1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
36 char e1000_driver_name
[] = "e1000";
37 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version
[] = DRV_VERSION
;
40 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static const struct pci_device_id e1000_pci_tbl
[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
91 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
93 int e1000_up(struct e1000_adapter
*adapter
);
94 void e1000_down(struct e1000_adapter
*adapter
);
95 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
96 void e1000_reset(struct e1000_adapter
*adapter
);
97 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
98 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
99 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
100 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
101 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*txdr
);
103 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rxdr
);
105 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
106 struct e1000_tx_ring
*tx_ring
);
107 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
108 struct e1000_rx_ring
*rx_ring
);
109 void e1000_update_stats(struct e1000_adapter
*adapter
);
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
114 static void e1000_remove(struct pci_dev
*pdev
);
115 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
116 static int e1000_sw_init(struct e1000_adapter
*adapter
);
117 int e1000_open(struct net_device
*netdev
);
118 int e1000_close(struct net_device
*netdev
);
119 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
120 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
121 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
124 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
125 struct e1000_tx_ring
*tx_ring
);
126 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
127 struct e1000_rx_ring
*rx_ring
);
128 static void e1000_set_rx_mode(struct net_device
*netdev
);
129 static void e1000_update_phy_info_task(struct work_struct
*work
);
130 static void e1000_watchdog(struct work_struct
*work
);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
);
132 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
133 struct net_device
*netdev
);
134 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
);
135 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
136 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
137 static irqreturn_t
e1000_intr(int irq
, void *data
);
138 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
139 struct e1000_tx_ring
*tx_ring
);
140 static int e1000_clean(struct napi_struct
*napi
, int budget
);
141 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
142 struct e1000_rx_ring
*rx_ring
,
143 int *work_done
, int work_to_do
);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
145 struct e1000_rx_ring
*rx_ring
,
146 int *work_done
, int work_to_do
);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter
*adapter
,
148 struct e1000_rx_ring
*rx_ring
,
152 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
153 struct e1000_rx_ring
*rx_ring
,
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
156 struct e1000_rx_ring
*rx_ring
,
158 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
159 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
161 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
162 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
163 static void e1000_tx_timeout(struct net_device
*dev
);
164 static void e1000_reset_task(struct work_struct
*work
);
165 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
167 struct sk_buff
*skb
);
169 static bool e1000_vlan_used(struct e1000_adapter
*adapter
);
170 static void e1000_vlan_mode(struct net_device
*netdev
,
171 netdev_features_t features
);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter
*adapter
,
174 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
175 __be16 proto
, u16 vid
);
176 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
177 __be16 proto
, u16 vid
);
178 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
181 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
182 static int e1000_resume(struct pci_dev
*pdev
);
184 static void e1000_shutdown(struct pci_dev
*pdev
);
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device
*netdev
);
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
193 module_param(copybreak
, uint
, 0644);
194 MODULE_PARM_DESC(copybreak
,
195 "Maximum size of packet that is copied to a new buffer on receive");
197 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
198 pci_channel_state_t state
);
199 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
200 static void e1000_io_resume(struct pci_dev
*pdev
);
202 static const struct pci_error_handlers e1000_err_handler
= {
203 .error_detected
= e1000_io_error_detected
,
204 .slot_reset
= e1000_io_slot_reset
,
205 .resume
= e1000_io_resume
,
208 static struct pci_driver e1000_driver
= {
209 .name
= e1000_driver_name
,
210 .id_table
= e1000_pci_tbl
,
211 .probe
= e1000_probe
,
212 .remove
= e1000_remove
,
214 /* Power Management Hooks */
215 .suspend
= e1000_suspend
,
216 .resume
= e1000_resume
,
218 .shutdown
= e1000_shutdown
,
219 .err_handler
= &e1000_err_handler
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION
);
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug
= -1;
229 module_param(debug
, int, 0);
230 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
237 struct net_device
*e1000_get_hw_dev(struct e1000_hw
*hw
)
239 struct e1000_adapter
*adapter
= hw
->back
;
240 return adapter
->netdev
;
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
249 static int __init
e1000_init_module(void)
252 pr_info("%s - version %s\n", e1000_driver_string
, e1000_driver_version
);
254 pr_info("%s\n", e1000_copyright
);
256 ret
= pci_register_driver(&e1000_driver
);
257 if (copybreak
!= COPYBREAK_DEFAULT
) {
259 pr_info("copybreak disabled\n");
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak
);
267 module_init(e1000_init_module
);
270 * e1000_exit_module - Driver Exit Cleanup Routine
272 * e1000_exit_module is called just before the driver is removed
275 static void __exit
e1000_exit_module(void)
277 pci_unregister_driver(&e1000_driver
);
280 module_exit(e1000_exit_module
);
282 static int e1000_request_irq(struct e1000_adapter
*adapter
)
284 struct net_device
*netdev
= adapter
->netdev
;
285 irq_handler_t handler
= e1000_intr
;
286 int irq_flags
= IRQF_SHARED
;
289 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
292 e_err(probe
, "Unable to allocate interrupt Error: %d\n", err
);
298 static void e1000_free_irq(struct e1000_adapter
*adapter
)
300 struct net_device
*netdev
= adapter
->netdev
;
302 free_irq(adapter
->pdev
->irq
, netdev
);
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
309 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
311 struct e1000_hw
*hw
= &adapter
->hw
;
315 synchronize_irq(adapter
->pdev
->irq
);
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
322 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
324 struct e1000_hw
*hw
= &adapter
->hw
;
326 ew32(IMS
, IMS_ENABLE_MASK
);
330 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
332 struct e1000_hw
*hw
= &adapter
->hw
;
333 struct net_device
*netdev
= adapter
->netdev
;
334 u16 vid
= hw
->mng_cookie
.vlan_id
;
335 u16 old_vid
= adapter
->mng_vlan_id
;
337 if (!e1000_vlan_used(adapter
))
340 if (!test_bit(vid
, adapter
->active_vlans
)) {
341 if (hw
->mng_cookie
.status
&
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
343 e1000_vlan_rx_add_vid(netdev
, htons(ETH_P_8021Q
), vid
);
344 adapter
->mng_vlan_id
= vid
;
346 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
348 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
350 !test_bit(old_vid
, adapter
->active_vlans
))
351 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
354 adapter
->mng_vlan_id
= vid
;
358 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
360 struct e1000_hw
*hw
= &adapter
->hw
;
362 if (adapter
->en_mng_pt
) {
363 u32 manc
= er32(MANC
);
365 /* disable hardware interception of ARP */
366 manc
&= ~(E1000_MANC_ARP_EN
);
372 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
374 struct e1000_hw
*hw
= &adapter
->hw
;
376 if (adapter
->en_mng_pt
) {
377 u32 manc
= er32(MANC
);
379 /* re-enable hardware interception of ARP */
380 manc
|= E1000_MANC_ARP_EN
;
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
390 static void e1000_configure(struct e1000_adapter
*adapter
)
392 struct net_device
*netdev
= adapter
->netdev
;
395 e1000_set_rx_mode(netdev
);
397 e1000_restore_vlan(adapter
);
398 e1000_init_manageability(adapter
);
400 e1000_configure_tx(adapter
);
401 e1000_setup_rctl(adapter
);
402 e1000_configure_rx(adapter
);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
407 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
408 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
409 adapter
->alloc_rx_buf(adapter
, ring
,
410 E1000_DESC_UNUSED(ring
));
414 int e1000_up(struct e1000_adapter
*adapter
)
416 struct e1000_hw
*hw
= &adapter
->hw
;
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter
);
421 clear_bit(__E1000_DOWN
, &adapter
->flags
);
423 napi_enable(&adapter
->napi
);
425 e1000_irq_enable(adapter
);
427 netif_wake_queue(adapter
->netdev
);
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS
, E1000_ICS_LSC
);
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
442 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
444 struct e1000_hw
*hw
= &adapter
->hw
;
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw
->media_type
== e1000_media_type_copper
) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
452 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
453 mii_reg
&= ~MII_CR_POWER_DOWN
;
454 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
458 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
460 struct e1000_hw
*hw
= &adapter
->hw
;
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
466 * (c) SoL/IDER session is active
468 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
469 hw
->media_type
== e1000_media_type_copper
) {
472 switch (hw
->mac_type
) {
475 case e1000_82545_rev_3
:
478 case e1000_82546_rev_3
:
480 case e1000_82541_rev_2
:
482 case e1000_82547_rev_2
:
483 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
489 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
490 mii_reg
|= MII_CR_POWER_DOWN
;
491 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
498 static void e1000_down_and_stop(struct e1000_adapter
*adapter
)
500 set_bit(__E1000_DOWN
, &adapter
->flags
);
502 cancel_delayed_work_sync(&adapter
->watchdog_task
);
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
510 cancel_delayed_work_sync(&adapter
->phy_info_task
);
511 cancel_delayed_work_sync(&adapter
->fifo_stall_task
);
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING
, &adapter
->flags
))
515 cancel_work_sync(&adapter
->reset_task
);
518 void e1000_down(struct e1000_adapter
*adapter
)
520 struct e1000_hw
*hw
= &adapter
->hw
;
521 struct net_device
*netdev
= adapter
->netdev
;
524 netif_carrier_off(netdev
);
526 /* disable receives in the hardware */
528 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
529 /* flush and sleep below */
531 netif_tx_disable(netdev
);
533 /* disable transmits in the hardware */
535 tctl
&= ~E1000_TCTL_EN
;
537 /* flush both disables and wait for them to finish */
541 napi_disable(&adapter
->napi
);
543 e1000_irq_disable(adapter
);
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
549 e1000_down_and_stop(adapter
);
551 adapter
->link_speed
= 0;
552 adapter
->link_duplex
= 0;
554 e1000_reset(adapter
);
555 e1000_clean_all_tx_rings(adapter
);
556 e1000_clean_all_rx_rings(adapter
);
559 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
566 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
569 void e1000_reset(struct e1000_adapter
*adapter
)
571 struct e1000_hw
*hw
= &adapter
->hw
;
572 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
573 bool legacy_pba_adjust
= false;
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
580 switch (hw
->mac_type
) {
581 case e1000_82542_rev2_0
:
582 case e1000_82542_rev2_1
:
587 case e1000_82541_rev_2
:
588 legacy_pba_adjust
= true;
592 case e1000_82545_rev_3
:
595 case e1000_82546_rev_3
:
599 case e1000_82547_rev_2
:
600 legacy_pba_adjust
= true;
603 case e1000_undefined
:
608 if (legacy_pba_adjust
) {
609 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
610 pba
-= 8; /* allocate more FIFO for Tx */
612 if (hw
->mac_type
== e1000_82547
) {
613 adapter
->tx_fifo_head
= 0;
614 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
615 adapter
->tx_fifo_size
=
616 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
617 atomic_set(&adapter
->tx_fifo_stall
, 0);
619 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
620 /* adjust PBA for jumbo frames */
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space
= pba
>> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
638 min_tx_space
= (hw
->max_frame_size
+
639 sizeof(struct e1000_tx_desc
) -
641 min_tx_space
= ALIGN(min_tx_space
, 1024);
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space
= hw
->max_frame_size
;
645 min_rx_space
= ALIGN(min_rx_space
, 1024);
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
652 if (tx_space
< min_tx_space
&&
653 ((min_tx_space
- tx_space
) < pba
)) {
654 pba
= pba
- (min_tx_space
- tx_space
);
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw
->mac_type
) {
658 case e1000_82545
... e1000_82546_rev_3
:
659 pba
&= ~(E1000_PBA_8K
- 1);
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
668 if (pba
< min_rx_space
)
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
684 hwm
= min(((pba
<< 10) * 9 / 10),
685 ((pba
<< 10) - hw
->max_frame_size
));
687 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
688 hw
->fc_low_water
= hw
->fc_high_water
- 8;
689 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
691 hw
->fc
= hw
->original_fc
;
693 /* Allow time for pending master requests to run */
695 if (hw
->mac_type
>= e1000_82544
)
698 if (e1000_init_hw(hw
))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter
);
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw
->mac_type
>= e1000_82544
&&
705 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
706 u32 ctrl
= er32(CTRL
);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
711 ctrl
&= ~E1000_CTRL_SWDPIN3
;
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
718 e1000_reset_adaptive(hw
);
719 e1000_phy_get_info(hw
, &adapter
->phy_info
);
721 e1000_release_manageability(adapter
);
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
727 struct net_device
*netdev
= adapter
->netdev
;
728 struct ethtool_eeprom eeprom
;
729 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
732 u16 csum_old
, csum_new
= 0;
734 eeprom
.len
= ops
->get_eeprom_len(netdev
);
737 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
741 ops
->get_eeprom(netdev
, &eeprom
, data
);
743 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
744 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
745 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
746 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
747 csum_new
= EEPROM_SUM
- csum_new
;
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old
);
751 pr_err("Calculated : 0x%04x\n", csum_new
);
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
776 * Return true if an adapter needs ioport resources
778 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
780 switch (pdev
->device
) {
781 case E1000_DEV_ID_82540EM
:
782 case E1000_DEV_ID_82540EM_LOM
:
783 case E1000_DEV_ID_82540EP
:
784 case E1000_DEV_ID_82540EP_LOM
:
785 case E1000_DEV_ID_82540EP_LP
:
786 case E1000_DEV_ID_82541EI
:
787 case E1000_DEV_ID_82541EI_MOBILE
:
788 case E1000_DEV_ID_82541ER
:
789 case E1000_DEV_ID_82541ER_LOM
:
790 case E1000_DEV_ID_82541GI
:
791 case E1000_DEV_ID_82541GI_LF
:
792 case E1000_DEV_ID_82541GI_MOBILE
:
793 case E1000_DEV_ID_82544EI_COPPER
:
794 case E1000_DEV_ID_82544EI_FIBER
:
795 case E1000_DEV_ID_82544GC_COPPER
:
796 case E1000_DEV_ID_82544GC_LOM
:
797 case E1000_DEV_ID_82545EM_COPPER
:
798 case E1000_DEV_ID_82545EM_FIBER
:
799 case E1000_DEV_ID_82546EB_COPPER
:
800 case E1000_DEV_ID_82546EB_FIBER
:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
808 static netdev_features_t
e1000_fix_features(struct net_device
*netdev
,
809 netdev_features_t features
)
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
814 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
815 features
|= NETIF_F_HW_VLAN_CTAG_TX
;
817 features
&= ~NETIF_F_HW_VLAN_CTAG_TX
;
822 static int e1000_set_features(struct net_device
*netdev
,
823 netdev_features_t features
)
825 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
826 netdev_features_t changed
= features
^ netdev
->features
;
828 if (changed
& NETIF_F_HW_VLAN_CTAG_RX
)
829 e1000_vlan_mode(netdev
, features
);
831 if (!(changed
& (NETIF_F_RXCSUM
| NETIF_F_RXALL
)))
834 netdev
->features
= features
;
835 adapter
->rx_csum
= !!(features
& NETIF_F_RXCSUM
);
837 if (netif_running(netdev
))
838 e1000_reinit_locked(adapter
);
840 e1000_reset(adapter
);
845 static const struct net_device_ops e1000_netdev_ops
= {
846 .ndo_open
= e1000_open
,
847 .ndo_stop
= e1000_close
,
848 .ndo_start_xmit
= e1000_xmit_frame
,
849 .ndo_get_stats
= e1000_get_stats
,
850 .ndo_set_rx_mode
= e1000_set_rx_mode
,
851 .ndo_set_mac_address
= e1000_set_mac
,
852 .ndo_tx_timeout
= e1000_tx_timeout
,
853 .ndo_change_mtu
= e1000_change_mtu
,
854 .ndo_do_ioctl
= e1000_ioctl
,
855 .ndo_validate_addr
= eth_validate_addr
,
856 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
857 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
858 #ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller
= e1000_netpoll
,
861 .ndo_fix_features
= e1000_fix_features
,
862 .ndo_set_features
= e1000_set_features
,
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
876 static int e1000_init_hw_struct(struct e1000_adapter
*adapter
,
879 struct pci_dev
*pdev
= adapter
->pdev
;
881 /* PCI config space info */
882 hw
->vendor_id
= pdev
->vendor
;
883 hw
->device_id
= pdev
->device
;
884 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
885 hw
->subsystem_id
= pdev
->subsystem_device
;
886 hw
->revision_id
= pdev
->revision
;
888 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
890 hw
->max_frame_size
= adapter
->netdev
->mtu
+
891 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
892 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw
)) {
896 e_err(probe
, "Unknown MAC Type\n");
900 switch (hw
->mac_type
) {
905 case e1000_82541_rev_2
:
906 case e1000_82547_rev_2
:
907 hw
->phy_init_script
= 1;
911 e1000_set_media_type(hw
);
912 e1000_get_bus_info(hw
);
914 hw
->wait_autoneg_complete
= false;
915 hw
->tbi_compatibility_en
= true;
916 hw
->adaptive_ifs
= true;
920 if (hw
->media_type
== e1000_media_type_copper
) {
921 hw
->mdix
= AUTO_ALL_MODES
;
922 hw
->disable_polarity_correction
= false;
923 hw
->master_slave
= E1000_MASTER_SLAVE
;
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
934 * Returns 0 on success, negative on failure
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
940 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
942 struct net_device
*netdev
;
943 struct e1000_adapter
*adapter
;
946 static int cards_found
;
947 static int global_quad_port_a
; /* global ksp3 port a indication */
948 int i
, err
, pci_using_dac
;
951 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
952 int bars
, need_ioport
;
954 /* do not allocate ioport bars when not needed */
955 need_ioport
= e1000_is_need_ioport(pdev
);
957 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
958 err
= pci_enable_device(pdev
);
960 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
961 err
= pci_enable_device_mem(pdev
);
966 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
970 pci_set_master(pdev
);
971 err
= pci_save_state(pdev
);
973 goto err_alloc_etherdev
;
976 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
978 goto err_alloc_etherdev
;
980 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
982 pci_set_drvdata(pdev
, netdev
);
983 adapter
= netdev_priv(netdev
);
984 adapter
->netdev
= netdev
;
985 adapter
->pdev
= pdev
;
986 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
987 adapter
->bars
= bars
;
988 adapter
->need_ioport
= need_ioport
;
994 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
998 if (adapter
->need_ioport
) {
999 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
1000 if (pci_resource_len(pdev
, i
) == 0)
1002 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1003 hw
->io_base
= pci_resource_start(pdev
, i
);
1009 /* make ready for any if (hw->...) below */
1010 err
= e1000_init_hw_struct(adapter
, hw
);
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1019 if ((hw
->bus_type
== e1000_bus_type_pcix
) &&
1020 !dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64))) {
1023 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
1025 pr_err("No usable DMA config, aborting\n");
1030 netdev
->netdev_ops
= &e1000_netdev_ops
;
1031 e1000_set_ethtool_ops(netdev
);
1032 netdev
->watchdog_timeo
= 5 * HZ
;
1033 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
1035 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1037 adapter
->bd_number
= cards_found
;
1039 /* setup the private structure */
1041 err
= e1000_sw_init(adapter
);
1046 if (hw
->mac_type
== e1000_ce4100
) {
1047 hw
->ce4100_gbe_mdio_base_virt
=
1048 ioremap(pci_resource_start(pdev
, BAR_1
),
1049 pci_resource_len(pdev
, BAR_1
));
1051 if (!hw
->ce4100_gbe_mdio_base_virt
)
1052 goto err_mdio_ioremap
;
1055 if (hw
->mac_type
>= e1000_82543
) {
1056 netdev
->hw_features
= NETIF_F_SG
|
1058 NETIF_F_HW_VLAN_CTAG_RX
;
1059 netdev
->features
= NETIF_F_HW_VLAN_CTAG_TX
|
1060 NETIF_F_HW_VLAN_CTAG_FILTER
;
1063 if ((hw
->mac_type
>= e1000_82544
) &&
1064 (hw
->mac_type
!= e1000_82547
))
1065 netdev
->hw_features
|= NETIF_F_TSO
;
1067 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
1069 netdev
->features
|= netdev
->hw_features
;
1070 netdev
->hw_features
|= (NETIF_F_RXCSUM
|
1074 if (pci_using_dac
) {
1075 netdev
->features
|= NETIF_F_HIGHDMA
;
1076 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
1079 netdev
->vlan_features
|= (NETIF_F_TSO
|
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw
->device_id
!= E1000_DEV_ID_82545EM_COPPER
||
1085 hw
->subsystem_vendor_id
!= PCI_VENDOR_ID_VMWARE
)
1086 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
1088 /* MTU range: 46 - 16110 */
1089 netdev
->min_mtu
= ETH_ZLEN
- ETH_HLEN
;
1090 netdev
->max_mtu
= MAX_JUMBO_FRAME_SIZE
- (ETH_HLEN
+ ETH_FCS_LEN
);
1092 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1094 /* initialize eeprom parameters */
1095 if (e1000_init_eeprom_params(hw
)) {
1096 e_err(probe
, "EEPROM initialization failed\n");
1100 /* before reading the EEPROM, reset the controller to
1101 * put the device in a known good starting state
1106 /* make sure the EEPROM is good */
1107 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1108 e_err(probe
, "The EEPROM Checksum Is Not Valid\n");
1109 e1000_dump_eeprom(adapter
);
1110 /* set MAC address to all zeroes to invalidate and temporary
1111 * disable this device for the user. This blocks regular
1112 * traffic while still permitting ethtool ioctls from reaching
1113 * the hardware as well as allowing the user to run the
1114 * interface after manually setting a hw addr using
1117 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1119 /* copy the MAC address out of the EEPROM */
1120 if (e1000_read_mac_addr(hw
))
1121 e_err(probe
, "EEPROM Read Error\n");
1123 /* don't block initialization here due to bad MAC address */
1124 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1126 if (!is_valid_ether_addr(netdev
->dev_addr
))
1127 e_err(probe
, "Invalid MAC Address\n");
1130 INIT_DELAYED_WORK(&adapter
->watchdog_task
, e1000_watchdog
);
1131 INIT_DELAYED_WORK(&adapter
->fifo_stall_task
,
1132 e1000_82547_tx_fifo_stall_task
);
1133 INIT_DELAYED_WORK(&adapter
->phy_info_task
, e1000_update_phy_info_task
);
1134 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1136 e1000_check_options(adapter
);
1138 /* Initial Wake on LAN setting
1139 * If APM wake is enabled in the EEPROM,
1140 * enable the ACPI Magic Packet filter
1143 switch (hw
->mac_type
) {
1144 case e1000_82542_rev2_0
:
1145 case e1000_82542_rev2_1
:
1149 e1000_read_eeprom(hw
,
1150 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1151 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1154 case e1000_82546_rev_3
:
1155 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1156 e1000_read_eeprom(hw
,
1157 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1162 e1000_read_eeprom(hw
,
1163 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1166 if (eeprom_data
& eeprom_apme_mask
)
1167 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1169 /* now that we have the eeprom settings, apply the special cases
1170 * where the eeprom may be wrong or the board simply won't support
1171 * wake on lan on a particular port
1173 switch (pdev
->device
) {
1174 case E1000_DEV_ID_82546GB_PCIE
:
1175 adapter
->eeprom_wol
= 0;
1177 case E1000_DEV_ID_82546EB_FIBER
:
1178 case E1000_DEV_ID_82546GB_FIBER
:
1179 /* Wake events only supported on port A for dual fiber
1180 * regardless of eeprom setting
1182 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1183 adapter
->eeprom_wol
= 0;
1185 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1186 /* if quad port adapter, disable WoL on all but port A */
1187 if (global_quad_port_a
!= 0)
1188 adapter
->eeprom_wol
= 0;
1190 adapter
->quad_port_a
= true;
1191 /* Reset for multiple quad port adapters */
1192 if (++global_quad_port_a
== 4)
1193 global_quad_port_a
= 0;
1197 /* initialize the wol settings based on the eeprom settings */
1198 adapter
->wol
= adapter
->eeprom_wol
;
1199 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1201 /* Auto detect PHY address */
1202 if (hw
->mac_type
== e1000_ce4100
) {
1203 for (i
= 0; i
< 32; i
++) {
1205 e1000_read_phy_reg(hw
, PHY_ID2
, &tmp
);
1207 if (tmp
!= 0 && tmp
!= 0xFF)
1215 /* reset the hardware with the new settings */
1216 e1000_reset(adapter
);
1218 strcpy(netdev
->name
, "eth%d");
1219 err
= register_netdev(netdev
);
1223 e1000_vlan_filter_on_off(adapter
, false);
1225 /* print bus type/speed/width info */
1226 e_info(probe
, "(PCI%s:%dMHz:%d-bit) %pM\n",
1227 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1228 ((hw
->bus_speed
== e1000_bus_speed_133
) ? 133 :
1229 (hw
->bus_speed
== e1000_bus_speed_120
) ? 120 :
1230 (hw
->bus_speed
== e1000_bus_speed_100
) ? 100 :
1231 (hw
->bus_speed
== e1000_bus_speed_66
) ? 66 : 33),
1232 ((hw
->bus_width
== e1000_bus_width_64
) ? 64 : 32),
1235 /* carrier off reporting is important to ethtool even BEFORE open */
1236 netif_carrier_off(netdev
);
1238 e_info(probe
, "Intel(R) PRO/1000 Network Connection\n");
1245 e1000_phy_hw_reset(hw
);
1247 if (hw
->flash_address
)
1248 iounmap(hw
->flash_address
);
1249 kfree(adapter
->tx_ring
);
1250 kfree(adapter
->rx_ring
);
1254 iounmap(hw
->ce4100_gbe_mdio_base_virt
);
1255 iounmap(hw
->hw_addr
);
1257 free_netdev(netdev
);
1259 pci_release_selected_regions(pdev
, bars
);
1261 pci_disable_device(pdev
);
1266 * e1000_remove - Device Removal Routine
1267 * @pdev: PCI device information struct
1269 * e1000_remove is called by the PCI subsystem to alert the driver
1270 * that it should release a PCI device. That could be caused by a
1271 * Hot-Plug event, or because the driver is going to be removed from
1274 static void e1000_remove(struct pci_dev
*pdev
)
1276 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1277 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1278 struct e1000_hw
*hw
= &adapter
->hw
;
1280 e1000_down_and_stop(adapter
);
1281 e1000_release_manageability(adapter
);
1283 unregister_netdev(netdev
);
1285 e1000_phy_hw_reset(hw
);
1287 kfree(adapter
->tx_ring
);
1288 kfree(adapter
->rx_ring
);
1290 if (hw
->mac_type
== e1000_ce4100
)
1291 iounmap(hw
->ce4100_gbe_mdio_base_virt
);
1292 iounmap(hw
->hw_addr
);
1293 if (hw
->flash_address
)
1294 iounmap(hw
->flash_address
);
1295 pci_release_selected_regions(pdev
, adapter
->bars
);
1297 free_netdev(netdev
);
1299 pci_disable_device(pdev
);
1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304 * @adapter: board private structure to initialize
1306 * e1000_sw_init initializes the Adapter private data structure.
1307 * e1000_init_hw_struct MUST be called before this function
1309 static int e1000_sw_init(struct e1000_adapter
*adapter
)
1311 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1313 adapter
->num_tx_queues
= 1;
1314 adapter
->num_rx_queues
= 1;
1316 if (e1000_alloc_queues(adapter
)) {
1317 e_err(probe
, "Unable to allocate memory for queues\n");
1321 /* Explicitly disable IRQ since the NIC can be in any state. */
1322 e1000_irq_disable(adapter
);
1324 spin_lock_init(&adapter
->stats_lock
);
1326 set_bit(__E1000_DOWN
, &adapter
->flags
);
1332 * e1000_alloc_queues - Allocate memory for all rings
1333 * @adapter: board private structure to initialize
1335 * We allocate one ring per queue at run-time since we don't know the
1336 * number of queues at compile-time.
1338 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
1340 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1341 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1342 if (!adapter
->tx_ring
)
1345 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1346 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1347 if (!adapter
->rx_ring
) {
1348 kfree(adapter
->tx_ring
);
1352 return E1000_SUCCESS
;
1356 * e1000_open - Called when a network interface is made active
1357 * @netdev: network interface device structure
1359 * Returns 0 on success, negative value on failure
1361 * The open entry point is called when a network interface is made
1362 * active by the system (IFF_UP). At this point all resources needed
1363 * for transmit and receive operations are allocated, the interrupt
1364 * handler is registered with the OS, the watchdog task is started,
1365 * and the stack is notified that the interface is ready.
1367 int e1000_open(struct net_device
*netdev
)
1369 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1370 struct e1000_hw
*hw
= &adapter
->hw
;
1373 /* disallow open during test */
1374 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1377 netif_carrier_off(netdev
);
1379 /* allocate transmit descriptors */
1380 err
= e1000_setup_all_tx_resources(adapter
);
1384 /* allocate receive descriptors */
1385 err
= e1000_setup_all_rx_resources(adapter
);
1389 e1000_power_up_phy(adapter
);
1391 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1392 if ((hw
->mng_cookie
.status
&
1393 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1394 e1000_update_mng_vlan(adapter
);
1397 /* before we allocate an interrupt, we must be ready to handle it.
1398 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1399 * as soon as we call pci_request_irq, so we have to setup our
1400 * clean_rx handler before we do so.
1402 e1000_configure(adapter
);
1404 err
= e1000_request_irq(adapter
);
1408 /* From here on the code is the same as e1000_up() */
1409 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1411 napi_enable(&adapter
->napi
);
1413 e1000_irq_enable(adapter
);
1415 netif_start_queue(netdev
);
1417 /* fire a link status change interrupt to start the watchdog */
1418 ew32(ICS
, E1000_ICS_LSC
);
1420 return E1000_SUCCESS
;
1423 e1000_power_down_phy(adapter
);
1424 e1000_free_all_rx_resources(adapter
);
1426 e1000_free_all_tx_resources(adapter
);
1428 e1000_reset(adapter
);
1434 * e1000_close - Disables a network interface
1435 * @netdev: network interface device structure
1437 * Returns 0, this is not allowed to fail
1439 * The close entry point is called when an interface is de-activated
1440 * by the OS. The hardware is still under the drivers control, but
1441 * needs to be disabled. A global MAC reset is issued to stop the
1442 * hardware, and all transmit and receive resources are freed.
1444 int e1000_close(struct net_device
*netdev
)
1446 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1447 struct e1000_hw
*hw
= &adapter
->hw
;
1448 int count
= E1000_CHECK_RESET_COUNT
;
1450 while (test_bit(__E1000_RESETTING
, &adapter
->flags
) && count
--)
1451 usleep_range(10000, 20000);
1453 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1454 e1000_down(adapter
);
1455 e1000_power_down_phy(adapter
);
1456 e1000_free_irq(adapter
);
1458 e1000_free_all_tx_resources(adapter
);
1459 e1000_free_all_rx_resources(adapter
);
1461 /* kill manageability vlan ID if supported, but not if a vlan with
1462 * the same ID is registered on the host OS (let 8021q kill it)
1464 if ((hw
->mng_cookie
.status
&
1465 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1466 !test_bit(adapter
->mng_vlan_id
, adapter
->active_vlans
)) {
1467 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
1468 adapter
->mng_vlan_id
);
1475 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476 * @adapter: address of board private structure
1477 * @start: address of beginning of memory
1478 * @len: length of memory
1480 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1483 struct e1000_hw
*hw
= &adapter
->hw
;
1484 unsigned long begin
= (unsigned long)start
;
1485 unsigned long end
= begin
+ len
;
1487 /* First rev 82545 and 82546 need to not allow any memory
1488 * write location to cross 64k boundary due to errata 23
1490 if (hw
->mac_type
== e1000_82545
||
1491 hw
->mac_type
== e1000_ce4100
||
1492 hw
->mac_type
== e1000_82546
) {
1493 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1500 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501 * @adapter: board private structure
1502 * @txdr: tx descriptor ring (for a specific queue) to setup
1504 * Return 0 on success, negative on failure
1506 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1507 struct e1000_tx_ring
*txdr
)
1509 struct pci_dev
*pdev
= adapter
->pdev
;
1512 size
= sizeof(struct e1000_tx_buffer
) * txdr
->count
;
1513 txdr
->buffer_info
= vzalloc(size
);
1514 if (!txdr
->buffer_info
)
1517 /* round up to nearest 4K */
1519 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1520 txdr
->size
= ALIGN(txdr
->size
, 4096);
1522 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1526 vfree(txdr
->buffer_info
);
1530 /* Fix for errata 23, can't cross 64kB boundary */
1531 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1532 void *olddesc
= txdr
->desc
;
1533 dma_addr_t olddma
= txdr
->dma
;
1534 e_err(tx_err
, "txdr align check failed: %u bytes at %p\n",
1535 txdr
->size
, txdr
->desc
);
1536 /* Try again, without freeing the previous */
1537 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
,
1538 &txdr
->dma
, GFP_KERNEL
);
1539 /* Failed allocation, critical failure */
1541 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1543 goto setup_tx_desc_die
;
1546 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1548 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1550 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1552 e_err(probe
, "Unable to allocate aligned memory "
1553 "for the transmit descriptor ring\n");
1554 vfree(txdr
->buffer_info
);
1557 /* Free old allocation, new allocation was successful */
1558 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1562 memset(txdr
->desc
, 0, txdr
->size
);
1564 txdr
->next_to_use
= 0;
1565 txdr
->next_to_clean
= 0;
1571 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1572 * (Descriptors) for all queues
1573 * @adapter: board private structure
1575 * Return 0 on success, negative on failure
1577 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1581 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1582 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1584 e_err(probe
, "Allocation for Tx Queue %u failed\n", i
);
1585 for (i
-- ; i
>= 0; i
--)
1586 e1000_free_tx_resources(adapter
,
1587 &adapter
->tx_ring
[i
]);
1596 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1597 * @adapter: board private structure
1599 * Configure the Tx unit of the MAC after a reset.
1601 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1604 struct e1000_hw
*hw
= &adapter
->hw
;
1605 u32 tdlen
, tctl
, tipg
;
1608 /* Setup the HW Tx Head and Tail descriptor pointers */
1610 switch (adapter
->num_tx_queues
) {
1613 tdba
= adapter
->tx_ring
[0].dma
;
1614 tdlen
= adapter
->tx_ring
[0].count
*
1615 sizeof(struct e1000_tx_desc
);
1617 ew32(TDBAH
, (tdba
>> 32));
1618 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1621 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ?
1622 E1000_TDH
: E1000_82542_TDH
);
1623 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ?
1624 E1000_TDT
: E1000_82542_TDT
);
1628 /* Set the default values for the Tx Inter Packet Gap timer */
1629 if ((hw
->media_type
== e1000_media_type_fiber
||
1630 hw
->media_type
== e1000_media_type_internal_serdes
))
1631 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1633 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1635 switch (hw
->mac_type
) {
1636 case e1000_82542_rev2_0
:
1637 case e1000_82542_rev2_1
:
1638 tipg
= DEFAULT_82542_TIPG_IPGT
;
1639 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1640 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1643 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1644 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1647 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1648 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1651 /* Set the Tx Interrupt Delay register */
1653 ew32(TIDV
, adapter
->tx_int_delay
);
1654 if (hw
->mac_type
>= e1000_82540
)
1655 ew32(TADV
, adapter
->tx_abs_int_delay
);
1657 /* Program the Transmit Control Register */
1660 tctl
&= ~E1000_TCTL_CT
;
1661 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1662 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1664 e1000_config_collision_dist(hw
);
1666 /* Setup Transmit Descriptor Settings for eop descriptor */
1667 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1669 /* only set IDE if we are delaying interrupts using the timers */
1670 if (adapter
->tx_int_delay
)
1671 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1673 if (hw
->mac_type
< e1000_82543
)
1674 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1676 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1678 /* Cache if we're 82544 running in PCI-X because we'll
1679 * need this to apply a workaround later in the send path.
1681 if (hw
->mac_type
== e1000_82544
&&
1682 hw
->bus_type
== e1000_bus_type_pcix
)
1683 adapter
->pcix_82544
= true;
1690 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1691 * @adapter: board private structure
1692 * @rxdr: rx descriptor ring (for a specific queue) to setup
1694 * Returns 0 on success, negative on failure
1696 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1697 struct e1000_rx_ring
*rxdr
)
1699 struct pci_dev
*pdev
= adapter
->pdev
;
1702 size
= sizeof(struct e1000_rx_buffer
) * rxdr
->count
;
1703 rxdr
->buffer_info
= vzalloc(size
);
1704 if (!rxdr
->buffer_info
)
1707 desc_len
= sizeof(struct e1000_rx_desc
);
1709 /* Round up to nearest 4K */
1711 rxdr
->size
= rxdr
->count
* desc_len
;
1712 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1714 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1718 vfree(rxdr
->buffer_info
);
1722 /* Fix for errata 23, can't cross 64kB boundary */
1723 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1724 void *olddesc
= rxdr
->desc
;
1725 dma_addr_t olddma
= rxdr
->dma
;
1726 e_err(rx_err
, "rxdr align check failed: %u bytes at %p\n",
1727 rxdr
->size
, rxdr
->desc
);
1728 /* Try again, without freeing the previous */
1729 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
,
1730 &rxdr
->dma
, GFP_KERNEL
);
1731 /* Failed allocation, critical failure */
1733 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1735 goto setup_rx_desc_die
;
1738 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1740 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1742 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1744 e_err(probe
, "Unable to allocate aligned memory for "
1745 "the Rx descriptor ring\n");
1746 goto setup_rx_desc_die
;
1748 /* Free old allocation, new allocation was successful */
1749 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1753 memset(rxdr
->desc
, 0, rxdr
->size
);
1755 rxdr
->next_to_clean
= 0;
1756 rxdr
->next_to_use
= 0;
1757 rxdr
->rx_skb_top
= NULL
;
1763 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1764 * (Descriptors) for all queues
1765 * @adapter: board private structure
1767 * Return 0 on success, negative on failure
1769 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1773 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1774 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1776 e_err(probe
, "Allocation for Rx Queue %u failed\n", i
);
1777 for (i
-- ; i
>= 0; i
--)
1778 e1000_free_rx_resources(adapter
,
1779 &adapter
->rx_ring
[i
]);
1788 * e1000_setup_rctl - configure the receive control registers
1789 * @adapter: Board private structure
1791 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1793 struct e1000_hw
*hw
= &adapter
->hw
;
1798 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1800 rctl
|= E1000_RCTL_BAM
| E1000_RCTL_LBM_NO
|
1801 E1000_RCTL_RDMTS_HALF
|
1802 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1804 if (hw
->tbi_compatibility_on
== 1)
1805 rctl
|= E1000_RCTL_SBP
;
1807 rctl
&= ~E1000_RCTL_SBP
;
1809 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1810 rctl
&= ~E1000_RCTL_LPE
;
1812 rctl
|= E1000_RCTL_LPE
;
1814 /* Setup buffer sizes */
1815 rctl
&= ~E1000_RCTL_SZ_4096
;
1816 rctl
|= E1000_RCTL_BSEX
;
1817 switch (adapter
->rx_buffer_len
) {
1818 case E1000_RXBUFFER_2048
:
1820 rctl
|= E1000_RCTL_SZ_2048
;
1821 rctl
&= ~E1000_RCTL_BSEX
;
1823 case E1000_RXBUFFER_4096
:
1824 rctl
|= E1000_RCTL_SZ_4096
;
1826 case E1000_RXBUFFER_8192
:
1827 rctl
|= E1000_RCTL_SZ_8192
;
1829 case E1000_RXBUFFER_16384
:
1830 rctl
|= E1000_RCTL_SZ_16384
;
1834 /* This is useful for sniffing bad packets. */
1835 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
1836 /* UPE and MPE will be handled by normal PROMISC logic
1837 * in e1000e_set_rx_mode
1839 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
1840 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
1841 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
1843 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
1844 E1000_RCTL_DPF
| /* Allow filtered pause */
1845 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
1846 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1847 * and that breaks VLANs.
1855 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1856 * @adapter: board private structure
1858 * Configure the Rx unit of the MAC after a reset.
1860 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1863 struct e1000_hw
*hw
= &adapter
->hw
;
1864 u32 rdlen
, rctl
, rxcsum
;
1866 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1867 rdlen
= adapter
->rx_ring
[0].count
*
1868 sizeof(struct e1000_rx_desc
);
1869 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1870 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1872 rdlen
= adapter
->rx_ring
[0].count
*
1873 sizeof(struct e1000_rx_desc
);
1874 adapter
->clean_rx
= e1000_clean_rx_irq
;
1875 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1878 /* disable receives while setting up the descriptors */
1880 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1882 /* set the Receive Delay Timer Register */
1883 ew32(RDTR
, adapter
->rx_int_delay
);
1885 if (hw
->mac_type
>= e1000_82540
) {
1886 ew32(RADV
, adapter
->rx_abs_int_delay
);
1887 if (adapter
->itr_setting
!= 0)
1888 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1891 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1892 * the Base and Length of the Rx Descriptor Ring
1894 switch (adapter
->num_rx_queues
) {
1897 rdba
= adapter
->rx_ring
[0].dma
;
1899 ew32(RDBAH
, (rdba
>> 32));
1900 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1903 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ?
1904 E1000_RDH
: E1000_82542_RDH
);
1905 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ?
1906 E1000_RDT
: E1000_82542_RDT
);
1910 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1911 if (hw
->mac_type
>= e1000_82543
) {
1912 rxcsum
= er32(RXCSUM
);
1913 if (adapter
->rx_csum
)
1914 rxcsum
|= E1000_RXCSUM_TUOFL
;
1916 /* don't need to clear IPPCSE as it defaults to 0 */
1917 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1918 ew32(RXCSUM
, rxcsum
);
1921 /* Enable Receives */
1922 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
1926 * e1000_free_tx_resources - Free Tx Resources per Queue
1927 * @adapter: board private structure
1928 * @tx_ring: Tx descriptor ring for a specific queue
1930 * Free all transmit software resources
1932 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1933 struct e1000_tx_ring
*tx_ring
)
1935 struct pci_dev
*pdev
= adapter
->pdev
;
1937 e1000_clean_tx_ring(adapter
, tx_ring
);
1939 vfree(tx_ring
->buffer_info
);
1940 tx_ring
->buffer_info
= NULL
;
1942 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1945 tx_ring
->desc
= NULL
;
1949 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1950 * @adapter: board private structure
1952 * Free all transmit software resources
1954 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1958 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1959 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1963 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1964 struct e1000_tx_buffer
*buffer_info
)
1966 if (buffer_info
->dma
) {
1967 if (buffer_info
->mapped_as_page
)
1968 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1969 buffer_info
->length
, DMA_TO_DEVICE
);
1971 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1972 buffer_info
->length
,
1974 buffer_info
->dma
= 0;
1976 if (buffer_info
->skb
) {
1977 dev_kfree_skb_any(buffer_info
->skb
);
1978 buffer_info
->skb
= NULL
;
1980 buffer_info
->time_stamp
= 0;
1981 /* buffer_info must be completely set up in the transmit path */
1985 * e1000_clean_tx_ring - Free Tx Buffers
1986 * @adapter: board private structure
1987 * @tx_ring: ring to be cleaned
1989 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1990 struct e1000_tx_ring
*tx_ring
)
1992 struct e1000_hw
*hw
= &adapter
->hw
;
1993 struct e1000_tx_buffer
*buffer_info
;
1997 /* Free all the Tx ring sk_buffs */
1999 for (i
= 0; i
< tx_ring
->count
; i
++) {
2000 buffer_info
= &tx_ring
->buffer_info
[i
];
2001 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2004 netdev_reset_queue(adapter
->netdev
);
2005 size
= sizeof(struct e1000_tx_buffer
) * tx_ring
->count
;
2006 memset(tx_ring
->buffer_info
, 0, size
);
2008 /* Zero out the descriptor ring */
2010 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2012 tx_ring
->next_to_use
= 0;
2013 tx_ring
->next_to_clean
= 0;
2014 tx_ring
->last_tx_tso
= false;
2016 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
2017 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
2021 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2022 * @adapter: board private structure
2024 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2028 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2029 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2033 * e1000_free_rx_resources - Free Rx Resources
2034 * @adapter: board private structure
2035 * @rx_ring: ring to clean the resources from
2037 * Free all receive software resources
2039 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2040 struct e1000_rx_ring
*rx_ring
)
2042 struct pci_dev
*pdev
= adapter
->pdev
;
2044 e1000_clean_rx_ring(adapter
, rx_ring
);
2046 vfree(rx_ring
->buffer_info
);
2047 rx_ring
->buffer_info
= NULL
;
2049 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2052 rx_ring
->desc
= NULL
;
2056 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2057 * @adapter: board private structure
2059 * Free all receive software resources
2061 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2065 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2066 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2069 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2070 static unsigned int e1000_frag_len(const struct e1000_adapter
*a
)
2072 return SKB_DATA_ALIGN(a
->rx_buffer_len
+ E1000_HEADROOM
) +
2073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
2076 static void *e1000_alloc_frag(const struct e1000_adapter
*a
)
2078 unsigned int len
= e1000_frag_len(a
);
2079 u8
*data
= netdev_alloc_frag(len
);
2082 data
+= E1000_HEADROOM
;
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2091 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2092 struct e1000_rx_ring
*rx_ring
)
2094 struct e1000_hw
*hw
= &adapter
->hw
;
2095 struct e1000_rx_buffer
*buffer_info
;
2096 struct pci_dev
*pdev
= adapter
->pdev
;
2100 /* Free all the Rx netfrags */
2101 for (i
= 0; i
< rx_ring
->count
; i
++) {
2102 buffer_info
= &rx_ring
->buffer_info
[i
];
2103 if (adapter
->clean_rx
== e1000_clean_rx_irq
) {
2104 if (buffer_info
->dma
)
2105 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
2106 adapter
->rx_buffer_len
,
2108 if (buffer_info
->rxbuf
.data
) {
2109 skb_free_frag(buffer_info
->rxbuf
.data
);
2110 buffer_info
->rxbuf
.data
= NULL
;
2112 } else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
2113 if (buffer_info
->dma
)
2114 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
2115 adapter
->rx_buffer_len
,
2117 if (buffer_info
->rxbuf
.page
) {
2118 put_page(buffer_info
->rxbuf
.page
);
2119 buffer_info
->rxbuf
.page
= NULL
;
2123 buffer_info
->dma
= 0;
2126 /* there also may be some cached data from a chained receive */
2127 napi_free_frags(&adapter
->napi
);
2128 rx_ring
->rx_skb_top
= NULL
;
2130 size
= sizeof(struct e1000_rx_buffer
) * rx_ring
->count
;
2131 memset(rx_ring
->buffer_info
, 0, size
);
2133 /* Zero out the descriptor ring */
2134 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2136 rx_ring
->next_to_clean
= 0;
2137 rx_ring
->next_to_use
= 0;
2139 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2140 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2144 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2145 * @adapter: board private structure
2147 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2151 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2152 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2155 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2156 * and memory write and invalidate disabled for certain operations
2158 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2160 struct e1000_hw
*hw
= &adapter
->hw
;
2161 struct net_device
*netdev
= adapter
->netdev
;
2164 e1000_pci_clear_mwi(hw
);
2167 rctl
|= E1000_RCTL_RST
;
2169 E1000_WRITE_FLUSH();
2172 if (netif_running(netdev
))
2173 e1000_clean_all_rx_rings(adapter
);
2176 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2178 struct e1000_hw
*hw
= &adapter
->hw
;
2179 struct net_device
*netdev
= adapter
->netdev
;
2183 rctl
&= ~E1000_RCTL_RST
;
2185 E1000_WRITE_FLUSH();
2188 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2189 e1000_pci_set_mwi(hw
);
2191 if (netif_running(netdev
)) {
2192 /* No need to loop, because 82542 supports only 1 queue */
2193 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2194 e1000_configure_rx(adapter
);
2195 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2200 * e1000_set_mac - Change the Ethernet Address of the NIC
2201 * @netdev: network interface device structure
2202 * @p: pointer to an address structure
2204 * Returns 0 on success, negative on failure
2206 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2208 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2209 struct e1000_hw
*hw
= &adapter
->hw
;
2210 struct sockaddr
*addr
= p
;
2212 if (!is_valid_ether_addr(addr
->sa_data
))
2213 return -EADDRNOTAVAIL
;
2215 /* 82542 2.0 needs to be in reset to write receive address registers */
2217 if (hw
->mac_type
== e1000_82542_rev2_0
)
2218 e1000_enter_82542_rst(adapter
);
2220 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2221 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2223 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2225 if (hw
->mac_type
== e1000_82542_rev2_0
)
2226 e1000_leave_82542_rst(adapter
);
2232 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2233 * @netdev: network interface device structure
2235 * The set_rx_mode entry point is called whenever the unicast or multicast
2236 * address lists or the network interface flags are updated. This routine is
2237 * responsible for configuring the hardware for proper unicast, multicast,
2238 * promiscuous mode, and all-multi behavior.
2240 static void e1000_set_rx_mode(struct net_device
*netdev
)
2242 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2243 struct e1000_hw
*hw
= &adapter
->hw
;
2244 struct netdev_hw_addr
*ha
;
2245 bool use_uc
= false;
2248 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2249 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2250 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2255 /* Check for Promiscuous and All Multicast modes */
2259 if (netdev
->flags
& IFF_PROMISC
) {
2260 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2261 rctl
&= ~E1000_RCTL_VFE
;
2263 if (netdev
->flags
& IFF_ALLMULTI
)
2264 rctl
|= E1000_RCTL_MPE
;
2266 rctl
&= ~E1000_RCTL_MPE
;
2267 /* Enable VLAN filter if there is a VLAN */
2268 if (e1000_vlan_used(adapter
))
2269 rctl
|= E1000_RCTL_VFE
;
2272 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2273 rctl
|= E1000_RCTL_UPE
;
2274 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2275 rctl
&= ~E1000_RCTL_UPE
;
2281 /* 82542 2.0 needs to be in reset to write receive address registers */
2283 if (hw
->mac_type
== e1000_82542_rev2_0
)
2284 e1000_enter_82542_rst(adapter
);
2286 /* load the first 14 addresses into the exact filters 1-14. Unicast
2287 * addresses take precedence to avoid disabling unicast filtering
2290 * RAR 0 is used for the station MAC address
2291 * if there are not 14 addresses, go ahead and clear the filters
2295 netdev_for_each_uc_addr(ha
, netdev
) {
2296 if (i
== rar_entries
)
2298 e1000_rar_set(hw
, ha
->addr
, i
++);
2301 netdev_for_each_mc_addr(ha
, netdev
) {
2302 if (i
== rar_entries
) {
2303 /* load any remaining addresses into the hash table */
2304 u32 hash_reg
, hash_bit
, mta
;
2305 hash_value
= e1000_hash_mc_addr(hw
, ha
->addr
);
2306 hash_reg
= (hash_value
>> 5) & 0x7F;
2307 hash_bit
= hash_value
& 0x1F;
2308 mta
= (1 << hash_bit
);
2309 mcarray
[hash_reg
] |= mta
;
2311 e1000_rar_set(hw
, ha
->addr
, i
++);
2315 for (; i
< rar_entries
; i
++) {
2316 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2317 E1000_WRITE_FLUSH();
2318 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2319 E1000_WRITE_FLUSH();
2322 /* write the hash table completely, write from bottom to avoid
2323 * both stupid write combining chipsets, and flushing each write
2325 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2326 /* If we are on an 82544 has an errata where writing odd
2327 * offsets overwrites the previous even offset, but writing
2328 * backwards over the range solves the issue by always
2329 * writing the odd offset first
2331 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2333 E1000_WRITE_FLUSH();
2335 if (hw
->mac_type
== e1000_82542_rev2_0
)
2336 e1000_leave_82542_rst(adapter
);
2342 * e1000_update_phy_info_task - get phy info
2343 * @work: work struct contained inside adapter struct
2345 * Need to wait a few seconds after link up to get diagnostic information from
2348 static void e1000_update_phy_info_task(struct work_struct
*work
)
2350 struct e1000_adapter
*adapter
= container_of(work
,
2351 struct e1000_adapter
,
2352 phy_info_task
.work
);
2354 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2358 * e1000_82547_tx_fifo_stall_task - task to complete work
2359 * @work: work struct contained inside adapter struct
2361 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
)
2363 struct e1000_adapter
*adapter
= container_of(work
,
2364 struct e1000_adapter
,
2365 fifo_stall_task
.work
);
2366 struct e1000_hw
*hw
= &adapter
->hw
;
2367 struct net_device
*netdev
= adapter
->netdev
;
2370 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2371 if ((er32(TDT
) == er32(TDH
)) &&
2372 (er32(TDFT
) == er32(TDFH
)) &&
2373 (er32(TDFTS
) == er32(TDFHS
))) {
2375 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2376 ew32(TDFT
, adapter
->tx_head_addr
);
2377 ew32(TDFH
, adapter
->tx_head_addr
);
2378 ew32(TDFTS
, adapter
->tx_head_addr
);
2379 ew32(TDFHS
, adapter
->tx_head_addr
);
2381 E1000_WRITE_FLUSH();
2383 adapter
->tx_fifo_head
= 0;
2384 atomic_set(&adapter
->tx_fifo_stall
, 0);
2385 netif_wake_queue(netdev
);
2386 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2387 schedule_delayed_work(&adapter
->fifo_stall_task
, 1);
2392 bool e1000_has_link(struct e1000_adapter
*adapter
)
2394 struct e1000_hw
*hw
= &adapter
->hw
;
2395 bool link_active
= false;
2397 /* get_link_status is set on LSC (link status) interrupt or rx
2398 * sequence error interrupt (except on intel ce4100).
2399 * get_link_status will stay false until the
2400 * e1000_check_for_link establishes link for copper adapters
2403 switch (hw
->media_type
) {
2404 case e1000_media_type_copper
:
2405 if (hw
->mac_type
== e1000_ce4100
)
2406 hw
->get_link_status
= 1;
2407 if (hw
->get_link_status
) {
2408 e1000_check_for_link(hw
);
2409 link_active
= !hw
->get_link_status
;
2414 case e1000_media_type_fiber
:
2415 e1000_check_for_link(hw
);
2416 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2418 case e1000_media_type_internal_serdes
:
2419 e1000_check_for_link(hw
);
2420 link_active
= hw
->serdes_has_link
;
2430 * e1000_watchdog - work function
2431 * @work: work struct contained inside adapter struct
2433 static void e1000_watchdog(struct work_struct
*work
)
2435 struct e1000_adapter
*adapter
= container_of(work
,
2436 struct e1000_adapter
,
2437 watchdog_task
.work
);
2438 struct e1000_hw
*hw
= &adapter
->hw
;
2439 struct net_device
*netdev
= adapter
->netdev
;
2440 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2443 link
= e1000_has_link(adapter
);
2444 if ((netif_carrier_ok(netdev
)) && link
)
2448 if (!netif_carrier_ok(netdev
)) {
2451 /* update snapshot of PHY registers on LSC */
2452 e1000_get_speed_and_duplex(hw
,
2453 &adapter
->link_speed
,
2454 &adapter
->link_duplex
);
2457 pr_info("%s NIC Link is Up %d Mbps %s, "
2458 "Flow Control: %s\n",
2460 adapter
->link_speed
,
2461 adapter
->link_duplex
== FULL_DUPLEX
?
2462 "Full Duplex" : "Half Duplex",
2463 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2464 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2465 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2466 E1000_CTRL_TFCE
) ? "TX" : "None")));
2468 /* adjust timeout factor according to speed/duplex */
2469 adapter
->tx_timeout_factor
= 1;
2470 switch (adapter
->link_speed
) {
2473 adapter
->tx_timeout_factor
= 16;
2477 /* maybe add some timeout factor ? */
2481 /* enable transmits in the hardware */
2483 tctl
|= E1000_TCTL_EN
;
2486 netif_carrier_on(netdev
);
2487 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2488 schedule_delayed_work(&adapter
->phy_info_task
,
2490 adapter
->smartspeed
= 0;
2493 if (netif_carrier_ok(netdev
)) {
2494 adapter
->link_speed
= 0;
2495 adapter
->link_duplex
= 0;
2496 pr_info("%s NIC Link is Down\n",
2498 netif_carrier_off(netdev
);
2500 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2501 schedule_delayed_work(&adapter
->phy_info_task
,
2505 e1000_smartspeed(adapter
);
2509 e1000_update_stats(adapter
);
2511 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2512 adapter
->tpt_old
= adapter
->stats
.tpt
;
2513 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2514 adapter
->colc_old
= adapter
->stats
.colc
;
2516 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2517 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2518 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2519 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2521 e1000_update_adaptive(hw
);
2523 if (!netif_carrier_ok(netdev
)) {
2524 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2525 /* We've lost link, so the controller stops DMA,
2526 * but we've got queued Tx work that's never going
2527 * to get done, so reset controller to flush Tx.
2528 * (Do the reset outside of interrupt context).
2530 adapter
->tx_timeout_count
++;
2531 schedule_work(&adapter
->reset_task
);
2532 /* exit immediately since reset is imminent */
2537 /* Simple mode for Interrupt Throttle Rate (ITR) */
2538 if (hw
->mac_type
>= e1000_82540
&& adapter
->itr_setting
== 4) {
2539 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2540 * Total asymmetrical Tx or Rx gets ITR=8000;
2541 * everyone else is between 2000-8000.
2543 u32 goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2544 u32 dif
= (adapter
->gotcl
> adapter
->gorcl
?
2545 adapter
->gotcl
- adapter
->gorcl
:
2546 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2547 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2549 ew32(ITR
, 1000000000 / (itr
* 256));
2552 /* Cause software interrupt to ensure rx ring is cleaned */
2553 ew32(ICS
, E1000_ICS_RXDMT0
);
2555 /* Force detection of hung controller every watchdog period */
2556 adapter
->detect_tx_hung
= true;
2558 /* Reschedule the task */
2559 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2560 schedule_delayed_work(&adapter
->watchdog_task
, 2 * HZ
);
2563 enum latency_range
{
2567 latency_invalid
= 255
2571 * e1000_update_itr - update the dynamic ITR value based on statistics
2572 * @adapter: pointer to adapter
2573 * @itr_setting: current adapter->itr
2574 * @packets: the number of packets during this measurement interval
2575 * @bytes: the number of bytes during this measurement interval
2577 * Stores a new ITR value based on packets and byte
2578 * counts during the last interrupt. The advantage of per interrupt
2579 * computation is faster updates and more accurate ITR for the current
2580 * traffic pattern. Constants in this function were computed
2581 * based on theoretical maximum wire speed and thresholds were set based
2582 * on testing data as well as attempting to minimize response time
2583 * while increasing bulk throughput.
2584 * this functionality is controlled by the InterruptThrottleRate module
2585 * parameter (see e1000_param.c)
2587 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2588 u16 itr_setting
, int packets
, int bytes
)
2590 unsigned int retval
= itr_setting
;
2591 struct e1000_hw
*hw
= &adapter
->hw
;
2593 if (unlikely(hw
->mac_type
< e1000_82540
))
2594 goto update_itr_done
;
2597 goto update_itr_done
;
2599 switch (itr_setting
) {
2600 case lowest_latency
:
2601 /* jumbo frames get bulk treatment*/
2602 if (bytes
/packets
> 8000)
2603 retval
= bulk_latency
;
2604 else if ((packets
< 5) && (bytes
> 512))
2605 retval
= low_latency
;
2607 case low_latency
: /* 50 usec aka 20000 ints/s */
2608 if (bytes
> 10000) {
2609 /* jumbo frames need bulk latency setting */
2610 if (bytes
/packets
> 8000)
2611 retval
= bulk_latency
;
2612 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2613 retval
= bulk_latency
;
2614 else if ((packets
> 35))
2615 retval
= lowest_latency
;
2616 } else if (bytes
/packets
> 2000)
2617 retval
= bulk_latency
;
2618 else if (packets
<= 2 && bytes
< 512)
2619 retval
= lowest_latency
;
2621 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2622 if (bytes
> 25000) {
2624 retval
= low_latency
;
2625 } else if (bytes
< 6000) {
2626 retval
= low_latency
;
2635 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2637 struct e1000_hw
*hw
= &adapter
->hw
;
2639 u32 new_itr
= adapter
->itr
;
2641 if (unlikely(hw
->mac_type
< e1000_82540
))
2644 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2645 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2651 adapter
->tx_itr
= e1000_update_itr(adapter
, adapter
->tx_itr
,
2652 adapter
->total_tx_packets
,
2653 adapter
->total_tx_bytes
);
2654 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2655 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2656 adapter
->tx_itr
= low_latency
;
2658 adapter
->rx_itr
= e1000_update_itr(adapter
, adapter
->rx_itr
,
2659 adapter
->total_rx_packets
,
2660 adapter
->total_rx_bytes
);
2661 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2662 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2663 adapter
->rx_itr
= low_latency
;
2665 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2667 switch (current_itr
) {
2668 /* counts and packets in update_itr are dependent on these numbers */
2669 case lowest_latency
:
2673 new_itr
= 20000; /* aka hwitr = ~200 */
2683 if (new_itr
!= adapter
->itr
) {
2684 /* this attempts to bias the interrupt rate towards Bulk
2685 * by adding intermediate steps when interrupt rate is
2688 new_itr
= new_itr
> adapter
->itr
?
2689 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2691 adapter
->itr
= new_itr
;
2692 ew32(ITR
, 1000000000 / (new_itr
* 256));
2696 #define E1000_TX_FLAGS_CSUM 0x00000001
2697 #define E1000_TX_FLAGS_VLAN 0x00000002
2698 #define E1000_TX_FLAGS_TSO 0x00000004
2699 #define E1000_TX_FLAGS_IPV4 0x00000008
2700 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2701 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2702 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2704 static int e1000_tso(struct e1000_adapter
*adapter
,
2705 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
,
2708 struct e1000_context_desc
*context_desc
;
2709 struct e1000_tx_buffer
*buffer_info
;
2712 u16 ipcse
= 0, tucse
, mss
;
2713 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2715 if (skb_is_gso(skb
)) {
2718 err
= skb_cow_head(skb
, 0);
2722 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2723 mss
= skb_shinfo(skb
)->gso_size
;
2724 if (protocol
== htons(ETH_P_IP
)) {
2725 struct iphdr
*iph
= ip_hdr(skb
);
2728 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2732 cmd_length
= E1000_TXD_CMD_IP
;
2733 ipcse
= skb_transport_offset(skb
) - 1;
2734 } else if (skb_is_gso_v6(skb
)) {
2735 ipv6_hdr(skb
)->payload_len
= 0;
2736 tcp_hdr(skb
)->check
=
2737 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2738 &ipv6_hdr(skb
)->daddr
,
2742 ipcss
= skb_network_offset(skb
);
2743 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2744 tucss
= skb_transport_offset(skb
);
2745 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2748 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2749 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2751 i
= tx_ring
->next_to_use
;
2752 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2753 buffer_info
= &tx_ring
->buffer_info
[i
];
2755 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2756 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2757 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2758 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2759 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2760 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2761 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2762 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2763 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2765 buffer_info
->time_stamp
= jiffies
;
2766 buffer_info
->next_to_watch
= i
;
2768 if (++i
== tx_ring
->count
)
2771 tx_ring
->next_to_use
= i
;
2778 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2779 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
,
2782 struct e1000_context_desc
*context_desc
;
2783 struct e1000_tx_buffer
*buffer_info
;
2786 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2788 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2792 case cpu_to_be16(ETH_P_IP
):
2793 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2794 cmd_len
|= E1000_TXD_CMD_TCP
;
2796 case cpu_to_be16(ETH_P_IPV6
):
2797 /* XXX not handling all IPV6 headers */
2798 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2799 cmd_len
|= E1000_TXD_CMD_TCP
;
2802 if (unlikely(net_ratelimit()))
2803 e_warn(drv
, "checksum_partial proto=%x!\n",
2808 css
= skb_checksum_start_offset(skb
);
2810 i
= tx_ring
->next_to_use
;
2811 buffer_info
= &tx_ring
->buffer_info
[i
];
2812 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2814 context_desc
->lower_setup
.ip_config
= 0;
2815 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2816 context_desc
->upper_setup
.tcp_fields
.tucso
=
2817 css
+ skb
->csum_offset
;
2818 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2819 context_desc
->tcp_seg_setup
.data
= 0;
2820 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2822 buffer_info
->time_stamp
= jiffies
;
2823 buffer_info
->next_to_watch
= i
;
2825 if (unlikely(++i
== tx_ring
->count
))
2828 tx_ring
->next_to_use
= i
;
2833 #define E1000_MAX_TXD_PWR 12
2834 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2836 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2837 struct e1000_tx_ring
*tx_ring
,
2838 struct sk_buff
*skb
, unsigned int first
,
2839 unsigned int max_per_txd
, unsigned int nr_frags
,
2842 struct e1000_hw
*hw
= &adapter
->hw
;
2843 struct pci_dev
*pdev
= adapter
->pdev
;
2844 struct e1000_tx_buffer
*buffer_info
;
2845 unsigned int len
= skb_headlen(skb
);
2846 unsigned int offset
= 0, size
, count
= 0, i
;
2847 unsigned int f
, bytecount
, segs
;
2849 i
= tx_ring
->next_to_use
;
2852 buffer_info
= &tx_ring
->buffer_info
[i
];
2853 size
= min(len
, max_per_txd
);
2854 /* Workaround for Controller erratum --
2855 * descriptor for non-tso packet in a linear SKB that follows a
2856 * tso gets written back prematurely before the data is fully
2857 * DMA'd to the controller
2859 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2861 tx_ring
->last_tx_tso
= false;
2865 /* Workaround for premature desc write-backs
2866 * in TSO mode. Append 4-byte sentinel desc
2868 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2870 /* work-around for errata 10 and it applies
2871 * to all controllers in PCI-X mode
2872 * The fix is to make sure that the first descriptor of a
2873 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2875 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2876 (size
> 2015) && count
== 0))
2879 /* Workaround for potential 82544 hang in PCI-X. Avoid
2880 * terminating buffers within evenly-aligned dwords.
2882 if (unlikely(adapter
->pcix_82544
&&
2883 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2887 buffer_info
->length
= size
;
2888 /* set time_stamp *before* dma to help avoid a possible race */
2889 buffer_info
->time_stamp
= jiffies
;
2890 buffer_info
->mapped_as_page
= false;
2891 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
2893 size
, DMA_TO_DEVICE
);
2894 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2896 buffer_info
->next_to_watch
= i
;
2903 if (unlikely(i
== tx_ring
->count
))
2908 for (f
= 0; f
< nr_frags
; f
++) {
2909 const struct skb_frag_struct
*frag
;
2911 frag
= &skb_shinfo(skb
)->frags
[f
];
2912 len
= skb_frag_size(frag
);
2916 unsigned long bufend
;
2918 if (unlikely(i
== tx_ring
->count
))
2921 buffer_info
= &tx_ring
->buffer_info
[i
];
2922 size
= min(len
, max_per_txd
);
2923 /* Workaround for premature desc write-backs
2924 * in TSO mode. Append 4-byte sentinel desc
2926 if (unlikely(mss
&& f
== (nr_frags
-1) &&
2927 size
== len
&& size
> 8))
2929 /* Workaround for potential 82544 hang in PCI-X.
2930 * Avoid terminating buffers within evenly-aligned
2933 bufend
= (unsigned long)
2934 page_to_phys(skb_frag_page(frag
));
2935 bufend
+= offset
+ size
- 1;
2936 if (unlikely(adapter
->pcix_82544
&&
2941 buffer_info
->length
= size
;
2942 buffer_info
->time_stamp
= jiffies
;
2943 buffer_info
->mapped_as_page
= true;
2944 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
2945 offset
, size
, DMA_TO_DEVICE
);
2946 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2948 buffer_info
->next_to_watch
= i
;
2956 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
2957 /* multiply data chunks by size of headers */
2958 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
2960 tx_ring
->buffer_info
[i
].skb
= skb
;
2961 tx_ring
->buffer_info
[i
].segs
= segs
;
2962 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
2963 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2968 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2969 buffer_info
->dma
= 0;
2975 i
+= tx_ring
->count
;
2977 buffer_info
= &tx_ring
->buffer_info
[i
];
2978 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2984 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2985 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2988 struct e1000_tx_desc
*tx_desc
= NULL
;
2989 struct e1000_tx_buffer
*buffer_info
;
2990 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2993 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2994 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2996 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2998 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2999 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3002 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3003 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3004 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3007 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3008 txd_lower
|= E1000_TXD_CMD_VLE
;
3009 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3012 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
3013 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
3015 i
= tx_ring
->next_to_use
;
3018 buffer_info
= &tx_ring
->buffer_info
[i
];
3019 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3020 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3021 tx_desc
->lower
.data
=
3022 cpu_to_le32(txd_lower
| buffer_info
->length
);
3023 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3024 if (unlikely(++i
== tx_ring
->count
))
3028 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3030 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3031 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
3032 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
3034 /* Force memory writes to complete before letting h/w
3035 * know there are new descriptors to fetch. (Only
3036 * applicable for weak-ordered memory model archs,
3041 tx_ring
->next_to_use
= i
;
3044 /* 82547 workaround to avoid controller hang in half-duplex environment.
3045 * The workaround is to avoid queuing a large packet that would span
3046 * the internal Tx FIFO ring boundary by notifying the stack to resend
3047 * the packet at a later time. This gives the Tx FIFO an opportunity to
3048 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3049 * to the beginning of the Tx FIFO.
3052 #define E1000_FIFO_HDR 0x10
3053 #define E1000_82547_PAD_LEN 0x3E0
3055 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
3056 struct sk_buff
*skb
)
3058 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3059 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3061 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3063 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3064 goto no_fifo_stall_required
;
3066 if (atomic_read(&adapter
->tx_fifo_stall
))
3069 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3070 atomic_set(&adapter
->tx_fifo_stall
, 1);
3074 no_fifo_stall_required
:
3075 adapter
->tx_fifo_head
+= skb_fifo_len
;
3076 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3077 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3081 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3083 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3084 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3086 netif_stop_queue(netdev
);
3087 /* Herbert's original patch had:
3088 * smp_mb__after_netif_stop_queue();
3089 * but since that doesn't exist yet, just open code it.
3093 /* We need to check again in a case another CPU has just
3094 * made room available.
3096 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3100 netif_start_queue(netdev
);
3101 ++adapter
->restart_queue
;
3105 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3106 struct e1000_tx_ring
*tx_ring
, int size
)
3108 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3110 return __e1000_maybe_stop_tx(netdev
, size
);
3113 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3114 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
3115 struct net_device
*netdev
)
3117 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3118 struct e1000_hw
*hw
= &adapter
->hw
;
3119 struct e1000_tx_ring
*tx_ring
;
3120 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3121 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3122 unsigned int tx_flags
= 0;
3123 unsigned int len
= skb_headlen(skb
);
3124 unsigned int nr_frags
;
3129 __be16 protocol
= vlan_get_protocol(skb
);
3131 /* This goes back to the question of how to logically map a Tx queue
3132 * to a flow. Right now, performance is impacted slightly negatively
3133 * if using multiple Tx queues. If the stack breaks away from a
3134 * single qdisc implementation, we can look at this again.
3136 tx_ring
= adapter
->tx_ring
;
3138 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3139 * packets may get corrupted during padding by HW.
3140 * To WA this issue, pad all small packets manually.
3142 if (eth_skb_pad(skb
))
3143 return NETDEV_TX_OK
;
3145 mss
= skb_shinfo(skb
)->gso_size
;
3146 /* The controller does a simple calculation to
3147 * make sure there is enough room in the FIFO before
3148 * initiating the DMA for each buffer. The calc is:
3149 * 4 = ceil(buffer len/mss). To make sure we don't
3150 * overrun the FIFO, adjust the max buffer len if mss
3155 max_per_txd
= min(mss
<< 2, max_per_txd
);
3156 max_txd_pwr
= fls(max_per_txd
) - 1;
3158 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3159 if (skb
->data_len
&& hdr_len
== len
) {
3160 switch (hw
->mac_type
) {
3161 unsigned int pull_size
;
3163 /* Make sure we have room to chop off 4 bytes,
3164 * and that the end alignment will work out to
3165 * this hardware's requirements
3166 * NOTE: this is a TSO only workaround
3167 * if end byte alignment not correct move us
3168 * into the next dword
3170 if ((unsigned long)(skb_tail_pointer(skb
) - 1)
3174 pull_size
= min((unsigned int)4, skb
->data_len
);
3175 if (!__pskb_pull_tail(skb
, pull_size
)) {
3176 e_err(drv
, "__pskb_pull_tail "
3178 dev_kfree_skb_any(skb
);
3179 return NETDEV_TX_OK
;
3181 len
= skb_headlen(skb
);
3190 /* reserve a descriptor for the offload context */
3191 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3195 /* Controller Erratum workaround */
3196 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3199 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3201 if (adapter
->pcix_82544
)
3204 /* work-around for errata 10 and it applies to all controllers
3205 * in PCI-X mode, so add one more descriptor to the count
3207 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3211 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3212 for (f
= 0; f
< nr_frags
; f
++)
3213 count
+= TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
3215 if (adapter
->pcix_82544
)
3218 /* need: count + 2 desc gap to keep tail from touching
3219 * head, otherwise try next time
3221 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3222 return NETDEV_TX_BUSY
;
3224 if (unlikely((hw
->mac_type
== e1000_82547
) &&
3225 (e1000_82547_fifo_workaround(adapter
, skb
)))) {
3226 netif_stop_queue(netdev
);
3227 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3228 schedule_delayed_work(&adapter
->fifo_stall_task
, 1);
3229 return NETDEV_TX_BUSY
;
3232 if (skb_vlan_tag_present(skb
)) {
3233 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3234 tx_flags
|= (skb_vlan_tag_get(skb
) <<
3235 E1000_TX_FLAGS_VLAN_SHIFT
);
3238 first
= tx_ring
->next_to_use
;
3240 tso
= e1000_tso(adapter
, tx_ring
, skb
, protocol
);
3242 dev_kfree_skb_any(skb
);
3243 return NETDEV_TX_OK
;
3247 if (likely(hw
->mac_type
!= e1000_82544
))
3248 tx_ring
->last_tx_tso
= true;
3249 tx_flags
|= E1000_TX_FLAGS_TSO
;
3250 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
, protocol
)))
3251 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3253 if (protocol
== htons(ETH_P_IP
))
3254 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3256 if (unlikely(skb
->no_fcs
))
3257 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
3259 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3263 /* The descriptors needed is higher than other Intel drivers
3264 * due to a number of workarounds. The breakdown is below:
3265 * Data descriptors: MAX_SKB_FRAGS + 1
3266 * Context Descriptor: 1
3267 * Keep head from touching tail: 2
3270 int desc_needed
= MAX_SKB_FRAGS
+ 7;
3272 netdev_sent_queue(netdev
, skb
->len
);
3273 skb_tx_timestamp(skb
);
3275 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3277 /* 82544 potentially requires twice as many data descriptors
3278 * in order to guarantee buffers don't end on evenly-aligned
3281 if (adapter
->pcix_82544
)
3282 desc_needed
+= MAX_SKB_FRAGS
+ 1;
3284 /* Make sure there is space in the ring for the next send. */
3285 e1000_maybe_stop_tx(netdev
, tx_ring
, desc_needed
);
3287 if (!skb
->xmit_more
||
3288 netif_xmit_stopped(netdev_get_tx_queue(netdev
, 0))) {
3289 writel(tx_ring
->next_to_use
, hw
->hw_addr
+ tx_ring
->tdt
);
3290 /* we need this if more than one processor can write to
3291 * our tail at a time, it synchronizes IO on IA64/Altix
3297 dev_kfree_skb_any(skb
);
3298 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3299 tx_ring
->next_to_use
= first
;
3302 return NETDEV_TX_OK
;
3305 #define NUM_REGS 38 /* 1 based count */
3306 static void e1000_regdump(struct e1000_adapter
*adapter
)
3308 struct e1000_hw
*hw
= &adapter
->hw
;
3310 u32
*regs_buff
= regs
;
3313 static const char * const reg_name
[] = {
3315 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3316 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3317 "TIDV", "TXDCTL", "TADV", "TARC0",
3318 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3320 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3321 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3322 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3325 regs_buff
[0] = er32(CTRL
);
3326 regs_buff
[1] = er32(STATUS
);
3328 regs_buff
[2] = er32(RCTL
);
3329 regs_buff
[3] = er32(RDLEN
);
3330 regs_buff
[4] = er32(RDH
);
3331 regs_buff
[5] = er32(RDT
);
3332 regs_buff
[6] = er32(RDTR
);
3334 regs_buff
[7] = er32(TCTL
);
3335 regs_buff
[8] = er32(TDBAL
);
3336 regs_buff
[9] = er32(TDBAH
);
3337 regs_buff
[10] = er32(TDLEN
);
3338 regs_buff
[11] = er32(TDH
);
3339 regs_buff
[12] = er32(TDT
);
3340 regs_buff
[13] = er32(TIDV
);
3341 regs_buff
[14] = er32(TXDCTL
);
3342 regs_buff
[15] = er32(TADV
);
3343 regs_buff
[16] = er32(TARC0
);
3345 regs_buff
[17] = er32(TDBAL1
);
3346 regs_buff
[18] = er32(TDBAH1
);
3347 regs_buff
[19] = er32(TDLEN1
);
3348 regs_buff
[20] = er32(TDH1
);
3349 regs_buff
[21] = er32(TDT1
);
3350 regs_buff
[22] = er32(TXDCTL1
);
3351 regs_buff
[23] = er32(TARC1
);
3352 regs_buff
[24] = er32(CTRL_EXT
);
3353 regs_buff
[25] = er32(ERT
);
3354 regs_buff
[26] = er32(RDBAL0
);
3355 regs_buff
[27] = er32(RDBAH0
);
3356 regs_buff
[28] = er32(TDFH
);
3357 regs_buff
[29] = er32(TDFT
);
3358 regs_buff
[30] = er32(TDFHS
);
3359 regs_buff
[31] = er32(TDFTS
);
3360 regs_buff
[32] = er32(TDFPC
);
3361 regs_buff
[33] = er32(RDFH
);
3362 regs_buff
[34] = er32(RDFT
);
3363 regs_buff
[35] = er32(RDFHS
);
3364 regs_buff
[36] = er32(RDFTS
);
3365 regs_buff
[37] = er32(RDFPC
);
3367 pr_info("Register dump\n");
3368 for (i
= 0; i
< NUM_REGS
; i
++)
3369 pr_info("%-15s %08x\n", reg_name
[i
], regs_buff
[i
]);
3373 * e1000_dump: Print registers, tx ring and rx ring
3375 static void e1000_dump(struct e1000_adapter
*adapter
)
3377 /* this code doesn't handle multiple rings */
3378 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3379 struct e1000_rx_ring
*rx_ring
= adapter
->rx_ring
;
3382 if (!netif_msg_hw(adapter
))
3385 /* Print Registers */
3386 e1000_regdump(adapter
);
3389 pr_info("TX Desc ring0 dump\n");
3391 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3393 * Legacy Transmit Descriptor
3394 * +--------------------------------------------------------------+
3395 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3396 * +--------------------------------------------------------------+
3397 * 8 | Special | CSS | Status | CMD | CSO | Length |
3398 * +--------------------------------------------------------------+
3399 * 63 48 47 36 35 32 31 24 23 16 15 0
3401 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3402 * 63 48 47 40 39 32 31 16 15 8 7 0
3403 * +----------------------------------------------------------------+
3404 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3405 * +----------------------------------------------------------------+
3406 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3407 * +----------------------------------------------------------------+
3408 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3410 * Extended Data Descriptor (DTYP=0x1)
3411 * +----------------------------------------------------------------+
3412 * 0 | Buffer Address [63:0] |
3413 * +----------------------------------------------------------------+
3414 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3415 * +----------------------------------------------------------------+
3416 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3418 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3419 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3421 if (!netif_msg_tx_done(adapter
))
3422 goto rx_ring_summary
;
3424 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
3425 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3426 struct e1000_tx_buffer
*buffer_info
= &tx_ring
->buffer_info
[i
];
3427 struct my_u
{ __le64 a
; __le64 b
; };
3428 struct my_u
*u
= (struct my_u
*)tx_desc
;
3431 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
3433 else if (i
== tx_ring
->next_to_use
)
3435 else if (i
== tx_ring
->next_to_clean
)
3440 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3441 ((le64_to_cpu(u
->b
) & (1<<20)) ? 'd' : 'c'), i
,
3442 le64_to_cpu(u
->a
), le64_to_cpu(u
->b
),
3443 (u64
)buffer_info
->dma
, buffer_info
->length
,
3444 buffer_info
->next_to_watch
,
3445 (u64
)buffer_info
->time_stamp
, buffer_info
->skb
, type
);
3450 pr_info("\nRX Desc ring dump\n");
3452 /* Legacy Receive Descriptor Format
3454 * +-----------------------------------------------------+
3455 * | Buffer Address [63:0] |
3456 * +-----------------------------------------------------+
3457 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3458 * +-----------------------------------------------------+
3459 * 63 48 47 40 39 32 31 16 15 0
3461 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3463 if (!netif_msg_rx_status(adapter
))
3466 for (i
= 0; rx_ring
->desc
&& (i
< rx_ring
->count
); i
++) {
3467 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3468 struct e1000_rx_buffer
*buffer_info
= &rx_ring
->buffer_info
[i
];
3469 struct my_u
{ __le64 a
; __le64 b
; };
3470 struct my_u
*u
= (struct my_u
*)rx_desc
;
3473 if (i
== rx_ring
->next_to_use
)
3475 else if (i
== rx_ring
->next_to_clean
)
3480 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3481 i
, le64_to_cpu(u
->a
), le64_to_cpu(u
->b
),
3482 (u64
)buffer_info
->dma
, buffer_info
->rxbuf
.data
, type
);
3485 /* dump the descriptor caches */
3487 pr_info("Rx descriptor cache in 64bit format\n");
3488 for (i
= 0x6000; i
<= 0x63FF ; i
+= 0x10) {
3489 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3491 readl(adapter
->hw
.hw_addr
+ i
+4),
3492 readl(adapter
->hw
.hw_addr
+ i
),
3493 readl(adapter
->hw
.hw_addr
+ i
+12),
3494 readl(adapter
->hw
.hw_addr
+ i
+8));
3497 pr_info("Tx descriptor cache in 64bit format\n");
3498 for (i
= 0x7000; i
<= 0x73FF ; i
+= 0x10) {
3499 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3501 readl(adapter
->hw
.hw_addr
+ i
+4),
3502 readl(adapter
->hw
.hw_addr
+ i
),
3503 readl(adapter
->hw
.hw_addr
+ i
+12),
3504 readl(adapter
->hw
.hw_addr
+ i
+8));
3511 * e1000_tx_timeout - Respond to a Tx Hang
3512 * @netdev: network interface device structure
3514 static void e1000_tx_timeout(struct net_device
*netdev
)
3516 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3518 /* Do the reset outside of interrupt context */
3519 adapter
->tx_timeout_count
++;
3520 schedule_work(&adapter
->reset_task
);
3523 static void e1000_reset_task(struct work_struct
*work
)
3525 struct e1000_adapter
*adapter
=
3526 container_of(work
, struct e1000_adapter
, reset_task
);
3528 e_err(drv
, "Reset adapter\n");
3529 e1000_reinit_locked(adapter
);
3533 * e1000_get_stats - Get System Network Statistics
3534 * @netdev: network interface device structure
3536 * Returns the address of the device statistics structure.
3537 * The statistics are actually updated from the watchdog.
3539 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3541 /* only return the current stats */
3542 return &netdev
->stats
;
3546 * e1000_change_mtu - Change the Maximum Transfer Unit
3547 * @netdev: network interface device structure
3548 * @new_mtu: new value for maximum frame size
3550 * Returns 0 on success, negative on failure
3552 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3554 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3555 struct e1000_hw
*hw
= &adapter
->hw
;
3556 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3558 /* Adapter-specific max frame size limits. */
3559 switch (hw
->mac_type
) {
3560 case e1000_undefined
... e1000_82542_rev2_1
:
3561 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3562 e_err(probe
, "Jumbo Frames not supported.\n");
3567 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3571 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3573 /* e1000_down has a dependency on max_frame_size */
3574 hw
->max_frame_size
= max_frame
;
3575 if (netif_running(netdev
)) {
3576 /* prevent buffers from being reallocated */
3577 adapter
->alloc_rx_buf
= e1000_alloc_dummy_rx_buffers
;
3578 e1000_down(adapter
);
3581 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3582 * means we reserve 2 more, this pushes us to allocate from the next
3584 * i.e. RXBUFFER_2048 --> size-4096 slab
3585 * however with the new *_jumbo_rx* routines, jumbo receives will use
3589 if (max_frame
<= E1000_RXBUFFER_2048
)
3590 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3592 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3593 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3594 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3595 adapter
->rx_buffer_len
= PAGE_SIZE
;
3598 /* adjust allocation if LPE protects us, and we aren't using SBP */
3599 if (!hw
->tbi_compatibility_on
&&
3600 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3601 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3602 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3604 pr_info("%s changing MTU from %d to %d\n",
3605 netdev
->name
, netdev
->mtu
, new_mtu
);
3606 netdev
->mtu
= new_mtu
;
3608 if (netif_running(netdev
))
3611 e1000_reset(adapter
);
3613 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3619 * e1000_update_stats - Update the board statistics counters
3620 * @adapter: board private structure
3622 void e1000_update_stats(struct e1000_adapter
*adapter
)
3624 struct net_device
*netdev
= adapter
->netdev
;
3625 struct e1000_hw
*hw
= &adapter
->hw
;
3626 struct pci_dev
*pdev
= adapter
->pdev
;
3627 unsigned long flags
;
3630 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3632 /* Prevent stats update while adapter is being reset, or if the pci
3633 * connection is down.
3635 if (adapter
->link_speed
== 0)
3637 if (pci_channel_offline(pdev
))
3640 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3642 /* these counters are modified from e1000_tbi_adjust_stats,
3643 * called from the interrupt context, so they must only
3644 * be written while holding adapter->stats_lock
3647 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3648 adapter
->stats
.gprc
+= er32(GPRC
);
3649 adapter
->stats
.gorcl
+= er32(GORCL
);
3650 adapter
->stats
.gorch
+= er32(GORCH
);
3651 adapter
->stats
.bprc
+= er32(BPRC
);
3652 adapter
->stats
.mprc
+= er32(MPRC
);
3653 adapter
->stats
.roc
+= er32(ROC
);
3655 adapter
->stats
.prc64
+= er32(PRC64
);
3656 adapter
->stats
.prc127
+= er32(PRC127
);
3657 adapter
->stats
.prc255
+= er32(PRC255
);
3658 adapter
->stats
.prc511
+= er32(PRC511
);
3659 adapter
->stats
.prc1023
+= er32(PRC1023
);
3660 adapter
->stats
.prc1522
+= er32(PRC1522
);
3662 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3663 adapter
->stats
.mpc
+= er32(MPC
);
3664 adapter
->stats
.scc
+= er32(SCC
);
3665 adapter
->stats
.ecol
+= er32(ECOL
);
3666 adapter
->stats
.mcc
+= er32(MCC
);
3667 adapter
->stats
.latecol
+= er32(LATECOL
);
3668 adapter
->stats
.dc
+= er32(DC
);
3669 adapter
->stats
.sec
+= er32(SEC
);
3670 adapter
->stats
.rlec
+= er32(RLEC
);
3671 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3672 adapter
->stats
.xontxc
+= er32(XONTXC
);
3673 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3674 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3675 adapter
->stats
.fcruc
+= er32(FCRUC
);
3676 adapter
->stats
.gptc
+= er32(GPTC
);
3677 adapter
->stats
.gotcl
+= er32(GOTCL
);
3678 adapter
->stats
.gotch
+= er32(GOTCH
);
3679 adapter
->stats
.rnbc
+= er32(RNBC
);
3680 adapter
->stats
.ruc
+= er32(RUC
);
3681 adapter
->stats
.rfc
+= er32(RFC
);
3682 adapter
->stats
.rjc
+= er32(RJC
);
3683 adapter
->stats
.torl
+= er32(TORL
);
3684 adapter
->stats
.torh
+= er32(TORH
);
3685 adapter
->stats
.totl
+= er32(TOTL
);
3686 adapter
->stats
.toth
+= er32(TOTH
);
3687 adapter
->stats
.tpr
+= er32(TPR
);
3689 adapter
->stats
.ptc64
+= er32(PTC64
);
3690 adapter
->stats
.ptc127
+= er32(PTC127
);
3691 adapter
->stats
.ptc255
+= er32(PTC255
);
3692 adapter
->stats
.ptc511
+= er32(PTC511
);
3693 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3694 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3696 adapter
->stats
.mptc
+= er32(MPTC
);
3697 adapter
->stats
.bptc
+= er32(BPTC
);
3699 /* used for adaptive IFS */
3701 hw
->tx_packet_delta
= er32(TPT
);
3702 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3703 hw
->collision_delta
= er32(COLC
);
3704 adapter
->stats
.colc
+= hw
->collision_delta
;
3706 if (hw
->mac_type
>= e1000_82543
) {
3707 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3708 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3709 adapter
->stats
.tncrs
+= er32(TNCRS
);
3710 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3711 adapter
->stats
.tsctc
+= er32(TSCTC
);
3712 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3715 /* Fill out the OS statistics structure */
3716 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3717 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3721 /* RLEC on some newer hardware can be incorrect so build
3722 * our own version based on RUC and ROC
3724 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3725 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3726 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3727 adapter
->stats
.cexterr
;
3728 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3729 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3730 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3731 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3732 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3735 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3736 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3737 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3738 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3739 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3740 if (hw
->bad_tx_carr_stats_fd
&&
3741 adapter
->link_duplex
== FULL_DUPLEX
) {
3742 netdev
->stats
.tx_carrier_errors
= 0;
3743 adapter
->stats
.tncrs
= 0;
3746 /* Tx Dropped needs to be maintained elsewhere */
3749 if (hw
->media_type
== e1000_media_type_copper
) {
3750 if ((adapter
->link_speed
== SPEED_1000
) &&
3751 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3752 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3753 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3756 if ((hw
->mac_type
<= e1000_82546
) &&
3757 (hw
->phy_type
== e1000_phy_m88
) &&
3758 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3759 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3762 /* Management Stats */
3763 if (hw
->has_smbus
) {
3764 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3765 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3766 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3769 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3773 * e1000_intr - Interrupt Handler
3774 * @irq: interrupt number
3775 * @data: pointer to a network interface device structure
3777 static irqreturn_t
e1000_intr(int irq
, void *data
)
3779 struct net_device
*netdev
= data
;
3780 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3781 struct e1000_hw
*hw
= &adapter
->hw
;
3782 u32 icr
= er32(ICR
);
3784 if (unlikely((!icr
)))
3785 return IRQ_NONE
; /* Not our interrupt */
3787 /* we might have caused the interrupt, but the above
3788 * read cleared it, and just in case the driver is
3789 * down there is nothing to do so return handled
3791 if (unlikely(test_bit(__E1000_DOWN
, &adapter
->flags
)))
3794 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3795 hw
->get_link_status
= 1;
3796 /* guard against interrupt when we're going down */
3797 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3798 schedule_delayed_work(&adapter
->watchdog_task
, 1);
3801 /* disable interrupts, without the synchronize_irq bit */
3803 E1000_WRITE_FLUSH();
3805 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3806 adapter
->total_tx_bytes
= 0;
3807 adapter
->total_tx_packets
= 0;
3808 adapter
->total_rx_bytes
= 0;
3809 adapter
->total_rx_packets
= 0;
3810 __napi_schedule(&adapter
->napi
);
3812 /* this really should not happen! if it does it is basically a
3813 * bug, but not a hard error, so enable ints and continue
3815 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3816 e1000_irq_enable(adapter
);
3823 * e1000_clean - NAPI Rx polling callback
3824 * @adapter: board private structure
3826 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3828 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
3830 int tx_clean_complete
= 0, work_done
= 0;
3832 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3834 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3836 if (!tx_clean_complete
)
3839 /* If budget not fully consumed, exit the polling mode */
3840 if (work_done
< budget
) {
3841 if (likely(adapter
->itr_setting
& 3))
3842 e1000_set_itr(adapter
);
3843 napi_complete_done(napi
, work_done
);
3844 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3845 e1000_irq_enable(adapter
);
3852 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3853 * @adapter: board private structure
3855 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3856 struct e1000_tx_ring
*tx_ring
)
3858 struct e1000_hw
*hw
= &adapter
->hw
;
3859 struct net_device
*netdev
= adapter
->netdev
;
3860 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3861 struct e1000_tx_buffer
*buffer_info
;
3862 unsigned int i
, eop
;
3863 unsigned int count
= 0;
3864 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
3865 unsigned int bytes_compl
= 0, pkts_compl
= 0;
3867 i
= tx_ring
->next_to_clean
;
3868 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3869 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3871 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3872 (count
< tx_ring
->count
)) {
3873 bool cleaned
= false;
3874 dma_rmb(); /* read buffer_info after eop_desc */
3875 for ( ; !cleaned
; count
++) {
3876 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3877 buffer_info
= &tx_ring
->buffer_info
[i
];
3878 cleaned
= (i
== eop
);
3881 total_tx_packets
+= buffer_info
->segs
;
3882 total_tx_bytes
+= buffer_info
->bytecount
;
3883 if (buffer_info
->skb
) {
3884 bytes_compl
+= buffer_info
->skb
->len
;
3889 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3890 tx_desc
->upper
.data
= 0;
3892 if (unlikely(++i
== tx_ring
->count
))
3896 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3897 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3900 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3901 * which will reuse the cleaned buffers.
3903 smp_store_release(&tx_ring
->next_to_clean
, i
);
3905 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
3907 #define TX_WAKE_THRESHOLD 32
3908 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3909 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3910 /* Make sure that anybody stopping the queue after this
3911 * sees the new next_to_clean.
3915 if (netif_queue_stopped(netdev
) &&
3916 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3917 netif_wake_queue(netdev
);
3918 ++adapter
->restart_queue
;
3922 if (adapter
->detect_tx_hung
) {
3923 /* Detect a transmit hang in hardware, this serializes the
3924 * check with the clearing of time_stamp and movement of i
3926 adapter
->detect_tx_hung
= false;
3927 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3928 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3929 (adapter
->tx_timeout_factor
* HZ
)) &&
3930 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3932 /* detected Tx unit hang */
3933 e_err(drv
, "Detected Tx Unit Hang\n"
3937 " next_to_use <%x>\n"
3938 " next_to_clean <%x>\n"
3939 "buffer_info[next_to_clean]\n"
3940 " time_stamp <%lx>\n"
3941 " next_to_watch <%x>\n"
3943 " next_to_watch.status <%x>\n",
3944 (unsigned long)(tx_ring
- adapter
->tx_ring
),
3945 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3946 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3947 tx_ring
->next_to_use
,
3948 tx_ring
->next_to_clean
,
3949 tx_ring
->buffer_info
[eop
].time_stamp
,
3952 eop_desc
->upper
.fields
.status
);
3953 e1000_dump(adapter
);
3954 netif_stop_queue(netdev
);
3957 adapter
->total_tx_bytes
+= total_tx_bytes
;
3958 adapter
->total_tx_packets
+= total_tx_packets
;
3959 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3960 netdev
->stats
.tx_packets
+= total_tx_packets
;
3961 return count
< tx_ring
->count
;
3965 * e1000_rx_checksum - Receive Checksum Offload for 82543
3966 * @adapter: board private structure
3967 * @status_err: receive descriptor status and error fields
3968 * @csum: receive descriptor csum field
3969 * @sk_buff: socket buffer with received data
3971 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3972 u32 csum
, struct sk_buff
*skb
)
3974 struct e1000_hw
*hw
= &adapter
->hw
;
3975 u16 status
= (u16
)status_err
;
3976 u8 errors
= (u8
)(status_err
>> 24);
3978 skb_checksum_none_assert(skb
);
3980 /* 82543 or newer only */
3981 if (unlikely(hw
->mac_type
< e1000_82543
))
3983 /* Ignore Checksum bit is set */
3984 if (unlikely(status
& E1000_RXD_STAT_IXSM
))
3986 /* TCP/UDP checksum error bit is set */
3987 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3988 /* let the stack verify checksum errors */
3989 adapter
->hw_csum_err
++;
3992 /* TCP/UDP Checksum has not been calculated */
3993 if (!(status
& E1000_RXD_STAT_TCPCS
))
3996 /* It must be a TCP or UDP packet with a valid checksum */
3997 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3998 /* TCP checksum is good */
3999 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4001 adapter
->hw_csum_good
++;
4005 * e1000_consume_page - helper function for jumbo Rx path
4007 static void e1000_consume_page(struct e1000_rx_buffer
*bi
, struct sk_buff
*skb
,
4010 bi
->rxbuf
.page
= NULL
;
4012 skb
->data_len
+= length
;
4013 skb
->truesize
+= PAGE_SIZE
;
4017 * e1000_receive_skb - helper function to handle rx indications
4018 * @adapter: board private structure
4019 * @status: descriptor status field as written by hardware
4020 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4021 * @skb: pointer to sk_buff to be indicated to stack
4023 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
4024 __le16 vlan
, struct sk_buff
*skb
)
4026 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
4028 if (status
& E1000_RXD_STAT_VP
) {
4029 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
4031 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vid
);
4033 napi_gro_receive(&adapter
->napi
, skb
);
4037 * e1000_tbi_adjust_stats
4038 * @hw: Struct containing variables accessed by shared code
4039 * @frame_len: The length of the frame in question
4040 * @mac_addr: The Ethernet destination address of the frame in question
4042 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4044 static void e1000_tbi_adjust_stats(struct e1000_hw
*hw
,
4045 struct e1000_hw_stats
*stats
,
4046 u32 frame_len
, const u8
*mac_addr
)
4050 /* First adjust the frame length. */
4052 /* We need to adjust the statistics counters, since the hardware
4053 * counters overcount this packet as a CRC error and undercount
4054 * the packet as a good packet
4056 /* This packet should not be counted as a CRC error. */
4058 /* This packet does count as a Good Packet Received. */
4061 /* Adjust the Good Octets received counters */
4062 carry_bit
= 0x80000000 & stats
->gorcl
;
4063 stats
->gorcl
+= frame_len
;
4064 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4065 * Received Count) was one before the addition,
4066 * AND it is zero after, then we lost the carry out,
4067 * need to add one to Gorch (Good Octets Received Count High).
4068 * This could be simplified if all environments supported
4071 if (carry_bit
&& ((stats
->gorcl
& 0x80000000) == 0))
4073 /* Is this a broadcast or multicast? Check broadcast first,
4074 * since the test for a multicast frame will test positive on
4075 * a broadcast frame.
4077 if (is_broadcast_ether_addr(mac_addr
))
4079 else if (is_multicast_ether_addr(mac_addr
))
4082 if (frame_len
== hw
->max_frame_size
) {
4083 /* In this case, the hardware has overcounted the number of
4090 /* Adjust the bin counters when the extra byte put the frame in the
4091 * wrong bin. Remember that the frame_len was adjusted above.
4093 if (frame_len
== 64) {
4096 } else if (frame_len
== 127) {
4099 } else if (frame_len
== 255) {
4102 } else if (frame_len
== 511) {
4105 } else if (frame_len
== 1023) {
4108 } else if (frame_len
== 1522) {
4113 static bool e1000_tbi_should_accept(struct e1000_adapter
*adapter
,
4114 u8 status
, u8 errors
,
4115 u32 length
, const u8
*data
)
4117 struct e1000_hw
*hw
= &adapter
->hw
;
4118 u8 last_byte
= *(data
+ length
- 1);
4120 if (TBI_ACCEPT(hw
, status
, errors
, length
, last_byte
)) {
4121 unsigned long irq_flags
;
4123 spin_lock_irqsave(&adapter
->stats_lock
, irq_flags
);
4124 e1000_tbi_adjust_stats(hw
, &adapter
->stats
, length
, data
);
4125 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
4133 static struct sk_buff
*e1000_alloc_rx_skb(struct e1000_adapter
*adapter
,
4136 struct sk_buff
*skb
= napi_alloc_skb(&adapter
->napi
, bufsz
);
4139 adapter
->alloc_rx_buff_failed
++;
4144 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4145 * @adapter: board private structure
4146 * @rx_ring: ring to clean
4147 * @work_done: amount of napi work completed this call
4148 * @work_to_do: max amount of work allowed for this call to do
4150 * the return value indicates whether actual cleaning was done, there
4151 * is no guarantee that everything was cleaned
4153 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
4154 struct e1000_rx_ring
*rx_ring
,
4155 int *work_done
, int work_to_do
)
4157 struct net_device
*netdev
= adapter
->netdev
;
4158 struct pci_dev
*pdev
= adapter
->pdev
;
4159 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4160 struct e1000_rx_buffer
*buffer_info
, *next_buffer
;
4163 int cleaned_count
= 0;
4164 bool cleaned
= false;
4165 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
4167 i
= rx_ring
->next_to_clean
;
4168 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4169 buffer_info
= &rx_ring
->buffer_info
[i
];
4171 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4172 struct sk_buff
*skb
;
4175 if (*work_done
>= work_to_do
)
4178 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4180 status
= rx_desc
->status
;
4182 if (++i
== rx_ring
->count
)
4185 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4188 next_buffer
= &rx_ring
->buffer_info
[i
];
4192 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
4193 adapter
->rx_buffer_len
, DMA_FROM_DEVICE
);
4194 buffer_info
->dma
= 0;
4196 length
= le16_to_cpu(rx_desc
->length
);
4198 /* errors is only valid for DD + EOP descriptors */
4199 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
4200 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
4201 u8
*mapped
= page_address(buffer_info
->rxbuf
.page
);
4203 if (e1000_tbi_should_accept(adapter
, status
,
4207 } else if (netdev
->features
& NETIF_F_RXALL
) {
4210 /* an error means any chain goes out the window
4213 if (rx_ring
->rx_skb_top
)
4214 dev_kfree_skb(rx_ring
->rx_skb_top
);
4215 rx_ring
->rx_skb_top
= NULL
;
4220 #define rxtop rx_ring->rx_skb_top
4222 if (!(status
& E1000_RXD_STAT_EOP
)) {
4223 /* this descriptor is only the beginning (or middle) */
4225 /* this is the beginning of a chain */
4226 rxtop
= napi_get_frags(&adapter
->napi
);
4230 skb_fill_page_desc(rxtop
, 0,
4231 buffer_info
->rxbuf
.page
,
4234 /* this is the middle of a chain */
4235 skb_fill_page_desc(rxtop
,
4236 skb_shinfo(rxtop
)->nr_frags
,
4237 buffer_info
->rxbuf
.page
, 0, length
);
4239 e1000_consume_page(buffer_info
, rxtop
, length
);
4243 /* end of the chain */
4244 skb_fill_page_desc(rxtop
,
4245 skb_shinfo(rxtop
)->nr_frags
,
4246 buffer_info
->rxbuf
.page
, 0, length
);
4249 e1000_consume_page(buffer_info
, skb
, length
);
4252 /* no chain, got EOP, this buf is the packet
4253 * copybreak to save the put_page/alloc_page
4255 p
= buffer_info
->rxbuf
.page
;
4256 if (length
<= copybreak
) {
4259 if (likely(!(netdev
->features
& NETIF_F_RXFCS
)))
4261 skb
= e1000_alloc_rx_skb(adapter
,
4266 vaddr
= kmap_atomic(p
);
4267 memcpy(skb_tail_pointer(skb
), vaddr
,
4269 kunmap_atomic(vaddr
);
4270 /* re-use the page, so don't erase
4271 * buffer_info->rxbuf.page
4273 skb_put(skb
, length
);
4274 e1000_rx_checksum(adapter
,
4275 status
| rx_desc
->errors
<< 24,
4276 le16_to_cpu(rx_desc
->csum
), skb
);
4278 total_rx_bytes
+= skb
->len
;
4281 e1000_receive_skb(adapter
, status
,
4282 rx_desc
->special
, skb
);
4285 skb
= napi_get_frags(&adapter
->napi
);
4287 adapter
->alloc_rx_buff_failed
++;
4290 skb_fill_page_desc(skb
, 0, p
, 0,
4292 e1000_consume_page(buffer_info
, skb
,
4298 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4299 e1000_rx_checksum(adapter
,
4301 ((u32
)(rx_desc
->errors
) << 24),
4302 le16_to_cpu(rx_desc
->csum
), skb
);
4304 total_rx_bytes
+= (skb
->len
- 4); /* don't count FCS */
4305 if (likely(!(netdev
->features
& NETIF_F_RXFCS
)))
4306 pskb_trim(skb
, skb
->len
- 4);
4309 if (status
& E1000_RXD_STAT_VP
) {
4310 __le16 vlan
= rx_desc
->special
;
4311 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
4313 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vid
);
4316 napi_gro_frags(&adapter
->napi
);
4319 rx_desc
->status
= 0;
4321 /* return some buffers to hardware, one at a time is too slow */
4322 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4323 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4327 /* use prefetched values */
4329 buffer_info
= next_buffer
;
4331 rx_ring
->next_to_clean
= i
;
4333 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4335 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4337 adapter
->total_rx_packets
+= total_rx_packets
;
4338 adapter
->total_rx_bytes
+= total_rx_bytes
;
4339 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4340 netdev
->stats
.rx_packets
+= total_rx_packets
;
4344 /* this should improve performance for small packets with large amounts
4345 * of reassembly being done in the stack
4347 static struct sk_buff
*e1000_copybreak(struct e1000_adapter
*adapter
,
4348 struct e1000_rx_buffer
*buffer_info
,
4349 u32 length
, const void *data
)
4351 struct sk_buff
*skb
;
4353 if (length
> copybreak
)
4356 skb
= e1000_alloc_rx_skb(adapter
, length
);
4360 dma_sync_single_for_cpu(&adapter
->pdev
->dev
, buffer_info
->dma
,
4361 length
, DMA_FROM_DEVICE
);
4363 memcpy(skb_put(skb
, length
), data
, length
);
4369 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4370 * @adapter: board private structure
4371 * @rx_ring: ring to clean
4372 * @work_done: amount of napi work completed this call
4373 * @work_to_do: max amount of work allowed for this call to do
4375 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4376 struct e1000_rx_ring
*rx_ring
,
4377 int *work_done
, int work_to_do
)
4379 struct net_device
*netdev
= adapter
->netdev
;
4380 struct pci_dev
*pdev
= adapter
->pdev
;
4381 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4382 struct e1000_rx_buffer
*buffer_info
, *next_buffer
;
4385 int cleaned_count
= 0;
4386 bool cleaned
= false;
4387 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
4389 i
= rx_ring
->next_to_clean
;
4390 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4391 buffer_info
= &rx_ring
->buffer_info
[i
];
4393 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4394 struct sk_buff
*skb
;
4398 if (*work_done
>= work_to_do
)
4401 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4403 status
= rx_desc
->status
;
4404 length
= le16_to_cpu(rx_desc
->length
);
4406 data
= buffer_info
->rxbuf
.data
;
4408 skb
= e1000_copybreak(adapter
, buffer_info
, length
, data
);
4410 unsigned int frag_len
= e1000_frag_len(adapter
);
4412 skb
= build_skb(data
- E1000_HEADROOM
, frag_len
);
4414 adapter
->alloc_rx_buff_failed
++;
4418 skb_reserve(skb
, E1000_HEADROOM
);
4419 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4420 adapter
->rx_buffer_len
,
4422 buffer_info
->dma
= 0;
4423 buffer_info
->rxbuf
.data
= NULL
;
4426 if (++i
== rx_ring
->count
)
4429 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4432 next_buffer
= &rx_ring
->buffer_info
[i
];
4437 /* !EOP means multiple descriptors were used to store a single
4438 * packet, if thats the case we need to toss it. In fact, we
4439 * to toss every packet with the EOP bit clear and the next
4440 * frame that _does_ have the EOP bit set, as it is by
4441 * definition only a frame fragment
4443 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
4444 adapter
->discarding
= true;
4446 if (adapter
->discarding
) {
4447 /* All receives must fit into a single buffer */
4448 netdev_dbg(netdev
, "Receive packet consumed multiple buffers\n");
4450 if (status
& E1000_RXD_STAT_EOP
)
4451 adapter
->discarding
= false;
4455 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4456 if (e1000_tbi_should_accept(adapter
, status
,
4460 } else if (netdev
->features
& NETIF_F_RXALL
) {
4469 total_rx_bytes
+= (length
- 4); /* don't count FCS */
4472 if (likely(!(netdev
->features
& NETIF_F_RXFCS
)))
4473 /* adjust length to remove Ethernet CRC, this must be
4474 * done after the TBI_ACCEPT workaround above
4478 if (buffer_info
->rxbuf
.data
== NULL
)
4479 skb_put(skb
, length
);
4480 else /* copybreak skb */
4481 skb_trim(skb
, length
);
4483 /* Receive Checksum Offload */
4484 e1000_rx_checksum(adapter
,
4486 ((u32
)(rx_desc
->errors
) << 24),
4487 le16_to_cpu(rx_desc
->csum
), skb
);
4489 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4492 rx_desc
->status
= 0;
4494 /* return some buffers to hardware, one at a time is too slow */
4495 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4496 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4500 /* use prefetched values */
4502 buffer_info
= next_buffer
;
4504 rx_ring
->next_to_clean
= i
;
4506 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4508 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4510 adapter
->total_rx_packets
+= total_rx_packets
;
4511 adapter
->total_rx_bytes
+= total_rx_bytes
;
4512 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4513 netdev
->stats
.rx_packets
+= total_rx_packets
;
4518 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4519 * @adapter: address of board private structure
4520 * @rx_ring: pointer to receive ring structure
4521 * @cleaned_count: number of buffers to allocate this pass
4524 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
4525 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
4527 struct pci_dev
*pdev
= adapter
->pdev
;
4528 struct e1000_rx_desc
*rx_desc
;
4529 struct e1000_rx_buffer
*buffer_info
;
4532 i
= rx_ring
->next_to_use
;
4533 buffer_info
= &rx_ring
->buffer_info
[i
];
4535 while (cleaned_count
--) {
4536 /* allocate a new page if necessary */
4537 if (!buffer_info
->rxbuf
.page
) {
4538 buffer_info
->rxbuf
.page
= alloc_page(GFP_ATOMIC
);
4539 if (unlikely(!buffer_info
->rxbuf
.page
)) {
4540 adapter
->alloc_rx_buff_failed
++;
4545 if (!buffer_info
->dma
) {
4546 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
4547 buffer_info
->rxbuf
.page
, 0,
4548 adapter
->rx_buffer_len
,
4550 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4551 put_page(buffer_info
->rxbuf
.page
);
4552 buffer_info
->rxbuf
.page
= NULL
;
4553 buffer_info
->dma
= 0;
4554 adapter
->alloc_rx_buff_failed
++;
4559 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4560 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4562 if (unlikely(++i
== rx_ring
->count
))
4564 buffer_info
= &rx_ring
->buffer_info
[i
];
4567 if (likely(rx_ring
->next_to_use
!= i
)) {
4568 rx_ring
->next_to_use
= i
;
4569 if (unlikely(i
-- == 0))
4570 i
= (rx_ring
->count
- 1);
4572 /* Force memory writes to complete before letting h/w
4573 * know there are new descriptors to fetch. (Only
4574 * applicable for weak-ordered memory model archs,
4578 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4583 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4584 * @adapter: address of board private structure
4586 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4587 struct e1000_rx_ring
*rx_ring
,
4590 struct e1000_hw
*hw
= &adapter
->hw
;
4591 struct pci_dev
*pdev
= adapter
->pdev
;
4592 struct e1000_rx_desc
*rx_desc
;
4593 struct e1000_rx_buffer
*buffer_info
;
4595 unsigned int bufsz
= adapter
->rx_buffer_len
;
4597 i
= rx_ring
->next_to_use
;
4598 buffer_info
= &rx_ring
->buffer_info
[i
];
4600 while (cleaned_count
--) {
4603 if (buffer_info
->rxbuf
.data
)
4606 data
= e1000_alloc_frag(adapter
);
4608 /* Better luck next round */
4609 adapter
->alloc_rx_buff_failed
++;
4613 /* Fix for errata 23, can't cross 64kB boundary */
4614 if (!e1000_check_64k_bound(adapter
, data
, bufsz
)) {
4615 void *olddata
= data
;
4616 e_err(rx_err
, "skb align check failed: %u bytes at "
4617 "%p\n", bufsz
, data
);
4618 /* Try again, without freeing the previous */
4619 data
= e1000_alloc_frag(adapter
);
4620 /* Failed allocation, critical failure */
4622 skb_free_frag(olddata
);
4623 adapter
->alloc_rx_buff_failed
++;
4627 if (!e1000_check_64k_bound(adapter
, data
, bufsz
)) {
4629 skb_free_frag(data
);
4630 skb_free_frag(olddata
);
4631 adapter
->alloc_rx_buff_failed
++;
4635 /* Use new allocation */
4636 skb_free_frag(olddata
);
4638 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4640 adapter
->rx_buffer_len
,
4642 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4643 skb_free_frag(data
);
4644 buffer_info
->dma
= 0;
4645 adapter
->alloc_rx_buff_failed
++;
4649 /* XXX if it was allocated cleanly it will never map to a
4653 /* Fix for errata 23, can't cross 64kB boundary */
4654 if (!e1000_check_64k_bound(adapter
,
4655 (void *)(unsigned long)buffer_info
->dma
,
4656 adapter
->rx_buffer_len
)) {
4657 e_err(rx_err
, "dma align check failed: %u bytes at "
4658 "%p\n", adapter
->rx_buffer_len
,
4659 (void *)(unsigned long)buffer_info
->dma
);
4661 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4662 adapter
->rx_buffer_len
,
4665 skb_free_frag(data
);
4666 buffer_info
->rxbuf
.data
= NULL
;
4667 buffer_info
->dma
= 0;
4669 adapter
->alloc_rx_buff_failed
++;
4672 buffer_info
->rxbuf
.data
= data
;
4674 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4675 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4677 if (unlikely(++i
== rx_ring
->count
))
4679 buffer_info
= &rx_ring
->buffer_info
[i
];
4682 if (likely(rx_ring
->next_to_use
!= i
)) {
4683 rx_ring
->next_to_use
= i
;
4684 if (unlikely(i
-- == 0))
4685 i
= (rx_ring
->count
- 1);
4687 /* Force memory writes to complete before letting h/w
4688 * know there are new descriptors to fetch. (Only
4689 * applicable for weak-ordered memory model archs,
4693 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4698 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4701 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4703 struct e1000_hw
*hw
= &adapter
->hw
;
4707 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4708 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4711 if (adapter
->smartspeed
== 0) {
4712 /* If Master/Slave config fault is asserted twice,
4713 * we assume back-to-back
4715 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4716 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
))
4718 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4719 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
))
4721 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4722 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4723 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4724 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4726 adapter
->smartspeed
++;
4727 if (!e1000_phy_setup_autoneg(hw
) &&
4728 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4730 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4731 MII_CR_RESTART_AUTO_NEG
);
4732 e1000_write_phy_reg(hw
, PHY_CTRL
,
4737 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4738 /* If still no link, perhaps using 2/3 pair cable */
4739 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4740 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4741 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4742 if (!e1000_phy_setup_autoneg(hw
) &&
4743 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4744 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4745 MII_CR_RESTART_AUTO_NEG
);
4746 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4749 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4750 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4751 adapter
->smartspeed
= 0;
4760 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4766 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4778 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4781 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4782 struct e1000_hw
*hw
= &adapter
->hw
;
4783 struct mii_ioctl_data
*data
= if_mii(ifr
);
4786 unsigned long flags
;
4788 if (hw
->media_type
!= e1000_media_type_copper
)
4793 data
->phy_id
= hw
->phy_addr
;
4796 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4797 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4799 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4802 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4805 if (data
->reg_num
& ~(0x1F))
4807 mii_reg
= data
->val_in
;
4808 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4809 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4811 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4814 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4815 if (hw
->media_type
== e1000_media_type_copper
) {
4816 switch (data
->reg_num
) {
4818 if (mii_reg
& MII_CR_POWER_DOWN
)
4820 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4822 hw
->autoneg_advertised
= 0x2F;
4827 else if (mii_reg
& 0x2000)
4831 retval
= e1000_set_spd_dplx(
4839 if (netif_running(adapter
->netdev
))
4840 e1000_reinit_locked(adapter
);
4842 e1000_reset(adapter
);
4844 case M88E1000_PHY_SPEC_CTRL
:
4845 case M88E1000_EXT_PHY_SPEC_CTRL
:
4846 if (e1000_phy_reset(hw
))
4851 switch (data
->reg_num
) {
4853 if (mii_reg
& MII_CR_POWER_DOWN
)
4855 if (netif_running(adapter
->netdev
))
4856 e1000_reinit_locked(adapter
);
4858 e1000_reset(adapter
);
4866 return E1000_SUCCESS
;
4869 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4871 struct e1000_adapter
*adapter
= hw
->back
;
4872 int ret_val
= pci_set_mwi(adapter
->pdev
);
4875 e_err(probe
, "Error in setting MWI\n");
4878 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4880 struct e1000_adapter
*adapter
= hw
->back
;
4882 pci_clear_mwi(adapter
->pdev
);
4885 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4887 struct e1000_adapter
*adapter
= hw
->back
;
4888 return pcix_get_mmrbc(adapter
->pdev
);
4891 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4893 struct e1000_adapter
*adapter
= hw
->back
;
4894 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4897 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4902 static bool e1000_vlan_used(struct e1000_adapter
*adapter
)
4906 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4911 static void __e1000_vlan_mode(struct e1000_adapter
*adapter
,
4912 netdev_features_t features
)
4914 struct e1000_hw
*hw
= &adapter
->hw
;
4918 if (features
& NETIF_F_HW_VLAN_CTAG_RX
) {
4919 /* enable VLAN tag insert/strip */
4920 ctrl
|= E1000_CTRL_VME
;
4922 /* disable VLAN tag insert/strip */
4923 ctrl
&= ~E1000_CTRL_VME
;
4927 static void e1000_vlan_filter_on_off(struct e1000_adapter
*adapter
,
4930 struct e1000_hw
*hw
= &adapter
->hw
;
4933 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4934 e1000_irq_disable(adapter
);
4936 __e1000_vlan_mode(adapter
, adapter
->netdev
->features
);
4938 /* enable VLAN receive filtering */
4940 rctl
&= ~E1000_RCTL_CFIEN
;
4941 if (!(adapter
->netdev
->flags
& IFF_PROMISC
))
4942 rctl
|= E1000_RCTL_VFE
;
4944 e1000_update_mng_vlan(adapter
);
4946 /* disable VLAN receive filtering */
4948 rctl
&= ~E1000_RCTL_VFE
;
4952 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4953 e1000_irq_enable(adapter
);
4956 static void e1000_vlan_mode(struct net_device
*netdev
,
4957 netdev_features_t features
)
4959 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4961 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4962 e1000_irq_disable(adapter
);
4964 __e1000_vlan_mode(adapter
, features
);
4966 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4967 e1000_irq_enable(adapter
);
4970 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
4971 __be16 proto
, u16 vid
)
4973 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4974 struct e1000_hw
*hw
= &adapter
->hw
;
4977 if ((hw
->mng_cookie
.status
&
4978 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4979 (vid
== adapter
->mng_vlan_id
))
4982 if (!e1000_vlan_used(adapter
))
4983 e1000_vlan_filter_on_off(adapter
, true);
4985 /* add VID to filter table */
4986 index
= (vid
>> 5) & 0x7F;
4987 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4988 vfta
|= (1 << (vid
& 0x1F));
4989 e1000_write_vfta(hw
, index
, vfta
);
4991 set_bit(vid
, adapter
->active_vlans
);
4996 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
4997 __be16 proto
, u16 vid
)
4999 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5000 struct e1000_hw
*hw
= &adapter
->hw
;
5003 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
5004 e1000_irq_disable(adapter
);
5005 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
5006 e1000_irq_enable(adapter
);
5008 /* remove VID from filter table */
5009 index
= (vid
>> 5) & 0x7F;
5010 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
5011 vfta
&= ~(1 << (vid
& 0x1F));
5012 e1000_write_vfta(hw
, index
, vfta
);
5014 clear_bit(vid
, adapter
->active_vlans
);
5016 if (!e1000_vlan_used(adapter
))
5017 e1000_vlan_filter_on_off(adapter
, false);
5022 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
5026 if (!e1000_vlan_used(adapter
))
5029 e1000_vlan_filter_on_off(adapter
, true);
5030 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
5031 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
5034 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
5036 struct e1000_hw
*hw
= &adapter
->hw
;
5040 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5041 * for the switch() below to work
5043 if ((spd
& 1) || (dplx
& ~1))
5046 /* Fiber NICs only allow 1000 gbps Full duplex */
5047 if ((hw
->media_type
== e1000_media_type_fiber
) &&
5048 spd
!= SPEED_1000
&&
5049 dplx
!= DUPLEX_FULL
)
5052 switch (spd
+ dplx
) {
5053 case SPEED_10
+ DUPLEX_HALF
:
5054 hw
->forced_speed_duplex
= e1000_10_half
;
5056 case SPEED_10
+ DUPLEX_FULL
:
5057 hw
->forced_speed_duplex
= e1000_10_full
;
5059 case SPEED_100
+ DUPLEX_HALF
:
5060 hw
->forced_speed_duplex
= e1000_100_half
;
5062 case SPEED_100
+ DUPLEX_FULL
:
5063 hw
->forced_speed_duplex
= e1000_100_full
;
5065 case SPEED_1000
+ DUPLEX_FULL
:
5067 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
5069 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
5074 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5075 hw
->mdix
= AUTO_ALL_MODES
;
5080 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
5084 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
5086 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5087 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5088 struct e1000_hw
*hw
= &adapter
->hw
;
5089 u32 ctrl
, ctrl_ext
, rctl
, status
;
5090 u32 wufc
= adapter
->wol
;
5095 netif_device_detach(netdev
);
5097 if (netif_running(netdev
)) {
5098 int count
= E1000_CHECK_RESET_COUNT
;
5100 while (test_bit(__E1000_RESETTING
, &adapter
->flags
) && count
--)
5101 usleep_range(10000, 20000);
5103 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
5104 e1000_down(adapter
);
5108 retval
= pci_save_state(pdev
);
5113 status
= er32(STATUS
);
5114 if (status
& E1000_STATUS_LU
)
5115 wufc
&= ~E1000_WUFC_LNKC
;
5118 e1000_setup_rctl(adapter
);
5119 e1000_set_rx_mode(netdev
);
5123 /* turn on all-multi mode if wake on multicast is enabled */
5124 if (wufc
& E1000_WUFC_MC
)
5125 rctl
|= E1000_RCTL_MPE
;
5127 /* enable receives in the hardware */
5128 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
5130 if (hw
->mac_type
>= e1000_82540
) {
5132 /* advertise wake from D3Cold */
5133 #define E1000_CTRL_ADVD3WUC 0x00100000
5134 /* phy power management enable */
5135 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5136 ctrl
|= E1000_CTRL_ADVD3WUC
|
5137 E1000_CTRL_EN_PHY_PWR_MGMT
;
5141 if (hw
->media_type
== e1000_media_type_fiber
||
5142 hw
->media_type
== e1000_media_type_internal_serdes
) {
5143 /* keep the laser running in D3 */
5144 ctrl_ext
= er32(CTRL_EXT
);
5145 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
5146 ew32(CTRL_EXT
, ctrl_ext
);
5149 ew32(WUC
, E1000_WUC_PME_EN
);
5156 e1000_release_manageability(adapter
);
5158 *enable_wake
= !!wufc
;
5160 /* make sure adapter isn't asleep if manageability is enabled */
5161 if (adapter
->en_mng_pt
)
5162 *enable_wake
= true;
5164 if (netif_running(netdev
))
5165 e1000_free_irq(adapter
);
5167 pci_disable_device(pdev
);
5173 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5178 retval
= __e1000_shutdown(pdev
, &wake
);
5183 pci_prepare_to_sleep(pdev
);
5185 pci_wake_from_d3(pdev
, false);
5186 pci_set_power_state(pdev
, PCI_D3hot
);
5192 static int e1000_resume(struct pci_dev
*pdev
)
5194 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5195 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5196 struct e1000_hw
*hw
= &adapter
->hw
;
5199 pci_set_power_state(pdev
, PCI_D0
);
5200 pci_restore_state(pdev
);
5201 pci_save_state(pdev
);
5203 if (adapter
->need_ioport
)
5204 err
= pci_enable_device(pdev
);
5206 err
= pci_enable_device_mem(pdev
);
5208 pr_err("Cannot enable PCI device from suspend\n");
5211 pci_set_master(pdev
);
5213 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5214 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5216 if (netif_running(netdev
)) {
5217 err
= e1000_request_irq(adapter
);
5222 e1000_power_up_phy(adapter
);
5223 e1000_reset(adapter
);
5226 e1000_init_manageability(adapter
);
5228 if (netif_running(netdev
))
5231 netif_device_attach(netdev
);
5237 static void e1000_shutdown(struct pci_dev
*pdev
)
5241 __e1000_shutdown(pdev
, &wake
);
5243 if (system_state
== SYSTEM_POWER_OFF
) {
5244 pci_wake_from_d3(pdev
, wake
);
5245 pci_set_power_state(pdev
, PCI_D3hot
);
5249 #ifdef CONFIG_NET_POLL_CONTROLLER
5250 /* Polling 'interrupt' - used by things like netconsole to send skbs
5251 * without having to re-enable interrupts. It's not called while
5252 * the interrupt routine is executing.
5254 static void e1000_netpoll(struct net_device
*netdev
)
5256 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5258 if (disable_hardirq(adapter
->pdev
->irq
))
5259 e1000_intr(adapter
->pdev
->irq
, netdev
);
5260 enable_irq(adapter
->pdev
->irq
);
5265 * e1000_io_error_detected - called when PCI error is detected
5266 * @pdev: Pointer to PCI device
5267 * @state: The current pci connection state
5269 * This function is called after a PCI bus error affecting
5270 * this device has been detected.
5272 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5273 pci_channel_state_t state
)
5275 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5276 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5278 netif_device_detach(netdev
);
5280 if (state
== pci_channel_io_perm_failure
)
5281 return PCI_ERS_RESULT_DISCONNECT
;
5283 if (netif_running(netdev
))
5284 e1000_down(adapter
);
5285 pci_disable_device(pdev
);
5287 /* Request a slot slot reset. */
5288 return PCI_ERS_RESULT_NEED_RESET
;
5292 * e1000_io_slot_reset - called after the pci bus has been reset.
5293 * @pdev: Pointer to PCI device
5295 * Restart the card from scratch, as if from a cold-boot. Implementation
5296 * resembles the first-half of the e1000_resume routine.
5298 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5300 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5301 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5302 struct e1000_hw
*hw
= &adapter
->hw
;
5305 if (adapter
->need_ioport
)
5306 err
= pci_enable_device(pdev
);
5308 err
= pci_enable_device_mem(pdev
);
5310 pr_err("Cannot re-enable PCI device after reset.\n");
5311 return PCI_ERS_RESULT_DISCONNECT
;
5313 pci_set_master(pdev
);
5315 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5316 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5318 e1000_reset(adapter
);
5321 return PCI_ERS_RESULT_RECOVERED
;
5325 * e1000_io_resume - called when traffic can start flowing again.
5326 * @pdev: Pointer to PCI device
5328 * This callback is called when the error recovery driver tells us that
5329 * its OK to resume normal operation. Implementation resembles the
5330 * second-half of the e1000_resume routine.
5332 static void e1000_io_resume(struct pci_dev
*pdev
)
5334 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5335 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5337 e1000_init_manageability(adapter
);
5339 if (netif_running(netdev
)) {
5340 if (e1000_up(adapter
)) {
5341 pr_info("can't bring device back up after reset\n");
5346 netif_device_attach(netdev
);