 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
512 ptr
= (void *)eeprom_buff
;
514 if (eeprom
->offset
& 1) {
515 /* need read/modify/write of first changed EEPROM word
516 * only the second byte of the word is being modified
518 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
522 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
523 /* need read/modify/write of last changed EEPROM word
524 * only the first byte of the word is being modified
526 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
527 &eeprom_buff
[last_word
- first_word
]);
530 /* Device's eeprom is always little-endian, word addressable */
531 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
532 le16_to_cpus(&eeprom_buff
[i
]);
534 memcpy(ptr
, bytes
, eeprom
->len
);
536 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
537 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
539 ret_val
= e1000_write_eeprom(hw
, first_word
,
540 last_word
- first_word
+ 1, eeprom_buff
);
542 /* Update the checksum over the first part of the EEPROM if needed */
543 if ((ret_val
== 0) && (first_word
<= EEPROM_CHECKSUM_REG
))
544 e1000_update_eeprom_checksum(hw
);
550 static void e1000_get_drvinfo(struct net_device
*netdev
,
551 struct ethtool_drvinfo
*drvinfo
)
553 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
555 strlcpy(drvinfo
->driver
, e1000_driver_name
,
556 sizeof(drvinfo
->driver
));
557 strlcpy(drvinfo
->version
, e1000_driver_version
,
558 sizeof(drvinfo
->version
));
560 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
561 sizeof(drvinfo
->bus_info
));
564 static void e1000_get_ringparam(struct net_device
*netdev
,
565 struct ethtool_ringparam
*ring
)
567 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
568 struct e1000_hw
*hw
= &adapter
->hw
;
569 e1000_mac_type mac_type
= hw
->mac_type
;
570 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
571 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
573 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
575 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
577 ring
->rx_pending
= rxdr
->count
;
578 ring
->tx_pending
= txdr
->count
;
581 static int e1000_set_ringparam(struct net_device
*netdev
,
582 struct ethtool_ringparam
*ring
)
584 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
585 struct e1000_hw
*hw
= &adapter
->hw
;
586 e1000_mac_type mac_type
= hw
->mac_type
;
587 struct e1000_tx_ring
*txdr
, *tx_old
;
588 struct e1000_rx_ring
*rxdr
, *rx_old
;
591 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
594 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
597 if (netif_running(adapter
->netdev
))
600 tx_old
= adapter
->tx_ring
;
601 rx_old
= adapter
->rx_ring
;
604 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
),
609 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
),
614 adapter
->tx_ring
= txdr
;
615 adapter
->rx_ring
= rxdr
;
617 rxdr
->count
= max(ring
->rx_pending
, (u32
)E1000_MIN_RXD
);
618 rxdr
->count
= min(rxdr
->count
, (u32
)(mac_type
< e1000_82544
?
619 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
620 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
621 txdr
->count
= max(ring
->tx_pending
, (u32
)E1000_MIN_TXD
);
622 txdr
->count
= min(txdr
->count
, (u32
)(mac_type
< e1000_82544
?
623 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
624 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
626 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
627 txdr
[i
].count
= txdr
->count
;
628 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
629 rxdr
[i
].count
= rxdr
->count
;
631 if (netif_running(adapter
->netdev
)) {
632 /* Try to get new resources before deleting old */
633 err
= e1000_setup_all_rx_resources(adapter
);
636 err
= e1000_setup_all_tx_resources(adapter
);
640 /* save the new, restore the old in order to free it,
641 * then restore the new back again
644 adapter
->rx_ring
= rx_old
;
645 adapter
->tx_ring
= tx_old
;
646 e1000_free_all_rx_resources(adapter
);
647 e1000_free_all_tx_resources(adapter
);
650 adapter
->rx_ring
= rxdr
;
651 adapter
->tx_ring
= txdr
;
652 err
= e1000_up(adapter
);
657 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
660 e1000_free_all_rx_resources(adapter
);
662 adapter
->rx_ring
= rx_old
;
663 adapter
->tx_ring
= tx_old
;
670 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
674 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
677 struct e1000_hw
*hw
= &adapter
->hw
;
678 static const u32 test
[] = {
679 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
681 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
685 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
686 writel(write
& test
[i
], address
);
687 read
= readl(address
);
688 if (read
!= (write
& test
[i
] & mask
)) {
689 e_err(drv
, "pattern test reg %04X failed: "
690 "got 0x%08X expected 0x%08X\n",
691 reg
, read
, (write
& test
[i
] & mask
));
699 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
702 struct e1000_hw
*hw
= &adapter
->hw
;
703 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
706 writel(write
& mask
, address
);
707 read
= readl(address
);
708 if ((read
& mask
) != (write
& mask
)) {
709 e_err(drv
, "set/check reg %04X test failed: "
710 "got 0x%08X expected 0x%08X\n",
711 reg
, (read
& mask
), (write
& mask
));
718 #define REG_PATTERN_TEST(reg, mask, write) \
720 if (reg_pattern_test(adapter, data, \
721 (hw->mac_type >= e1000_82543) \
722 ? E1000_##reg : E1000_82542_##reg, \
727 #define REG_SET_AND_CHECK(reg, mask, write) \
729 if (reg_set_and_check(adapter, data, \
730 (hw->mac_type >= e1000_82543) \
731 ? E1000_##reg : E1000_82542_##reg, \
736 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
738 u32 value
, before
, after
;
740 struct e1000_hw
*hw
= &adapter
->hw
;
742 /* The status register is Read Only, so a write should fail.
743 * Some bits that get toggled are ignored.
746 /* there are several bits on newer hardware that are r/w */
749 before
= er32(STATUS
);
750 value
= (er32(STATUS
) & toggle
);
751 ew32(STATUS
, toggle
);
752 after
= er32(STATUS
) & toggle
;
753 if (value
!= after
) {
754 e_err(drv
, "failed STATUS register test got: "
755 "0x%08X expected: 0x%08X\n", after
, value
);
759 /* restore previous status */
760 ew32(STATUS
, before
);
762 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
763 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
764 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
765 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
767 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
769 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
770 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
771 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
772 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
773 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
774 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
775 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
778 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
781 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
782 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
784 if (hw
->mac_type
>= e1000_82543
) {
785 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
786 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
787 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
788 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
789 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
790 value
= E1000_RAR_ENTRIES
;
791 for (i
= 0; i
< value
; i
++) {
792 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2),
793 0x8003FFFF, 0xFFFFFFFF);
796 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
797 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
798 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
799 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
802 value
= E1000_MC_TBL_SIZE
;
803 for (i
= 0; i
< value
; i
++)
804 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
810 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
812 struct e1000_hw
*hw
= &adapter
->hw
;
818 /* Read and add up the contents of the EEPROM */
819 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
820 if ((e1000_read_eeprom(hw
, i
, 1, &temp
)) < 0) {
827 /* If Checksum is not Correct return error else test passed */
828 if ((checksum
!= (u16
)EEPROM_SUM
) && !(*data
))
834 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
836 struct net_device
*netdev
= (struct net_device
*)data
;
837 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
838 struct e1000_hw
*hw
= &adapter
->hw
;
840 adapter
->test_icr
|= er32(ICR
);
845 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
847 struct net_device
*netdev
= adapter
->netdev
;
849 bool shared_int
= true;
850 u32 irq
= adapter
->pdev
->irq
;
851 struct e1000_hw
*hw
= &adapter
->hw
;
855 /* NOTE: we don't test MSI interrupts here, yet
856 * Hook up test interrupt handler just for this test
858 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
861 else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
,
862 netdev
->name
, netdev
)) {
866 e_info(hw
, "testing %s interrupt\n", (shared_int
?
867 "shared" : "unshared"));
869 /* Disable all the interrupts */
870 ew32(IMC
, 0xFFFFFFFF);
874 /* Test each interrupt */
875 for (; i
< 10; i
++) {
876 /* Interrupt to test */
880 /* Disable the interrupt to be reported in
881 * the cause register and then force the same
882 * interrupt and see if one gets posted. If
883 * an interrupt was posted to the bus, the
886 adapter
->test_icr
= 0;
892 if (adapter
->test_icr
& mask
) {
898 /* Enable the interrupt to be reported in
899 * the cause register and then force the same
900 * interrupt and see if one gets posted. If
901 * an interrupt was not posted to the bus, the
904 adapter
->test_icr
= 0;
910 if (!(adapter
->test_icr
& mask
)) {
916 /* Disable the other interrupts to be reported in
917 * the cause register and then force the other
918 * interrupts and see if any get posted. If
919 * an interrupt was posted to the bus, the
922 adapter
->test_icr
= 0;
923 ew32(IMC
, ~mask
& 0x00007FFF);
924 ew32(ICS
, ~mask
& 0x00007FFF);
928 if (adapter
->test_icr
) {
935 /* Disable all the interrupts */
936 ew32(IMC
, 0xFFFFFFFF);
940 /* Unhook test interrupt handler */
941 free_irq(irq
, netdev
);
946 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
948 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
949 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
950 struct pci_dev
*pdev
= adapter
->pdev
;
953 if (txdr
->desc
&& txdr
->buffer_info
) {
954 for (i
= 0; i
< txdr
->count
; i
++) {
955 if (txdr
->buffer_info
[i
].dma
)
956 dma_unmap_single(&pdev
->dev
,
957 txdr
->buffer_info
[i
].dma
,
958 txdr
->buffer_info
[i
].length
,
960 if (txdr
->buffer_info
[i
].skb
)
961 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
965 if (rxdr
->desc
&& rxdr
->buffer_info
) {
966 for (i
= 0; i
< rxdr
->count
; i
++) {
967 if (rxdr
->buffer_info
[i
].dma
)
968 dma_unmap_single(&pdev
->dev
,
969 rxdr
->buffer_info
[i
].dma
,
972 kfree(rxdr
->buffer_info
[i
].rxbuf
.data
);
977 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
982 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
987 kfree(txdr
->buffer_info
);
988 txdr
->buffer_info
= NULL
;
989 kfree(rxdr
->buffer_info
);
990 rxdr
->buffer_info
= NULL
;
993 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
995 struct e1000_hw
*hw
= &adapter
->hw
;
996 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
997 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
998 struct pci_dev
*pdev
= adapter
->pdev
;
1002 /* Setup Tx descriptor ring and Tx buffers */
1005 txdr
->count
= E1000_DEFAULT_TXD
;
1007 txdr
->buffer_info
= kcalloc(txdr
->count
, sizeof(struct e1000_tx_buffer
),
1009 if (!txdr
->buffer_info
) {
1014 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1015 txdr
->size
= ALIGN(txdr
->size
, 4096);
1016 txdr
->desc
= dma_zalloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1022 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1024 ew32(TDBAL
, ((u64
)txdr
->dma
& 0x00000000FFFFFFFF));
1025 ew32(TDBAH
, ((u64
)txdr
->dma
>> 32));
1026 ew32(TDLEN
, txdr
->count
* sizeof(struct e1000_tx_desc
));
1029 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
|
1030 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1031 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1033 for (i
= 0; i
< txdr
->count
; i
++) {
1034 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1035 struct sk_buff
*skb
;
1036 unsigned int size
= 1024;
1038 skb
= alloc_skb(size
, GFP_KERNEL
);
1044 txdr
->buffer_info
[i
].skb
= skb
;
1045 txdr
->buffer_info
[i
].length
= skb
->len
;
1046 txdr
->buffer_info
[i
].dma
=
1047 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1049 if (dma_mapping_error(&pdev
->dev
, txdr
->buffer_info
[i
].dma
)) {
1053 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1054 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1055 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1056 E1000_TXD_CMD_IFCS
|
1058 tx_desc
->upper
.data
= 0;
1061 /* Setup Rx descriptor ring and Rx buffers */
1064 rxdr
->count
= E1000_DEFAULT_RXD
;
1066 rxdr
->buffer_info
= kcalloc(rxdr
->count
, sizeof(struct e1000_rx_buffer
),
1068 if (!rxdr
->buffer_info
) {
1073 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1074 rxdr
->desc
= dma_zalloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1080 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1083 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1084 ew32(RDBAL
, ((u64
)rxdr
->dma
& 0xFFFFFFFF));
1085 ew32(RDBAH
, ((u64
)rxdr
->dma
>> 32));
1086 ew32(RDLEN
, rxdr
->size
);
1089 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1090 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1091 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1094 for (i
= 0; i
< rxdr
->count
; i
++) {
1095 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1098 buf
= kzalloc(E1000_RXBUFFER_2048
+ NET_SKB_PAD
+ NET_IP_ALIGN
,
1104 rxdr
->buffer_info
[i
].rxbuf
.data
= buf
;
1106 rxdr
->buffer_info
[i
].dma
=
1107 dma_map_single(&pdev
->dev
,
1108 buf
+ NET_SKB_PAD
+ NET_IP_ALIGN
,
1109 E1000_RXBUFFER_2048
, DMA_FROM_DEVICE
);
1110 if (dma_mapping_error(&pdev
->dev
, rxdr
->buffer_info
[i
].dma
)) {
1114 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1120 e1000_free_desc_rings(adapter
);
1124 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1126 struct e1000_hw
*hw
= &adapter
->hw
;
1128 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129 e1000_write_phy_reg(hw
, 29, 0x001F);
1130 e1000_write_phy_reg(hw
, 30, 0x8FFC);
1131 e1000_write_phy_reg(hw
, 29, 0x001A);
1132 e1000_write_phy_reg(hw
, 30, 0x8FF0);
1135 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1137 struct e1000_hw
*hw
= &adapter
->hw
;
1140 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1141 * Extended PHY Specific Control Register to 25MHz clock. This
1142 * value defaults back to a 2.5MHz clock when the PHY is reset.
1144 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1145 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1146 e1000_write_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1148 /* In addition, because of the s/w reset above, we need to enable
1149 * CRS on TX. This must be set for both full and half duplex
1152 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1153 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1154 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1157 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1159 struct e1000_hw
*hw
= &adapter
->hw
;
1163 /* Setup the Device Control Register for PHY loopback test. */
1165 ctrl_reg
= er32(CTRL
);
1166 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1167 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1168 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1169 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1170 E1000_CTRL_FD
); /* Force Duplex to FULL */
1172 ew32(CTRL
, ctrl_reg
);
1174 /* Read the PHY Specific Control Register (0x10) */
1175 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1177 /* Clear Auto-Crossover bits in PHY Specific Control Register
1180 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1181 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1183 /* Perform software reset on the PHY */
1184 e1000_phy_reset(hw
);
1186 /* Have to setup TX_CLK and TX_CRS after software reset */
1187 e1000_phy_reset_clk_and_crs(adapter
);
1189 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8100);
1191 /* Wait for reset to complete. */
1194 /* Have to setup TX_CLK and TX_CRS after software reset */
1195 e1000_phy_reset_clk_and_crs(adapter
);
1197 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1198 e1000_phy_disable_receiver(adapter
);
1200 /* Set the loopback bit in the PHY control register. */
1201 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1202 phy_reg
|= MII_CR_LOOPBACK
;
1203 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1205 /* Setup TX_CLK and TX_CRS one more time. */
1206 e1000_phy_reset_clk_and_crs(adapter
);
1208 /* Check Phy Configuration */
1209 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1210 if (phy_reg
!= 0x4100)
1213 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1214 if (phy_reg
!= 0x0070)
1217 e1000_read_phy_reg(hw
, 29, &phy_reg
);
1218 if (phy_reg
!= 0x001A)
1224 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1226 struct e1000_hw
*hw
= &adapter
->hw
;
1230 hw
->autoneg
= false;
1232 if (hw
->phy_type
== e1000_phy_m88
) {
1233 /* Auto-MDI/MDIX Off */
1234 e1000_write_phy_reg(hw
,
1235 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1236 /* reset to update Auto-MDI/MDIX */
1237 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x9140);
1239 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8140);
1242 ctrl_reg
= er32(CTRL
);
1244 /* force 1000, set loopback */
1245 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x4140);
1247 /* Now set up the MAC to the same speed/duplex as the PHY. */
1248 ctrl_reg
= er32(CTRL
);
1249 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1250 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1251 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1252 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1253 E1000_CTRL_FD
); /* Force Duplex to FULL */
1255 if (hw
->media_type
== e1000_media_type_copper
&&
1256 hw
->phy_type
== e1000_phy_m88
)
1257 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1259 /* Set the ILOS bit on the fiber Nic is half
1260 * duplex link is detected.
1262 stat_reg
= er32(STATUS
);
1263 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1264 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1267 ew32(CTRL
, ctrl_reg
);
1269 /* Disable the receiver on the PHY so when a cable is plugged in, the
1270 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1272 if (hw
->phy_type
== e1000_phy_m88
)
1273 e1000_phy_disable_receiver(adapter
);
1280 static int e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1282 struct e1000_hw
*hw
= &adapter
->hw
;
1286 switch (hw
->mac_type
) {
1288 if (hw
->media_type
== e1000_media_type_copper
) {
1289 /* Attempt to setup Loopback mode on Non-integrated PHY.
1290 * Some PHY registers get corrupted at random, so
1291 * attempt this 10 times.
1293 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1303 case e1000_82545_rev_3
:
1305 case e1000_82546_rev_3
:
1307 case e1000_82541_rev_2
:
1309 case e1000_82547_rev_2
:
1310 return e1000_integrated_phy_loopback(adapter
);
1312 /* Default PHY loopback work is to read the MII
1313 * control register and assert bit 14 (loopback mode).
1315 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1316 phy_reg
|= MII_CR_LOOPBACK
;
1317 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1324 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1326 struct e1000_hw
*hw
= &adapter
->hw
;
1329 if (hw
->media_type
== e1000_media_type_fiber
||
1330 hw
->media_type
== e1000_media_type_internal_serdes
) {
1331 switch (hw
->mac_type
) {
1334 case e1000_82545_rev_3
:
1335 case e1000_82546_rev_3
:
1336 return e1000_set_phy_loopback(adapter
);
1339 rctl
|= E1000_RCTL_LBM_TCVR
;
1343 } else if (hw
->media_type
== e1000_media_type_copper
) {
1344 return e1000_set_phy_loopback(adapter
);
1350 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1352 struct e1000_hw
*hw
= &adapter
->hw
;
1357 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1360 switch (hw
->mac_type
) {
1363 case e1000_82545_rev_3
:
1364 case e1000_82546_rev_3
:
1367 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1368 if (phy_reg
& MII_CR_LOOPBACK
) {
1369 phy_reg
&= ~MII_CR_LOOPBACK
;
1370 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1371 e1000_phy_reset(hw
);
1377 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1378 unsigned int frame_size
)
1380 memset(skb
->data
, 0xFF, frame_size
);
1382 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1383 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1384 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1387 static int e1000_check_lbtest_frame(const unsigned char *data
,
1388 unsigned int frame_size
)
1391 if (*(data
+ 3) == 0xFF) {
1392 if ((*(data
+ frame_size
/ 2 + 10) == 0xBE) &&
1393 (*(data
+ frame_size
/ 2 + 12) == 0xAF)) {
1400 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1402 struct e1000_hw
*hw
= &adapter
->hw
;
1403 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1404 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1405 struct pci_dev
*pdev
= adapter
->pdev
;
1406 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
= 0;
1409 ew32(RDT
, rxdr
->count
- 1);
1411 /* Calculate the loop count based on the largest descriptor ring
1412 * The idea is to wrap the largest ring a number of times using 64
1413 * send/receive pairs during each loop
1416 if (rxdr
->count
<= txdr
->count
)
1417 lc
= ((txdr
->count
/ 64) * 2) + 1;
1419 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1422 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1423 for (i
= 0; i
< 64; i
++) { /* send the packets */
1424 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1426 dma_sync_single_for_device(&pdev
->dev
,
1427 txdr
->buffer_info
[k
].dma
,
1428 txdr
->buffer_info
[k
].length
,
1430 if (unlikely(++k
== txdr
->count
))
1434 E1000_WRITE_FLUSH();
1436 time
= jiffies
; /* set the start time for the receive */
1438 do { /* receive the sent packets */
1439 dma_sync_single_for_cpu(&pdev
->dev
,
1440 rxdr
->buffer_info
[l
].dma
,
1441 E1000_RXBUFFER_2048
,
1444 ret_val
= e1000_check_lbtest_frame(
1445 rxdr
->buffer_info
[l
].rxbuf
.data
+
1446 NET_SKB_PAD
+ NET_IP_ALIGN
,
1450 if (unlikely(++l
== rxdr
->count
))
1452 /* time + 20 msecs (200 msecs on 2.4) is more than
1453 * enough time to complete the receives, if it's
1454 * exceeded, break and error off
1456 } while (good_cnt
< 64 && time_after(time
+ 20, jiffies
));
1458 if (good_cnt
!= 64) {
1459 ret_val
= 13; /* ret_val is the same as mis-compare */
1462 if (time_after_eq(jiffies
, time
+ 2)) {
1463 ret_val
= 14; /* error code for time out error */
1466 } /* end loop count loop */
1470 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1472 *data
= e1000_setup_desc_rings(adapter
);
1475 *data
= e1000_setup_loopback_test(adapter
);
1478 *data
= e1000_run_loopback_test(adapter
);
1479 e1000_loopback_cleanup(adapter
);
1482 e1000_free_desc_rings(adapter
);
1487 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1489 struct e1000_hw
*hw
= &adapter
->hw
;
1491 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1494 hw
->serdes_has_link
= false;
1496 /* On some blade server designs, link establishment
1497 * could take as long as 2-3 minutes
1500 e1000_check_for_link(hw
);
1501 if (hw
->serdes_has_link
)
1504 } while (i
++ < 3750);
1508 e1000_check_for_link(hw
);
1509 if (hw
->autoneg
) /* if auto_neg is set wait for it */
1512 if (!(er32(STATUS
) & E1000_STATUS_LU
))
1518 static int e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1522 return E1000_TEST_LEN
;
1524 return E1000_STATS_LEN
;
1530 static void e1000_diag_test(struct net_device
*netdev
,
1531 struct ethtool_test
*eth_test
, u64
*data
)
1533 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1534 struct e1000_hw
*hw
= &adapter
->hw
;
1535 bool if_running
= netif_running(netdev
);
1537 set_bit(__E1000_TESTING
, &adapter
->flags
);
1538 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1541 /* save speed, duplex, autoneg settings */
1542 u16 autoneg_advertised
= hw
->autoneg_advertised
;
1543 u8 forced_speed_duplex
= hw
->forced_speed_duplex
;
1544 u8 autoneg
= hw
->autoneg
;
1546 e_info(hw
, "offline testing starting\n");
1548 /* Link test performed before hardware reset so autoneg doesn't
1549 * interfere with test result
1551 if (e1000_link_test(adapter
, &data
[4]))
1552 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1555 /* indicate we're in test mode */
1556 e1000_close(netdev
);
1558 e1000_reset(adapter
);
1560 if (e1000_reg_test(adapter
, &data
[0]))
1561 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1563 e1000_reset(adapter
);
1564 if (e1000_eeprom_test(adapter
, &data
[1]))
1565 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1567 e1000_reset(adapter
);
1568 if (e1000_intr_test(adapter
, &data
[2]))
1569 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1571 e1000_reset(adapter
);
1572 /* make sure the phy is powered up */
1573 e1000_power_up_phy(adapter
);
1574 if (e1000_loopback_test(adapter
, &data
[3]))
1575 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1577 /* restore speed, duplex, autoneg settings */
1578 hw
->autoneg_advertised
= autoneg_advertised
;
1579 hw
->forced_speed_duplex
= forced_speed_duplex
;
1580 hw
->autoneg
= autoneg
;
1582 e1000_reset(adapter
);
1583 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1587 e_info(hw
, "online testing starting\n");
1589 if (e1000_link_test(adapter
, &data
[4]))
1590 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1592 /* Online tests aren't run; pass by default */
1598 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1600 msleep_interruptible(4 * 1000);
1603 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
,
1604 struct ethtool_wolinfo
*wol
)
1606 struct e1000_hw
*hw
= &adapter
->hw
;
1607 int retval
= 1; /* fail by default */
1609 switch (hw
->device_id
) {
1610 case E1000_DEV_ID_82542
:
1611 case E1000_DEV_ID_82543GC_FIBER
:
1612 case E1000_DEV_ID_82543GC_COPPER
:
1613 case E1000_DEV_ID_82544EI_FIBER
:
1614 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1615 case E1000_DEV_ID_82545EM_FIBER
:
1616 case E1000_DEV_ID_82545EM_COPPER
:
1617 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1618 case E1000_DEV_ID_82546GB_PCIE
:
1619 /* these don't support WoL at all */
1622 case E1000_DEV_ID_82546EB_FIBER
:
1623 case E1000_DEV_ID_82546GB_FIBER
:
1624 /* Wake events not supported on port B */
1625 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1629 /* return success for non excluded adapter ports */
1632 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1633 /* quad port adapters only support WoL on port A */
1634 if (!adapter
->quad_port_a
) {
1638 /* return success for non excluded adapter ports */
1642 /* dual port cards only support WoL on port A from now on
1643 * unless it was enabled in the eeprom for port B
1644 * so exclude FUNC_1 ports from having WoL enabled
1646 if (er32(STATUS
) & E1000_STATUS_FUNC_1
&&
1647 !adapter
->eeprom_wol
) {
1658 static void e1000_get_wol(struct net_device
*netdev
,
1659 struct ethtool_wolinfo
*wol
)
1661 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1662 struct e1000_hw
*hw
= &adapter
->hw
;
1664 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
| WAKE_MAGIC
;
1667 /* this function will set ->supported = 0 and return 1 if wol is not
1668 * supported by this hardware
1670 if (e1000_wol_exclusion(adapter
, wol
) ||
1671 !device_can_wakeup(&adapter
->pdev
->dev
))
1674 /* apply any specific unsupported masks here */
1675 switch (hw
->device_id
) {
1676 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1677 /* KSP3 does not support UCAST wake-ups */
1678 wol
->supported
&= ~WAKE_UCAST
;
1680 if (adapter
->wol
& E1000_WUFC_EX
)
1681 e_err(drv
, "Interface does not support directed "
1682 "(unicast) frame wake-up packets\n");
1688 if (adapter
->wol
& E1000_WUFC_EX
)
1689 wol
->wolopts
|= WAKE_UCAST
;
1690 if (adapter
->wol
& E1000_WUFC_MC
)
1691 wol
->wolopts
|= WAKE_MCAST
;
1692 if (adapter
->wol
& E1000_WUFC_BC
)
1693 wol
->wolopts
|= WAKE_BCAST
;
1694 if (adapter
->wol
& E1000_WUFC_MAG
)
1695 wol
->wolopts
|= WAKE_MAGIC
;
1698 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1700 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1701 struct e1000_hw
*hw
= &adapter
->hw
;
1703 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1706 if (e1000_wol_exclusion(adapter
, wol
) ||
1707 !device_can_wakeup(&adapter
->pdev
->dev
))
1708 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1710 switch (hw
->device_id
) {
1711 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1712 if (wol
->wolopts
& WAKE_UCAST
) {
1713 e_err(drv
, "Interface does not support directed "
1714 "(unicast) frame wake-up packets\n");
1722 /* these settings will always override what we currently have */
1725 if (wol
->wolopts
& WAKE_UCAST
)
1726 adapter
->wol
|= E1000_WUFC_EX
;
1727 if (wol
->wolopts
& WAKE_MCAST
)
1728 adapter
->wol
|= E1000_WUFC_MC
;
1729 if (wol
->wolopts
& WAKE_BCAST
)
1730 adapter
->wol
|= E1000_WUFC_BC
;
1731 if (wol
->wolopts
& WAKE_MAGIC
)
1732 adapter
->wol
|= E1000_WUFC_MAG
;
1734 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1739 static int e1000_set_phys_id(struct net_device
*netdev
,
1740 enum ethtool_phys_id_state state
)
1742 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1743 struct e1000_hw
*hw
= &adapter
->hw
;
1746 case ETHTOOL_ID_ACTIVE
:
1747 e1000_setup_led(hw
);
1754 case ETHTOOL_ID_OFF
:
1758 case ETHTOOL_ID_INACTIVE
:
1759 e1000_cleanup_led(hw
);
1765 static int e1000_get_coalesce(struct net_device
*netdev
,
1766 struct ethtool_coalesce
*ec
)
1768 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1770 if (adapter
->hw
.mac_type
< e1000_82545
)
1773 if (adapter
->itr_setting
<= 4)
1774 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1776 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1781 static int e1000_set_coalesce(struct net_device
*netdev
,
1782 struct ethtool_coalesce
*ec
)
1784 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1785 struct e1000_hw
*hw
= &adapter
->hw
;
1787 if (hw
->mac_type
< e1000_82545
)
1790 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1791 ((ec
->rx_coalesce_usecs
> 4) &&
1792 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1793 (ec
->rx_coalesce_usecs
== 2))
1796 if (ec
->rx_coalesce_usecs
== 4) {
1797 adapter
->itr
= adapter
->itr_setting
= 4;
1798 } else if (ec
->rx_coalesce_usecs
<= 3) {
1799 adapter
->itr
= 20000;
1800 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1802 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1803 adapter
->itr_setting
= adapter
->itr
& ~3;
1806 if (adapter
->itr_setting
!= 0)
1807 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1814 static int e1000_nway_reset(struct net_device
*netdev
)
1816 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1818 if (netif_running(netdev
))
1819 e1000_reinit_locked(adapter
);
1823 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1824 struct ethtool_stats
*stats
, u64
*data
)
1826 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1829 const struct e1000_stats
*stat
= e1000_gstrings_stats
;
1831 e1000_update_stats(adapter
);
1832 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1833 switch (stat
->type
) {
1835 p
= (char *)netdev
+ stat
->stat_offset
;
1838 p
= (char *)adapter
+ stat
->stat_offset
;
1841 WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1846 if (stat
->sizeof_stat
== sizeof(u64
))
1847 data
[i
] = *(u64
*)p
;
1849 data
[i
] = *(u32
*)p
;
1853 /* BUG_ON(i != E1000_STATS_LEN); */
1856 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1862 switch (stringset
) {
1864 memcpy(data
, e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
1867 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1868 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1870 p
+= ETH_GSTRING_LEN
;
1872 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1877 static const struct ethtool_ops e1000_ethtool_ops
= {
1878 .get_settings
= e1000_get_settings
,
1879 .set_settings
= e1000_set_settings
,
1880 .get_drvinfo
= e1000_get_drvinfo
,
1881 .get_regs_len
= e1000_get_regs_len
,
1882 .get_regs
= e1000_get_regs
,
1883 .get_wol
= e1000_get_wol
,
1884 .set_wol
= e1000_set_wol
,
1885 .get_msglevel
= e1000_get_msglevel
,
1886 .set_msglevel
= e1000_set_msglevel
,
1887 .nway_reset
= e1000_nway_reset
,
1888 .get_link
= e1000_get_link
,
1889 .get_eeprom_len
= e1000_get_eeprom_len
,
1890 .get_eeprom
= e1000_get_eeprom
,
1891 .set_eeprom
= e1000_set_eeprom
,
1892 .get_ringparam
= e1000_get_ringparam
,
1893 .set_ringparam
= e1000_set_ringparam
,
1894 .get_pauseparam
= e1000_get_pauseparam
,
1895 .set_pauseparam
= e1000_set_pauseparam
,
1896 .self_test
= e1000_diag_test
,
1897 .get_strings
= e1000_get_strings
,
1898 .set_phys_id
= e1000_set_phys_id
,
1899 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1900 .get_sset_count
= e1000_get_sset_count
,
1901 .get_coalesce
= e1000_get_coalesce
,
1902 .set_coalesce
= e1000_set_coalesce
,
1903 .get_ts_info
= ethtool_op_get_ts_info
,
1906 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1908 netdev
->ethtool_ops
= &e1000_ethtool_ops
;