1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 /* ethtool support for e1000 */
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
35 enum { NETDEV_STATS
, E1000_STATS
};
38 char stat_string
[ETH_GSTRING_LEN
];
44 #define E1000_STAT(str, m) { \
46 .type = E1000_STATS, \
47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 .stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
51 .type = NETDEV_STATS, \
52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
55 static const struct e1000_stats e1000_gstrings_stats
[] = {
56 E1000_STAT("rx_packets", stats
.gprc
),
57 E1000_STAT("tx_packets", stats
.gptc
),
58 E1000_STAT("rx_bytes", stats
.gorc
),
59 E1000_STAT("tx_bytes", stats
.gotc
),
60 E1000_STAT("rx_broadcast", stats
.bprc
),
61 E1000_STAT("tx_broadcast", stats
.bptc
),
62 E1000_STAT("rx_multicast", stats
.mprc
),
63 E1000_STAT("tx_multicast", stats
.mptc
),
64 E1000_NETDEV_STAT("rx_errors", rx_errors
),
65 E1000_NETDEV_STAT("tx_errors", tx_errors
),
66 E1000_NETDEV_STAT("tx_dropped", tx_dropped
),
67 E1000_STAT("multicast", stats
.mprc
),
68 E1000_STAT("collisions", stats
.colc
),
69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors
),
70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors
),
71 E1000_STAT("rx_crc_errors", stats
.crcerrs
),
72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors
),
73 E1000_STAT("rx_no_buffer_count", stats
.rnbc
),
74 E1000_STAT("rx_missed_errors", stats
.mpc
),
75 E1000_STAT("tx_aborted_errors", stats
.ecol
),
76 E1000_STAT("tx_carrier_errors", stats
.tncrs
),
77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors
),
78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors
),
79 E1000_STAT("tx_window_errors", stats
.latecol
),
80 E1000_STAT("tx_abort_late_coll", stats
.latecol
),
81 E1000_STAT("tx_deferred_ok", stats
.dc
),
82 E1000_STAT("tx_single_coll_ok", stats
.scc
),
83 E1000_STAT("tx_multi_coll_ok", stats
.mcc
),
84 E1000_STAT("tx_timeout_count", tx_timeout_count
),
85 E1000_STAT("tx_restart_queue", restart_queue
),
86 E1000_STAT("rx_long_length_errors", stats
.roc
),
87 E1000_STAT("rx_short_length_errors", stats
.ruc
),
88 E1000_STAT("rx_align_errors", stats
.algnerrc
),
89 E1000_STAT("tx_tcp_seg_good", stats
.tsctc
),
90 E1000_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
91 E1000_STAT("rx_flow_control_xon", stats
.xonrxc
),
92 E1000_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
93 E1000_STAT("tx_flow_control_xon", stats
.xontxc
),
94 E1000_STAT("tx_flow_control_xoff", stats
.xofftxc
),
95 E1000_STAT("rx_csum_offload_good", hw_csum_good
),
96 E1000_STAT("rx_csum_offload_errors", hw_csum_err
),
97 E1000_STAT("rx_header_split", rx_hdr_split
),
98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed
),
99 E1000_STAT("tx_smbus", stats
.mgptc
),
100 E1000_STAT("rx_smbus", stats
.mgprc
),
101 E1000_STAT("dropped_smbus", stats
.mgpdc
),
102 E1000_STAT("rx_dma_failed", rx_dma_failed
),
103 E1000_STAT("tx_dma_failed", tx_dma_failed
),
104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared
),
105 E1000_STAT("uncorr_ecc_errors", uncorr_errors
),
106 E1000_STAT("corr_ecc_errors", corr_errors
),
107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts
),
110 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
113 "Register test (offline)", "Eeprom test (offline)",
114 "Interrupt test (offline)", "Loopback test (offline)",
115 "Link test (on/offline)"
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120 static int e1000_get_settings(struct net_device
*netdev
,
121 struct ethtool_cmd
*ecmd
)
123 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
124 struct e1000_hw
*hw
= &adapter
->hw
;
127 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
128 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
129 SUPPORTED_10baseT_Full
|
130 SUPPORTED_100baseT_Half
|
131 SUPPORTED_100baseT_Full
|
132 SUPPORTED_1000baseT_Full
|
135 if (hw
->phy
.type
== e1000_phy_ife
)
136 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
137 ecmd
->advertising
= ADVERTISED_TP
;
139 if (hw
->mac
.autoneg
== 1) {
140 ecmd
->advertising
|= ADVERTISED_Autoneg
;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
145 ecmd
->port
= PORT_TP
;
146 ecmd
->phy_address
= hw
->phy
.addr
;
147 ecmd
->transceiver
= XCVR_INTERNAL
;
150 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
154 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
158 ecmd
->port
= PORT_FIBRE
;
159 ecmd
->transceiver
= XCVR_EXTERNAL
;
162 speed
= SPEED_UNKNOWN
;
163 ecmd
->duplex
= DUPLEX_UNKNOWN
;
165 if (netif_running(netdev
)) {
166 if (netif_carrier_ok(netdev
)) {
167 speed
= adapter
->link_speed
;
168 ecmd
->duplex
= adapter
->link_duplex
- 1;
170 } else if (!pm_runtime_suspended(netdev
->dev
.parent
)) {
171 u32 status
= er32(STATUS
);
173 if (status
& E1000_STATUS_LU
) {
174 if (status
& E1000_STATUS_SPEED_1000
)
176 else if (status
& E1000_STATUS_SPEED_100
)
181 if (status
& E1000_STATUS_FD
)
182 ecmd
->duplex
= DUPLEX_FULL
;
184 ecmd
->duplex
= DUPLEX_HALF
;
188 ethtool_cmd_speed_set(ecmd
, speed
);
189 ecmd
->autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
190 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
192 /* MDI-X => 2; MDI =>1; Invalid =>0 */
193 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
194 netif_carrier_ok(netdev
))
195 ecmd
->eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
: ETH_TP_MDI
;
197 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
199 if (hw
->phy
.mdix
== AUTO_ALL_MODES
)
200 ecmd
->eth_tp_mdix_ctrl
= ETH_TP_MDI_AUTO
;
202 ecmd
->eth_tp_mdix_ctrl
= hw
->phy
.mdix
;
204 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
205 ecmd
->eth_tp_mdix_ctrl
= ETH_TP_MDI_INVALID
;
210 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
212 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
216 /* Make sure dplx is at most 1 bit and lsb of speed is not set
217 * for the switch() below to work
219 if ((spd
& 1) || (dplx
& ~1))
222 /* Fiber NICs only allow 1000 gbps Full duplex */
223 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
224 (spd
!= SPEED_1000
) && (dplx
!= DUPLEX_FULL
)) {
228 switch (spd
+ dplx
) {
229 case SPEED_10
+ DUPLEX_HALF
:
230 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
232 case SPEED_10
+ DUPLEX_FULL
:
233 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
235 case SPEED_100
+ DUPLEX_HALF
:
236 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
238 case SPEED_100
+ DUPLEX_FULL
:
239 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
241 case SPEED_1000
+ DUPLEX_FULL
:
242 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
244 adapter
->hw
.phy
.autoneg_advertised
=
247 mac
->forced_speed_duplex
= ADVERTISE_1000_FULL
;
250 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
255 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
256 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
261 e_err("Unsupported Speed/Duplex configuration\n");
265 static int e1000_set_settings(struct net_device
*netdev
,
266 struct ethtool_cmd
*ecmd
)
268 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
269 struct e1000_hw
*hw
= &adapter
->hw
;
272 pm_runtime_get_sync(netdev
->dev
.parent
);
274 /* When SoL/IDER sessions are active, autoneg/speed/duplex
277 if (hw
->phy
.ops
.check_reset_block
&&
278 hw
->phy
.ops
.check_reset_block(hw
)) {
279 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
284 /* MDI setting is only allowed when autoneg enabled because
285 * some hardware doesn't allow MDI setting when speed or
288 if (ecmd
->eth_tp_mdix_ctrl
) {
289 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
290 ret_val
= -EOPNOTSUPP
;
294 if ((ecmd
->eth_tp_mdix_ctrl
!= ETH_TP_MDI_AUTO
) &&
295 (ecmd
->autoneg
!= AUTONEG_ENABLE
)) {
296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
302 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
303 usleep_range(1000, 2000);
305 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
307 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
308 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
309 ADVERTISED_FIBRE
| ADVERTISED_Autoneg
;
311 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
312 ADVERTISED_TP
| ADVERTISED_Autoneg
;
313 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
314 if (adapter
->fc_autoneg
)
315 hw
->fc
.requested_mode
= e1000_fc_default
;
317 u32 speed
= ethtool_cmd_speed(ecmd
);
318 /* calling this overrides forced MDI setting */
319 if (e1000_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
325 /* MDI-X => 2; MDI => 1; Auto => 3 */
326 if (ecmd
->eth_tp_mdix_ctrl
) {
327 /* fix up the value for auto (3 => 0) as zero is mapped
330 if (ecmd
->eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO
)
331 hw
->phy
.mdix
= AUTO_ALL_MODES
;
333 hw
->phy
.mdix
= ecmd
->eth_tp_mdix_ctrl
;
337 if (netif_running(adapter
->netdev
)) {
338 e1000e_down(adapter
, true);
341 e1000e_reset(adapter
);
345 pm_runtime_put_sync(netdev
->dev
.parent
);
346 clear_bit(__E1000_RESETTING
, &adapter
->state
);
350 static void e1000_get_pauseparam(struct net_device
*netdev
,
351 struct ethtool_pauseparam
*pause
)
353 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
354 struct e1000_hw
*hw
= &adapter
->hw
;
357 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
359 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
) {
361 } else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
) {
363 } else if (hw
->fc
.current_mode
== e1000_fc_full
) {
369 static int e1000_set_pauseparam(struct net_device
*netdev
,
370 struct ethtool_pauseparam
*pause
)
372 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
373 struct e1000_hw
*hw
= &adapter
->hw
;
376 adapter
->fc_autoneg
= pause
->autoneg
;
378 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
379 usleep_range(1000, 2000);
381 pm_runtime_get_sync(netdev
->dev
.parent
);
383 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
384 hw
->fc
.requested_mode
= e1000_fc_default
;
385 if (netif_running(adapter
->netdev
)) {
386 e1000e_down(adapter
, true);
389 e1000e_reset(adapter
);
392 if (pause
->rx_pause
&& pause
->tx_pause
)
393 hw
->fc
.requested_mode
= e1000_fc_full
;
394 else if (pause
->rx_pause
&& !pause
->tx_pause
)
395 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
396 else if (!pause
->rx_pause
&& pause
->tx_pause
)
397 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
398 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
399 hw
->fc
.requested_mode
= e1000_fc_none
;
401 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
403 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
404 retval
= hw
->mac
.ops
.setup_link(hw
);
405 /* implicit goto out */
407 retval
= e1000e_force_mac_fc(hw
);
410 e1000e_set_fc_watermarks(hw
);
415 pm_runtime_put_sync(netdev
->dev
.parent
);
416 clear_bit(__E1000_RESETTING
, &adapter
->state
);
420 static u32
e1000_get_msglevel(struct net_device
*netdev
)
422 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
423 return adapter
->msg_enable
;
426 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
428 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
429 adapter
->msg_enable
= data
;
432 static int e1000_get_regs_len(struct net_device __always_unused
*netdev
)
434 #define E1000_REGS_LEN 32 /* overestimate */
435 return E1000_REGS_LEN
* sizeof(u32
);
438 static void e1000_get_regs(struct net_device
*netdev
,
439 struct ethtool_regs
*regs
, void *p
)
441 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
442 struct e1000_hw
*hw
= &adapter
->hw
;
446 pm_runtime_get_sync(netdev
->dev
.parent
);
448 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
450 regs
->version
= (1u << 24) |
451 (adapter
->pdev
->revision
<< 16) |
452 adapter
->pdev
->device
;
454 regs_buff
[0] = er32(CTRL
);
455 regs_buff
[1] = er32(STATUS
);
457 regs_buff
[2] = er32(RCTL
);
458 regs_buff
[3] = er32(RDLEN(0));
459 regs_buff
[4] = er32(RDH(0));
460 regs_buff
[5] = er32(RDT(0));
461 regs_buff
[6] = er32(RDTR
);
463 regs_buff
[7] = er32(TCTL
);
464 regs_buff
[8] = er32(TDLEN(0));
465 regs_buff
[9] = er32(TDH(0));
466 regs_buff
[10] = er32(TDT(0));
467 regs_buff
[11] = er32(TIDV
);
469 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
471 /* ethtool doesn't use anything past this point, so all this
472 * code is likely legacy junk for apps that may or may not exist
474 if (hw
->phy
.type
== e1000_phy_m88
) {
475 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
476 regs_buff
[13] = (u32
)phy_data
; /* cable length */
477 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
479 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
480 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
481 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
482 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
483 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
484 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
485 /* phy receive errors */
486 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
487 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
489 regs_buff
[21] = 0; /* was idle_errors */
490 e1e_rphy(hw
, MII_STAT1000
, &phy_data
);
491 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
492 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
494 pm_runtime_put_sync(netdev
->dev
.parent
);
497 static int e1000_get_eeprom_len(struct net_device
*netdev
)
499 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
500 return adapter
->hw
.nvm
.word_size
* 2;
503 static int e1000_get_eeprom(struct net_device
*netdev
,
504 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
506 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
507 struct e1000_hw
*hw
= &adapter
->hw
;
514 if (eeprom
->len
== 0)
517 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
519 first_word
= eeprom
->offset
>> 1;
520 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
522 eeprom_buff
= kmalloc(sizeof(u16
) * (last_word
- first_word
+ 1),
527 pm_runtime_get_sync(netdev
->dev
.parent
);
529 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
530 ret_val
= e1000_read_nvm(hw
, first_word
,
531 last_word
- first_word
+ 1,
534 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
535 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
542 pm_runtime_put_sync(netdev
->dev
.parent
);
545 /* a read error occurred, throw away the result */
546 memset(eeprom_buff
, 0xff, sizeof(u16
) *
547 (last_word
- first_word
+ 1));
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
551 le16_to_cpus(&eeprom_buff
[i
]);
554 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
560 static int e1000_set_eeprom(struct net_device
*netdev
,
561 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
563 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
564 struct e1000_hw
*hw
= &adapter
->hw
;
573 if (eeprom
->len
== 0)
577 (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
580 if (adapter
->flags
& FLAG_READ_ONLY_NVM
)
583 max_len
= hw
->nvm
.word_size
* 2;
585 first_word
= eeprom
->offset
>> 1;
586 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
587 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
591 ptr
= (void *)eeprom_buff
;
593 pm_runtime_get_sync(netdev
->dev
.parent
);
595 if (eeprom
->offset
& 1) {
596 /* need read/modify/write of first changed EEPROM word */
597 /* only the second byte of the word is being modified */
598 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
601 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (!ret_val
))
602 /* need read/modify/write of last changed EEPROM word */
603 /* only the first byte of the word is being modified */
604 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
605 &eeprom_buff
[last_word
- first_word
]);
610 /* Device's eeprom is always little-endian, word addressable */
611 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
612 le16_to_cpus(&eeprom_buff
[i
]);
614 memcpy(ptr
, bytes
, eeprom
->len
);
616 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
617 cpu_to_le16s(&eeprom_buff
[i
]);
619 ret_val
= e1000_write_nvm(hw
, first_word
,
620 last_word
- first_word
+ 1, eeprom_buff
);
625 /* Update the checksum over the first part of the EEPROM if needed
626 * and flush shadow RAM for applicable controllers
628 if ((first_word
<= NVM_CHECKSUM_REG
) ||
629 (hw
->mac
.type
== e1000_82583
) ||
630 (hw
->mac
.type
== e1000_82574
) ||
631 (hw
->mac
.type
== e1000_82573
))
632 ret_val
= e1000e_update_nvm_checksum(hw
);
635 pm_runtime_put_sync(netdev
->dev
.parent
);
640 static void e1000_get_drvinfo(struct net_device
*netdev
,
641 struct ethtool_drvinfo
*drvinfo
)
643 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
645 strlcpy(drvinfo
->driver
, e1000e_driver_name
, sizeof(drvinfo
->driver
));
646 strlcpy(drvinfo
->version
, e1000e_driver_version
,
647 sizeof(drvinfo
->version
));
649 /* EEPROM image version # is reported as firmware version # for
652 snprintf(drvinfo
->fw_version
, sizeof(drvinfo
->fw_version
),
654 (adapter
->eeprom_vers
& 0xF000) >> 12,
655 (adapter
->eeprom_vers
& 0x0FF0) >> 4,
656 (adapter
->eeprom_vers
& 0x000F));
658 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
659 sizeof(drvinfo
->bus_info
));
662 static void e1000_get_ringparam(struct net_device
*netdev
,
663 struct ethtool_ringparam
*ring
)
665 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
667 ring
->rx_max_pending
= E1000_MAX_RXD
;
668 ring
->tx_max_pending
= E1000_MAX_TXD
;
669 ring
->rx_pending
= adapter
->rx_ring_count
;
670 ring
->tx_pending
= adapter
->tx_ring_count
;
673 static int e1000_set_ringparam(struct net_device
*netdev
,
674 struct ethtool_ringparam
*ring
)
676 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
677 struct e1000_ring
*temp_tx
= NULL
, *temp_rx
= NULL
;
678 int err
= 0, size
= sizeof(struct e1000_ring
);
679 bool set_tx
= false, set_rx
= false;
680 u16 new_rx_count
, new_tx_count
;
682 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
685 new_rx_count
= clamp_t(u32
, ring
->rx_pending
, E1000_MIN_RXD
,
687 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
689 new_tx_count
= clamp_t(u32
, ring
->tx_pending
, E1000_MIN_TXD
,
691 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
693 if ((new_tx_count
== adapter
->tx_ring_count
) &&
694 (new_rx_count
== adapter
->rx_ring_count
))
698 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
699 usleep_range(1000, 2000);
701 if (!netif_running(adapter
->netdev
)) {
702 /* Set counts now and allocate resources during open() */
703 adapter
->tx_ring
->count
= new_tx_count
;
704 adapter
->rx_ring
->count
= new_rx_count
;
705 adapter
->tx_ring_count
= new_tx_count
;
706 adapter
->rx_ring_count
= new_rx_count
;
710 set_tx
= (new_tx_count
!= adapter
->tx_ring_count
);
711 set_rx
= (new_rx_count
!= adapter
->rx_ring_count
);
713 /* Allocate temporary storage for ring updates */
715 temp_tx
= vmalloc(size
);
722 temp_rx
= vmalloc(size
);
729 pm_runtime_get_sync(netdev
->dev
.parent
);
731 e1000e_down(adapter
, true);
733 /* We can't just free everything and then setup again, because the
734 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
735 * structs. First, attempt to allocate new resources...
738 memcpy(temp_tx
, adapter
->tx_ring
, size
);
739 temp_tx
->count
= new_tx_count
;
740 err
= e1000e_setup_tx_resources(temp_tx
);
745 memcpy(temp_rx
, adapter
->rx_ring
, size
);
746 temp_rx
->count
= new_rx_count
;
747 err
= e1000e_setup_rx_resources(temp_rx
);
752 /* ...then free the old resources and copy back any new ring data */
754 e1000e_free_tx_resources(adapter
->tx_ring
);
755 memcpy(adapter
->tx_ring
, temp_tx
, size
);
756 adapter
->tx_ring_count
= new_tx_count
;
759 e1000e_free_rx_resources(adapter
->rx_ring
);
760 memcpy(adapter
->rx_ring
, temp_rx
, size
);
761 adapter
->rx_ring_count
= new_rx_count
;
766 e1000e_free_tx_resources(temp_tx
);
769 pm_runtime_put_sync(netdev
->dev
.parent
);
774 clear_bit(__E1000_RESETTING
, &adapter
->state
);
778 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
,
779 int reg
, int offset
, u32 mask
, u32 write
)
782 static const u32 test
[] = {
783 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
785 for (pat
= 0; pat
< ARRAY_SIZE(test
); pat
++) {
786 E1000_WRITE_REG_ARRAY(&adapter
->hw
, reg
, offset
,
787 (test
[pat
] & write
));
788 val
= E1000_READ_REG_ARRAY(&adapter
->hw
, reg
, offset
);
789 if (val
!= (test
[pat
] & write
& mask
)) {
790 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
791 reg
+ (offset
<< 2), val
,
792 (test
[pat
] & write
& mask
));
800 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
,
801 int reg
, u32 mask
, u32 write
)
805 __ew32(&adapter
->hw
, reg
, write
& mask
);
806 val
= __er32(&adapter
->hw
, reg
);
807 if ((write
& mask
) != (val
& mask
)) {
808 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
809 reg
, (val
& mask
), (write
& mask
));
816 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
818 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
821 #define REG_PATTERN_TEST(reg, mask, write) \
822 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
824 #define REG_SET_AND_CHECK(reg, mask, write) \
826 if (reg_set_and_check(adapter, data, reg, mask, write)) \
830 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
832 struct e1000_hw
*hw
= &adapter
->hw
;
833 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
842 /* The status register is Read Only, so a write should fail.
843 * Some bits that get toggled are ignored. There are several bits
844 * on newer hardware that are r/w.
849 case e1000_80003es2lan
:
857 before
= er32(STATUS
);
858 value
= (er32(STATUS
) & toggle
);
859 ew32(STATUS
, toggle
);
860 after
= er32(STATUS
) & toggle
;
861 if (value
!= after
) {
862 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
867 /* restore previous status */
868 ew32(STATUS
, before
);
870 if (!(adapter
->flags
& FLAG_IS_ICH
)) {
871 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
872 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
873 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
877 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
879 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
880 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
881 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
882 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
883 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
884 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
885 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
888 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
890 before
= ((adapter
->flags
& FLAG_IS_ICH
) ? 0x06C3B33E : 0x06DFB3FE);
891 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
892 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
894 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
895 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
896 if (!(adapter
->flags
& FLAG_IS_ICH
))
897 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
898 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
899 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
913 if ((mac
->type
== e1000_pch_lpt
) || (mac
->type
== e1000_pch_spt
))
914 wlock_mac
= (er32(FWSM
) & E1000_FWSM_WLOCK_MAC_MASK
) >>
915 E1000_FWSM_WLOCK_MAC_SHIFT
;
917 for (i
= 0; i
< mac
->rar_entry_count
; i
++) {
918 if ((mac
->type
== e1000_pch_lpt
) ||
919 (mac
->type
== e1000_pch_spt
)) {
920 /* Cannot test write-protected SHRAL[n] registers */
921 if ((wlock_mac
== 1) || (wlock_mac
&& (i
> wlock_mac
)))
924 /* SHRAH[9] different than the others */
930 if (mac
->type
== e1000_pch2lan
) {
931 /* SHRAH[0,1,2] different than previous */
934 /* SHRAH[3] different than SHRAH[0,1,2] */
937 /* RAR[1-6] owned by management engine - skipping */
942 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1), mask
,
944 /* reset index to actual value */
945 if ((mac
->type
== e1000_pch2lan
) && (i
> 6))
949 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
950 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
957 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
964 /* Read and add up the contents of the EEPROM */
965 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
966 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
973 /* If Checksum is not Correct return error else test passed */
974 if ((checksum
!= (u16
)NVM_SUM
) && !(*data
))
980 static irqreturn_t
e1000_test_intr(int __always_unused irq
, void *data
)
982 struct net_device
*netdev
= (struct net_device
*)data
;
983 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
984 struct e1000_hw
*hw
= &adapter
->hw
;
986 adapter
->test_icr
|= er32(ICR
);
991 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
993 struct net_device
*netdev
= adapter
->netdev
;
994 struct e1000_hw
*hw
= &adapter
->hw
;
997 u32 irq
= adapter
->pdev
->irq
;
1000 int int_mode
= E1000E_INT_MODE_LEGACY
;
1004 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1005 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
) {
1006 int_mode
= adapter
->int_mode
;
1007 e1000e_reset_interrupt_capability(adapter
);
1008 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1009 e1000e_set_interrupt_capability(adapter
);
1011 /* Hook up test interrupt handler just for this test */
1012 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
1015 } else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
, netdev
->name
,
1021 e_info("testing %s interrupt\n", (shared_int
? "shared" : "unshared"));
1023 /* Disable all the interrupts */
1024 ew32(IMC
, 0xFFFFFFFF);
1026 usleep_range(10000, 20000);
1028 /* Test each interrupt */
1029 for (i
= 0; i
< 10; i
++) {
1030 /* Interrupt to test */
1033 if (adapter
->flags
& FLAG_IS_ICH
) {
1035 case E1000_ICR_RXSEQ
:
1038 if (adapter
->hw
.mac
.type
== e1000_ich8lan
||
1039 adapter
->hw
.mac
.type
== e1000_ich9lan
)
1048 /* Disable the interrupt to be reported in
1049 * the cause register and then force the same
1050 * interrupt and see if one gets posted. If
1051 * an interrupt was posted to the bus, the
1054 adapter
->test_icr
= 0;
1058 usleep_range(10000, 20000);
1060 if (adapter
->test_icr
& mask
) {
1066 /* Enable the interrupt to be reported in
1067 * the cause register and then force the same
1068 * interrupt and see if one gets posted. If
1069 * an interrupt was not posted to the bus, the
1072 adapter
->test_icr
= 0;
1076 usleep_range(10000, 20000);
1078 if (!(adapter
->test_icr
& mask
)) {
1084 /* Disable the other interrupts to be reported in
1085 * the cause register and then force the other
1086 * interrupts and see if any get posted. If
1087 * an interrupt was posted to the bus, the
1090 adapter
->test_icr
= 0;
1091 ew32(IMC
, ~mask
& 0x00007FFF);
1092 ew32(ICS
, ~mask
& 0x00007FFF);
1094 usleep_range(10000, 20000);
1096 if (adapter
->test_icr
) {
1103 /* Disable all the interrupts */
1104 ew32(IMC
, 0xFFFFFFFF);
1106 usleep_range(10000, 20000);
1108 /* Unhook test interrupt handler */
1109 free_irq(irq
, netdev
);
1112 if (int_mode
== E1000E_INT_MODE_MSIX
) {
1113 e1000e_reset_interrupt_capability(adapter
);
1114 adapter
->int_mode
= int_mode
;
1115 e1000e_set_interrupt_capability(adapter
);
1121 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1123 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1124 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1125 struct pci_dev
*pdev
= adapter
->pdev
;
1126 struct e1000_buffer
*buffer_info
;
1129 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1130 for (i
= 0; i
< tx_ring
->count
; i
++) {
1131 buffer_info
= &tx_ring
->buffer_info
[i
];
1133 if (buffer_info
->dma
)
1134 dma_unmap_single(&pdev
->dev
,
1136 buffer_info
->length
,
1138 if (buffer_info
->skb
)
1139 dev_kfree_skb(buffer_info
->skb
);
1143 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1144 for (i
= 0; i
< rx_ring
->count
; i
++) {
1145 buffer_info
= &rx_ring
->buffer_info
[i
];
1147 if (buffer_info
->dma
)
1148 dma_unmap_single(&pdev
->dev
,
1150 2048, DMA_FROM_DEVICE
);
1151 if (buffer_info
->skb
)
1152 dev_kfree_skb(buffer_info
->skb
);
1156 if (tx_ring
->desc
) {
1157 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1159 tx_ring
->desc
= NULL
;
1161 if (rx_ring
->desc
) {
1162 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1164 rx_ring
->desc
= NULL
;
1167 kfree(tx_ring
->buffer_info
);
1168 tx_ring
->buffer_info
= NULL
;
1169 kfree(rx_ring
->buffer_info
);
1170 rx_ring
->buffer_info
= NULL
;
1173 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1175 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1176 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1177 struct pci_dev
*pdev
= adapter
->pdev
;
1178 struct e1000_hw
*hw
= &adapter
->hw
;
1183 /* Setup Tx descriptor ring and Tx buffers */
1185 if (!tx_ring
->count
)
1186 tx_ring
->count
= E1000_DEFAULT_TXD
;
1188 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1189 sizeof(struct e1000_buffer
), GFP_KERNEL
);
1190 if (!tx_ring
->buffer_info
) {
1195 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1196 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1197 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1198 &tx_ring
->dma
, GFP_KERNEL
);
1199 if (!tx_ring
->desc
) {
1203 tx_ring
->next_to_use
= 0;
1204 tx_ring
->next_to_clean
= 0;
1206 ew32(TDBAL(0), ((u64
)tx_ring
->dma
& 0x00000000FFFFFFFF));
1207 ew32(TDBAH(0), ((u64
)tx_ring
->dma
>> 32));
1208 ew32(TDLEN(0), tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1211 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
| E1000_TCTL_MULR
|
1212 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1213 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1215 for (i
= 0; i
< tx_ring
->count
; i
++) {
1216 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1217 struct sk_buff
*skb
;
1218 unsigned int skb_size
= 1024;
1220 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1225 skb_put(skb
, skb_size
);
1226 tx_ring
->buffer_info
[i
].skb
= skb
;
1227 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1228 tx_ring
->buffer_info
[i
].dma
=
1229 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1231 if (dma_mapping_error(&pdev
->dev
,
1232 tx_ring
->buffer_info
[i
].dma
)) {
1236 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1237 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1238 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1239 E1000_TXD_CMD_IFCS
|
1241 tx_desc
->upper
.data
= 0;
1244 /* Setup Rx descriptor ring and Rx buffers */
1246 if (!rx_ring
->count
)
1247 rx_ring
->count
= E1000_DEFAULT_RXD
;
1249 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1250 sizeof(struct e1000_buffer
), GFP_KERNEL
);
1251 if (!rx_ring
->buffer_info
) {
1256 rx_ring
->size
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
1257 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1258 &rx_ring
->dma
, GFP_KERNEL
);
1259 if (!rx_ring
->desc
) {
1263 rx_ring
->next_to_use
= 0;
1264 rx_ring
->next_to_clean
= 0;
1267 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
1268 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1269 ew32(RDBAL(0), ((u64
)rx_ring
->dma
& 0xFFFFFFFF));
1270 ew32(RDBAH(0), ((u64
)rx_ring
->dma
>> 32));
1271 ew32(RDLEN(0), rx_ring
->size
);
1274 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1275 E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_LPE
|
1276 E1000_RCTL_SBP
| E1000_RCTL_SECRC
|
1277 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1278 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1281 for (i
= 0; i
< rx_ring
->count
; i
++) {
1282 union e1000_rx_desc_extended
*rx_desc
;
1283 struct sk_buff
*skb
;
1285 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1290 skb_reserve(skb
, NET_IP_ALIGN
);
1291 rx_ring
->buffer_info
[i
].skb
= skb
;
1292 rx_ring
->buffer_info
[i
].dma
=
1293 dma_map_single(&pdev
->dev
, skb
->data
, 2048,
1295 if (dma_mapping_error(&pdev
->dev
,
1296 rx_ring
->buffer_info
[i
].dma
)) {
1300 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1301 rx_desc
->read
.buffer_addr
=
1302 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1303 memset(skb
->data
, 0x00, skb
->len
);
1309 e1000_free_desc_rings(adapter
);
1313 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1315 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1316 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1317 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1318 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1319 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1322 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1324 struct e1000_hw
*hw
= &adapter
->hw
;
1329 hw
->mac
.autoneg
= 0;
1331 if (hw
->phy
.type
== e1000_phy_ife
) {
1332 /* force 100, set loopback */
1333 e1e_wphy(hw
, MII_BMCR
, 0x6100);
1335 /* Now set up the MAC to the same speed/duplex as the PHY. */
1336 ctrl_reg
= er32(CTRL
);
1337 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1338 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1339 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1340 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1341 E1000_CTRL_FD
); /* Force Duplex to FULL */
1343 ew32(CTRL
, ctrl_reg
);
1345 usleep_range(500, 1000);
1350 /* Specific PHY configuration for loopback */
1351 switch (hw
->phy
.type
) {
1353 /* Auto-MDI/MDIX Off */
1354 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1355 /* reset to update Auto-MDI/MDIX */
1356 e1e_wphy(hw
, MII_BMCR
, 0x9140);
1358 e1e_wphy(hw
, MII_BMCR
, 0x8140);
1360 case e1000_phy_gg82563
:
1361 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1364 /* Set Default MAC Interface speed to 1GB */
1365 e1e_rphy(hw
, PHY_REG(2, 21), &phy_reg
);
1368 e1e_wphy(hw
, PHY_REG(2, 21), phy_reg
);
1369 /* Assert SW reset for above settings to take effect */
1370 hw
->phy
.ops
.commit(hw
);
1371 usleep_range(1000, 2000);
1372 /* Force Full Duplex */
1373 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1374 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x000C);
1375 /* Set Link Up (in force link) */
1376 e1e_rphy(hw
, PHY_REG(776, 16), &phy_reg
);
1377 e1e_wphy(hw
, PHY_REG(776, 16), phy_reg
| 0x0040);
1379 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1380 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x0040);
1381 /* Set Early Link Enable */
1382 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1383 e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| 0x0400);
1385 case e1000_phy_82577
:
1386 case e1000_phy_82578
:
1387 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1388 ret_val
= hw
->phy
.ops
.acquire(hw
);
1390 e_err("Cannot setup 1Gbps loopback.\n");
1393 e1000_configure_k1_ich8lan(hw
, false);
1394 hw
->phy
.ops
.release(hw
);
1396 case e1000_phy_82579
:
1397 /* Disable PHY energy detect power down */
1398 e1e_rphy(hw
, PHY_REG(0, 21), &phy_reg
);
1399 e1e_wphy(hw
, PHY_REG(0, 21), phy_reg
& ~BIT(3));
1400 /* Disable full chip energy detect */
1401 e1e_rphy(hw
, PHY_REG(776, 18), &phy_reg
);
1402 e1e_wphy(hw
, PHY_REG(776, 18), phy_reg
| 1);
1403 /* Enable loopback on the PHY */
1404 e1e_wphy(hw
, I82577_PHY_LBK_CTRL
, 0x8001);
1410 /* force 1000, set loopback */
1411 e1e_wphy(hw
, MII_BMCR
, 0x4140);
1414 /* Now set up the MAC to the same speed/duplex as the PHY. */
1415 ctrl_reg
= er32(CTRL
);
1416 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1417 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1418 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1419 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1420 E1000_CTRL_FD
); /* Force Duplex to FULL */
1422 if (adapter
->flags
& FLAG_IS_ICH
)
1423 ctrl_reg
|= E1000_CTRL_SLU
; /* Set Link Up */
1425 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1426 hw
->phy
.type
== e1000_phy_m88
) {
1427 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1429 /* Set the ILOS bit on the fiber Nic if half duplex link is
1432 if ((er32(STATUS
) & E1000_STATUS_FD
) == 0)
1433 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1436 ew32(CTRL
, ctrl_reg
);
1438 /* Disable the receiver on the PHY so when a cable is plugged in, the
1439 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1441 if (hw
->phy
.type
== e1000_phy_m88
)
1442 e1000_phy_disable_receiver(adapter
);
1444 usleep_range(500, 1000);
1449 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1451 struct e1000_hw
*hw
= &adapter
->hw
;
1452 u32 ctrl
= er32(CTRL
);
1455 /* special requirements for 82571/82572 fiber adapters */
1457 /* jump through hoops to make sure link is up because serdes
1458 * link is hardwired up
1460 ctrl
|= E1000_CTRL_SLU
;
1463 /* disable autoneg */
1468 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1471 /* set invert loss of signal */
1473 ctrl
|= E1000_CTRL_ILOS
;
1477 /* special write to serdes control register to enable SerDes analog
1480 ew32(SCTL
, E1000_SCTL_ENABLE_SERDES_LOOPBACK
);
1482 usleep_range(10000, 20000);
1487 /* only call this for fiber/serdes connections to es2lan */
1488 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1490 struct e1000_hw
*hw
= &adapter
->hw
;
1491 u32 ctrlext
= er32(CTRL_EXT
);
1492 u32 ctrl
= er32(CTRL
);
1494 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1495 * on mac_type 80003es2lan)
1497 adapter
->tx_fifo_head
= ctrlext
;
1499 /* clear the serdes mode bits, putting the device into mac loopback */
1500 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1501 ew32(CTRL_EXT
, ctrlext
);
1503 /* force speed to 1000/FD, link up */
1504 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1505 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1506 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1509 /* set mac loopback */
1511 ctrl
|= E1000_RCTL_LBM_MAC
;
1514 /* set testing mode parameters (no need to reset later) */
1515 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1516 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1518 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1523 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1525 struct e1000_hw
*hw
= &adapter
->hw
;
1526 u32 rctl
, fext_nvm11
, tarc0
;
1528 if (hw
->mac
.type
== e1000_pch_spt
) {
1529 fext_nvm11
= er32(FEXTNVM11
);
1530 fext_nvm11
|= E1000_FEXTNVM11_DISABLE_MULR_FIX
;
1531 ew32(FEXTNVM11
, fext_nvm11
);
1532 tarc0
= er32(TARC(0));
1533 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1534 tarc0
&= 0xcfffffff;
1535 /* set bit 29 (value of MULR requests is now 2) */
1536 tarc0
|= 0x20000000;
1537 ew32(TARC(0), tarc0
);
1539 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1540 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1541 switch (hw
->mac
.type
) {
1542 case e1000_80003es2lan
:
1543 return e1000_set_es2lan_mac_loopback(adapter
);
1546 return e1000_set_82571_fiber_loopback(adapter
);
1549 rctl
|= E1000_RCTL_LBM_TCVR
;
1553 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1554 return e1000_integrated_phy_loopback(adapter
);
1560 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1562 struct e1000_hw
*hw
= &adapter
->hw
;
1563 u32 rctl
, fext_nvm11
, tarc0
;
1567 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1570 switch (hw
->mac
.type
) {
1572 fext_nvm11
= er32(FEXTNVM11
);
1573 fext_nvm11
&= ~E1000_FEXTNVM11_DISABLE_MULR_FIX
;
1574 ew32(FEXTNVM11
, fext_nvm11
);
1575 tarc0
= er32(TARC(0));
1576 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1577 /* set bit 29 (value of MULR requests is now 0) */
1578 tarc0
&= 0xcfffffff;
1579 ew32(TARC(0), tarc0
);
1581 case e1000_80003es2lan
:
1582 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1583 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1584 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1585 ew32(CTRL_EXT
, adapter
->tx_fifo_head
);
1586 adapter
->tx_fifo_head
= 0;
1591 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1592 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1593 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1595 usleep_range(10000, 20000);
1600 hw
->mac
.autoneg
= 1;
1601 if (hw
->phy
.type
== e1000_phy_gg82563
)
1602 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1603 e1e_rphy(hw
, MII_BMCR
, &phy_reg
);
1604 if (phy_reg
& BMCR_LOOPBACK
) {
1605 phy_reg
&= ~BMCR_LOOPBACK
;
1606 e1e_wphy(hw
, MII_BMCR
, phy_reg
);
1607 if (hw
->phy
.ops
.commit
)
1608 hw
->phy
.ops
.commit(hw
);
1614 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1615 unsigned int frame_size
)
1617 memset(skb
->data
, 0xFF, frame_size
);
1619 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1620 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1621 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1624 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1625 unsigned int frame_size
)
1628 if (*(skb
->data
+ 3) == 0xFF)
1629 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1630 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1635 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1637 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1638 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1639 struct pci_dev
*pdev
= adapter
->pdev
;
1640 struct e1000_hw
*hw
= &adapter
->hw
;
1641 struct e1000_buffer
*buffer_info
;
1648 ew32(RDT(0), rx_ring
->count
- 1);
1650 /* Calculate the loop count based on the largest descriptor ring
1651 * The idea is to wrap the largest ring a number of times using 64
1652 * send/receive pairs during each loop
1655 if (rx_ring
->count
<= tx_ring
->count
)
1656 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1658 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1662 /* loop count loop */
1663 for (j
= 0; j
<= lc
; j
++) {
1664 /* send the packets */
1665 for (i
= 0; i
< 64; i
++) {
1666 buffer_info
= &tx_ring
->buffer_info
[k
];
1668 e1000_create_lbtest_frame(buffer_info
->skb
, 1024);
1669 dma_sync_single_for_device(&pdev
->dev
,
1671 buffer_info
->length
,
1674 if (k
== tx_ring
->count
)
1680 time
= jiffies
; /* set the start time for the receive */
1682 /* receive the sent packets */
1684 buffer_info
= &rx_ring
->buffer_info
[l
];
1686 dma_sync_single_for_cpu(&pdev
->dev
,
1687 buffer_info
->dma
, 2048,
1690 ret_val
= e1000_check_lbtest_frame(buffer_info
->skb
,
1695 if (l
== rx_ring
->count
)
1697 /* time + 20 msecs (200 msecs on 2.4) is more than
1698 * enough time to complete the receives, if it's
1699 * exceeded, break and error off
1701 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1702 if (good_cnt
!= 64) {
1703 ret_val
= 13; /* ret_val is the same as mis-compare */
1706 if (time_after(jiffies
, time
+ 20)) {
1707 ret_val
= 14; /* error code for time out error */
1714 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1716 struct e1000_hw
*hw
= &adapter
->hw
;
1718 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719 if (hw
->phy
.ops
.check_reset_block
&&
1720 hw
->phy
.ops
.check_reset_block(hw
)) {
1721 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1726 *data
= e1000_setup_desc_rings(adapter
);
1730 *data
= e1000_setup_loopback_test(adapter
);
1734 *data
= e1000_run_loopback_test(adapter
);
1735 e1000_loopback_cleanup(adapter
);
1738 e1000_free_desc_rings(adapter
);
1743 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1745 struct e1000_hw
*hw
= &adapter
->hw
;
1748 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1751 hw
->mac
.serdes_has_link
= false;
1753 /* On some blade server designs, link establishment
1754 * could take as long as 2-3 minutes
1757 hw
->mac
.ops
.check_for_link(hw
);
1758 if (hw
->mac
.serdes_has_link
)
1761 } while (i
++ < 3750);
1765 hw
->mac
.ops
.check_for_link(hw
);
1766 if (hw
->mac
.autoneg
)
1767 /* On some Phy/switch combinations, link establishment
1768 * can take a few seconds more than expected.
1770 msleep_interruptible(5000);
1772 if (!(er32(STATUS
) & E1000_STATUS_LU
))
1778 static int e1000e_get_sset_count(struct net_device __always_unused
*netdev
,
1783 return E1000_TEST_LEN
;
1785 return E1000_STATS_LEN
;
1791 static void e1000_diag_test(struct net_device
*netdev
,
1792 struct ethtool_test
*eth_test
, u64
*data
)
1794 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1795 u16 autoneg_advertised
;
1796 u8 forced_speed_duplex
;
1798 bool if_running
= netif_running(netdev
);
1800 pm_runtime_get_sync(netdev
->dev
.parent
);
1802 set_bit(__E1000_TESTING
, &adapter
->state
);
1805 /* Get control of and reset hardware */
1806 if (adapter
->flags
& FLAG_HAS_AMT
)
1807 e1000e_get_hw_control(adapter
);
1809 e1000e_power_up_phy(adapter
);
1811 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1812 e1000e_reset(adapter
);
1813 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1816 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1819 /* save speed, duplex, autoneg settings */
1820 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1821 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1822 autoneg
= adapter
->hw
.mac
.autoneg
;
1824 e_info("offline testing starting\n");
1827 /* indicate we're in test mode */
1828 e1000e_close(netdev
);
1830 if (e1000_reg_test(adapter
, &data
[0]))
1831 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1833 e1000e_reset(adapter
);
1834 if (e1000_eeprom_test(adapter
, &data
[1]))
1835 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1837 e1000e_reset(adapter
);
1838 if (e1000_intr_test(adapter
, &data
[2]))
1839 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1841 e1000e_reset(adapter
);
1842 if (e1000_loopback_test(adapter
, &data
[3]))
1843 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1845 /* force this routine to wait until autoneg complete/timeout */
1846 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1847 e1000e_reset(adapter
);
1848 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1850 if (e1000_link_test(adapter
, &data
[4]))
1851 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1853 /* restore speed, duplex, autoneg settings */
1854 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1855 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1856 adapter
->hw
.mac
.autoneg
= autoneg
;
1857 e1000e_reset(adapter
);
1859 clear_bit(__E1000_TESTING
, &adapter
->state
);
1861 e1000e_open(netdev
);
1865 e_info("online testing starting\n");
1867 /* register, eeprom, intr and loopback tests not run online */
1873 if (e1000_link_test(adapter
, &data
[4]))
1874 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1876 clear_bit(__E1000_TESTING
, &adapter
->state
);
1880 e1000e_reset(adapter
);
1882 if (adapter
->flags
& FLAG_HAS_AMT
)
1883 e1000e_release_hw_control(adapter
);
1886 msleep_interruptible(4 * 1000);
1888 pm_runtime_put_sync(netdev
->dev
.parent
);
1891 static void e1000_get_wol(struct net_device
*netdev
,
1892 struct ethtool_wolinfo
*wol
)
1894 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1899 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1900 !device_can_wakeup(&adapter
->pdev
->dev
))
1903 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1904 WAKE_BCAST
| WAKE_MAGIC
| WAKE_PHY
;
1906 /* apply any specific unsupported masks here */
1907 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1908 wol
->supported
&= ~WAKE_UCAST
;
1910 if (adapter
->wol
& E1000_WUFC_EX
)
1911 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1914 if (adapter
->wol
& E1000_WUFC_EX
)
1915 wol
->wolopts
|= WAKE_UCAST
;
1916 if (adapter
->wol
& E1000_WUFC_MC
)
1917 wol
->wolopts
|= WAKE_MCAST
;
1918 if (adapter
->wol
& E1000_WUFC_BC
)
1919 wol
->wolopts
|= WAKE_BCAST
;
1920 if (adapter
->wol
& E1000_WUFC_MAG
)
1921 wol
->wolopts
|= WAKE_MAGIC
;
1922 if (adapter
->wol
& E1000_WUFC_LNKC
)
1923 wol
->wolopts
|= WAKE_PHY
;
1926 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1928 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1930 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1931 !device_can_wakeup(&adapter
->pdev
->dev
) ||
1932 (wol
->wolopts
& ~(WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
|
1933 WAKE_MAGIC
| WAKE_PHY
)))
1936 /* these settings will always override what we currently have */
1939 if (wol
->wolopts
& WAKE_UCAST
)
1940 adapter
->wol
|= E1000_WUFC_EX
;
1941 if (wol
->wolopts
& WAKE_MCAST
)
1942 adapter
->wol
|= E1000_WUFC_MC
;
1943 if (wol
->wolopts
& WAKE_BCAST
)
1944 adapter
->wol
|= E1000_WUFC_BC
;
1945 if (wol
->wolopts
& WAKE_MAGIC
)
1946 adapter
->wol
|= E1000_WUFC_MAG
;
1947 if (wol
->wolopts
& WAKE_PHY
)
1948 adapter
->wol
|= E1000_WUFC_LNKC
;
1950 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1955 static int e1000_set_phys_id(struct net_device
*netdev
,
1956 enum ethtool_phys_id_state state
)
1958 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1959 struct e1000_hw
*hw
= &adapter
->hw
;
1962 case ETHTOOL_ID_ACTIVE
:
1963 pm_runtime_get_sync(netdev
->dev
.parent
);
1965 if (!hw
->mac
.ops
.blink_led
)
1966 return 2; /* cycle on/off twice per second */
1968 hw
->mac
.ops
.blink_led(hw
);
1971 case ETHTOOL_ID_INACTIVE
:
1972 if (hw
->phy
.type
== e1000_phy_ife
)
1973 e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1974 hw
->mac
.ops
.led_off(hw
);
1975 hw
->mac
.ops
.cleanup_led(hw
);
1976 pm_runtime_put_sync(netdev
->dev
.parent
);
1980 hw
->mac
.ops
.led_on(hw
);
1983 case ETHTOOL_ID_OFF
:
1984 hw
->mac
.ops
.led_off(hw
);
1991 static int e1000_get_coalesce(struct net_device
*netdev
,
1992 struct ethtool_coalesce
*ec
)
1994 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1996 if (adapter
->itr_setting
<= 4)
1997 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1999 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
2004 static int e1000_set_coalesce(struct net_device
*netdev
,
2005 struct ethtool_coalesce
*ec
)
2007 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2009 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
2010 ((ec
->rx_coalesce_usecs
> 4) &&
2011 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
2012 (ec
->rx_coalesce_usecs
== 2))
2015 if (ec
->rx_coalesce_usecs
== 4) {
2016 adapter
->itr_setting
= 4;
2017 adapter
->itr
= adapter
->itr_setting
;
2018 } else if (ec
->rx_coalesce_usecs
<= 3) {
2019 adapter
->itr
= 20000;
2020 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
2022 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
2023 adapter
->itr_setting
= adapter
->itr
& ~3;
2026 pm_runtime_get_sync(netdev
->dev
.parent
);
2028 if (adapter
->itr_setting
!= 0)
2029 e1000e_write_itr(adapter
, adapter
->itr
);
2031 e1000e_write_itr(adapter
, 0);
2033 pm_runtime_put_sync(netdev
->dev
.parent
);
2038 static int e1000_nway_reset(struct net_device
*netdev
)
2040 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2042 if (!netif_running(netdev
))
2045 if (!adapter
->hw
.mac
.autoneg
)
2048 pm_runtime_get_sync(netdev
->dev
.parent
);
2049 e1000e_reinit_locked(adapter
);
2050 pm_runtime_put_sync(netdev
->dev
.parent
);
2055 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
2056 struct ethtool_stats __always_unused
*stats
,
2059 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2060 struct rtnl_link_stats64 net_stats
;
2064 pm_runtime_get_sync(netdev
->dev
.parent
);
2066 e1000e_get_stats64(netdev
, &net_stats
);
2068 pm_runtime_put_sync(netdev
->dev
.parent
);
2070 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
2071 switch (e1000_gstrings_stats
[i
].type
) {
2073 p
= (char *)&net_stats
+
2074 e1000_gstrings_stats
[i
].stat_offset
;
2077 p
= (char *)adapter
+
2078 e1000_gstrings_stats
[i
].stat_offset
;
2085 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
2086 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2090 static void e1000_get_strings(struct net_device __always_unused
*netdev
,
2091 u32 stringset
, u8
*data
)
2096 switch (stringset
) {
2098 memcpy(data
, e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
2101 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
2102 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
2104 p
+= ETH_GSTRING_LEN
;
2110 static int e1000_get_rxnfc(struct net_device
*netdev
,
2111 struct ethtool_rxnfc
*info
,
2112 u32 __always_unused
*rule_locs
)
2116 switch (info
->cmd
) {
2117 case ETHTOOL_GRXFH
: {
2118 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2119 struct e1000_hw
*hw
= &adapter
->hw
;
2122 pm_runtime_get_sync(netdev
->dev
.parent
);
2124 pm_runtime_put_sync(netdev
->dev
.parent
);
2126 if (!(mrqc
& E1000_MRQC_RSS_FIELD_MASK
))
2129 switch (info
->flow_type
) {
2131 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV4_TCP
)
2132 info
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2136 case AH_ESP_V4_FLOW
:
2138 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV4
)
2139 info
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2142 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV6_TCP
)
2143 info
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2147 case AH_ESP_V6_FLOW
:
2149 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV6
)
2150 info
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2162 static int e1000e_get_eee(struct net_device
*netdev
, struct ethtool_eee
*edata
)
2164 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2165 struct e1000_hw
*hw
= &adapter
->hw
;
2166 u16 cap_addr
, lpa_addr
, pcs_stat_addr
, phy_data
;
2169 if (!(adapter
->flags2
& FLAG2_HAS_EEE
))
2172 switch (hw
->phy
.type
) {
2173 case e1000_phy_82579
:
2174 cap_addr
= I82579_EEE_CAPABILITY
;
2175 lpa_addr
= I82579_EEE_LP_ABILITY
;
2176 pcs_stat_addr
= I82579_EEE_PCS_STATUS
;
2178 case e1000_phy_i217
:
2179 cap_addr
= I217_EEE_CAPABILITY
;
2180 lpa_addr
= I217_EEE_LP_ABILITY
;
2181 pcs_stat_addr
= I217_EEE_PCS_STATUS
;
2187 pm_runtime_get_sync(netdev
->dev
.parent
);
2189 ret_val
= hw
->phy
.ops
.acquire(hw
);
2191 pm_runtime_put_sync(netdev
->dev
.parent
);
2195 /* EEE Capability */
2196 ret_val
= e1000_read_emi_reg_locked(hw
, cap_addr
, &phy_data
);
2199 edata
->supported
= mmd_eee_cap_to_ethtool_sup_t(phy_data
);
2201 /* EEE Advertised */
2202 edata
->advertised
= mmd_eee_adv_to_ethtool_adv_t(adapter
->eee_advert
);
2204 /* EEE Link Partner Advertised */
2205 ret_val
= e1000_read_emi_reg_locked(hw
, lpa_addr
, &phy_data
);
2208 edata
->lp_advertised
= mmd_eee_adv_to_ethtool_adv_t(phy_data
);
2210 /* EEE PCS Status */
2211 ret_val
= e1000_read_emi_reg_locked(hw
, pcs_stat_addr
, &phy_data
);
2214 if (hw
->phy
.type
== e1000_phy_82579
)
2217 /* Result of the EEE auto negotiation - there is no register that
2218 * has the status of the EEE negotiation so do a best-guess based
2219 * on whether Tx or Rx LPI indications have been received.
2221 if (phy_data
& (E1000_EEE_TX_LPI_RCVD
| E1000_EEE_RX_LPI_RCVD
))
2222 edata
->eee_active
= true;
2224 edata
->eee_enabled
= !hw
->dev_spec
.ich8lan
.eee_disable
;
2225 edata
->tx_lpi_enabled
= true;
2226 edata
->tx_lpi_timer
= er32(LPIC
) >> E1000_LPIC_LPIET_SHIFT
;
2229 hw
->phy
.ops
.release(hw
);
2233 pm_runtime_put_sync(netdev
->dev
.parent
);
2238 static int e1000e_set_eee(struct net_device
*netdev
, struct ethtool_eee
*edata
)
2240 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2241 struct e1000_hw
*hw
= &adapter
->hw
;
2242 struct ethtool_eee eee_curr
;
2245 ret_val
= e1000e_get_eee(netdev
, &eee_curr
);
2249 if (eee_curr
.tx_lpi_enabled
!= edata
->tx_lpi_enabled
) {
2250 e_err("Setting EEE tx-lpi is not supported\n");
2254 if (eee_curr
.tx_lpi_timer
!= edata
->tx_lpi_timer
) {
2255 e_err("Setting EEE Tx LPI timer is not supported\n");
2259 if (edata
->advertised
& ~(ADVERTISE_100_FULL
| ADVERTISE_1000_FULL
)) {
2260 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2264 adapter
->eee_advert
= ethtool_adv_to_mmd_eee_adv_t(edata
->advertised
);
2266 hw
->dev_spec
.ich8lan
.eee_disable
= !edata
->eee_enabled
;
2268 pm_runtime_get_sync(netdev
->dev
.parent
);
2270 /* reset the link */
2271 if (netif_running(netdev
))
2272 e1000e_reinit_locked(adapter
);
2274 e1000e_reset(adapter
);
2276 pm_runtime_put_sync(netdev
->dev
.parent
);
2281 static int e1000e_get_ts_info(struct net_device
*netdev
,
2282 struct ethtool_ts_info
*info
)
2284 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2286 ethtool_op_get_ts_info(netdev
, info
);
2288 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
2291 info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
2292 SOF_TIMESTAMPING_RX_HARDWARE
|
2293 SOF_TIMESTAMPING_RAW_HARDWARE
);
2295 info
->tx_types
= BIT(HWTSTAMP_TX_OFF
) | BIT(HWTSTAMP_TX_ON
);
2297 info
->rx_filters
= (BIT(HWTSTAMP_FILTER_NONE
) |
2298 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC
) |
2299 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
) |
2300 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC
) |
2301 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
) |
2302 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC
) |
2303 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
) |
2304 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT
) |
2305 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC
) |
2306 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
) |
2307 BIT(HWTSTAMP_FILTER_ALL
));
2309 if (adapter
->ptp_clock
)
2310 info
->phc_index
= ptp_clock_index(adapter
->ptp_clock
);
2315 static const struct ethtool_ops e1000_ethtool_ops
= {
2316 .get_settings
= e1000_get_settings
,
2317 .set_settings
= e1000_set_settings
,
2318 .get_drvinfo
= e1000_get_drvinfo
,
2319 .get_regs_len
= e1000_get_regs_len
,
2320 .get_regs
= e1000_get_regs
,
2321 .get_wol
= e1000_get_wol
,
2322 .set_wol
= e1000_set_wol
,
2323 .get_msglevel
= e1000_get_msglevel
,
2324 .set_msglevel
= e1000_set_msglevel
,
2325 .nway_reset
= e1000_nway_reset
,
2326 .get_link
= ethtool_op_get_link
,
2327 .get_eeprom_len
= e1000_get_eeprom_len
,
2328 .get_eeprom
= e1000_get_eeprom
,
2329 .set_eeprom
= e1000_set_eeprom
,
2330 .get_ringparam
= e1000_get_ringparam
,
2331 .set_ringparam
= e1000_set_ringparam
,
2332 .get_pauseparam
= e1000_get_pauseparam
,
2333 .set_pauseparam
= e1000_set_pauseparam
,
2334 .self_test
= e1000_diag_test
,
2335 .get_strings
= e1000_get_strings
,
2336 .set_phys_id
= e1000_set_phys_id
,
2337 .get_ethtool_stats
= e1000_get_ethtool_stats
,
2338 .get_sset_count
= e1000e_get_sset_count
,
2339 .get_coalesce
= e1000_get_coalesce
,
2340 .set_coalesce
= e1000_set_coalesce
,
2341 .get_rxnfc
= e1000_get_rxnfc
,
2342 .get_ts_info
= e1000e_get_ts_info
,
2343 .get_eee
= e1000e_get_eee
,
2344 .set_eee
= e1000e_set_eee
,
2347 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
2349 netdev
->ethtool_ops
= &e1000_ethtool_ops
;