x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
blob93fc6c67306bf507dc65579f45ec44917df1d096
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 int e1000_open(struct net_device *netdev);
118 int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
180 #ifdef CONFIG_PM
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184 static void e1000_shutdown(struct pci_dev *pdev);
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
189 #endif
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193 module_param(copybreak, uint, 0644);
194 MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
202 static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
208 static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213 #ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217 #endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug = -1;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
249 static int __init e1000_init_module(void)
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
254 pr_info("%s\n", e1000_copyright);
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
264 return ret;
267 module_init(e1000_init_module);
270 * e1000_exit_module - Driver Exit Cleanup Routine
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
275 static void __exit e1000_exit_module(void)
277 pci_unregister_driver(&e1000_driver);
280 module_exit(e1000_exit_module);
282 static int e1000_request_irq(struct e1000_adapter *adapter)
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
295 return err;
298 static void e1000_free_irq(struct e1000_adapter *adapter)
300 struct net_device *netdev = adapter->netdev;
302 free_irq(adapter->pdev->irq, netdev);
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
309 static void e1000_irq_disable(struct e1000_adapter *adapter)
311 struct e1000_hw *hw = &adapter->hw;
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
324 struct e1000_hw *hw = &adapter->hw;
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
337 if (!e1000_vlan_used(adapter))
338 return;
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
358 static void e1000_init_manageability(struct e1000_adapter *adapter)
360 struct e1000_hw *hw = &adapter->hw;
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
368 ew32(MANC, manc);
372 static void e1000_release_manageability(struct e1000_adapter *adapter)
374 struct e1000_hw *hw = &adapter->hw;
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
382 ew32(MANC, manc);
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
390 static void e1000_configure(struct e1000_adapter *adapter)
392 struct net_device *netdev = adapter->netdev;
393 int i;
395 e1000_set_rx_mode(netdev);
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
414 int e1000_up(struct e1000_adapter *adapter)
416 struct e1000_hw *hw = &adapter->hw;
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
421 clear_bit(__E1000_DOWN, &adapter->flags);
423 napi_enable(&adapter->napi);
425 e1000_irq_enable(adapter);
427 netif_wake_queue(adapter->netdev);
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
458 static void e1000_power_down_phy(struct e1000_adapter *adapter)
460 struct e1000_hw *hw = &adapter->hw;
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
494 out:
495 return;
498 static void e1000_down_and_stop(struct e1000_adapter *adapter)
500 set_bit(__E1000_DOWN, &adapter->flags);
502 cancel_delayed_work_sync(&adapter->watchdog_task);
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
518 void e1000_down(struct e1000_adapter *adapter)
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
524 netif_carrier_off(netdev);
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
531 netif_tx_disable(netdev);
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
541 napi_disable(&adapter->napi);
543 e1000_irq_disable(adapter);
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
549 e1000_down_and_stop(adapter);
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
569 void e1000_reset(struct e1000_adapter *adapter)
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
574 u16 hwm;
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
594 case e1000_ce4100:
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82547:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
601 pba = E1000_PBA_30K;
602 break;
603 case e1000_undefined:
604 case e1000_num_macs:
605 break;
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
621 ew32(PBA, pba);
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
628 * expressed in KB.
630 pba = er32(PBA);
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
641 min_tx_space = ALIGN(min_tx_space, 1024);
642 min_tx_space >>= 10;
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
646 min_rx_space >>= 10;
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
668 if (pba < min_rx_space)
669 pba = min_rx_space;
673 ew32(PBA, pba);
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
693 /* Allow time for pending master requests to run */
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
721 e1000_release_manageability(adapter);
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
741 ops->get_eeprom(netdev, &eeprom, data);
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
769 kfree(data);
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
776 * Return true if an adapter needs ioport resources
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
816 else
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
819 return features;
822 static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 return 0;
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
842 return 0;
845 static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858 #ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860 #endif
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
876 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
879 struct pci_dev *pdev = adapter->pdev;
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
918 /* Copper options */
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
926 return 0;
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
934 * Returns 0 on success, negative on failure
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
944 struct e1000_hw *hw;
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
949 u16 eeprom_data = 0;
950 u16 tmp = 0;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
963 if (err)
964 return err;
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 if (err)
968 goto err_pci_reg;
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
975 err = -ENOMEM;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 if (!netdev)
978 goto err_alloc_etherdev;
980 SET_NETDEV_DEV(netdev, &pdev->dev);
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
990 hw = &adapter->hw;
991 hw->back = adapter;
993 err = -EIO;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 if (!hw->hw_addr)
996 goto err_ioremap;
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 pci_using_dac = 1;
1022 } else {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1037 adapter->bd_number = cards_found;
1039 /* setup the private structure */
1041 err = e1000_sw_init(adapter);
1042 if (err)
1043 goto err_sw_init;
1045 err = -EIO;
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1057 NETIF_F_HW_CSUM |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1088 /* MTU range: 46 - 16110 */
1089 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1090 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1092 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1094 /* initialize eeprom parameters */
1095 if (e1000_init_eeprom_params(hw)) {
1096 e_err(probe, "EEPROM initialization failed\n");
1097 goto err_eeprom;
1100 /* before reading the EEPROM, reset the controller to
1101 * put the device in a known good starting state
1104 e1000_reset_hw(hw);
1106 /* make sure the EEPROM is good */
1107 if (e1000_validate_eeprom_checksum(hw) < 0) {
1108 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1109 e1000_dump_eeprom(adapter);
1110 /* set MAC address to all zeroes to invalidate and temporary
1111 * disable this device for the user. This blocks regular
1112 * traffic while still permitting ethtool ioctls from reaching
1113 * the hardware as well as allowing the user to run the
1114 * interface after manually setting a hw addr using
1115 * `ip set address`
1117 memset(hw->mac_addr, 0, netdev->addr_len);
1118 } else {
1119 /* copy the MAC address out of the EEPROM */
1120 if (e1000_read_mac_addr(hw))
1121 e_err(probe, "EEPROM Read Error\n");
1123 /* don't block initialization here due to bad MAC address */
1124 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1126 if (!is_valid_ether_addr(netdev->dev_addr))
1127 e_err(probe, "Invalid MAC Address\n");
1130 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1131 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1132 e1000_82547_tx_fifo_stall_task);
1133 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1134 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1136 e1000_check_options(adapter);
1138 /* Initial Wake on LAN setting
1139 * If APM wake is enabled in the EEPROM,
1140 * enable the ACPI Magic Packet filter
1143 switch (hw->mac_type) {
1144 case e1000_82542_rev2_0:
1145 case e1000_82542_rev2_1:
1146 case e1000_82543:
1147 break;
1148 case e1000_82544:
1149 e1000_read_eeprom(hw,
1150 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1151 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1152 break;
1153 case e1000_82546:
1154 case e1000_82546_rev_3:
1155 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1156 e1000_read_eeprom(hw,
1157 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1158 break;
1160 /* Fall Through */
1161 default:
1162 e1000_read_eeprom(hw,
1163 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1164 break;
1166 if (eeprom_data & eeprom_apme_mask)
1167 adapter->eeprom_wol |= E1000_WUFC_MAG;
1169 /* now that we have the eeprom settings, apply the special cases
1170 * where the eeprom may be wrong or the board simply won't support
1171 * wake on lan on a particular port
1173 switch (pdev->device) {
1174 case E1000_DEV_ID_82546GB_PCIE:
1175 adapter->eeprom_wol = 0;
1176 break;
1177 case E1000_DEV_ID_82546EB_FIBER:
1178 case E1000_DEV_ID_82546GB_FIBER:
1179 /* Wake events only supported on port A for dual fiber
1180 * regardless of eeprom setting
1182 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1183 adapter->eeprom_wol = 0;
1184 break;
1185 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1186 /* if quad port adapter, disable WoL on all but port A */
1187 if (global_quad_port_a != 0)
1188 adapter->eeprom_wol = 0;
1189 else
1190 adapter->quad_port_a = true;
1191 /* Reset for multiple quad port adapters */
1192 if (++global_quad_port_a == 4)
1193 global_quad_port_a = 0;
1194 break;
1197 /* initialize the wol settings based on the eeprom settings */
1198 adapter->wol = adapter->eeprom_wol;
1199 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1201 /* Auto detect PHY address */
1202 if (hw->mac_type == e1000_ce4100) {
1203 for (i = 0; i < 32; i++) {
1204 hw->phy_addr = i;
1205 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1207 if (tmp != 0 && tmp != 0xFF)
1208 break;
1211 if (i >= 32)
1212 goto err_eeprom;
1215 /* reset the hardware with the new settings */
1216 e1000_reset(adapter);
1218 strcpy(netdev->name, "eth%d");
1219 err = register_netdev(netdev);
1220 if (err)
1221 goto err_register;
1223 e1000_vlan_filter_on_off(adapter, false);
1225 /* print bus type/speed/width info */
1226 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1227 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1228 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1229 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1230 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1231 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1232 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1233 netdev->dev_addr);
1235 /* carrier off reporting is important to ethtool even BEFORE open */
1236 netif_carrier_off(netdev);
1238 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1240 cards_found++;
1241 return 0;
1243 err_register:
1244 err_eeprom:
1245 e1000_phy_hw_reset(hw);
1247 if (hw->flash_address)
1248 iounmap(hw->flash_address);
1249 kfree(adapter->tx_ring);
1250 kfree(adapter->rx_ring);
1251 err_dma:
1252 err_sw_init:
1253 err_mdio_ioremap:
1254 iounmap(hw->ce4100_gbe_mdio_base_virt);
1255 iounmap(hw->hw_addr);
1256 err_ioremap:
1257 free_netdev(netdev);
1258 err_alloc_etherdev:
1259 pci_release_selected_regions(pdev, bars);
1260 err_pci_reg:
1261 pci_disable_device(pdev);
1262 return err;
1266 * e1000_remove - Device Removal Routine
1267 * @pdev: PCI device information struct
1269 * e1000_remove is called by the PCI subsystem to alert the driver
1270 * that it should release a PCI device. That could be caused by a
1271 * Hot-Plug event, or because the driver is going to be removed from
1272 * memory.
1274 static void e1000_remove(struct pci_dev *pdev)
1276 struct net_device *netdev = pci_get_drvdata(pdev);
1277 struct e1000_adapter *adapter = netdev_priv(netdev);
1278 struct e1000_hw *hw = &adapter->hw;
1280 e1000_down_and_stop(adapter);
1281 e1000_release_manageability(adapter);
1283 unregister_netdev(netdev);
1285 e1000_phy_hw_reset(hw);
1287 kfree(adapter->tx_ring);
1288 kfree(adapter->rx_ring);
1290 if (hw->mac_type == e1000_ce4100)
1291 iounmap(hw->ce4100_gbe_mdio_base_virt);
1292 iounmap(hw->hw_addr);
1293 if (hw->flash_address)
1294 iounmap(hw->flash_address);
1295 pci_release_selected_regions(pdev, adapter->bars);
1297 free_netdev(netdev);
1299 pci_disable_device(pdev);
1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304 * @adapter: board private structure to initialize
1306 * e1000_sw_init initializes the Adapter private data structure.
1307 * e1000_init_hw_struct MUST be called before this function
1309 static int e1000_sw_init(struct e1000_adapter *adapter)
1311 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1313 adapter->num_tx_queues = 1;
1314 adapter->num_rx_queues = 1;
1316 if (e1000_alloc_queues(adapter)) {
1317 e_err(probe, "Unable to allocate memory for queues\n");
1318 return -ENOMEM;
1321 /* Explicitly disable IRQ since the NIC can be in any state. */
1322 e1000_irq_disable(adapter);
1324 spin_lock_init(&adapter->stats_lock);
1326 set_bit(__E1000_DOWN, &adapter->flags);
1328 return 0;
1332 * e1000_alloc_queues - Allocate memory for all rings
1333 * @adapter: board private structure to initialize
1335 * We allocate one ring per queue at run-time since we don't know the
1336 * number of queues at compile-time.
1338 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1340 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1341 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1342 if (!adapter->tx_ring)
1343 return -ENOMEM;
1345 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1346 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1347 if (!adapter->rx_ring) {
1348 kfree(adapter->tx_ring);
1349 return -ENOMEM;
1352 return E1000_SUCCESS;
1356 * e1000_open - Called when a network interface is made active
1357 * @netdev: network interface device structure
1359 * Returns 0 on success, negative value on failure
1361 * The open entry point is called when a network interface is made
1362 * active by the system (IFF_UP). At this point all resources needed
1363 * for transmit and receive operations are allocated, the interrupt
1364 * handler is registered with the OS, the watchdog task is started,
1365 * and the stack is notified that the interface is ready.
1367 int e1000_open(struct net_device *netdev)
1369 struct e1000_adapter *adapter = netdev_priv(netdev);
1370 struct e1000_hw *hw = &adapter->hw;
1371 int err;
1373 /* disallow open during test */
1374 if (test_bit(__E1000_TESTING, &adapter->flags))
1375 return -EBUSY;
1377 netif_carrier_off(netdev);
1379 /* allocate transmit descriptors */
1380 err = e1000_setup_all_tx_resources(adapter);
1381 if (err)
1382 goto err_setup_tx;
1384 /* allocate receive descriptors */
1385 err = e1000_setup_all_rx_resources(adapter);
1386 if (err)
1387 goto err_setup_rx;
1389 e1000_power_up_phy(adapter);
1391 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1392 if ((hw->mng_cookie.status &
1393 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1394 e1000_update_mng_vlan(adapter);
1397 /* before we allocate an interrupt, we must be ready to handle it.
1398 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1399 * as soon as we call pci_request_irq, so we have to setup our
1400 * clean_rx handler before we do so.
1402 e1000_configure(adapter);
1404 err = e1000_request_irq(adapter);
1405 if (err)
1406 goto err_req_irq;
1408 /* From here on the code is the same as e1000_up() */
1409 clear_bit(__E1000_DOWN, &adapter->flags);
1411 napi_enable(&adapter->napi);
1413 e1000_irq_enable(adapter);
1415 netif_start_queue(netdev);
1417 /* fire a link status change interrupt to start the watchdog */
1418 ew32(ICS, E1000_ICS_LSC);
1420 return E1000_SUCCESS;
1422 err_req_irq:
1423 e1000_power_down_phy(adapter);
1424 e1000_free_all_rx_resources(adapter);
1425 err_setup_rx:
1426 e1000_free_all_tx_resources(adapter);
1427 err_setup_tx:
1428 e1000_reset(adapter);
1430 return err;
1434 * e1000_close - Disables a network interface
1435 * @netdev: network interface device structure
1437 * Returns 0, this is not allowed to fail
1439 * The close entry point is called when an interface is de-activated
1440 * by the OS. The hardware is still under the drivers control, but
1441 * needs to be disabled. A global MAC reset is issued to stop the
1442 * hardware, and all transmit and receive resources are freed.
1444 int e1000_close(struct net_device *netdev)
1446 struct e1000_adapter *adapter = netdev_priv(netdev);
1447 struct e1000_hw *hw = &adapter->hw;
1448 int count = E1000_CHECK_RESET_COUNT;
1450 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1451 usleep_range(10000, 20000);
1453 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1454 e1000_down(adapter);
1455 e1000_power_down_phy(adapter);
1456 e1000_free_irq(adapter);
1458 e1000_free_all_tx_resources(adapter);
1459 e1000_free_all_rx_resources(adapter);
1461 /* kill manageability vlan ID if supported, but not if a vlan with
1462 * the same ID is registered on the host OS (let 8021q kill it)
1464 if ((hw->mng_cookie.status &
1465 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1466 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1467 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1468 adapter->mng_vlan_id);
1471 return 0;
1475 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476 * @adapter: address of board private structure
1477 * @start: address of beginning of memory
1478 * @len: length of memory
1480 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1481 unsigned long len)
1483 struct e1000_hw *hw = &adapter->hw;
1484 unsigned long begin = (unsigned long)start;
1485 unsigned long end = begin + len;
1487 /* First rev 82545 and 82546 need to not allow any memory
1488 * write location to cross 64k boundary due to errata 23
1490 if (hw->mac_type == e1000_82545 ||
1491 hw->mac_type == e1000_ce4100 ||
1492 hw->mac_type == e1000_82546) {
1493 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1496 return true;
1500 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501 * @adapter: board private structure
1502 * @txdr: tx descriptor ring (for a specific queue) to setup
1504 * Return 0 on success, negative on failure
1506 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1507 struct e1000_tx_ring *txdr)
1509 struct pci_dev *pdev = adapter->pdev;
1510 int size;
1512 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1513 txdr->buffer_info = vzalloc(size);
1514 if (!txdr->buffer_info)
1515 return -ENOMEM;
1517 /* round up to nearest 4K */
1519 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1520 txdr->size = ALIGN(txdr->size, 4096);
1522 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1523 GFP_KERNEL);
1524 if (!txdr->desc) {
1525 setup_tx_desc_die:
1526 vfree(txdr->buffer_info);
1527 return -ENOMEM;
1530 /* Fix for errata 23, can't cross 64kB boundary */
1531 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1532 void *olddesc = txdr->desc;
1533 dma_addr_t olddma = txdr->dma;
1534 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1535 txdr->size, txdr->desc);
1536 /* Try again, without freeing the previous */
1537 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1538 &txdr->dma, GFP_KERNEL);
1539 /* Failed allocation, critical failure */
1540 if (!txdr->desc) {
1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 olddma);
1543 goto setup_tx_desc_die;
1546 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1547 /* give up */
1548 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1549 txdr->dma);
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 e_err(probe, "Unable to allocate aligned memory "
1553 "for the transmit descriptor ring\n");
1554 vfree(txdr->buffer_info);
1555 return -ENOMEM;
1556 } else {
1557 /* Free old allocation, new allocation was successful */
1558 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1559 olddma);
1562 memset(txdr->desc, 0, txdr->size);
1564 txdr->next_to_use = 0;
1565 txdr->next_to_clean = 0;
1567 return 0;
1571 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1572 * (Descriptors) for all queues
1573 * @adapter: board private structure
1575 * Return 0 on success, negative on failure
1577 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1579 int i, err = 0;
1581 for (i = 0; i < adapter->num_tx_queues; i++) {
1582 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1583 if (err) {
1584 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1585 for (i-- ; i >= 0; i--)
1586 e1000_free_tx_resources(adapter,
1587 &adapter->tx_ring[i]);
1588 break;
1592 return err;
1596 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1597 * @adapter: board private structure
1599 * Configure the Tx unit of the MAC after a reset.
1601 static void e1000_configure_tx(struct e1000_adapter *adapter)
1603 u64 tdba;
1604 struct e1000_hw *hw = &adapter->hw;
1605 u32 tdlen, tctl, tipg;
1606 u32 ipgr1, ipgr2;
1608 /* Setup the HW Tx Head and Tail descriptor pointers */
1610 switch (adapter->num_tx_queues) {
1611 case 1:
1612 default:
1613 tdba = adapter->tx_ring[0].dma;
1614 tdlen = adapter->tx_ring[0].count *
1615 sizeof(struct e1000_tx_desc);
1616 ew32(TDLEN, tdlen);
1617 ew32(TDBAH, (tdba >> 32));
1618 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1619 ew32(TDT, 0);
1620 ew32(TDH, 0);
1621 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1622 E1000_TDH : E1000_82542_TDH);
1623 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1624 E1000_TDT : E1000_82542_TDT);
1625 break;
1628 /* Set the default values for the Tx Inter Packet Gap timer */
1629 if ((hw->media_type == e1000_media_type_fiber ||
1630 hw->media_type == e1000_media_type_internal_serdes))
1631 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1632 else
1633 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1635 switch (hw->mac_type) {
1636 case e1000_82542_rev2_0:
1637 case e1000_82542_rev2_1:
1638 tipg = DEFAULT_82542_TIPG_IPGT;
1639 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1641 break;
1642 default:
1643 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1644 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1645 break;
1647 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1648 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1649 ew32(TIPG, tipg);
1651 /* Set the Tx Interrupt Delay register */
1653 ew32(TIDV, adapter->tx_int_delay);
1654 if (hw->mac_type >= e1000_82540)
1655 ew32(TADV, adapter->tx_abs_int_delay);
1657 /* Program the Transmit Control Register */
1659 tctl = er32(TCTL);
1660 tctl &= ~E1000_TCTL_CT;
1661 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1662 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1664 e1000_config_collision_dist(hw);
1666 /* Setup Transmit Descriptor Settings for eop descriptor */
1667 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1669 /* only set IDE if we are delaying interrupts using the timers */
1670 if (adapter->tx_int_delay)
1671 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1673 if (hw->mac_type < e1000_82543)
1674 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1675 else
1676 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1678 /* Cache if we're 82544 running in PCI-X because we'll
1679 * need this to apply a workaround later in the send path.
1681 if (hw->mac_type == e1000_82544 &&
1682 hw->bus_type == e1000_bus_type_pcix)
1683 adapter->pcix_82544 = true;
1685 ew32(TCTL, tctl);
1690 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1691 * @adapter: board private structure
1692 * @rxdr: rx descriptor ring (for a specific queue) to setup
1694 * Returns 0 on success, negative on failure
1696 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1697 struct e1000_rx_ring *rxdr)
1699 struct pci_dev *pdev = adapter->pdev;
1700 int size, desc_len;
1702 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1703 rxdr->buffer_info = vzalloc(size);
1704 if (!rxdr->buffer_info)
1705 return -ENOMEM;
1707 desc_len = sizeof(struct e1000_rx_desc);
1709 /* Round up to nearest 4K */
1711 rxdr->size = rxdr->count * desc_len;
1712 rxdr->size = ALIGN(rxdr->size, 4096);
1714 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715 GFP_KERNEL);
1716 if (!rxdr->desc) {
1717 setup_rx_desc_die:
1718 vfree(rxdr->buffer_info);
1719 return -ENOMEM;
1722 /* Fix for errata 23, can't cross 64kB boundary */
1723 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1724 void *olddesc = rxdr->desc;
1725 dma_addr_t olddma = rxdr->dma;
1726 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1727 rxdr->size, rxdr->desc);
1728 /* Try again, without freeing the previous */
1729 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1730 &rxdr->dma, GFP_KERNEL);
1731 /* Failed allocation, critical failure */
1732 if (!rxdr->desc) {
1733 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734 olddma);
1735 goto setup_rx_desc_die;
1738 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1739 /* give up */
1740 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1741 rxdr->dma);
1742 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1743 olddma);
1744 e_err(probe, "Unable to allocate aligned memory for "
1745 "the Rx descriptor ring\n");
1746 goto setup_rx_desc_die;
1747 } else {
1748 /* Free old allocation, new allocation was successful */
1749 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1750 olddma);
1753 memset(rxdr->desc, 0, rxdr->size);
1755 rxdr->next_to_clean = 0;
1756 rxdr->next_to_use = 0;
1757 rxdr->rx_skb_top = NULL;
1759 return 0;
1763 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1764 * (Descriptors) for all queues
1765 * @adapter: board private structure
1767 * Return 0 on success, negative on failure
1769 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1771 int i, err = 0;
1773 for (i = 0; i < adapter->num_rx_queues; i++) {
1774 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1775 if (err) {
1776 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1777 for (i-- ; i >= 0; i--)
1778 e1000_free_rx_resources(adapter,
1779 &adapter->rx_ring[i]);
1780 break;
1784 return err;
1788 * e1000_setup_rctl - configure the receive control registers
1789 * @adapter: Board private structure
1791 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1793 struct e1000_hw *hw = &adapter->hw;
1794 u32 rctl;
1796 rctl = er32(RCTL);
1798 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1800 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1801 E1000_RCTL_RDMTS_HALF |
1802 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1804 if (hw->tbi_compatibility_on == 1)
1805 rctl |= E1000_RCTL_SBP;
1806 else
1807 rctl &= ~E1000_RCTL_SBP;
1809 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1810 rctl &= ~E1000_RCTL_LPE;
1811 else
1812 rctl |= E1000_RCTL_LPE;
1814 /* Setup buffer sizes */
1815 rctl &= ~E1000_RCTL_SZ_4096;
1816 rctl |= E1000_RCTL_BSEX;
1817 switch (adapter->rx_buffer_len) {
1818 case E1000_RXBUFFER_2048:
1819 default:
1820 rctl |= E1000_RCTL_SZ_2048;
1821 rctl &= ~E1000_RCTL_BSEX;
1822 break;
1823 case E1000_RXBUFFER_4096:
1824 rctl |= E1000_RCTL_SZ_4096;
1825 break;
1826 case E1000_RXBUFFER_8192:
1827 rctl |= E1000_RCTL_SZ_8192;
1828 break;
1829 case E1000_RXBUFFER_16384:
1830 rctl |= E1000_RCTL_SZ_16384;
1831 break;
1834 /* This is useful for sniffing bad packets. */
1835 if (adapter->netdev->features & NETIF_F_RXALL) {
1836 /* UPE and MPE will be handled by normal PROMISC logic
1837 * in e1000e_set_rx_mode
1839 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1840 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1841 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1843 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1844 E1000_RCTL_DPF | /* Allow filtered pause */
1845 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1846 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1847 * and that breaks VLANs.
1851 ew32(RCTL, rctl);
1855 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1856 * @adapter: board private structure
1858 * Configure the Rx unit of the MAC after a reset.
1860 static void e1000_configure_rx(struct e1000_adapter *adapter)
1862 u64 rdba;
1863 struct e1000_hw *hw = &adapter->hw;
1864 u32 rdlen, rctl, rxcsum;
1866 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1867 rdlen = adapter->rx_ring[0].count *
1868 sizeof(struct e1000_rx_desc);
1869 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1870 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1871 } else {
1872 rdlen = adapter->rx_ring[0].count *
1873 sizeof(struct e1000_rx_desc);
1874 adapter->clean_rx = e1000_clean_rx_irq;
1875 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1878 /* disable receives while setting up the descriptors */
1879 rctl = er32(RCTL);
1880 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1882 /* set the Receive Delay Timer Register */
1883 ew32(RDTR, adapter->rx_int_delay);
1885 if (hw->mac_type >= e1000_82540) {
1886 ew32(RADV, adapter->rx_abs_int_delay);
1887 if (adapter->itr_setting != 0)
1888 ew32(ITR, 1000000000 / (adapter->itr * 256));
1891 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1892 * the Base and Length of the Rx Descriptor Ring
1894 switch (adapter->num_rx_queues) {
1895 case 1:
1896 default:
1897 rdba = adapter->rx_ring[0].dma;
1898 ew32(RDLEN, rdlen);
1899 ew32(RDBAH, (rdba >> 32));
1900 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1901 ew32(RDT, 0);
1902 ew32(RDH, 0);
1903 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1904 E1000_RDH : E1000_82542_RDH);
1905 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1906 E1000_RDT : E1000_82542_RDT);
1907 break;
1910 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1911 if (hw->mac_type >= e1000_82543) {
1912 rxcsum = er32(RXCSUM);
1913 if (adapter->rx_csum)
1914 rxcsum |= E1000_RXCSUM_TUOFL;
1915 else
1916 /* don't need to clear IPPCSE as it defaults to 0 */
1917 rxcsum &= ~E1000_RXCSUM_TUOFL;
1918 ew32(RXCSUM, rxcsum);
1921 /* Enable Receives */
1922 ew32(RCTL, rctl | E1000_RCTL_EN);
1926 * e1000_free_tx_resources - Free Tx Resources per Queue
1927 * @adapter: board private structure
1928 * @tx_ring: Tx descriptor ring for a specific queue
1930 * Free all transmit software resources
1932 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1933 struct e1000_tx_ring *tx_ring)
1935 struct pci_dev *pdev = adapter->pdev;
1937 e1000_clean_tx_ring(adapter, tx_ring);
1939 vfree(tx_ring->buffer_info);
1940 tx_ring->buffer_info = NULL;
1942 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1943 tx_ring->dma);
1945 tx_ring->desc = NULL;
1949 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1950 * @adapter: board private structure
1952 * Free all transmit software resources
1954 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1956 int i;
1958 for (i = 0; i < adapter->num_tx_queues; i++)
1959 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1962 static void
1963 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1964 struct e1000_tx_buffer *buffer_info)
1966 if (buffer_info->dma) {
1967 if (buffer_info->mapped_as_page)
1968 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1969 buffer_info->length, DMA_TO_DEVICE);
1970 else
1971 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1972 buffer_info->length,
1973 DMA_TO_DEVICE);
1974 buffer_info->dma = 0;
1976 if (buffer_info->skb) {
1977 dev_kfree_skb_any(buffer_info->skb);
1978 buffer_info->skb = NULL;
1980 buffer_info->time_stamp = 0;
1981 /* buffer_info must be completely set up in the transmit path */
1985 * e1000_clean_tx_ring - Free Tx Buffers
1986 * @adapter: board private structure
1987 * @tx_ring: ring to be cleaned
1989 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1990 struct e1000_tx_ring *tx_ring)
1992 struct e1000_hw *hw = &adapter->hw;
1993 struct e1000_tx_buffer *buffer_info;
1994 unsigned long size;
1995 unsigned int i;
1997 /* Free all the Tx ring sk_buffs */
1999 for (i = 0; i < tx_ring->count; i++) {
2000 buffer_info = &tx_ring->buffer_info[i];
2001 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2004 netdev_reset_queue(adapter->netdev);
2005 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2006 memset(tx_ring->buffer_info, 0, size);
2008 /* Zero out the descriptor ring */
2010 memset(tx_ring->desc, 0, tx_ring->size);
2012 tx_ring->next_to_use = 0;
2013 tx_ring->next_to_clean = 0;
2014 tx_ring->last_tx_tso = false;
2016 writel(0, hw->hw_addr + tx_ring->tdh);
2017 writel(0, hw->hw_addr + tx_ring->tdt);
2021 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2022 * @adapter: board private structure
2024 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2026 int i;
2028 for (i = 0; i < adapter->num_tx_queues; i++)
2029 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2033 * e1000_free_rx_resources - Free Rx Resources
2034 * @adapter: board private structure
2035 * @rx_ring: ring to clean the resources from
2037 * Free all receive software resources
2039 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2040 struct e1000_rx_ring *rx_ring)
2042 struct pci_dev *pdev = adapter->pdev;
2044 e1000_clean_rx_ring(adapter, rx_ring);
2046 vfree(rx_ring->buffer_info);
2047 rx_ring->buffer_info = NULL;
2049 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2050 rx_ring->dma);
2052 rx_ring->desc = NULL;
2056 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2057 * @adapter: board private structure
2059 * Free all receive software resources
2061 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2063 int i;
2065 for (i = 0; i < adapter->num_rx_queues; i++)
2066 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2069 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2070 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2072 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2076 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2078 unsigned int len = e1000_frag_len(a);
2079 u8 *data = netdev_alloc_frag(len);
2081 if (likely(data))
2082 data += E1000_HEADROOM;
2083 return data;
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2091 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2092 struct e1000_rx_ring *rx_ring)
2094 struct e1000_hw *hw = &adapter->hw;
2095 struct e1000_rx_buffer *buffer_info;
2096 struct pci_dev *pdev = adapter->pdev;
2097 unsigned long size;
2098 unsigned int i;
2100 /* Free all the Rx netfrags */
2101 for (i = 0; i < rx_ring->count; i++) {
2102 buffer_info = &rx_ring->buffer_info[i];
2103 if (adapter->clean_rx == e1000_clean_rx_irq) {
2104 if (buffer_info->dma)
2105 dma_unmap_single(&pdev->dev, buffer_info->dma,
2106 adapter->rx_buffer_len,
2107 DMA_FROM_DEVICE);
2108 if (buffer_info->rxbuf.data) {
2109 skb_free_frag(buffer_info->rxbuf.data);
2110 buffer_info->rxbuf.data = NULL;
2112 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2113 if (buffer_info->dma)
2114 dma_unmap_page(&pdev->dev, buffer_info->dma,
2115 adapter->rx_buffer_len,
2116 DMA_FROM_DEVICE);
2117 if (buffer_info->rxbuf.page) {
2118 put_page(buffer_info->rxbuf.page);
2119 buffer_info->rxbuf.page = NULL;
2123 buffer_info->dma = 0;
2126 /* there also may be some cached data from a chained receive */
2127 napi_free_frags(&adapter->napi);
2128 rx_ring->rx_skb_top = NULL;
2130 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2131 memset(rx_ring->buffer_info, 0, size);
2133 /* Zero out the descriptor ring */
2134 memset(rx_ring->desc, 0, rx_ring->size);
2136 rx_ring->next_to_clean = 0;
2137 rx_ring->next_to_use = 0;
2139 writel(0, hw->hw_addr + rx_ring->rdh);
2140 writel(0, hw->hw_addr + rx_ring->rdt);
2144 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2145 * @adapter: board private structure
2147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2149 int i;
2151 for (i = 0; i < adapter->num_rx_queues; i++)
2152 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2155 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2156 * and memory write and invalidate disabled for certain operations
2158 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2160 struct e1000_hw *hw = &adapter->hw;
2161 struct net_device *netdev = adapter->netdev;
2162 u32 rctl;
2164 e1000_pci_clear_mwi(hw);
2166 rctl = er32(RCTL);
2167 rctl |= E1000_RCTL_RST;
2168 ew32(RCTL, rctl);
2169 E1000_WRITE_FLUSH();
2170 mdelay(5);
2172 if (netif_running(netdev))
2173 e1000_clean_all_rx_rings(adapter);
2176 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2178 struct e1000_hw *hw = &adapter->hw;
2179 struct net_device *netdev = adapter->netdev;
2180 u32 rctl;
2182 rctl = er32(RCTL);
2183 rctl &= ~E1000_RCTL_RST;
2184 ew32(RCTL, rctl);
2185 E1000_WRITE_FLUSH();
2186 mdelay(5);
2188 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2189 e1000_pci_set_mwi(hw);
2191 if (netif_running(netdev)) {
2192 /* No need to loop, because 82542 supports only 1 queue */
2193 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2194 e1000_configure_rx(adapter);
2195 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2200 * e1000_set_mac - Change the Ethernet Address of the NIC
2201 * @netdev: network interface device structure
2202 * @p: pointer to an address structure
2204 * Returns 0 on success, negative on failure
2206 static int e1000_set_mac(struct net_device *netdev, void *p)
2208 struct e1000_adapter *adapter = netdev_priv(netdev);
2209 struct e1000_hw *hw = &adapter->hw;
2210 struct sockaddr *addr = p;
2212 if (!is_valid_ether_addr(addr->sa_data))
2213 return -EADDRNOTAVAIL;
2215 /* 82542 2.0 needs to be in reset to write receive address registers */
2217 if (hw->mac_type == e1000_82542_rev2_0)
2218 e1000_enter_82542_rst(adapter);
2220 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2221 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2223 e1000_rar_set(hw, hw->mac_addr, 0);
2225 if (hw->mac_type == e1000_82542_rev2_0)
2226 e1000_leave_82542_rst(adapter);
2228 return 0;
2232 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2233 * @netdev: network interface device structure
2235 * The set_rx_mode entry point is called whenever the unicast or multicast
2236 * address lists or the network interface flags are updated. This routine is
2237 * responsible for configuring the hardware for proper unicast, multicast,
2238 * promiscuous mode, and all-multi behavior.
2240 static void e1000_set_rx_mode(struct net_device *netdev)
2242 struct e1000_adapter *adapter = netdev_priv(netdev);
2243 struct e1000_hw *hw = &adapter->hw;
2244 struct netdev_hw_addr *ha;
2245 bool use_uc = false;
2246 u32 rctl;
2247 u32 hash_value;
2248 int i, rar_entries = E1000_RAR_ENTRIES;
2249 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2250 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2252 if (!mcarray)
2253 return;
2255 /* Check for Promiscuous and All Multicast modes */
2257 rctl = er32(RCTL);
2259 if (netdev->flags & IFF_PROMISC) {
2260 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2261 rctl &= ~E1000_RCTL_VFE;
2262 } else {
2263 if (netdev->flags & IFF_ALLMULTI)
2264 rctl |= E1000_RCTL_MPE;
2265 else
2266 rctl &= ~E1000_RCTL_MPE;
2267 /* Enable VLAN filter if there is a VLAN */
2268 if (e1000_vlan_used(adapter))
2269 rctl |= E1000_RCTL_VFE;
2272 if (netdev_uc_count(netdev) > rar_entries - 1) {
2273 rctl |= E1000_RCTL_UPE;
2274 } else if (!(netdev->flags & IFF_PROMISC)) {
2275 rctl &= ~E1000_RCTL_UPE;
2276 use_uc = true;
2279 ew32(RCTL, rctl);
2281 /* 82542 2.0 needs to be in reset to write receive address registers */
2283 if (hw->mac_type == e1000_82542_rev2_0)
2284 e1000_enter_82542_rst(adapter);
2286 /* load the first 14 addresses into the exact filters 1-14. Unicast
2287 * addresses take precedence to avoid disabling unicast filtering
2288 * when possible.
2290 * RAR 0 is used for the station MAC address
2291 * if there are not 14 addresses, go ahead and clear the filters
2293 i = 1;
2294 if (use_uc)
2295 netdev_for_each_uc_addr(ha, netdev) {
2296 if (i == rar_entries)
2297 break;
2298 e1000_rar_set(hw, ha->addr, i++);
2301 netdev_for_each_mc_addr(ha, netdev) {
2302 if (i == rar_entries) {
2303 /* load any remaining addresses into the hash table */
2304 u32 hash_reg, hash_bit, mta;
2305 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2306 hash_reg = (hash_value >> 5) & 0x7F;
2307 hash_bit = hash_value & 0x1F;
2308 mta = (1 << hash_bit);
2309 mcarray[hash_reg] |= mta;
2310 } else {
2311 e1000_rar_set(hw, ha->addr, i++);
2315 for (; i < rar_entries; i++) {
2316 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2317 E1000_WRITE_FLUSH();
2318 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2319 E1000_WRITE_FLUSH();
2322 /* write the hash table completely, write from bottom to avoid
2323 * both stupid write combining chipsets, and flushing each write
2325 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2326 /* If we are on an 82544 has an errata where writing odd
2327 * offsets overwrites the previous even offset, but writing
2328 * backwards over the range solves the issue by always
2329 * writing the odd offset first
2331 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2333 E1000_WRITE_FLUSH();
2335 if (hw->mac_type == e1000_82542_rev2_0)
2336 e1000_leave_82542_rst(adapter);
2338 kfree(mcarray);
2342 * e1000_update_phy_info_task - get phy info
2343 * @work: work struct contained inside adapter struct
2345 * Need to wait a few seconds after link up to get diagnostic information from
2346 * the phy
2348 static void e1000_update_phy_info_task(struct work_struct *work)
2350 struct e1000_adapter *adapter = container_of(work,
2351 struct e1000_adapter,
2352 phy_info_task.work);
2354 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2358 * e1000_82547_tx_fifo_stall_task - task to complete work
2359 * @work: work struct contained inside adapter struct
2361 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2363 struct e1000_adapter *adapter = container_of(work,
2364 struct e1000_adapter,
2365 fifo_stall_task.work);
2366 struct e1000_hw *hw = &adapter->hw;
2367 struct net_device *netdev = adapter->netdev;
2368 u32 tctl;
2370 if (atomic_read(&adapter->tx_fifo_stall)) {
2371 if ((er32(TDT) == er32(TDH)) &&
2372 (er32(TDFT) == er32(TDFH)) &&
2373 (er32(TDFTS) == er32(TDFHS))) {
2374 tctl = er32(TCTL);
2375 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2376 ew32(TDFT, adapter->tx_head_addr);
2377 ew32(TDFH, adapter->tx_head_addr);
2378 ew32(TDFTS, adapter->tx_head_addr);
2379 ew32(TDFHS, adapter->tx_head_addr);
2380 ew32(TCTL, tctl);
2381 E1000_WRITE_FLUSH();
2383 adapter->tx_fifo_head = 0;
2384 atomic_set(&adapter->tx_fifo_stall, 0);
2385 netif_wake_queue(netdev);
2386 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2387 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2392 bool e1000_has_link(struct e1000_adapter *adapter)
2394 struct e1000_hw *hw = &adapter->hw;
2395 bool link_active = false;
2397 /* get_link_status is set on LSC (link status) interrupt or rx
2398 * sequence error interrupt (except on intel ce4100).
2399 * get_link_status will stay false until the
2400 * e1000_check_for_link establishes link for copper adapters
2401 * ONLY
2403 switch (hw->media_type) {
2404 case e1000_media_type_copper:
2405 if (hw->mac_type == e1000_ce4100)
2406 hw->get_link_status = 1;
2407 if (hw->get_link_status) {
2408 e1000_check_for_link(hw);
2409 link_active = !hw->get_link_status;
2410 } else {
2411 link_active = true;
2413 break;
2414 case e1000_media_type_fiber:
2415 e1000_check_for_link(hw);
2416 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2417 break;
2418 case e1000_media_type_internal_serdes:
2419 e1000_check_for_link(hw);
2420 link_active = hw->serdes_has_link;
2421 break;
2422 default:
2423 break;
2426 return link_active;
2430 * e1000_watchdog - work function
2431 * @work: work struct contained inside adapter struct
2433 static void e1000_watchdog(struct work_struct *work)
2435 struct e1000_adapter *adapter = container_of(work,
2436 struct e1000_adapter,
2437 watchdog_task.work);
2438 struct e1000_hw *hw = &adapter->hw;
2439 struct net_device *netdev = adapter->netdev;
2440 struct e1000_tx_ring *txdr = adapter->tx_ring;
2441 u32 link, tctl;
2443 link = e1000_has_link(adapter);
2444 if ((netif_carrier_ok(netdev)) && link)
2445 goto link_up;
2447 if (link) {
2448 if (!netif_carrier_ok(netdev)) {
2449 u32 ctrl;
2450 bool txb2b = true;
2451 /* update snapshot of PHY registers on LSC */
2452 e1000_get_speed_and_duplex(hw,
2453 &adapter->link_speed,
2454 &adapter->link_duplex);
2456 ctrl = er32(CTRL);
2457 pr_info("%s NIC Link is Up %d Mbps %s, "
2458 "Flow Control: %s\n",
2459 netdev->name,
2460 adapter->link_speed,
2461 adapter->link_duplex == FULL_DUPLEX ?
2462 "Full Duplex" : "Half Duplex",
2463 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2464 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2465 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2466 E1000_CTRL_TFCE) ? "TX" : "None")));
2468 /* adjust timeout factor according to speed/duplex */
2469 adapter->tx_timeout_factor = 1;
2470 switch (adapter->link_speed) {
2471 case SPEED_10:
2472 txb2b = false;
2473 adapter->tx_timeout_factor = 16;
2474 break;
2475 case SPEED_100:
2476 txb2b = false;
2477 /* maybe add some timeout factor ? */
2478 break;
2481 /* enable transmits in the hardware */
2482 tctl = er32(TCTL);
2483 tctl |= E1000_TCTL_EN;
2484 ew32(TCTL, tctl);
2486 netif_carrier_on(netdev);
2487 if (!test_bit(__E1000_DOWN, &adapter->flags))
2488 schedule_delayed_work(&adapter->phy_info_task,
2489 2 * HZ);
2490 adapter->smartspeed = 0;
2492 } else {
2493 if (netif_carrier_ok(netdev)) {
2494 adapter->link_speed = 0;
2495 adapter->link_duplex = 0;
2496 pr_info("%s NIC Link is Down\n",
2497 netdev->name);
2498 netif_carrier_off(netdev);
2500 if (!test_bit(__E1000_DOWN, &adapter->flags))
2501 schedule_delayed_work(&adapter->phy_info_task,
2502 2 * HZ);
2505 e1000_smartspeed(adapter);
2508 link_up:
2509 e1000_update_stats(adapter);
2511 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2512 adapter->tpt_old = adapter->stats.tpt;
2513 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2514 adapter->colc_old = adapter->stats.colc;
2516 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2517 adapter->gorcl_old = adapter->stats.gorcl;
2518 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2519 adapter->gotcl_old = adapter->stats.gotcl;
2521 e1000_update_adaptive(hw);
2523 if (!netif_carrier_ok(netdev)) {
2524 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2525 /* We've lost link, so the controller stops DMA,
2526 * but we've got queued Tx work that's never going
2527 * to get done, so reset controller to flush Tx.
2528 * (Do the reset outside of interrupt context).
2530 adapter->tx_timeout_count++;
2531 schedule_work(&adapter->reset_task);
2532 /* exit immediately since reset is imminent */
2533 return;
2537 /* Simple mode for Interrupt Throttle Rate (ITR) */
2538 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2539 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2540 * Total asymmetrical Tx or Rx gets ITR=8000;
2541 * everyone else is between 2000-8000.
2543 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2544 u32 dif = (adapter->gotcl > adapter->gorcl ?
2545 adapter->gotcl - adapter->gorcl :
2546 adapter->gorcl - adapter->gotcl) / 10000;
2547 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2549 ew32(ITR, 1000000000 / (itr * 256));
2552 /* Cause software interrupt to ensure rx ring is cleaned */
2553 ew32(ICS, E1000_ICS_RXDMT0);
2555 /* Force detection of hung controller every watchdog period */
2556 adapter->detect_tx_hung = true;
2558 /* Reschedule the task */
2559 if (!test_bit(__E1000_DOWN, &adapter->flags))
2560 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2563 enum latency_range {
2564 lowest_latency = 0,
2565 low_latency = 1,
2566 bulk_latency = 2,
2567 latency_invalid = 255
2571 * e1000_update_itr - update the dynamic ITR value based on statistics
2572 * @adapter: pointer to adapter
2573 * @itr_setting: current adapter->itr
2574 * @packets: the number of packets during this measurement interval
2575 * @bytes: the number of bytes during this measurement interval
2577 * Stores a new ITR value based on packets and byte
2578 * counts during the last interrupt. The advantage of per interrupt
2579 * computation is faster updates and more accurate ITR for the current
2580 * traffic pattern. Constants in this function were computed
2581 * based on theoretical maximum wire speed and thresholds were set based
2582 * on testing data as well as attempting to minimize response time
2583 * while increasing bulk throughput.
2584 * this functionality is controlled by the InterruptThrottleRate module
2585 * parameter (see e1000_param.c)
2587 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2588 u16 itr_setting, int packets, int bytes)
2590 unsigned int retval = itr_setting;
2591 struct e1000_hw *hw = &adapter->hw;
2593 if (unlikely(hw->mac_type < e1000_82540))
2594 goto update_itr_done;
2596 if (packets == 0)
2597 goto update_itr_done;
2599 switch (itr_setting) {
2600 case lowest_latency:
2601 /* jumbo frames get bulk treatment*/
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 5) && (bytes > 512))
2605 retval = low_latency;
2606 break;
2607 case low_latency: /* 50 usec aka 20000 ints/s */
2608 if (bytes > 10000) {
2609 /* jumbo frames need bulk latency setting */
2610 if (bytes/packets > 8000)
2611 retval = bulk_latency;
2612 else if ((packets < 10) || ((bytes/packets) > 1200))
2613 retval = bulk_latency;
2614 else if ((packets > 35))
2615 retval = lowest_latency;
2616 } else if (bytes/packets > 2000)
2617 retval = bulk_latency;
2618 else if (packets <= 2 && bytes < 512)
2619 retval = lowest_latency;
2620 break;
2621 case bulk_latency: /* 250 usec aka 4000 ints/s */
2622 if (bytes > 25000) {
2623 if (packets > 35)
2624 retval = low_latency;
2625 } else if (bytes < 6000) {
2626 retval = low_latency;
2628 break;
2631 update_itr_done:
2632 return retval;
2635 static void e1000_set_itr(struct e1000_adapter *adapter)
2637 struct e1000_hw *hw = &adapter->hw;
2638 u16 current_itr;
2639 u32 new_itr = adapter->itr;
2641 if (unlikely(hw->mac_type < e1000_82540))
2642 return;
2644 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2645 if (unlikely(adapter->link_speed != SPEED_1000)) {
2646 current_itr = 0;
2647 new_itr = 4000;
2648 goto set_itr_now;
2651 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2652 adapter->total_tx_packets,
2653 adapter->total_tx_bytes);
2654 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2655 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2656 adapter->tx_itr = low_latency;
2658 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2659 adapter->total_rx_packets,
2660 adapter->total_rx_bytes);
2661 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2662 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2663 adapter->rx_itr = low_latency;
2665 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2667 switch (current_itr) {
2668 /* counts and packets in update_itr are dependent on these numbers */
2669 case lowest_latency:
2670 new_itr = 70000;
2671 break;
2672 case low_latency:
2673 new_itr = 20000; /* aka hwitr = ~200 */
2674 break;
2675 case bulk_latency:
2676 new_itr = 4000;
2677 break;
2678 default:
2679 break;
2682 set_itr_now:
2683 if (new_itr != adapter->itr) {
2684 /* this attempts to bias the interrupt rate towards Bulk
2685 * by adding intermediate steps when interrupt rate is
2686 * increasing
2688 new_itr = new_itr > adapter->itr ?
2689 min(adapter->itr + (new_itr >> 2), new_itr) :
2690 new_itr;
2691 adapter->itr = new_itr;
2692 ew32(ITR, 1000000000 / (new_itr * 256));
2696 #define E1000_TX_FLAGS_CSUM 0x00000001
2697 #define E1000_TX_FLAGS_VLAN 0x00000002
2698 #define E1000_TX_FLAGS_TSO 0x00000004
2699 #define E1000_TX_FLAGS_IPV4 0x00000008
2700 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2701 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2702 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2704 static int e1000_tso(struct e1000_adapter *adapter,
2705 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2706 __be16 protocol)
2708 struct e1000_context_desc *context_desc;
2709 struct e1000_tx_buffer *buffer_info;
2710 unsigned int i;
2711 u32 cmd_length = 0;
2712 u16 ipcse = 0, tucse, mss;
2713 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2715 if (skb_is_gso(skb)) {
2716 int err;
2718 err = skb_cow_head(skb, 0);
2719 if (err < 0)
2720 return err;
2722 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2723 mss = skb_shinfo(skb)->gso_size;
2724 if (protocol == htons(ETH_P_IP)) {
2725 struct iphdr *iph = ip_hdr(skb);
2726 iph->tot_len = 0;
2727 iph->check = 0;
2728 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2729 iph->daddr, 0,
2730 IPPROTO_TCP,
2732 cmd_length = E1000_TXD_CMD_IP;
2733 ipcse = skb_transport_offset(skb) - 1;
2734 } else if (skb_is_gso_v6(skb)) {
2735 ipv6_hdr(skb)->payload_len = 0;
2736 tcp_hdr(skb)->check =
2737 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2738 &ipv6_hdr(skb)->daddr,
2739 0, IPPROTO_TCP, 0);
2740 ipcse = 0;
2742 ipcss = skb_network_offset(skb);
2743 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2744 tucss = skb_transport_offset(skb);
2745 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2746 tucse = 0;
2748 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2749 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2751 i = tx_ring->next_to_use;
2752 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2753 buffer_info = &tx_ring->buffer_info[i];
2755 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2756 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2757 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2758 context_desc->upper_setup.tcp_fields.tucss = tucss;
2759 context_desc->upper_setup.tcp_fields.tucso = tucso;
2760 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2761 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2762 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2763 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2765 buffer_info->time_stamp = jiffies;
2766 buffer_info->next_to_watch = i;
2768 if (++i == tx_ring->count)
2769 i = 0;
2771 tx_ring->next_to_use = i;
2773 return true;
2775 return false;
2778 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2779 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2780 __be16 protocol)
2782 struct e1000_context_desc *context_desc;
2783 struct e1000_tx_buffer *buffer_info;
2784 unsigned int i;
2785 u8 css;
2786 u32 cmd_len = E1000_TXD_CMD_DEXT;
2788 if (skb->ip_summed != CHECKSUM_PARTIAL)
2789 return false;
2791 switch (protocol) {
2792 case cpu_to_be16(ETH_P_IP):
2793 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2794 cmd_len |= E1000_TXD_CMD_TCP;
2795 break;
2796 case cpu_to_be16(ETH_P_IPV6):
2797 /* XXX not handling all IPV6 headers */
2798 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2799 cmd_len |= E1000_TXD_CMD_TCP;
2800 break;
2801 default:
2802 if (unlikely(net_ratelimit()))
2803 e_warn(drv, "checksum_partial proto=%x!\n",
2804 skb->protocol);
2805 break;
2808 css = skb_checksum_start_offset(skb);
2810 i = tx_ring->next_to_use;
2811 buffer_info = &tx_ring->buffer_info[i];
2812 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2814 context_desc->lower_setup.ip_config = 0;
2815 context_desc->upper_setup.tcp_fields.tucss = css;
2816 context_desc->upper_setup.tcp_fields.tucso =
2817 css + skb->csum_offset;
2818 context_desc->upper_setup.tcp_fields.tucse = 0;
2819 context_desc->tcp_seg_setup.data = 0;
2820 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2822 buffer_info->time_stamp = jiffies;
2823 buffer_info->next_to_watch = i;
2825 if (unlikely(++i == tx_ring->count))
2826 i = 0;
2828 tx_ring->next_to_use = i;
2830 return true;
2833 #define E1000_MAX_TXD_PWR 12
2834 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2836 static int e1000_tx_map(struct e1000_adapter *adapter,
2837 struct e1000_tx_ring *tx_ring,
2838 struct sk_buff *skb, unsigned int first,
2839 unsigned int max_per_txd, unsigned int nr_frags,
2840 unsigned int mss)
2842 struct e1000_hw *hw = &adapter->hw;
2843 struct pci_dev *pdev = adapter->pdev;
2844 struct e1000_tx_buffer *buffer_info;
2845 unsigned int len = skb_headlen(skb);
2846 unsigned int offset = 0, size, count = 0, i;
2847 unsigned int f, bytecount, segs;
2849 i = tx_ring->next_to_use;
2851 while (len) {
2852 buffer_info = &tx_ring->buffer_info[i];
2853 size = min(len, max_per_txd);
2854 /* Workaround for Controller erratum --
2855 * descriptor for non-tso packet in a linear SKB that follows a
2856 * tso gets written back prematurely before the data is fully
2857 * DMA'd to the controller
2859 if (!skb->data_len && tx_ring->last_tx_tso &&
2860 !skb_is_gso(skb)) {
2861 tx_ring->last_tx_tso = false;
2862 size -= 4;
2865 /* Workaround for premature desc write-backs
2866 * in TSO mode. Append 4-byte sentinel desc
2868 if (unlikely(mss && !nr_frags && size == len && size > 8))
2869 size -= 4;
2870 /* work-around for errata 10 and it applies
2871 * to all controllers in PCI-X mode
2872 * The fix is to make sure that the first descriptor of a
2873 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2875 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2876 (size > 2015) && count == 0))
2877 size = 2015;
2879 /* Workaround for potential 82544 hang in PCI-X. Avoid
2880 * terminating buffers within evenly-aligned dwords.
2882 if (unlikely(adapter->pcix_82544 &&
2883 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2884 size > 4))
2885 size -= 4;
2887 buffer_info->length = size;
2888 /* set time_stamp *before* dma to help avoid a possible race */
2889 buffer_info->time_stamp = jiffies;
2890 buffer_info->mapped_as_page = false;
2891 buffer_info->dma = dma_map_single(&pdev->dev,
2892 skb->data + offset,
2893 size, DMA_TO_DEVICE);
2894 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2895 goto dma_error;
2896 buffer_info->next_to_watch = i;
2898 len -= size;
2899 offset += size;
2900 count++;
2901 if (len) {
2902 i++;
2903 if (unlikely(i == tx_ring->count))
2904 i = 0;
2908 for (f = 0; f < nr_frags; f++) {
2909 const struct skb_frag_struct *frag;
2911 frag = &skb_shinfo(skb)->frags[f];
2912 len = skb_frag_size(frag);
2913 offset = 0;
2915 while (len) {
2916 unsigned long bufend;
2917 i++;
2918 if (unlikely(i == tx_ring->count))
2919 i = 0;
2921 buffer_info = &tx_ring->buffer_info[i];
2922 size = min(len, max_per_txd);
2923 /* Workaround for premature desc write-backs
2924 * in TSO mode. Append 4-byte sentinel desc
2926 if (unlikely(mss && f == (nr_frags-1) &&
2927 size == len && size > 8))
2928 size -= 4;
2929 /* Workaround for potential 82544 hang in PCI-X.
2930 * Avoid terminating buffers within evenly-aligned
2931 * dwords.
2933 bufend = (unsigned long)
2934 page_to_phys(skb_frag_page(frag));
2935 bufend += offset + size - 1;
2936 if (unlikely(adapter->pcix_82544 &&
2937 !(bufend & 4) &&
2938 size > 4))
2939 size -= 4;
2941 buffer_info->length = size;
2942 buffer_info->time_stamp = jiffies;
2943 buffer_info->mapped_as_page = true;
2944 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2945 offset, size, DMA_TO_DEVICE);
2946 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2947 goto dma_error;
2948 buffer_info->next_to_watch = i;
2950 len -= size;
2951 offset += size;
2952 count++;
2956 segs = skb_shinfo(skb)->gso_segs ?: 1;
2957 /* multiply data chunks by size of headers */
2958 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2960 tx_ring->buffer_info[i].skb = skb;
2961 tx_ring->buffer_info[i].segs = segs;
2962 tx_ring->buffer_info[i].bytecount = bytecount;
2963 tx_ring->buffer_info[first].next_to_watch = i;
2965 return count;
2967 dma_error:
2968 dev_err(&pdev->dev, "TX DMA map failed\n");
2969 buffer_info->dma = 0;
2970 if (count)
2971 count--;
2973 while (count--) {
2974 if (i == 0)
2975 i += tx_ring->count;
2976 i--;
2977 buffer_info = &tx_ring->buffer_info[i];
2978 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2981 return 0;
2984 static void e1000_tx_queue(struct e1000_adapter *adapter,
2985 struct e1000_tx_ring *tx_ring, int tx_flags,
2986 int count)
2988 struct e1000_tx_desc *tx_desc = NULL;
2989 struct e1000_tx_buffer *buffer_info;
2990 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2991 unsigned int i;
2993 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2994 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2995 E1000_TXD_CMD_TSE;
2996 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2998 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2999 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3002 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3003 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3004 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3007 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3008 txd_lower |= E1000_TXD_CMD_VLE;
3009 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3012 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3013 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3015 i = tx_ring->next_to_use;
3017 while (count--) {
3018 buffer_info = &tx_ring->buffer_info[i];
3019 tx_desc = E1000_TX_DESC(*tx_ring, i);
3020 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3021 tx_desc->lower.data =
3022 cpu_to_le32(txd_lower | buffer_info->length);
3023 tx_desc->upper.data = cpu_to_le32(txd_upper);
3024 if (unlikely(++i == tx_ring->count))
3025 i = 0;
3028 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3030 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3031 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3032 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3034 /* Force memory writes to complete before letting h/w
3035 * know there are new descriptors to fetch. (Only
3036 * applicable for weak-ordered memory model archs,
3037 * such as IA-64).
3039 wmb();
3041 tx_ring->next_to_use = i;
3044 /* 82547 workaround to avoid controller hang in half-duplex environment.
3045 * The workaround is to avoid queuing a large packet that would span
3046 * the internal Tx FIFO ring boundary by notifying the stack to resend
3047 * the packet at a later time. This gives the Tx FIFO an opportunity to
3048 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3049 * to the beginning of the Tx FIFO.
3052 #define E1000_FIFO_HDR 0x10
3053 #define E1000_82547_PAD_LEN 0x3E0
3055 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3056 struct sk_buff *skb)
3058 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3059 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3061 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3063 if (adapter->link_duplex != HALF_DUPLEX)
3064 goto no_fifo_stall_required;
3066 if (atomic_read(&adapter->tx_fifo_stall))
3067 return 1;
3069 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3070 atomic_set(&adapter->tx_fifo_stall, 1);
3071 return 1;
3074 no_fifo_stall_required:
3075 adapter->tx_fifo_head += skb_fifo_len;
3076 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3077 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3078 return 0;
3081 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3083 struct e1000_adapter *adapter = netdev_priv(netdev);
3084 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3086 netif_stop_queue(netdev);
3087 /* Herbert's original patch had:
3088 * smp_mb__after_netif_stop_queue();
3089 * but since that doesn't exist yet, just open code it.
3091 smp_mb();
3093 /* We need to check again in a case another CPU has just
3094 * made room available.
3096 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3097 return -EBUSY;
3099 /* A reprieve! */
3100 netif_start_queue(netdev);
3101 ++adapter->restart_queue;
3102 return 0;
3105 static int e1000_maybe_stop_tx(struct net_device *netdev,
3106 struct e1000_tx_ring *tx_ring, int size)
3108 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3109 return 0;
3110 return __e1000_maybe_stop_tx(netdev, size);
3113 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3114 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3115 struct net_device *netdev)
3117 struct e1000_adapter *adapter = netdev_priv(netdev);
3118 struct e1000_hw *hw = &adapter->hw;
3119 struct e1000_tx_ring *tx_ring;
3120 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3121 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3122 unsigned int tx_flags = 0;
3123 unsigned int len = skb_headlen(skb);
3124 unsigned int nr_frags;
3125 unsigned int mss;
3126 int count = 0;
3127 int tso;
3128 unsigned int f;
3129 __be16 protocol = vlan_get_protocol(skb);
3131 /* This goes back to the question of how to logically map a Tx queue
3132 * to a flow. Right now, performance is impacted slightly negatively
3133 * if using multiple Tx queues. If the stack breaks away from a
3134 * single qdisc implementation, we can look at this again.
3136 tx_ring = adapter->tx_ring;
3138 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3139 * packets may get corrupted during padding by HW.
3140 * To WA this issue, pad all small packets manually.
3142 if (eth_skb_pad(skb))
3143 return NETDEV_TX_OK;
3145 mss = skb_shinfo(skb)->gso_size;
3146 /* The controller does a simple calculation to
3147 * make sure there is enough room in the FIFO before
3148 * initiating the DMA for each buffer. The calc is:
3149 * 4 = ceil(buffer len/mss). To make sure we don't
3150 * overrun the FIFO, adjust the max buffer len if mss
3151 * drops.
3153 if (mss) {
3154 u8 hdr_len;
3155 max_per_txd = min(mss << 2, max_per_txd);
3156 max_txd_pwr = fls(max_per_txd) - 1;
3158 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3159 if (skb->data_len && hdr_len == len) {
3160 switch (hw->mac_type) {
3161 unsigned int pull_size;
3162 case e1000_82544:
3163 /* Make sure we have room to chop off 4 bytes,
3164 * and that the end alignment will work out to
3165 * this hardware's requirements
3166 * NOTE: this is a TSO only workaround
3167 * if end byte alignment not correct move us
3168 * into the next dword
3170 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3171 & 4)
3172 break;
3173 /* fall through */
3174 pull_size = min((unsigned int)4, skb->data_len);
3175 if (!__pskb_pull_tail(skb, pull_size)) {
3176 e_err(drv, "__pskb_pull_tail "
3177 "failed.\n");
3178 dev_kfree_skb_any(skb);
3179 return NETDEV_TX_OK;
3181 len = skb_headlen(skb);
3182 break;
3183 default:
3184 /* do nothing */
3185 break;
3190 /* reserve a descriptor for the offload context */
3191 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3192 count++;
3193 count++;
3195 /* Controller Erratum workaround */
3196 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3197 count++;
3199 count += TXD_USE_COUNT(len, max_txd_pwr);
3201 if (adapter->pcix_82544)
3202 count++;
3204 /* work-around for errata 10 and it applies to all controllers
3205 * in PCI-X mode, so add one more descriptor to the count
3207 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3208 (len > 2015)))
3209 count++;
3211 nr_frags = skb_shinfo(skb)->nr_frags;
3212 for (f = 0; f < nr_frags; f++)
3213 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3214 max_txd_pwr);
3215 if (adapter->pcix_82544)
3216 count += nr_frags;
3218 /* need: count + 2 desc gap to keep tail from touching
3219 * head, otherwise try next time
3221 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3222 return NETDEV_TX_BUSY;
3224 if (unlikely((hw->mac_type == e1000_82547) &&
3225 (e1000_82547_fifo_workaround(adapter, skb)))) {
3226 netif_stop_queue(netdev);
3227 if (!test_bit(__E1000_DOWN, &adapter->flags))
3228 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3229 return NETDEV_TX_BUSY;
3232 if (skb_vlan_tag_present(skb)) {
3233 tx_flags |= E1000_TX_FLAGS_VLAN;
3234 tx_flags |= (skb_vlan_tag_get(skb) <<
3235 E1000_TX_FLAGS_VLAN_SHIFT);
3238 first = tx_ring->next_to_use;
3240 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3241 if (tso < 0) {
3242 dev_kfree_skb_any(skb);
3243 return NETDEV_TX_OK;
3246 if (likely(tso)) {
3247 if (likely(hw->mac_type != e1000_82544))
3248 tx_ring->last_tx_tso = true;
3249 tx_flags |= E1000_TX_FLAGS_TSO;
3250 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3251 tx_flags |= E1000_TX_FLAGS_CSUM;
3253 if (protocol == htons(ETH_P_IP))
3254 tx_flags |= E1000_TX_FLAGS_IPV4;
3256 if (unlikely(skb->no_fcs))
3257 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3259 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3260 nr_frags, mss);
3262 if (count) {
3263 /* The descriptors needed is higher than other Intel drivers
3264 * due to a number of workarounds. The breakdown is below:
3265 * Data descriptors: MAX_SKB_FRAGS + 1
3266 * Context Descriptor: 1
3267 * Keep head from touching tail: 2
3268 * Workarounds: 3
3270 int desc_needed = MAX_SKB_FRAGS + 7;
3272 netdev_sent_queue(netdev, skb->len);
3273 skb_tx_timestamp(skb);
3275 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3277 /* 82544 potentially requires twice as many data descriptors
3278 * in order to guarantee buffers don't end on evenly-aligned
3279 * dwords
3281 if (adapter->pcix_82544)
3282 desc_needed += MAX_SKB_FRAGS + 1;
3284 /* Make sure there is space in the ring for the next send. */
3285 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3287 if (!skb->xmit_more ||
3288 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3289 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3290 /* we need this if more than one processor can write to
3291 * our tail at a time, it synchronizes IO on IA64/Altix
3292 * systems
3294 mmiowb();
3296 } else {
3297 dev_kfree_skb_any(skb);
3298 tx_ring->buffer_info[first].time_stamp = 0;
3299 tx_ring->next_to_use = first;
3302 return NETDEV_TX_OK;
3305 #define NUM_REGS 38 /* 1 based count */
3306 static void e1000_regdump(struct e1000_adapter *adapter)
3308 struct e1000_hw *hw = &adapter->hw;
3309 u32 regs[NUM_REGS];
3310 u32 *regs_buff = regs;
3311 int i = 0;
3313 static const char * const reg_name[] = {
3314 "CTRL", "STATUS",
3315 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3316 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3317 "TIDV", "TXDCTL", "TADV", "TARC0",
3318 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3319 "TXDCTL1", "TARC1",
3320 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3321 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3322 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3325 regs_buff[0] = er32(CTRL);
3326 regs_buff[1] = er32(STATUS);
3328 regs_buff[2] = er32(RCTL);
3329 regs_buff[3] = er32(RDLEN);
3330 regs_buff[4] = er32(RDH);
3331 regs_buff[5] = er32(RDT);
3332 regs_buff[6] = er32(RDTR);
3334 regs_buff[7] = er32(TCTL);
3335 regs_buff[8] = er32(TDBAL);
3336 regs_buff[9] = er32(TDBAH);
3337 regs_buff[10] = er32(TDLEN);
3338 regs_buff[11] = er32(TDH);
3339 regs_buff[12] = er32(TDT);
3340 regs_buff[13] = er32(TIDV);
3341 regs_buff[14] = er32(TXDCTL);
3342 regs_buff[15] = er32(TADV);
3343 regs_buff[16] = er32(TARC0);
3345 regs_buff[17] = er32(TDBAL1);
3346 regs_buff[18] = er32(TDBAH1);
3347 regs_buff[19] = er32(TDLEN1);
3348 regs_buff[20] = er32(TDH1);
3349 regs_buff[21] = er32(TDT1);
3350 regs_buff[22] = er32(TXDCTL1);
3351 regs_buff[23] = er32(TARC1);
3352 regs_buff[24] = er32(CTRL_EXT);
3353 regs_buff[25] = er32(ERT);
3354 regs_buff[26] = er32(RDBAL0);
3355 regs_buff[27] = er32(RDBAH0);
3356 regs_buff[28] = er32(TDFH);
3357 regs_buff[29] = er32(TDFT);
3358 regs_buff[30] = er32(TDFHS);
3359 regs_buff[31] = er32(TDFTS);
3360 regs_buff[32] = er32(TDFPC);
3361 regs_buff[33] = er32(RDFH);
3362 regs_buff[34] = er32(RDFT);
3363 regs_buff[35] = er32(RDFHS);
3364 regs_buff[36] = er32(RDFTS);
3365 regs_buff[37] = er32(RDFPC);
3367 pr_info("Register dump\n");
3368 for (i = 0; i < NUM_REGS; i++)
3369 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3373 * e1000_dump: Print registers, tx ring and rx ring
3375 static void e1000_dump(struct e1000_adapter *adapter)
3377 /* this code doesn't handle multiple rings */
3378 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3379 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3380 int i;
3382 if (!netif_msg_hw(adapter))
3383 return;
3385 /* Print Registers */
3386 e1000_regdump(adapter);
3388 /* transmit dump */
3389 pr_info("TX Desc ring0 dump\n");
3391 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3393 * Legacy Transmit Descriptor
3394 * +--------------------------------------------------------------+
3395 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3396 * +--------------------------------------------------------------+
3397 * 8 | Special | CSS | Status | CMD | CSO | Length |
3398 * +--------------------------------------------------------------+
3399 * 63 48 47 36 35 32 31 24 23 16 15 0
3401 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3402 * 63 48 47 40 39 32 31 16 15 8 7 0
3403 * +----------------------------------------------------------------+
3404 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3405 * +----------------------------------------------------------------+
3406 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3407 * +----------------------------------------------------------------+
3408 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3410 * Extended Data Descriptor (DTYP=0x1)
3411 * +----------------------------------------------------------------+
3412 * 0 | Buffer Address [63:0] |
3413 * +----------------------------------------------------------------+
3414 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3415 * +----------------------------------------------------------------+
3416 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3418 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3419 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3421 if (!netif_msg_tx_done(adapter))
3422 goto rx_ring_summary;
3424 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3425 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3426 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3427 struct my_u { __le64 a; __le64 b; };
3428 struct my_u *u = (struct my_u *)tx_desc;
3429 const char *type;
3431 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3432 type = "NTC/U";
3433 else if (i == tx_ring->next_to_use)
3434 type = "NTU";
3435 else if (i == tx_ring->next_to_clean)
3436 type = "NTC";
3437 else
3438 type = "";
3440 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3441 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3442 le64_to_cpu(u->a), le64_to_cpu(u->b),
3443 (u64)buffer_info->dma, buffer_info->length,
3444 buffer_info->next_to_watch,
3445 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3448 rx_ring_summary:
3449 /* receive dump */
3450 pr_info("\nRX Desc ring dump\n");
3452 /* Legacy Receive Descriptor Format
3454 * +-----------------------------------------------------+
3455 * | Buffer Address [63:0] |
3456 * +-----------------------------------------------------+
3457 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3458 * +-----------------------------------------------------+
3459 * 63 48 47 40 39 32 31 16 15 0
3461 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3463 if (!netif_msg_rx_status(adapter))
3464 goto exit;
3466 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3467 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3468 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3469 struct my_u { __le64 a; __le64 b; };
3470 struct my_u *u = (struct my_u *)rx_desc;
3471 const char *type;
3473 if (i == rx_ring->next_to_use)
3474 type = "NTU";
3475 else if (i == rx_ring->next_to_clean)
3476 type = "NTC";
3477 else
3478 type = "";
3480 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3481 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3482 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3483 } /* for */
3485 /* dump the descriptor caches */
3486 /* rx */
3487 pr_info("Rx descriptor cache in 64bit format\n");
3488 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3489 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3491 readl(adapter->hw.hw_addr + i+4),
3492 readl(adapter->hw.hw_addr + i),
3493 readl(adapter->hw.hw_addr + i+12),
3494 readl(adapter->hw.hw_addr + i+8));
3496 /* tx */
3497 pr_info("Tx descriptor cache in 64bit format\n");
3498 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3499 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3501 readl(adapter->hw.hw_addr + i+4),
3502 readl(adapter->hw.hw_addr + i),
3503 readl(adapter->hw.hw_addr + i+12),
3504 readl(adapter->hw.hw_addr + i+8));
3506 exit:
3507 return;
3511 * e1000_tx_timeout - Respond to a Tx Hang
3512 * @netdev: network interface device structure
3514 static void e1000_tx_timeout(struct net_device *netdev)
3516 struct e1000_adapter *adapter = netdev_priv(netdev);
3518 /* Do the reset outside of interrupt context */
3519 adapter->tx_timeout_count++;
3520 schedule_work(&adapter->reset_task);
3523 static void e1000_reset_task(struct work_struct *work)
3525 struct e1000_adapter *adapter =
3526 container_of(work, struct e1000_adapter, reset_task);
3528 e_err(drv, "Reset adapter\n");
3529 e1000_reinit_locked(adapter);
3533 * e1000_get_stats - Get System Network Statistics
3534 * @netdev: network interface device structure
3536 * Returns the address of the device statistics structure.
3537 * The statistics are actually updated from the watchdog.
3539 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3541 /* only return the current stats */
3542 return &netdev->stats;
3546 * e1000_change_mtu - Change the Maximum Transfer Unit
3547 * @netdev: network interface device structure
3548 * @new_mtu: new value for maximum frame size
3550 * Returns 0 on success, negative on failure
3552 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3554 struct e1000_adapter *adapter = netdev_priv(netdev);
3555 struct e1000_hw *hw = &adapter->hw;
3556 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3558 /* Adapter-specific max frame size limits. */
3559 switch (hw->mac_type) {
3560 case e1000_undefined ... e1000_82542_rev2_1:
3561 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3562 e_err(probe, "Jumbo Frames not supported.\n");
3563 return -EINVAL;
3565 break;
3566 default:
3567 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3568 break;
3571 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3572 msleep(1);
3573 /* e1000_down has a dependency on max_frame_size */
3574 hw->max_frame_size = max_frame;
3575 if (netif_running(netdev)) {
3576 /* prevent buffers from being reallocated */
3577 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3578 e1000_down(adapter);
3581 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3582 * means we reserve 2 more, this pushes us to allocate from the next
3583 * larger slab size.
3584 * i.e. RXBUFFER_2048 --> size-4096 slab
3585 * however with the new *_jumbo_rx* routines, jumbo receives will use
3586 * fragmented skbs
3589 if (max_frame <= E1000_RXBUFFER_2048)
3590 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3591 else
3592 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3593 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3594 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3595 adapter->rx_buffer_len = PAGE_SIZE;
3596 #endif
3598 /* adjust allocation if LPE protects us, and we aren't using SBP */
3599 if (!hw->tbi_compatibility_on &&
3600 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3601 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3602 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3604 pr_info("%s changing MTU from %d to %d\n",
3605 netdev->name, netdev->mtu, new_mtu);
3606 netdev->mtu = new_mtu;
3608 if (netif_running(netdev))
3609 e1000_up(adapter);
3610 else
3611 e1000_reset(adapter);
3613 clear_bit(__E1000_RESETTING, &adapter->flags);
3615 return 0;
3619 * e1000_update_stats - Update the board statistics counters
3620 * @adapter: board private structure
3622 void e1000_update_stats(struct e1000_adapter *adapter)
3624 struct net_device *netdev = adapter->netdev;
3625 struct e1000_hw *hw = &adapter->hw;
3626 struct pci_dev *pdev = adapter->pdev;
3627 unsigned long flags;
3628 u16 phy_tmp;
3630 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3632 /* Prevent stats update while adapter is being reset, or if the pci
3633 * connection is down.
3635 if (adapter->link_speed == 0)
3636 return;
3637 if (pci_channel_offline(pdev))
3638 return;
3640 spin_lock_irqsave(&adapter->stats_lock, flags);
3642 /* these counters are modified from e1000_tbi_adjust_stats,
3643 * called from the interrupt context, so they must only
3644 * be written while holding adapter->stats_lock
3647 adapter->stats.crcerrs += er32(CRCERRS);
3648 adapter->stats.gprc += er32(GPRC);
3649 adapter->stats.gorcl += er32(GORCL);
3650 adapter->stats.gorch += er32(GORCH);
3651 adapter->stats.bprc += er32(BPRC);
3652 adapter->stats.mprc += er32(MPRC);
3653 adapter->stats.roc += er32(ROC);
3655 adapter->stats.prc64 += er32(PRC64);
3656 adapter->stats.prc127 += er32(PRC127);
3657 adapter->stats.prc255 += er32(PRC255);
3658 adapter->stats.prc511 += er32(PRC511);
3659 adapter->stats.prc1023 += er32(PRC1023);
3660 adapter->stats.prc1522 += er32(PRC1522);
3662 adapter->stats.symerrs += er32(SYMERRS);
3663 adapter->stats.mpc += er32(MPC);
3664 adapter->stats.scc += er32(SCC);
3665 adapter->stats.ecol += er32(ECOL);
3666 adapter->stats.mcc += er32(MCC);
3667 adapter->stats.latecol += er32(LATECOL);
3668 adapter->stats.dc += er32(DC);
3669 adapter->stats.sec += er32(SEC);
3670 adapter->stats.rlec += er32(RLEC);
3671 adapter->stats.xonrxc += er32(XONRXC);
3672 adapter->stats.xontxc += er32(XONTXC);
3673 adapter->stats.xoffrxc += er32(XOFFRXC);
3674 adapter->stats.xofftxc += er32(XOFFTXC);
3675 adapter->stats.fcruc += er32(FCRUC);
3676 adapter->stats.gptc += er32(GPTC);
3677 adapter->stats.gotcl += er32(GOTCL);
3678 adapter->stats.gotch += er32(GOTCH);
3679 adapter->stats.rnbc += er32(RNBC);
3680 adapter->stats.ruc += er32(RUC);
3681 adapter->stats.rfc += er32(RFC);
3682 adapter->stats.rjc += er32(RJC);
3683 adapter->stats.torl += er32(TORL);
3684 adapter->stats.torh += er32(TORH);
3685 adapter->stats.totl += er32(TOTL);
3686 adapter->stats.toth += er32(TOTH);
3687 adapter->stats.tpr += er32(TPR);
3689 adapter->stats.ptc64 += er32(PTC64);
3690 adapter->stats.ptc127 += er32(PTC127);
3691 adapter->stats.ptc255 += er32(PTC255);
3692 adapter->stats.ptc511 += er32(PTC511);
3693 adapter->stats.ptc1023 += er32(PTC1023);
3694 adapter->stats.ptc1522 += er32(PTC1522);
3696 adapter->stats.mptc += er32(MPTC);
3697 adapter->stats.bptc += er32(BPTC);
3699 /* used for adaptive IFS */
3701 hw->tx_packet_delta = er32(TPT);
3702 adapter->stats.tpt += hw->tx_packet_delta;
3703 hw->collision_delta = er32(COLC);
3704 adapter->stats.colc += hw->collision_delta;
3706 if (hw->mac_type >= e1000_82543) {
3707 adapter->stats.algnerrc += er32(ALGNERRC);
3708 adapter->stats.rxerrc += er32(RXERRC);
3709 adapter->stats.tncrs += er32(TNCRS);
3710 adapter->stats.cexterr += er32(CEXTERR);
3711 adapter->stats.tsctc += er32(TSCTC);
3712 adapter->stats.tsctfc += er32(TSCTFC);
3715 /* Fill out the OS statistics structure */
3716 netdev->stats.multicast = adapter->stats.mprc;
3717 netdev->stats.collisions = adapter->stats.colc;
3719 /* Rx Errors */
3721 /* RLEC on some newer hardware can be incorrect so build
3722 * our own version based on RUC and ROC
3724 netdev->stats.rx_errors = adapter->stats.rxerrc +
3725 adapter->stats.crcerrs + adapter->stats.algnerrc +
3726 adapter->stats.ruc + adapter->stats.roc +
3727 adapter->stats.cexterr;
3728 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3729 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3730 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3731 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3732 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3734 /* Tx Errors */
3735 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3736 netdev->stats.tx_errors = adapter->stats.txerrc;
3737 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3738 netdev->stats.tx_window_errors = adapter->stats.latecol;
3739 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3740 if (hw->bad_tx_carr_stats_fd &&
3741 adapter->link_duplex == FULL_DUPLEX) {
3742 netdev->stats.tx_carrier_errors = 0;
3743 adapter->stats.tncrs = 0;
3746 /* Tx Dropped needs to be maintained elsewhere */
3748 /* Phy Stats */
3749 if (hw->media_type == e1000_media_type_copper) {
3750 if ((adapter->link_speed == SPEED_1000) &&
3751 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3752 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3753 adapter->phy_stats.idle_errors += phy_tmp;
3756 if ((hw->mac_type <= e1000_82546) &&
3757 (hw->phy_type == e1000_phy_m88) &&
3758 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3759 adapter->phy_stats.receive_errors += phy_tmp;
3762 /* Management Stats */
3763 if (hw->has_smbus) {
3764 adapter->stats.mgptc += er32(MGTPTC);
3765 adapter->stats.mgprc += er32(MGTPRC);
3766 adapter->stats.mgpdc += er32(MGTPDC);
3769 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3773 * e1000_intr - Interrupt Handler
3774 * @irq: interrupt number
3775 * @data: pointer to a network interface device structure
3777 static irqreturn_t e1000_intr(int irq, void *data)
3779 struct net_device *netdev = data;
3780 struct e1000_adapter *adapter = netdev_priv(netdev);
3781 struct e1000_hw *hw = &adapter->hw;
3782 u32 icr = er32(ICR);
3784 if (unlikely((!icr)))
3785 return IRQ_NONE; /* Not our interrupt */
3787 /* we might have caused the interrupt, but the above
3788 * read cleared it, and just in case the driver is
3789 * down there is nothing to do so return handled
3791 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3792 return IRQ_HANDLED;
3794 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3795 hw->get_link_status = 1;
3796 /* guard against interrupt when we're going down */
3797 if (!test_bit(__E1000_DOWN, &adapter->flags))
3798 schedule_delayed_work(&adapter->watchdog_task, 1);
3801 /* disable interrupts, without the synchronize_irq bit */
3802 ew32(IMC, ~0);
3803 E1000_WRITE_FLUSH();
3805 if (likely(napi_schedule_prep(&adapter->napi))) {
3806 adapter->total_tx_bytes = 0;
3807 adapter->total_tx_packets = 0;
3808 adapter->total_rx_bytes = 0;
3809 adapter->total_rx_packets = 0;
3810 __napi_schedule(&adapter->napi);
3811 } else {
3812 /* this really should not happen! if it does it is basically a
3813 * bug, but not a hard error, so enable ints and continue
3815 if (!test_bit(__E1000_DOWN, &adapter->flags))
3816 e1000_irq_enable(adapter);
3819 return IRQ_HANDLED;
3823 * e1000_clean - NAPI Rx polling callback
3824 * @adapter: board private structure
3826 static int e1000_clean(struct napi_struct *napi, int budget)
3828 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3829 napi);
3830 int tx_clean_complete = 0, work_done = 0;
3832 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3834 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3836 if (!tx_clean_complete)
3837 work_done = budget;
3839 /* If budget not fully consumed, exit the polling mode */
3840 if (work_done < budget) {
3841 if (likely(adapter->itr_setting & 3))
3842 e1000_set_itr(adapter);
3843 napi_complete_done(napi, work_done);
3844 if (!test_bit(__E1000_DOWN, &adapter->flags))
3845 e1000_irq_enable(adapter);
3848 return work_done;
3852 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3853 * @adapter: board private structure
3855 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3856 struct e1000_tx_ring *tx_ring)
3858 struct e1000_hw *hw = &adapter->hw;
3859 struct net_device *netdev = adapter->netdev;
3860 struct e1000_tx_desc *tx_desc, *eop_desc;
3861 struct e1000_tx_buffer *buffer_info;
3862 unsigned int i, eop;
3863 unsigned int count = 0;
3864 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3865 unsigned int bytes_compl = 0, pkts_compl = 0;
3867 i = tx_ring->next_to_clean;
3868 eop = tx_ring->buffer_info[i].next_to_watch;
3869 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3871 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3872 (count < tx_ring->count)) {
3873 bool cleaned = false;
3874 dma_rmb(); /* read buffer_info after eop_desc */
3875 for ( ; !cleaned; count++) {
3876 tx_desc = E1000_TX_DESC(*tx_ring, i);
3877 buffer_info = &tx_ring->buffer_info[i];
3878 cleaned = (i == eop);
3880 if (cleaned) {
3881 total_tx_packets += buffer_info->segs;
3882 total_tx_bytes += buffer_info->bytecount;
3883 if (buffer_info->skb) {
3884 bytes_compl += buffer_info->skb->len;
3885 pkts_compl++;
3889 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3890 tx_desc->upper.data = 0;
3892 if (unlikely(++i == tx_ring->count))
3893 i = 0;
3896 eop = tx_ring->buffer_info[i].next_to_watch;
3897 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3900 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3901 * which will reuse the cleaned buffers.
3903 smp_store_release(&tx_ring->next_to_clean, i);
3905 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3907 #define TX_WAKE_THRESHOLD 32
3908 if (unlikely(count && netif_carrier_ok(netdev) &&
3909 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3910 /* Make sure that anybody stopping the queue after this
3911 * sees the new next_to_clean.
3913 smp_mb();
3915 if (netif_queue_stopped(netdev) &&
3916 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3917 netif_wake_queue(netdev);
3918 ++adapter->restart_queue;
3922 if (adapter->detect_tx_hung) {
3923 /* Detect a transmit hang in hardware, this serializes the
3924 * check with the clearing of time_stamp and movement of i
3926 adapter->detect_tx_hung = false;
3927 if (tx_ring->buffer_info[eop].time_stamp &&
3928 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3929 (adapter->tx_timeout_factor * HZ)) &&
3930 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3932 /* detected Tx unit hang */
3933 e_err(drv, "Detected Tx Unit Hang\n"
3934 " Tx Queue <%lu>\n"
3935 " TDH <%x>\n"
3936 " TDT <%x>\n"
3937 " next_to_use <%x>\n"
3938 " next_to_clean <%x>\n"
3939 "buffer_info[next_to_clean]\n"
3940 " time_stamp <%lx>\n"
3941 " next_to_watch <%x>\n"
3942 " jiffies <%lx>\n"
3943 " next_to_watch.status <%x>\n",
3944 (unsigned long)(tx_ring - adapter->tx_ring),
3945 readl(hw->hw_addr + tx_ring->tdh),
3946 readl(hw->hw_addr + tx_ring->tdt),
3947 tx_ring->next_to_use,
3948 tx_ring->next_to_clean,
3949 tx_ring->buffer_info[eop].time_stamp,
3950 eop,
3951 jiffies,
3952 eop_desc->upper.fields.status);
3953 e1000_dump(adapter);
3954 netif_stop_queue(netdev);
3957 adapter->total_tx_bytes += total_tx_bytes;
3958 adapter->total_tx_packets += total_tx_packets;
3959 netdev->stats.tx_bytes += total_tx_bytes;
3960 netdev->stats.tx_packets += total_tx_packets;
3961 return count < tx_ring->count;
3965 * e1000_rx_checksum - Receive Checksum Offload for 82543
3966 * @adapter: board private structure
3967 * @status_err: receive descriptor status and error fields
3968 * @csum: receive descriptor csum field
3969 * @sk_buff: socket buffer with received data
3971 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3972 u32 csum, struct sk_buff *skb)
3974 struct e1000_hw *hw = &adapter->hw;
3975 u16 status = (u16)status_err;
3976 u8 errors = (u8)(status_err >> 24);
3978 skb_checksum_none_assert(skb);
3980 /* 82543 or newer only */
3981 if (unlikely(hw->mac_type < e1000_82543))
3982 return;
3983 /* Ignore Checksum bit is set */
3984 if (unlikely(status & E1000_RXD_STAT_IXSM))
3985 return;
3986 /* TCP/UDP checksum error bit is set */
3987 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3988 /* let the stack verify checksum errors */
3989 adapter->hw_csum_err++;
3990 return;
3992 /* TCP/UDP Checksum has not been calculated */
3993 if (!(status & E1000_RXD_STAT_TCPCS))
3994 return;
3996 /* It must be a TCP or UDP packet with a valid checksum */
3997 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3998 /* TCP checksum is good */
3999 skb->ip_summed = CHECKSUM_UNNECESSARY;
4001 adapter->hw_csum_good++;
4005 * e1000_consume_page - helper function for jumbo Rx path
4007 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4008 u16 length)
4010 bi->rxbuf.page = NULL;
4011 skb->len += length;
4012 skb->data_len += length;
4013 skb->truesize += PAGE_SIZE;
4017 * e1000_receive_skb - helper function to handle rx indications
4018 * @adapter: board private structure
4019 * @status: descriptor status field as written by hardware
4020 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4021 * @skb: pointer to sk_buff to be indicated to stack
4023 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4024 __le16 vlan, struct sk_buff *skb)
4026 skb->protocol = eth_type_trans(skb, adapter->netdev);
4028 if (status & E1000_RXD_STAT_VP) {
4029 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4031 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4033 napi_gro_receive(&adapter->napi, skb);
4037 * e1000_tbi_adjust_stats
4038 * @hw: Struct containing variables accessed by shared code
4039 * @frame_len: The length of the frame in question
4040 * @mac_addr: The Ethernet destination address of the frame in question
4042 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4044 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4045 struct e1000_hw_stats *stats,
4046 u32 frame_len, const u8 *mac_addr)
4048 u64 carry_bit;
4050 /* First adjust the frame length. */
4051 frame_len--;
4052 /* We need to adjust the statistics counters, since the hardware
4053 * counters overcount this packet as a CRC error and undercount
4054 * the packet as a good packet
4056 /* This packet should not be counted as a CRC error. */
4057 stats->crcerrs--;
4058 /* This packet does count as a Good Packet Received. */
4059 stats->gprc++;
4061 /* Adjust the Good Octets received counters */
4062 carry_bit = 0x80000000 & stats->gorcl;
4063 stats->gorcl += frame_len;
4064 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4065 * Received Count) was one before the addition,
4066 * AND it is zero after, then we lost the carry out,
4067 * need to add one to Gorch (Good Octets Received Count High).
4068 * This could be simplified if all environments supported
4069 * 64-bit integers.
4071 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4072 stats->gorch++;
4073 /* Is this a broadcast or multicast? Check broadcast first,
4074 * since the test for a multicast frame will test positive on
4075 * a broadcast frame.
4077 if (is_broadcast_ether_addr(mac_addr))
4078 stats->bprc++;
4079 else if (is_multicast_ether_addr(mac_addr))
4080 stats->mprc++;
4082 if (frame_len == hw->max_frame_size) {
4083 /* In this case, the hardware has overcounted the number of
4084 * oversize frames.
4086 if (stats->roc > 0)
4087 stats->roc--;
4090 /* Adjust the bin counters when the extra byte put the frame in the
4091 * wrong bin. Remember that the frame_len was adjusted above.
4093 if (frame_len == 64) {
4094 stats->prc64++;
4095 stats->prc127--;
4096 } else if (frame_len == 127) {
4097 stats->prc127++;
4098 stats->prc255--;
4099 } else if (frame_len == 255) {
4100 stats->prc255++;
4101 stats->prc511--;
4102 } else if (frame_len == 511) {
4103 stats->prc511++;
4104 stats->prc1023--;
4105 } else if (frame_len == 1023) {
4106 stats->prc1023++;
4107 stats->prc1522--;
4108 } else if (frame_len == 1522) {
4109 stats->prc1522++;
4113 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4114 u8 status, u8 errors,
4115 u32 length, const u8 *data)
4117 struct e1000_hw *hw = &adapter->hw;
4118 u8 last_byte = *(data + length - 1);
4120 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4121 unsigned long irq_flags;
4123 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4124 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4125 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4127 return true;
4130 return false;
4133 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4134 unsigned int bufsz)
4136 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4138 if (unlikely(!skb))
4139 adapter->alloc_rx_buff_failed++;
4140 return skb;
4144 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4145 * @adapter: board private structure
4146 * @rx_ring: ring to clean
4147 * @work_done: amount of napi work completed this call
4148 * @work_to_do: max amount of work allowed for this call to do
4150 * the return value indicates whether actual cleaning was done, there
4151 * is no guarantee that everything was cleaned
4153 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4154 struct e1000_rx_ring *rx_ring,
4155 int *work_done, int work_to_do)
4157 struct net_device *netdev = adapter->netdev;
4158 struct pci_dev *pdev = adapter->pdev;
4159 struct e1000_rx_desc *rx_desc, *next_rxd;
4160 struct e1000_rx_buffer *buffer_info, *next_buffer;
4161 u32 length;
4162 unsigned int i;
4163 int cleaned_count = 0;
4164 bool cleaned = false;
4165 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4167 i = rx_ring->next_to_clean;
4168 rx_desc = E1000_RX_DESC(*rx_ring, i);
4169 buffer_info = &rx_ring->buffer_info[i];
4171 while (rx_desc->status & E1000_RXD_STAT_DD) {
4172 struct sk_buff *skb;
4173 u8 status;
4175 if (*work_done >= work_to_do)
4176 break;
4177 (*work_done)++;
4178 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4180 status = rx_desc->status;
4182 if (++i == rx_ring->count)
4183 i = 0;
4185 next_rxd = E1000_RX_DESC(*rx_ring, i);
4186 prefetch(next_rxd);
4188 next_buffer = &rx_ring->buffer_info[i];
4190 cleaned = true;
4191 cleaned_count++;
4192 dma_unmap_page(&pdev->dev, buffer_info->dma,
4193 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4194 buffer_info->dma = 0;
4196 length = le16_to_cpu(rx_desc->length);
4198 /* errors is only valid for DD + EOP descriptors */
4199 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4200 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4201 u8 *mapped = page_address(buffer_info->rxbuf.page);
4203 if (e1000_tbi_should_accept(adapter, status,
4204 rx_desc->errors,
4205 length, mapped)) {
4206 length--;
4207 } else if (netdev->features & NETIF_F_RXALL) {
4208 goto process_skb;
4209 } else {
4210 /* an error means any chain goes out the window
4211 * too
4213 if (rx_ring->rx_skb_top)
4214 dev_kfree_skb(rx_ring->rx_skb_top);
4215 rx_ring->rx_skb_top = NULL;
4216 goto next_desc;
4220 #define rxtop rx_ring->rx_skb_top
4221 process_skb:
4222 if (!(status & E1000_RXD_STAT_EOP)) {
4223 /* this descriptor is only the beginning (or middle) */
4224 if (!rxtop) {
4225 /* this is the beginning of a chain */
4226 rxtop = napi_get_frags(&adapter->napi);
4227 if (!rxtop)
4228 break;
4230 skb_fill_page_desc(rxtop, 0,
4231 buffer_info->rxbuf.page,
4232 0, length);
4233 } else {
4234 /* this is the middle of a chain */
4235 skb_fill_page_desc(rxtop,
4236 skb_shinfo(rxtop)->nr_frags,
4237 buffer_info->rxbuf.page, 0, length);
4239 e1000_consume_page(buffer_info, rxtop, length);
4240 goto next_desc;
4241 } else {
4242 if (rxtop) {
4243 /* end of the chain */
4244 skb_fill_page_desc(rxtop,
4245 skb_shinfo(rxtop)->nr_frags,
4246 buffer_info->rxbuf.page, 0, length);
4247 skb = rxtop;
4248 rxtop = NULL;
4249 e1000_consume_page(buffer_info, skb, length);
4250 } else {
4251 struct page *p;
4252 /* no chain, got EOP, this buf is the packet
4253 * copybreak to save the put_page/alloc_page
4255 p = buffer_info->rxbuf.page;
4256 if (length <= copybreak) {
4257 u8 *vaddr;
4259 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4260 length -= 4;
4261 skb = e1000_alloc_rx_skb(adapter,
4262 length);
4263 if (!skb)
4264 break;
4266 vaddr = kmap_atomic(p);
4267 memcpy(skb_tail_pointer(skb), vaddr,
4268 length);
4269 kunmap_atomic(vaddr);
4270 /* re-use the page, so don't erase
4271 * buffer_info->rxbuf.page
4273 skb_put(skb, length);
4274 e1000_rx_checksum(adapter,
4275 status | rx_desc->errors << 24,
4276 le16_to_cpu(rx_desc->csum), skb);
4278 total_rx_bytes += skb->len;
4279 total_rx_packets++;
4281 e1000_receive_skb(adapter, status,
4282 rx_desc->special, skb);
4283 goto next_desc;
4284 } else {
4285 skb = napi_get_frags(&adapter->napi);
4286 if (!skb) {
4287 adapter->alloc_rx_buff_failed++;
4288 break;
4290 skb_fill_page_desc(skb, 0, p, 0,
4291 length);
4292 e1000_consume_page(buffer_info, skb,
4293 length);
4298 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4299 e1000_rx_checksum(adapter,
4300 (u32)(status) |
4301 ((u32)(rx_desc->errors) << 24),
4302 le16_to_cpu(rx_desc->csum), skb);
4304 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4305 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4306 pskb_trim(skb, skb->len - 4);
4307 total_rx_packets++;
4309 if (status & E1000_RXD_STAT_VP) {
4310 __le16 vlan = rx_desc->special;
4311 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4313 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4316 napi_gro_frags(&adapter->napi);
4318 next_desc:
4319 rx_desc->status = 0;
4321 /* return some buffers to hardware, one at a time is too slow */
4322 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4323 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4324 cleaned_count = 0;
4327 /* use prefetched values */
4328 rx_desc = next_rxd;
4329 buffer_info = next_buffer;
4331 rx_ring->next_to_clean = i;
4333 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4334 if (cleaned_count)
4335 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4337 adapter->total_rx_packets += total_rx_packets;
4338 adapter->total_rx_bytes += total_rx_bytes;
4339 netdev->stats.rx_bytes += total_rx_bytes;
4340 netdev->stats.rx_packets += total_rx_packets;
4341 return cleaned;
4344 /* this should improve performance for small packets with large amounts
4345 * of reassembly being done in the stack
4347 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4348 struct e1000_rx_buffer *buffer_info,
4349 u32 length, const void *data)
4351 struct sk_buff *skb;
4353 if (length > copybreak)
4354 return NULL;
4356 skb = e1000_alloc_rx_skb(adapter, length);
4357 if (!skb)
4358 return NULL;
4360 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4361 length, DMA_FROM_DEVICE);
4363 memcpy(skb_put(skb, length), data, length);
4365 return skb;
4369 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4370 * @adapter: board private structure
4371 * @rx_ring: ring to clean
4372 * @work_done: amount of napi work completed this call
4373 * @work_to_do: max amount of work allowed for this call to do
4375 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4376 struct e1000_rx_ring *rx_ring,
4377 int *work_done, int work_to_do)
4379 struct net_device *netdev = adapter->netdev;
4380 struct pci_dev *pdev = adapter->pdev;
4381 struct e1000_rx_desc *rx_desc, *next_rxd;
4382 struct e1000_rx_buffer *buffer_info, *next_buffer;
4383 u32 length;
4384 unsigned int i;
4385 int cleaned_count = 0;
4386 bool cleaned = false;
4387 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4389 i = rx_ring->next_to_clean;
4390 rx_desc = E1000_RX_DESC(*rx_ring, i);
4391 buffer_info = &rx_ring->buffer_info[i];
4393 while (rx_desc->status & E1000_RXD_STAT_DD) {
4394 struct sk_buff *skb;
4395 u8 *data;
4396 u8 status;
4398 if (*work_done >= work_to_do)
4399 break;
4400 (*work_done)++;
4401 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4403 status = rx_desc->status;
4404 length = le16_to_cpu(rx_desc->length);
4406 data = buffer_info->rxbuf.data;
4407 prefetch(data);
4408 skb = e1000_copybreak(adapter, buffer_info, length, data);
4409 if (!skb) {
4410 unsigned int frag_len = e1000_frag_len(adapter);
4412 skb = build_skb(data - E1000_HEADROOM, frag_len);
4413 if (!skb) {
4414 adapter->alloc_rx_buff_failed++;
4415 break;
4418 skb_reserve(skb, E1000_HEADROOM);
4419 dma_unmap_single(&pdev->dev, buffer_info->dma,
4420 adapter->rx_buffer_len,
4421 DMA_FROM_DEVICE);
4422 buffer_info->dma = 0;
4423 buffer_info->rxbuf.data = NULL;
4426 if (++i == rx_ring->count)
4427 i = 0;
4429 next_rxd = E1000_RX_DESC(*rx_ring, i);
4430 prefetch(next_rxd);
4432 next_buffer = &rx_ring->buffer_info[i];
4434 cleaned = true;
4435 cleaned_count++;
4437 /* !EOP means multiple descriptors were used to store a single
4438 * packet, if thats the case we need to toss it. In fact, we
4439 * to toss every packet with the EOP bit clear and the next
4440 * frame that _does_ have the EOP bit set, as it is by
4441 * definition only a frame fragment
4443 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4444 adapter->discarding = true;
4446 if (adapter->discarding) {
4447 /* All receives must fit into a single buffer */
4448 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4449 dev_kfree_skb(skb);
4450 if (status & E1000_RXD_STAT_EOP)
4451 adapter->discarding = false;
4452 goto next_desc;
4455 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4456 if (e1000_tbi_should_accept(adapter, status,
4457 rx_desc->errors,
4458 length, data)) {
4459 length--;
4460 } else if (netdev->features & NETIF_F_RXALL) {
4461 goto process_skb;
4462 } else {
4463 dev_kfree_skb(skb);
4464 goto next_desc;
4468 process_skb:
4469 total_rx_bytes += (length - 4); /* don't count FCS */
4470 total_rx_packets++;
4472 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4473 /* adjust length to remove Ethernet CRC, this must be
4474 * done after the TBI_ACCEPT workaround above
4476 length -= 4;
4478 if (buffer_info->rxbuf.data == NULL)
4479 skb_put(skb, length);
4480 else /* copybreak skb */
4481 skb_trim(skb, length);
4483 /* Receive Checksum Offload */
4484 e1000_rx_checksum(adapter,
4485 (u32)(status) |
4486 ((u32)(rx_desc->errors) << 24),
4487 le16_to_cpu(rx_desc->csum), skb);
4489 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4491 next_desc:
4492 rx_desc->status = 0;
4494 /* return some buffers to hardware, one at a time is too slow */
4495 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4496 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4497 cleaned_count = 0;
4500 /* use prefetched values */
4501 rx_desc = next_rxd;
4502 buffer_info = next_buffer;
4504 rx_ring->next_to_clean = i;
4506 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4507 if (cleaned_count)
4508 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4510 adapter->total_rx_packets += total_rx_packets;
4511 adapter->total_rx_bytes += total_rx_bytes;
4512 netdev->stats.rx_bytes += total_rx_bytes;
4513 netdev->stats.rx_packets += total_rx_packets;
4514 return cleaned;
4518 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4519 * @adapter: address of board private structure
4520 * @rx_ring: pointer to receive ring structure
4521 * @cleaned_count: number of buffers to allocate this pass
4523 static void
4524 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4525 struct e1000_rx_ring *rx_ring, int cleaned_count)
4527 struct pci_dev *pdev = adapter->pdev;
4528 struct e1000_rx_desc *rx_desc;
4529 struct e1000_rx_buffer *buffer_info;
4530 unsigned int i;
4532 i = rx_ring->next_to_use;
4533 buffer_info = &rx_ring->buffer_info[i];
4535 while (cleaned_count--) {
4536 /* allocate a new page if necessary */
4537 if (!buffer_info->rxbuf.page) {
4538 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4539 if (unlikely(!buffer_info->rxbuf.page)) {
4540 adapter->alloc_rx_buff_failed++;
4541 break;
4545 if (!buffer_info->dma) {
4546 buffer_info->dma = dma_map_page(&pdev->dev,
4547 buffer_info->rxbuf.page, 0,
4548 adapter->rx_buffer_len,
4549 DMA_FROM_DEVICE);
4550 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4551 put_page(buffer_info->rxbuf.page);
4552 buffer_info->rxbuf.page = NULL;
4553 buffer_info->dma = 0;
4554 adapter->alloc_rx_buff_failed++;
4555 break;
4559 rx_desc = E1000_RX_DESC(*rx_ring, i);
4560 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4562 if (unlikely(++i == rx_ring->count))
4563 i = 0;
4564 buffer_info = &rx_ring->buffer_info[i];
4567 if (likely(rx_ring->next_to_use != i)) {
4568 rx_ring->next_to_use = i;
4569 if (unlikely(i-- == 0))
4570 i = (rx_ring->count - 1);
4572 /* Force memory writes to complete before letting h/w
4573 * know there are new descriptors to fetch. (Only
4574 * applicable for weak-ordered memory model archs,
4575 * such as IA-64).
4577 wmb();
4578 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4583 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4584 * @adapter: address of board private structure
4586 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4587 struct e1000_rx_ring *rx_ring,
4588 int cleaned_count)
4590 struct e1000_hw *hw = &adapter->hw;
4591 struct pci_dev *pdev = adapter->pdev;
4592 struct e1000_rx_desc *rx_desc;
4593 struct e1000_rx_buffer *buffer_info;
4594 unsigned int i;
4595 unsigned int bufsz = adapter->rx_buffer_len;
4597 i = rx_ring->next_to_use;
4598 buffer_info = &rx_ring->buffer_info[i];
4600 while (cleaned_count--) {
4601 void *data;
4603 if (buffer_info->rxbuf.data)
4604 goto skip;
4606 data = e1000_alloc_frag(adapter);
4607 if (!data) {
4608 /* Better luck next round */
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4613 /* Fix for errata 23, can't cross 64kB boundary */
4614 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4615 void *olddata = data;
4616 e_err(rx_err, "skb align check failed: %u bytes at "
4617 "%p\n", bufsz, data);
4618 /* Try again, without freeing the previous */
4619 data = e1000_alloc_frag(adapter);
4620 /* Failed allocation, critical failure */
4621 if (!data) {
4622 skb_free_frag(olddata);
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4627 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4628 /* give up */
4629 skb_free_frag(data);
4630 skb_free_frag(olddata);
4631 adapter->alloc_rx_buff_failed++;
4632 break;
4635 /* Use new allocation */
4636 skb_free_frag(olddata);
4638 buffer_info->dma = dma_map_single(&pdev->dev,
4639 data,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4643 skb_free_frag(data);
4644 buffer_info->dma = 0;
4645 adapter->alloc_rx_buff_failed++;
4646 break;
4649 /* XXX if it was allocated cleanly it will never map to a
4650 * boundary crossing
4653 /* Fix for errata 23, can't cross 64kB boundary */
4654 if (!e1000_check_64k_bound(adapter,
4655 (void *)(unsigned long)buffer_info->dma,
4656 adapter->rx_buffer_len)) {
4657 e_err(rx_err, "dma align check failed: %u bytes at "
4658 "%p\n", adapter->rx_buffer_len,
4659 (void *)(unsigned long)buffer_info->dma);
4661 dma_unmap_single(&pdev->dev, buffer_info->dma,
4662 adapter->rx_buffer_len,
4663 DMA_FROM_DEVICE);
4665 skb_free_frag(data);
4666 buffer_info->rxbuf.data = NULL;
4667 buffer_info->dma = 0;
4669 adapter->alloc_rx_buff_failed++;
4670 break;
4672 buffer_info->rxbuf.data = data;
4673 skip:
4674 rx_desc = E1000_RX_DESC(*rx_ring, i);
4675 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4677 if (unlikely(++i == rx_ring->count))
4678 i = 0;
4679 buffer_info = &rx_ring->buffer_info[i];
4682 if (likely(rx_ring->next_to_use != i)) {
4683 rx_ring->next_to_use = i;
4684 if (unlikely(i-- == 0))
4685 i = (rx_ring->count - 1);
4687 /* Force memory writes to complete before letting h/w
4688 * know there are new descriptors to fetch. (Only
4689 * applicable for weak-ordered memory model archs,
4690 * such as IA-64).
4692 wmb();
4693 writel(i, hw->hw_addr + rx_ring->rdt);
4698 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4699 * @adapter:
4701 static void e1000_smartspeed(struct e1000_adapter *adapter)
4703 struct e1000_hw *hw = &adapter->hw;
4704 u16 phy_status;
4705 u16 phy_ctrl;
4707 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4708 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4709 return;
4711 if (adapter->smartspeed == 0) {
4712 /* If Master/Slave config fault is asserted twice,
4713 * we assume back-to-back
4715 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4716 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4717 return;
4718 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4719 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4720 return;
4721 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4722 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4723 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4724 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4725 phy_ctrl);
4726 adapter->smartspeed++;
4727 if (!e1000_phy_setup_autoneg(hw) &&
4728 !e1000_read_phy_reg(hw, PHY_CTRL,
4729 &phy_ctrl)) {
4730 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4731 MII_CR_RESTART_AUTO_NEG);
4732 e1000_write_phy_reg(hw, PHY_CTRL,
4733 phy_ctrl);
4736 return;
4737 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4738 /* If still no link, perhaps using 2/3 pair cable */
4739 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4740 phy_ctrl |= CR_1000T_MS_ENABLE;
4741 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4742 if (!e1000_phy_setup_autoneg(hw) &&
4743 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4744 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4745 MII_CR_RESTART_AUTO_NEG);
4746 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4749 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4750 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4751 adapter->smartspeed = 0;
4755 * e1000_ioctl -
4756 * @netdev:
4757 * @ifreq:
4758 * @cmd:
4760 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4762 switch (cmd) {
4763 case SIOCGMIIPHY:
4764 case SIOCGMIIREG:
4765 case SIOCSMIIREG:
4766 return e1000_mii_ioctl(netdev, ifr, cmd);
4767 default:
4768 return -EOPNOTSUPP;
4773 * e1000_mii_ioctl -
4774 * @netdev:
4775 * @ifreq:
4776 * @cmd:
4778 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4779 int cmd)
4781 struct e1000_adapter *adapter = netdev_priv(netdev);
4782 struct e1000_hw *hw = &adapter->hw;
4783 struct mii_ioctl_data *data = if_mii(ifr);
4784 int retval;
4785 u16 mii_reg;
4786 unsigned long flags;
4788 if (hw->media_type != e1000_media_type_copper)
4789 return -EOPNOTSUPP;
4791 switch (cmd) {
4792 case SIOCGMIIPHY:
4793 data->phy_id = hw->phy_addr;
4794 break;
4795 case SIOCGMIIREG:
4796 spin_lock_irqsave(&adapter->stats_lock, flags);
4797 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4798 &data->val_out)) {
4799 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4800 return -EIO;
4802 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4803 break;
4804 case SIOCSMIIREG:
4805 if (data->reg_num & ~(0x1F))
4806 return -EFAULT;
4807 mii_reg = data->val_in;
4808 spin_lock_irqsave(&adapter->stats_lock, flags);
4809 if (e1000_write_phy_reg(hw, data->reg_num,
4810 mii_reg)) {
4811 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4812 return -EIO;
4814 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4815 if (hw->media_type == e1000_media_type_copper) {
4816 switch (data->reg_num) {
4817 case PHY_CTRL:
4818 if (mii_reg & MII_CR_POWER_DOWN)
4819 break;
4820 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4821 hw->autoneg = 1;
4822 hw->autoneg_advertised = 0x2F;
4823 } else {
4824 u32 speed;
4825 if (mii_reg & 0x40)
4826 speed = SPEED_1000;
4827 else if (mii_reg & 0x2000)
4828 speed = SPEED_100;
4829 else
4830 speed = SPEED_10;
4831 retval = e1000_set_spd_dplx(
4832 adapter, speed,
4833 ((mii_reg & 0x100)
4834 ? DUPLEX_FULL :
4835 DUPLEX_HALF));
4836 if (retval)
4837 return retval;
4839 if (netif_running(adapter->netdev))
4840 e1000_reinit_locked(adapter);
4841 else
4842 e1000_reset(adapter);
4843 break;
4844 case M88E1000_PHY_SPEC_CTRL:
4845 case M88E1000_EXT_PHY_SPEC_CTRL:
4846 if (e1000_phy_reset(hw))
4847 return -EIO;
4848 break;
4850 } else {
4851 switch (data->reg_num) {
4852 case PHY_CTRL:
4853 if (mii_reg & MII_CR_POWER_DOWN)
4854 break;
4855 if (netif_running(adapter->netdev))
4856 e1000_reinit_locked(adapter);
4857 else
4858 e1000_reset(adapter);
4859 break;
4862 break;
4863 default:
4864 return -EOPNOTSUPP;
4866 return E1000_SUCCESS;
4869 void e1000_pci_set_mwi(struct e1000_hw *hw)
4871 struct e1000_adapter *adapter = hw->back;
4872 int ret_val = pci_set_mwi(adapter->pdev);
4874 if (ret_val)
4875 e_err(probe, "Error in setting MWI\n");
4878 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4880 struct e1000_adapter *adapter = hw->back;
4882 pci_clear_mwi(adapter->pdev);
4885 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4887 struct e1000_adapter *adapter = hw->back;
4888 return pcix_get_mmrbc(adapter->pdev);
4891 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4893 struct e1000_adapter *adapter = hw->back;
4894 pcix_set_mmrbc(adapter->pdev, mmrbc);
4897 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4899 outl(value, port);
4902 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4904 u16 vid;
4906 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4907 return true;
4908 return false;
4911 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4912 netdev_features_t features)
4914 struct e1000_hw *hw = &adapter->hw;
4915 u32 ctrl;
4917 ctrl = er32(CTRL);
4918 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4919 /* enable VLAN tag insert/strip */
4920 ctrl |= E1000_CTRL_VME;
4921 } else {
4922 /* disable VLAN tag insert/strip */
4923 ctrl &= ~E1000_CTRL_VME;
4925 ew32(CTRL, ctrl);
4927 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4928 bool filter_on)
4930 struct e1000_hw *hw = &adapter->hw;
4931 u32 rctl;
4933 if (!test_bit(__E1000_DOWN, &adapter->flags))
4934 e1000_irq_disable(adapter);
4936 __e1000_vlan_mode(adapter, adapter->netdev->features);
4937 if (filter_on) {
4938 /* enable VLAN receive filtering */
4939 rctl = er32(RCTL);
4940 rctl &= ~E1000_RCTL_CFIEN;
4941 if (!(adapter->netdev->flags & IFF_PROMISC))
4942 rctl |= E1000_RCTL_VFE;
4943 ew32(RCTL, rctl);
4944 e1000_update_mng_vlan(adapter);
4945 } else {
4946 /* disable VLAN receive filtering */
4947 rctl = er32(RCTL);
4948 rctl &= ~E1000_RCTL_VFE;
4949 ew32(RCTL, rctl);
4952 if (!test_bit(__E1000_DOWN, &adapter->flags))
4953 e1000_irq_enable(adapter);
4956 static void e1000_vlan_mode(struct net_device *netdev,
4957 netdev_features_t features)
4959 struct e1000_adapter *adapter = netdev_priv(netdev);
4961 if (!test_bit(__E1000_DOWN, &adapter->flags))
4962 e1000_irq_disable(adapter);
4964 __e1000_vlan_mode(adapter, features);
4966 if (!test_bit(__E1000_DOWN, &adapter->flags))
4967 e1000_irq_enable(adapter);
4970 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4971 __be16 proto, u16 vid)
4973 struct e1000_adapter *adapter = netdev_priv(netdev);
4974 struct e1000_hw *hw = &adapter->hw;
4975 u32 vfta, index;
4977 if ((hw->mng_cookie.status &
4978 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4979 (vid == adapter->mng_vlan_id))
4980 return 0;
4982 if (!e1000_vlan_used(adapter))
4983 e1000_vlan_filter_on_off(adapter, true);
4985 /* add VID to filter table */
4986 index = (vid >> 5) & 0x7F;
4987 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4988 vfta |= (1 << (vid & 0x1F));
4989 e1000_write_vfta(hw, index, vfta);
4991 set_bit(vid, adapter->active_vlans);
4993 return 0;
4996 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4997 __be16 proto, u16 vid)
4999 struct e1000_adapter *adapter = netdev_priv(netdev);
5000 struct e1000_hw *hw = &adapter->hw;
5001 u32 vfta, index;
5003 if (!test_bit(__E1000_DOWN, &adapter->flags))
5004 e1000_irq_disable(adapter);
5005 if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 e1000_irq_enable(adapter);
5008 /* remove VID from filter table */
5009 index = (vid >> 5) & 0x7F;
5010 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5011 vfta &= ~(1 << (vid & 0x1F));
5012 e1000_write_vfta(hw, index, vfta);
5014 clear_bit(vid, adapter->active_vlans);
5016 if (!e1000_vlan_used(adapter))
5017 e1000_vlan_filter_on_off(adapter, false);
5019 return 0;
5022 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5024 u16 vid;
5026 if (!e1000_vlan_used(adapter))
5027 return;
5029 e1000_vlan_filter_on_off(adapter, true);
5030 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5031 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5034 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5036 struct e1000_hw *hw = &adapter->hw;
5038 hw->autoneg = 0;
5040 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5041 * for the switch() below to work
5043 if ((spd & 1) || (dplx & ~1))
5044 goto err_inval;
5046 /* Fiber NICs only allow 1000 gbps Full duplex */
5047 if ((hw->media_type == e1000_media_type_fiber) &&
5048 spd != SPEED_1000 &&
5049 dplx != DUPLEX_FULL)
5050 goto err_inval;
5052 switch (spd + dplx) {
5053 case SPEED_10 + DUPLEX_HALF:
5054 hw->forced_speed_duplex = e1000_10_half;
5055 break;
5056 case SPEED_10 + DUPLEX_FULL:
5057 hw->forced_speed_duplex = e1000_10_full;
5058 break;
5059 case SPEED_100 + DUPLEX_HALF:
5060 hw->forced_speed_duplex = e1000_100_half;
5061 break;
5062 case SPEED_100 + DUPLEX_FULL:
5063 hw->forced_speed_duplex = e1000_100_full;
5064 break;
5065 case SPEED_1000 + DUPLEX_FULL:
5066 hw->autoneg = 1;
5067 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5068 break;
5069 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5070 default:
5071 goto err_inval;
5074 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5075 hw->mdix = AUTO_ALL_MODES;
5077 return 0;
5079 err_inval:
5080 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5081 return -EINVAL;
5084 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5086 struct net_device *netdev = pci_get_drvdata(pdev);
5087 struct e1000_adapter *adapter = netdev_priv(netdev);
5088 struct e1000_hw *hw = &adapter->hw;
5089 u32 ctrl, ctrl_ext, rctl, status;
5090 u32 wufc = adapter->wol;
5091 #ifdef CONFIG_PM
5092 int retval = 0;
5093 #endif
5095 netif_device_detach(netdev);
5097 if (netif_running(netdev)) {
5098 int count = E1000_CHECK_RESET_COUNT;
5100 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5101 usleep_range(10000, 20000);
5103 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5104 e1000_down(adapter);
5107 #ifdef CONFIG_PM
5108 retval = pci_save_state(pdev);
5109 if (retval)
5110 return retval;
5111 #endif
5113 status = er32(STATUS);
5114 if (status & E1000_STATUS_LU)
5115 wufc &= ~E1000_WUFC_LNKC;
5117 if (wufc) {
5118 e1000_setup_rctl(adapter);
5119 e1000_set_rx_mode(netdev);
5121 rctl = er32(RCTL);
5123 /* turn on all-multi mode if wake on multicast is enabled */
5124 if (wufc & E1000_WUFC_MC)
5125 rctl |= E1000_RCTL_MPE;
5127 /* enable receives in the hardware */
5128 ew32(RCTL, rctl | E1000_RCTL_EN);
5130 if (hw->mac_type >= e1000_82540) {
5131 ctrl = er32(CTRL);
5132 /* advertise wake from D3Cold */
5133 #define E1000_CTRL_ADVD3WUC 0x00100000
5134 /* phy power management enable */
5135 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5136 ctrl |= E1000_CTRL_ADVD3WUC |
5137 E1000_CTRL_EN_PHY_PWR_MGMT;
5138 ew32(CTRL, ctrl);
5141 if (hw->media_type == e1000_media_type_fiber ||
5142 hw->media_type == e1000_media_type_internal_serdes) {
5143 /* keep the laser running in D3 */
5144 ctrl_ext = er32(CTRL_EXT);
5145 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5146 ew32(CTRL_EXT, ctrl_ext);
5149 ew32(WUC, E1000_WUC_PME_EN);
5150 ew32(WUFC, wufc);
5151 } else {
5152 ew32(WUC, 0);
5153 ew32(WUFC, 0);
5156 e1000_release_manageability(adapter);
5158 *enable_wake = !!wufc;
5160 /* make sure adapter isn't asleep if manageability is enabled */
5161 if (adapter->en_mng_pt)
5162 *enable_wake = true;
5164 if (netif_running(netdev))
5165 e1000_free_irq(adapter);
5167 pci_disable_device(pdev);
5169 return 0;
5172 #ifdef CONFIG_PM
5173 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5175 int retval;
5176 bool wake;
5178 retval = __e1000_shutdown(pdev, &wake);
5179 if (retval)
5180 return retval;
5182 if (wake) {
5183 pci_prepare_to_sleep(pdev);
5184 } else {
5185 pci_wake_from_d3(pdev, false);
5186 pci_set_power_state(pdev, PCI_D3hot);
5189 return 0;
5192 static int e1000_resume(struct pci_dev *pdev)
5194 struct net_device *netdev = pci_get_drvdata(pdev);
5195 struct e1000_adapter *adapter = netdev_priv(netdev);
5196 struct e1000_hw *hw = &adapter->hw;
5197 u32 err;
5199 pci_set_power_state(pdev, PCI_D0);
5200 pci_restore_state(pdev);
5201 pci_save_state(pdev);
5203 if (adapter->need_ioport)
5204 err = pci_enable_device(pdev);
5205 else
5206 err = pci_enable_device_mem(pdev);
5207 if (err) {
5208 pr_err("Cannot enable PCI device from suspend\n");
5209 return err;
5211 pci_set_master(pdev);
5213 pci_enable_wake(pdev, PCI_D3hot, 0);
5214 pci_enable_wake(pdev, PCI_D3cold, 0);
5216 if (netif_running(netdev)) {
5217 err = e1000_request_irq(adapter);
5218 if (err)
5219 return err;
5222 e1000_power_up_phy(adapter);
5223 e1000_reset(adapter);
5224 ew32(WUS, ~0);
5226 e1000_init_manageability(adapter);
5228 if (netif_running(netdev))
5229 e1000_up(adapter);
5231 netif_device_attach(netdev);
5233 return 0;
5235 #endif
5237 static void e1000_shutdown(struct pci_dev *pdev)
5239 bool wake;
5241 __e1000_shutdown(pdev, &wake);
5243 if (system_state == SYSTEM_POWER_OFF) {
5244 pci_wake_from_d3(pdev, wake);
5245 pci_set_power_state(pdev, PCI_D3hot);
5249 #ifdef CONFIG_NET_POLL_CONTROLLER
5250 /* Polling 'interrupt' - used by things like netconsole to send skbs
5251 * without having to re-enable interrupts. It's not called while
5252 * the interrupt routine is executing.
5254 static void e1000_netpoll(struct net_device *netdev)
5256 struct e1000_adapter *adapter = netdev_priv(netdev);
5258 if (disable_hardirq(adapter->pdev->irq))
5259 e1000_intr(adapter->pdev->irq, netdev);
5260 enable_irq(adapter->pdev->irq);
5262 #endif
5265 * e1000_io_error_detected - called when PCI error is detected
5266 * @pdev: Pointer to PCI device
5267 * @state: The current pci connection state
5269 * This function is called after a PCI bus error affecting
5270 * this device has been detected.
5272 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5273 pci_channel_state_t state)
5275 struct net_device *netdev = pci_get_drvdata(pdev);
5276 struct e1000_adapter *adapter = netdev_priv(netdev);
5278 netif_device_detach(netdev);
5280 if (state == pci_channel_io_perm_failure)
5281 return PCI_ERS_RESULT_DISCONNECT;
5283 if (netif_running(netdev))
5284 e1000_down(adapter);
5285 pci_disable_device(pdev);
5287 /* Request a slot slot reset. */
5288 return PCI_ERS_RESULT_NEED_RESET;
5292 * e1000_io_slot_reset - called after the pci bus has been reset.
5293 * @pdev: Pointer to PCI device
5295 * Restart the card from scratch, as if from a cold-boot. Implementation
5296 * resembles the first-half of the e1000_resume routine.
5298 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5300 struct net_device *netdev = pci_get_drvdata(pdev);
5301 struct e1000_adapter *adapter = netdev_priv(netdev);
5302 struct e1000_hw *hw = &adapter->hw;
5303 int err;
5305 if (adapter->need_ioport)
5306 err = pci_enable_device(pdev);
5307 else
5308 err = pci_enable_device_mem(pdev);
5309 if (err) {
5310 pr_err("Cannot re-enable PCI device after reset.\n");
5311 return PCI_ERS_RESULT_DISCONNECT;
5313 pci_set_master(pdev);
5315 pci_enable_wake(pdev, PCI_D3hot, 0);
5316 pci_enable_wake(pdev, PCI_D3cold, 0);
5318 e1000_reset(adapter);
5319 ew32(WUS, ~0);
5321 return PCI_ERS_RESULT_RECOVERED;
5325 * e1000_io_resume - called when traffic can start flowing again.
5326 * @pdev: Pointer to PCI device
5328 * This callback is called when the error recovery driver tells us that
5329 * its OK to resume normal operation. Implementation resembles the
5330 * second-half of the e1000_resume routine.
5332 static void e1000_io_resume(struct pci_dev *pdev)
5334 struct net_device *netdev = pci_get_drvdata(pdev);
5335 struct e1000_adapter *adapter = netdev_priv(netdev);
5337 e1000_init_manageability(adapter);
5339 if (netif_running(netdev)) {
5340 if (e1000_up(adapter)) {
5341 pr_info("can't bring device back up after reset\n");
5342 return;
5346 netif_device_attach(netdev);
5349 /* e1000_main.c */