x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
blob7aff68a4a4df527d26c50da69d0cad2dd91c2767
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 /* ethtool support for e1000 */
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
33 #include "e1000.h"
35 enum { NETDEV_STATS, E1000_STATS };
37 struct e1000_stats {
38 char stat_string[ETH_GSTRING_LEN];
39 int type;
40 int sizeof_stat;
41 int stat_offset;
44 #define E1000_STAT(str, m) { \
45 .stat_string = str, \
46 .type = E1000_STATS, \
47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 .stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
50 .stat_string = str, \
51 .type = NETDEV_STATS, \
52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 E1000_STAT("rx_packets", stats.gprc),
57 E1000_STAT("tx_packets", stats.gptc),
58 E1000_STAT("rx_bytes", stats.gorc),
59 E1000_STAT("tx_bytes", stats.gotc),
60 E1000_STAT("rx_broadcast", stats.bprc),
61 E1000_STAT("tx_broadcast", stats.bptc),
62 E1000_STAT("rx_multicast", stats.mprc),
63 E1000_STAT("tx_multicast", stats.mptc),
64 E1000_NETDEV_STAT("rx_errors", rx_errors),
65 E1000_NETDEV_STAT("tx_errors", tx_errors),
66 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 E1000_STAT("multicast", stats.mprc),
68 E1000_STAT("collisions", stats.colc),
69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 E1000_STAT("rx_crc_errors", stats.crcerrs),
72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 E1000_STAT("rx_missed_errors", stats.mpc),
75 E1000_STAT("tx_aborted_errors", stats.ecol),
76 E1000_STAT("tx_carrier_errors", stats.tncrs),
77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 E1000_STAT("tx_window_errors", stats.latecol),
80 E1000_STAT("tx_abort_late_coll", stats.latecol),
81 E1000_STAT("tx_deferred_ok", stats.dc),
82 E1000_STAT("tx_single_coll_ok", stats.scc),
83 E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 E1000_STAT("tx_timeout_count", tx_timeout_count),
85 E1000_STAT("tx_restart_queue", restart_queue),
86 E1000_STAT("rx_long_length_errors", stats.roc),
87 E1000_STAT("rx_short_length_errors", stats.ruc),
88 E1000_STAT("rx_align_errors", stats.algnerrc),
89 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 E1000_STAT("rx_header_split", rx_hdr_split),
98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 E1000_STAT("tx_smbus", stats.mgptc),
100 E1000_STAT("rx_smbus", stats.mgprc),
101 E1000_STAT("dropped_smbus", stats.mgpdc),
102 E1000_STAT("rx_dma_failed", rx_dma_failed),
103 E1000_STAT("tx_dma_failed", tx_dma_failed),
104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 E1000_STAT("corr_ecc_errors", corr_errors),
107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
110 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113 "Register test (offline)", "Eeprom test (offline)",
114 "Interrupt test (offline)", "Loopback test (offline)",
115 "Link test (on/offline)"
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120 static int e1000_get_settings(struct net_device *netdev,
121 struct ethtool_cmd *ecmd)
123 struct e1000_adapter *adapter = netdev_priv(netdev);
124 struct e1000_hw *hw = &adapter->hw;
125 u32 speed;
127 if (hw->phy.media_type == e1000_media_type_copper) {
128 ecmd->supported = (SUPPORTED_10baseT_Half |
129 SUPPORTED_10baseT_Full |
130 SUPPORTED_100baseT_Half |
131 SUPPORTED_100baseT_Full |
132 SUPPORTED_1000baseT_Full |
133 SUPPORTED_Autoneg |
134 SUPPORTED_TP);
135 if (hw->phy.type == e1000_phy_ife)
136 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 ecmd->advertising = ADVERTISED_TP;
139 if (hw->mac.autoneg == 1) {
140 ecmd->advertising |= ADVERTISED_Autoneg;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd->advertising |= hw->phy.autoneg_advertised;
145 ecmd->port = PORT_TP;
146 ecmd->phy_address = hw->phy.addr;
147 ecmd->transceiver = XCVR_INTERNAL;
149 } else {
150 ecmd->supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
154 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
158 ecmd->port = PORT_FIBRE;
159 ecmd->transceiver = XCVR_EXTERNAL;
162 speed = SPEED_UNKNOWN;
163 ecmd->duplex = DUPLEX_UNKNOWN;
165 if (netif_running(netdev)) {
166 if (netif_carrier_ok(netdev)) {
167 speed = adapter->link_speed;
168 ecmd->duplex = adapter->link_duplex - 1;
170 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
171 u32 status = er32(STATUS);
173 if (status & E1000_STATUS_LU) {
174 if (status & E1000_STATUS_SPEED_1000)
175 speed = SPEED_1000;
176 else if (status & E1000_STATUS_SPEED_100)
177 speed = SPEED_100;
178 else
179 speed = SPEED_10;
181 if (status & E1000_STATUS_FD)
182 ecmd->duplex = DUPLEX_FULL;
183 else
184 ecmd->duplex = DUPLEX_HALF;
188 ethtool_cmd_speed_set(ecmd, speed);
189 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
192 /* MDI-X => 2; MDI =>1; Invalid =>0 */
193 if ((hw->phy.media_type == e1000_media_type_copper) &&
194 netif_carrier_ok(netdev))
195 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
196 else
197 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
199 if (hw->phy.mdix == AUTO_ALL_MODES)
200 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 else
202 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
204 if (hw->phy.media_type != e1000_media_type_copper)
205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
207 return 0;
210 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
212 struct e1000_mac_info *mac = &adapter->hw.mac;
214 mac->autoneg = 0;
216 /* Make sure dplx is at most 1 bit and lsb of speed is not set
217 * for the switch() below to work
219 if ((spd & 1) || (dplx & ~1))
220 goto err_inval;
222 /* Fiber NICs only allow 1000 gbps Full duplex */
223 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
224 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
225 goto err_inval;
228 switch (spd + dplx) {
229 case SPEED_10 + DUPLEX_HALF:
230 mac->forced_speed_duplex = ADVERTISE_10_HALF;
231 break;
232 case SPEED_10 + DUPLEX_FULL:
233 mac->forced_speed_duplex = ADVERTISE_10_FULL;
234 break;
235 case SPEED_100 + DUPLEX_HALF:
236 mac->forced_speed_duplex = ADVERTISE_100_HALF;
237 break;
238 case SPEED_100 + DUPLEX_FULL:
239 mac->forced_speed_duplex = ADVERTISE_100_FULL;
240 break;
241 case SPEED_1000 + DUPLEX_FULL:
242 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
243 mac->autoneg = 1;
244 adapter->hw.phy.autoneg_advertised =
245 ADVERTISE_1000_FULL;
246 } else {
247 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
249 break;
250 case SPEED_1000 + DUPLEX_HALF: /* not supported */
251 default:
252 goto err_inval;
255 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
256 adapter->hw.phy.mdix = AUTO_ALL_MODES;
258 return 0;
260 err_inval:
261 e_err("Unsupported Speed/Duplex configuration\n");
262 return -EINVAL;
265 static int e1000_set_settings(struct net_device *netdev,
266 struct ethtool_cmd *ecmd)
268 struct e1000_adapter *adapter = netdev_priv(netdev);
269 struct e1000_hw *hw = &adapter->hw;
270 int ret_val = 0;
272 pm_runtime_get_sync(netdev->dev.parent);
274 /* When SoL/IDER sessions are active, autoneg/speed/duplex
275 * cannot be changed
277 if (hw->phy.ops.check_reset_block &&
278 hw->phy.ops.check_reset_block(hw)) {
279 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
280 ret_val = -EINVAL;
281 goto out;
284 /* MDI setting is only allowed when autoneg enabled because
285 * some hardware doesn't allow MDI setting when speed or
286 * duplex is forced.
288 if (ecmd->eth_tp_mdix_ctrl) {
289 if (hw->phy.media_type != e1000_media_type_copper) {
290 ret_val = -EOPNOTSUPP;
291 goto out;
294 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
295 (ecmd->autoneg != AUTONEG_ENABLE)) {
296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
297 ret_val = -EINVAL;
298 goto out;
302 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
303 usleep_range(1000, 2000);
305 if (ecmd->autoneg == AUTONEG_ENABLE) {
306 hw->mac.autoneg = 1;
307 if (hw->phy.media_type == e1000_media_type_fiber)
308 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
309 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
310 else
311 hw->phy.autoneg_advertised = ecmd->advertising |
312 ADVERTISED_TP | ADVERTISED_Autoneg;
313 ecmd->advertising = hw->phy.autoneg_advertised;
314 if (adapter->fc_autoneg)
315 hw->fc.requested_mode = e1000_fc_default;
316 } else {
317 u32 speed = ethtool_cmd_speed(ecmd);
318 /* calling this overrides forced MDI setting */
319 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
320 ret_val = -EINVAL;
321 goto out;
325 /* MDI-X => 2; MDI => 1; Auto => 3 */
326 if (ecmd->eth_tp_mdix_ctrl) {
327 /* fix up the value for auto (3 => 0) as zero is mapped
328 * internally to auto
330 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
331 hw->phy.mdix = AUTO_ALL_MODES;
332 else
333 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
336 /* reset the link */
337 if (netif_running(adapter->netdev)) {
338 e1000e_down(adapter, true);
339 e1000e_up(adapter);
340 } else {
341 e1000e_reset(adapter);
344 out:
345 pm_runtime_put_sync(netdev->dev.parent);
346 clear_bit(__E1000_RESETTING, &adapter->state);
347 return ret_val;
350 static void e1000_get_pauseparam(struct net_device *netdev,
351 struct ethtool_pauseparam *pause)
353 struct e1000_adapter *adapter = netdev_priv(netdev);
354 struct e1000_hw *hw = &adapter->hw;
356 pause->autoneg =
357 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
359 if (hw->fc.current_mode == e1000_fc_rx_pause) {
360 pause->rx_pause = 1;
361 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
362 pause->tx_pause = 1;
363 } else if (hw->fc.current_mode == e1000_fc_full) {
364 pause->rx_pause = 1;
365 pause->tx_pause = 1;
369 static int e1000_set_pauseparam(struct net_device *netdev,
370 struct ethtool_pauseparam *pause)
372 struct e1000_adapter *adapter = netdev_priv(netdev);
373 struct e1000_hw *hw = &adapter->hw;
374 int retval = 0;
376 adapter->fc_autoneg = pause->autoneg;
378 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
379 usleep_range(1000, 2000);
381 pm_runtime_get_sync(netdev->dev.parent);
383 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
384 hw->fc.requested_mode = e1000_fc_default;
385 if (netif_running(adapter->netdev)) {
386 e1000e_down(adapter, true);
387 e1000e_up(adapter);
388 } else {
389 e1000e_reset(adapter);
391 } else {
392 if (pause->rx_pause && pause->tx_pause)
393 hw->fc.requested_mode = e1000_fc_full;
394 else if (pause->rx_pause && !pause->tx_pause)
395 hw->fc.requested_mode = e1000_fc_rx_pause;
396 else if (!pause->rx_pause && pause->tx_pause)
397 hw->fc.requested_mode = e1000_fc_tx_pause;
398 else if (!pause->rx_pause && !pause->tx_pause)
399 hw->fc.requested_mode = e1000_fc_none;
401 hw->fc.current_mode = hw->fc.requested_mode;
403 if (hw->phy.media_type == e1000_media_type_fiber) {
404 retval = hw->mac.ops.setup_link(hw);
405 /* implicit goto out */
406 } else {
407 retval = e1000e_force_mac_fc(hw);
408 if (retval)
409 goto out;
410 e1000e_set_fc_watermarks(hw);
414 out:
415 pm_runtime_put_sync(netdev->dev.parent);
416 clear_bit(__E1000_RESETTING, &adapter->state);
417 return retval;
420 static u32 e1000_get_msglevel(struct net_device *netdev)
422 struct e1000_adapter *adapter = netdev_priv(netdev);
423 return adapter->msg_enable;
426 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
428 struct e1000_adapter *adapter = netdev_priv(netdev);
429 adapter->msg_enable = data;
432 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
434 #define E1000_REGS_LEN 32 /* overestimate */
435 return E1000_REGS_LEN * sizeof(u32);
438 static void e1000_get_regs(struct net_device *netdev,
439 struct ethtool_regs *regs, void *p)
441 struct e1000_adapter *adapter = netdev_priv(netdev);
442 struct e1000_hw *hw = &adapter->hw;
443 u32 *regs_buff = p;
444 u16 phy_data;
446 pm_runtime_get_sync(netdev->dev.parent);
448 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
450 regs->version = (1u << 24) |
451 (adapter->pdev->revision << 16) |
452 adapter->pdev->device;
454 regs_buff[0] = er32(CTRL);
455 regs_buff[1] = er32(STATUS);
457 regs_buff[2] = er32(RCTL);
458 regs_buff[3] = er32(RDLEN(0));
459 regs_buff[4] = er32(RDH(0));
460 regs_buff[5] = er32(RDT(0));
461 regs_buff[6] = er32(RDTR);
463 regs_buff[7] = er32(TCTL);
464 regs_buff[8] = er32(TDLEN(0));
465 regs_buff[9] = er32(TDH(0));
466 regs_buff[10] = er32(TDT(0));
467 regs_buff[11] = er32(TIDV);
469 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
471 /* ethtool doesn't use anything past this point, so all this
472 * code is likely legacy junk for apps that may or may not exist
474 if (hw->phy.type == e1000_phy_m88) {
475 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
476 regs_buff[13] = (u32)phy_data; /* cable length */
477 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
479 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
480 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
481 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
482 regs_buff[18] = regs_buff[13]; /* cable polarity */
483 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
484 regs_buff[20] = regs_buff[17]; /* polarity correction */
485 /* phy receive errors */
486 regs_buff[22] = adapter->phy_stats.receive_errors;
487 regs_buff[23] = regs_buff[13]; /* mdix mode */
489 regs_buff[21] = 0; /* was idle_errors */
490 e1e_rphy(hw, MII_STAT1000, &phy_data);
491 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
492 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
494 pm_runtime_put_sync(netdev->dev.parent);
497 static int e1000_get_eeprom_len(struct net_device *netdev)
499 struct e1000_adapter *adapter = netdev_priv(netdev);
500 return adapter->hw.nvm.word_size * 2;
503 static int e1000_get_eeprom(struct net_device *netdev,
504 struct ethtool_eeprom *eeprom, u8 *bytes)
506 struct e1000_adapter *adapter = netdev_priv(netdev);
507 struct e1000_hw *hw = &adapter->hw;
508 u16 *eeprom_buff;
509 int first_word;
510 int last_word;
511 int ret_val = 0;
512 u16 i;
514 if (eeprom->len == 0)
515 return -EINVAL;
517 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
519 first_word = eeprom->offset >> 1;
520 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
522 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
523 GFP_KERNEL);
524 if (!eeprom_buff)
525 return -ENOMEM;
527 pm_runtime_get_sync(netdev->dev.parent);
529 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
530 ret_val = e1000_read_nvm(hw, first_word,
531 last_word - first_word + 1,
532 eeprom_buff);
533 } else {
534 for (i = 0; i < last_word - first_word + 1; i++) {
535 ret_val = e1000_read_nvm(hw, first_word + i, 1,
536 &eeprom_buff[i]);
537 if (ret_val)
538 break;
542 pm_runtime_put_sync(netdev->dev.parent);
544 if (ret_val) {
545 /* a read error occurred, throw away the result */
546 memset(eeprom_buff, 0xff, sizeof(u16) *
547 (last_word - first_word + 1));
548 } else {
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i = 0; i < last_word - first_word + 1; i++)
551 le16_to_cpus(&eeprom_buff[i]);
554 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
555 kfree(eeprom_buff);
557 return ret_val;
560 static int e1000_set_eeprom(struct net_device *netdev,
561 struct ethtool_eeprom *eeprom, u8 *bytes)
563 struct e1000_adapter *adapter = netdev_priv(netdev);
564 struct e1000_hw *hw = &adapter->hw;
565 u16 *eeprom_buff;
566 void *ptr;
567 int max_len;
568 int first_word;
569 int last_word;
570 int ret_val = 0;
571 u16 i;
573 if (eeprom->len == 0)
574 return -EOPNOTSUPP;
576 if (eeprom->magic !=
577 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
578 return -EFAULT;
580 if (adapter->flags & FLAG_READ_ONLY_NVM)
581 return -EINVAL;
583 max_len = hw->nvm.word_size * 2;
585 first_word = eeprom->offset >> 1;
586 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
587 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
588 if (!eeprom_buff)
589 return -ENOMEM;
591 ptr = (void *)eeprom_buff;
593 pm_runtime_get_sync(netdev->dev.parent);
595 if (eeprom->offset & 1) {
596 /* need read/modify/write of first changed EEPROM word */
597 /* only the second byte of the word is being modified */
598 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
599 ptr++;
601 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
602 /* need read/modify/write of last changed EEPROM word */
603 /* only the first byte of the word is being modified */
604 ret_val = e1000_read_nvm(hw, last_word, 1,
605 &eeprom_buff[last_word - first_word]);
607 if (ret_val)
608 goto out;
610 /* Device's eeprom is always little-endian, word addressable */
611 for (i = 0; i < last_word - first_word + 1; i++)
612 le16_to_cpus(&eeprom_buff[i]);
614 memcpy(ptr, bytes, eeprom->len);
616 for (i = 0; i < last_word - first_word + 1; i++)
617 cpu_to_le16s(&eeprom_buff[i]);
619 ret_val = e1000_write_nvm(hw, first_word,
620 last_word - first_word + 1, eeprom_buff);
622 if (ret_val)
623 goto out;
625 /* Update the checksum over the first part of the EEPROM if needed
626 * and flush shadow RAM for applicable controllers
628 if ((first_word <= NVM_CHECKSUM_REG) ||
629 (hw->mac.type == e1000_82583) ||
630 (hw->mac.type == e1000_82574) ||
631 (hw->mac.type == e1000_82573))
632 ret_val = e1000e_update_nvm_checksum(hw);
634 out:
635 pm_runtime_put_sync(netdev->dev.parent);
636 kfree(eeprom_buff);
637 return ret_val;
640 static void e1000_get_drvinfo(struct net_device *netdev,
641 struct ethtool_drvinfo *drvinfo)
643 struct e1000_adapter *adapter = netdev_priv(netdev);
645 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
646 strlcpy(drvinfo->version, e1000e_driver_version,
647 sizeof(drvinfo->version));
649 /* EEPROM image version # is reported as firmware version # for
650 * PCI-E controllers
652 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
653 "%d.%d-%d",
654 (adapter->eeprom_vers & 0xF000) >> 12,
655 (adapter->eeprom_vers & 0x0FF0) >> 4,
656 (adapter->eeprom_vers & 0x000F));
658 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
659 sizeof(drvinfo->bus_info));
662 static void e1000_get_ringparam(struct net_device *netdev,
663 struct ethtool_ringparam *ring)
665 struct e1000_adapter *adapter = netdev_priv(netdev);
667 ring->rx_max_pending = E1000_MAX_RXD;
668 ring->tx_max_pending = E1000_MAX_TXD;
669 ring->rx_pending = adapter->rx_ring_count;
670 ring->tx_pending = adapter->tx_ring_count;
673 static int e1000_set_ringparam(struct net_device *netdev,
674 struct ethtool_ringparam *ring)
676 struct e1000_adapter *adapter = netdev_priv(netdev);
677 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
678 int err = 0, size = sizeof(struct e1000_ring);
679 bool set_tx = false, set_rx = false;
680 u16 new_rx_count, new_tx_count;
682 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
683 return -EINVAL;
685 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
686 E1000_MAX_RXD);
687 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
689 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
690 E1000_MAX_TXD);
691 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
693 if ((new_tx_count == adapter->tx_ring_count) &&
694 (new_rx_count == adapter->rx_ring_count))
695 /* nothing to do */
696 return 0;
698 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
699 usleep_range(1000, 2000);
701 if (!netif_running(adapter->netdev)) {
702 /* Set counts now and allocate resources during open() */
703 adapter->tx_ring->count = new_tx_count;
704 adapter->rx_ring->count = new_rx_count;
705 adapter->tx_ring_count = new_tx_count;
706 adapter->rx_ring_count = new_rx_count;
707 goto clear_reset;
710 set_tx = (new_tx_count != adapter->tx_ring_count);
711 set_rx = (new_rx_count != adapter->rx_ring_count);
713 /* Allocate temporary storage for ring updates */
714 if (set_tx) {
715 temp_tx = vmalloc(size);
716 if (!temp_tx) {
717 err = -ENOMEM;
718 goto free_temp;
721 if (set_rx) {
722 temp_rx = vmalloc(size);
723 if (!temp_rx) {
724 err = -ENOMEM;
725 goto free_temp;
729 pm_runtime_get_sync(netdev->dev.parent);
731 e1000e_down(adapter, true);
733 /* We can't just free everything and then setup again, because the
734 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
735 * structs. First, attempt to allocate new resources...
737 if (set_tx) {
738 memcpy(temp_tx, adapter->tx_ring, size);
739 temp_tx->count = new_tx_count;
740 err = e1000e_setup_tx_resources(temp_tx);
741 if (err)
742 goto err_setup;
744 if (set_rx) {
745 memcpy(temp_rx, adapter->rx_ring, size);
746 temp_rx->count = new_rx_count;
747 err = e1000e_setup_rx_resources(temp_rx);
748 if (err)
749 goto err_setup_rx;
752 /* ...then free the old resources and copy back any new ring data */
753 if (set_tx) {
754 e1000e_free_tx_resources(adapter->tx_ring);
755 memcpy(adapter->tx_ring, temp_tx, size);
756 adapter->tx_ring_count = new_tx_count;
758 if (set_rx) {
759 e1000e_free_rx_resources(adapter->rx_ring);
760 memcpy(adapter->rx_ring, temp_rx, size);
761 adapter->rx_ring_count = new_rx_count;
764 err_setup_rx:
765 if (err && set_tx)
766 e1000e_free_tx_resources(temp_tx);
767 err_setup:
768 e1000e_up(adapter);
769 pm_runtime_put_sync(netdev->dev.parent);
770 free_temp:
771 vfree(temp_tx);
772 vfree(temp_rx);
773 clear_reset:
774 clear_bit(__E1000_RESETTING, &adapter->state);
775 return err;
778 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
779 int reg, int offset, u32 mask, u32 write)
781 u32 pat, val;
782 static const u32 test[] = {
783 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
785 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
786 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
787 (test[pat] & write));
788 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
789 if (val != (test[pat] & write & mask)) {
790 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
791 reg + (offset << 2), val,
792 (test[pat] & write & mask));
793 *data = reg;
794 return true;
797 return false;
800 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
801 int reg, u32 mask, u32 write)
803 u32 val;
805 __ew32(&adapter->hw, reg, write & mask);
806 val = __er32(&adapter->hw, reg);
807 if ((write & mask) != (val & mask)) {
808 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
809 reg, (val & mask), (write & mask));
810 *data = reg;
811 return true;
813 return false;
816 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
817 do { \
818 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
819 return 1; \
820 } while (0)
821 #define REG_PATTERN_TEST(reg, mask, write) \
822 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
824 #define REG_SET_AND_CHECK(reg, mask, write) \
825 do { \
826 if (reg_set_and_check(adapter, data, reg, mask, write)) \
827 return 1; \
828 } while (0)
830 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
832 struct e1000_hw *hw = &adapter->hw;
833 struct e1000_mac_info *mac = &adapter->hw.mac;
834 u32 value;
835 u32 before;
836 u32 after;
837 u32 i;
838 u32 toggle;
839 u32 mask;
840 u32 wlock_mac = 0;
842 /* The status register is Read Only, so a write should fail.
843 * Some bits that get toggled are ignored. There are several bits
844 * on newer hardware that are r/w.
846 switch (mac->type) {
847 case e1000_82571:
848 case e1000_82572:
849 case e1000_80003es2lan:
850 toggle = 0x7FFFF3FF;
851 break;
852 default:
853 toggle = 0x7FFFF033;
854 break;
857 before = er32(STATUS);
858 value = (er32(STATUS) & toggle);
859 ew32(STATUS, toggle);
860 after = er32(STATUS) & toggle;
861 if (value != after) {
862 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
863 after, value);
864 *data = 1;
865 return 1;
867 /* restore previous status */
868 ew32(STATUS, before);
870 if (!(adapter->flags & FLAG_IS_ICH)) {
871 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
872 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
873 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
877 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
879 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
880 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
881 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
882 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
883 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
884 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
885 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
888 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
890 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
891 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
892 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
894 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
895 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
896 if (!(adapter->flags & FLAG_IS_ICH))
897 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
898 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
899 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
900 mask = 0x8003FFFF;
901 switch (mac->type) {
902 case e1000_ich10lan:
903 case e1000_pchlan:
904 case e1000_pch2lan:
905 case e1000_pch_lpt:
906 case e1000_pch_spt:
907 mask |= BIT(18);
908 break;
909 default:
910 break;
913 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
914 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
915 E1000_FWSM_WLOCK_MAC_SHIFT;
917 for (i = 0; i < mac->rar_entry_count; i++) {
918 if ((mac->type == e1000_pch_lpt) ||
919 (mac->type == e1000_pch_spt)) {
920 /* Cannot test write-protected SHRAL[n] registers */
921 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
922 continue;
924 /* SHRAH[9] different than the others */
925 if (i == 10)
926 mask |= BIT(30);
927 else
928 mask &= ~BIT(30);
930 if (mac->type == e1000_pch2lan) {
931 /* SHRAH[0,1,2] different than previous */
932 if (i == 1)
933 mask &= 0xFFF4FFFF;
934 /* SHRAH[3] different than SHRAH[0,1,2] */
935 if (i == 4)
936 mask |= BIT(30);
937 /* RAR[1-6] owned by management engine - skipping */
938 if (i > 0)
939 i += 6;
942 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
943 0xFFFFFFFF);
944 /* reset index to actual value */
945 if ((mac->type == e1000_pch2lan) && (i > 6))
946 i -= 6;
949 for (i = 0; i < mac->mta_reg_count; i++)
950 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
952 *data = 0;
954 return 0;
957 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
959 u16 temp;
960 u16 checksum = 0;
961 u16 i;
963 *data = 0;
964 /* Read and add up the contents of the EEPROM */
965 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
966 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
967 *data = 1;
968 return *data;
970 checksum += temp;
973 /* If Checksum is not Correct return error else test passed */
974 if ((checksum != (u16)NVM_SUM) && !(*data))
975 *data = 2;
977 return *data;
980 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
982 struct net_device *netdev = (struct net_device *)data;
983 struct e1000_adapter *adapter = netdev_priv(netdev);
984 struct e1000_hw *hw = &adapter->hw;
986 adapter->test_icr |= er32(ICR);
988 return IRQ_HANDLED;
991 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
993 struct net_device *netdev = adapter->netdev;
994 struct e1000_hw *hw = &adapter->hw;
995 u32 mask;
996 u32 shared_int = 1;
997 u32 irq = adapter->pdev->irq;
998 int i;
999 int ret_val = 0;
1000 int int_mode = E1000E_INT_MODE_LEGACY;
1002 *data = 0;
1004 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1005 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1006 int_mode = adapter->int_mode;
1007 e1000e_reset_interrupt_capability(adapter);
1008 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1009 e1000e_set_interrupt_capability(adapter);
1011 /* Hook up test interrupt handler just for this test */
1012 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1013 netdev)) {
1014 shared_int = 0;
1015 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1016 netdev)) {
1017 *data = 1;
1018 ret_val = -1;
1019 goto out;
1021 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1023 /* Disable all the interrupts */
1024 ew32(IMC, 0xFFFFFFFF);
1025 e1e_flush();
1026 usleep_range(10000, 20000);
1028 /* Test each interrupt */
1029 for (i = 0; i < 10; i++) {
1030 /* Interrupt to test */
1031 mask = BIT(i);
1033 if (adapter->flags & FLAG_IS_ICH) {
1034 switch (mask) {
1035 case E1000_ICR_RXSEQ:
1036 continue;
1037 case 0x00000100:
1038 if (adapter->hw.mac.type == e1000_ich8lan ||
1039 adapter->hw.mac.type == e1000_ich9lan)
1040 continue;
1041 break;
1042 default:
1043 break;
1047 if (!shared_int) {
1048 /* Disable the interrupt to be reported in
1049 * the cause register and then force the same
1050 * interrupt and see if one gets posted. If
1051 * an interrupt was posted to the bus, the
1052 * test failed.
1054 adapter->test_icr = 0;
1055 ew32(IMC, mask);
1056 ew32(ICS, mask);
1057 e1e_flush();
1058 usleep_range(10000, 20000);
1060 if (adapter->test_icr & mask) {
1061 *data = 3;
1062 break;
1066 /* Enable the interrupt to be reported in
1067 * the cause register and then force the same
1068 * interrupt and see if one gets posted. If
1069 * an interrupt was not posted to the bus, the
1070 * test failed.
1072 adapter->test_icr = 0;
1073 ew32(IMS, mask);
1074 ew32(ICS, mask);
1075 e1e_flush();
1076 usleep_range(10000, 20000);
1078 if (!(adapter->test_icr & mask)) {
1079 *data = 4;
1080 break;
1083 if (!shared_int) {
1084 /* Disable the other interrupts to be reported in
1085 * the cause register and then force the other
1086 * interrupts and see if any get posted. If
1087 * an interrupt was posted to the bus, the
1088 * test failed.
1090 adapter->test_icr = 0;
1091 ew32(IMC, ~mask & 0x00007FFF);
1092 ew32(ICS, ~mask & 0x00007FFF);
1093 e1e_flush();
1094 usleep_range(10000, 20000);
1096 if (adapter->test_icr) {
1097 *data = 5;
1098 break;
1103 /* Disable all the interrupts */
1104 ew32(IMC, 0xFFFFFFFF);
1105 e1e_flush();
1106 usleep_range(10000, 20000);
1108 /* Unhook test interrupt handler */
1109 free_irq(irq, netdev);
1111 out:
1112 if (int_mode == E1000E_INT_MODE_MSIX) {
1113 e1000e_reset_interrupt_capability(adapter);
1114 adapter->int_mode = int_mode;
1115 e1000e_set_interrupt_capability(adapter);
1118 return ret_val;
1121 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1123 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1124 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1125 struct pci_dev *pdev = adapter->pdev;
1126 struct e1000_buffer *buffer_info;
1127 int i;
1129 if (tx_ring->desc && tx_ring->buffer_info) {
1130 for (i = 0; i < tx_ring->count; i++) {
1131 buffer_info = &tx_ring->buffer_info[i];
1133 if (buffer_info->dma)
1134 dma_unmap_single(&pdev->dev,
1135 buffer_info->dma,
1136 buffer_info->length,
1137 DMA_TO_DEVICE);
1138 if (buffer_info->skb)
1139 dev_kfree_skb(buffer_info->skb);
1143 if (rx_ring->desc && rx_ring->buffer_info) {
1144 for (i = 0; i < rx_ring->count; i++) {
1145 buffer_info = &rx_ring->buffer_info[i];
1147 if (buffer_info->dma)
1148 dma_unmap_single(&pdev->dev,
1149 buffer_info->dma,
1150 2048, DMA_FROM_DEVICE);
1151 if (buffer_info->skb)
1152 dev_kfree_skb(buffer_info->skb);
1156 if (tx_ring->desc) {
1157 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1158 tx_ring->dma);
1159 tx_ring->desc = NULL;
1161 if (rx_ring->desc) {
1162 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1163 rx_ring->dma);
1164 rx_ring->desc = NULL;
1167 kfree(tx_ring->buffer_info);
1168 tx_ring->buffer_info = NULL;
1169 kfree(rx_ring->buffer_info);
1170 rx_ring->buffer_info = NULL;
1173 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1175 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1176 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1177 struct pci_dev *pdev = adapter->pdev;
1178 struct e1000_hw *hw = &adapter->hw;
1179 u32 rctl;
1180 int i;
1181 int ret_val;
1183 /* Setup Tx descriptor ring and Tx buffers */
1185 if (!tx_ring->count)
1186 tx_ring->count = E1000_DEFAULT_TXD;
1188 tx_ring->buffer_info = kcalloc(tx_ring->count,
1189 sizeof(struct e1000_buffer), GFP_KERNEL);
1190 if (!tx_ring->buffer_info) {
1191 ret_val = 1;
1192 goto err_nomem;
1195 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1196 tx_ring->size = ALIGN(tx_ring->size, 4096);
1197 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1198 &tx_ring->dma, GFP_KERNEL);
1199 if (!tx_ring->desc) {
1200 ret_val = 2;
1201 goto err_nomem;
1203 tx_ring->next_to_use = 0;
1204 tx_ring->next_to_clean = 0;
1206 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1207 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1208 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1209 ew32(TDH(0), 0);
1210 ew32(TDT(0), 0);
1211 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1212 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1213 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1215 for (i = 0; i < tx_ring->count; i++) {
1216 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1217 struct sk_buff *skb;
1218 unsigned int skb_size = 1024;
1220 skb = alloc_skb(skb_size, GFP_KERNEL);
1221 if (!skb) {
1222 ret_val = 3;
1223 goto err_nomem;
1225 skb_put(skb, skb_size);
1226 tx_ring->buffer_info[i].skb = skb;
1227 tx_ring->buffer_info[i].length = skb->len;
1228 tx_ring->buffer_info[i].dma =
1229 dma_map_single(&pdev->dev, skb->data, skb->len,
1230 DMA_TO_DEVICE);
1231 if (dma_mapping_error(&pdev->dev,
1232 tx_ring->buffer_info[i].dma)) {
1233 ret_val = 4;
1234 goto err_nomem;
1236 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1237 tx_desc->lower.data = cpu_to_le32(skb->len);
1238 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1239 E1000_TXD_CMD_IFCS |
1240 E1000_TXD_CMD_RS);
1241 tx_desc->upper.data = 0;
1244 /* Setup Rx descriptor ring and Rx buffers */
1246 if (!rx_ring->count)
1247 rx_ring->count = E1000_DEFAULT_RXD;
1249 rx_ring->buffer_info = kcalloc(rx_ring->count,
1250 sizeof(struct e1000_buffer), GFP_KERNEL);
1251 if (!rx_ring->buffer_info) {
1252 ret_val = 5;
1253 goto err_nomem;
1256 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1257 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1258 &rx_ring->dma, GFP_KERNEL);
1259 if (!rx_ring->desc) {
1260 ret_val = 6;
1261 goto err_nomem;
1263 rx_ring->next_to_use = 0;
1264 rx_ring->next_to_clean = 0;
1266 rctl = er32(RCTL);
1267 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1268 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1269 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1270 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1271 ew32(RDLEN(0), rx_ring->size);
1272 ew32(RDH(0), 0);
1273 ew32(RDT(0), 0);
1274 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1275 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1276 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1277 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1278 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1279 ew32(RCTL, rctl);
1281 for (i = 0; i < rx_ring->count; i++) {
1282 union e1000_rx_desc_extended *rx_desc;
1283 struct sk_buff *skb;
1285 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1286 if (!skb) {
1287 ret_val = 7;
1288 goto err_nomem;
1290 skb_reserve(skb, NET_IP_ALIGN);
1291 rx_ring->buffer_info[i].skb = skb;
1292 rx_ring->buffer_info[i].dma =
1293 dma_map_single(&pdev->dev, skb->data, 2048,
1294 DMA_FROM_DEVICE);
1295 if (dma_mapping_error(&pdev->dev,
1296 rx_ring->buffer_info[i].dma)) {
1297 ret_val = 8;
1298 goto err_nomem;
1300 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1301 rx_desc->read.buffer_addr =
1302 cpu_to_le64(rx_ring->buffer_info[i].dma);
1303 memset(skb->data, 0x00, skb->len);
1306 return 0;
1308 err_nomem:
1309 e1000_free_desc_rings(adapter);
1310 return ret_val;
1313 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1315 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1316 e1e_wphy(&adapter->hw, 29, 0x001F);
1317 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1318 e1e_wphy(&adapter->hw, 29, 0x001A);
1319 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1322 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1324 struct e1000_hw *hw = &adapter->hw;
1325 u32 ctrl_reg = 0;
1326 u16 phy_reg = 0;
1327 s32 ret_val = 0;
1329 hw->mac.autoneg = 0;
1331 if (hw->phy.type == e1000_phy_ife) {
1332 /* force 100, set loopback */
1333 e1e_wphy(hw, MII_BMCR, 0x6100);
1335 /* Now set up the MAC to the same speed/duplex as the PHY. */
1336 ctrl_reg = er32(CTRL);
1337 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1338 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1339 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1340 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1341 E1000_CTRL_FD); /* Force Duplex to FULL */
1343 ew32(CTRL, ctrl_reg);
1344 e1e_flush();
1345 usleep_range(500, 1000);
1347 return 0;
1350 /* Specific PHY configuration for loopback */
1351 switch (hw->phy.type) {
1352 case e1000_phy_m88:
1353 /* Auto-MDI/MDIX Off */
1354 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1355 /* reset to update Auto-MDI/MDIX */
1356 e1e_wphy(hw, MII_BMCR, 0x9140);
1357 /* autoneg off */
1358 e1e_wphy(hw, MII_BMCR, 0x8140);
1359 break;
1360 case e1000_phy_gg82563:
1361 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1362 break;
1363 case e1000_phy_bm:
1364 /* Set Default MAC Interface speed to 1GB */
1365 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1366 phy_reg &= ~0x0007;
1367 phy_reg |= 0x006;
1368 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1369 /* Assert SW reset for above settings to take effect */
1370 hw->phy.ops.commit(hw);
1371 usleep_range(1000, 2000);
1372 /* Force Full Duplex */
1373 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1374 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1375 /* Set Link Up (in force link) */
1376 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1377 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1378 /* Force Link */
1379 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1380 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1381 /* Set Early Link Enable */
1382 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1383 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1384 break;
1385 case e1000_phy_82577:
1386 case e1000_phy_82578:
1387 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1388 ret_val = hw->phy.ops.acquire(hw);
1389 if (ret_val) {
1390 e_err("Cannot setup 1Gbps loopback.\n");
1391 return ret_val;
1393 e1000_configure_k1_ich8lan(hw, false);
1394 hw->phy.ops.release(hw);
1395 break;
1396 case e1000_phy_82579:
1397 /* Disable PHY energy detect power down */
1398 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1399 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1400 /* Disable full chip energy detect */
1401 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1402 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1403 /* Enable loopback on the PHY */
1404 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1405 break;
1406 default:
1407 break;
1410 /* force 1000, set loopback */
1411 e1e_wphy(hw, MII_BMCR, 0x4140);
1412 msleep(250);
1414 /* Now set up the MAC to the same speed/duplex as the PHY. */
1415 ctrl_reg = er32(CTRL);
1416 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1417 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1418 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1419 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1420 E1000_CTRL_FD); /* Force Duplex to FULL */
1422 if (adapter->flags & FLAG_IS_ICH)
1423 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1425 if (hw->phy.media_type == e1000_media_type_copper &&
1426 hw->phy.type == e1000_phy_m88) {
1427 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1428 } else {
1429 /* Set the ILOS bit on the fiber Nic if half duplex link is
1430 * detected.
1432 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1433 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1436 ew32(CTRL, ctrl_reg);
1438 /* Disable the receiver on the PHY so when a cable is plugged in, the
1439 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1441 if (hw->phy.type == e1000_phy_m88)
1442 e1000_phy_disable_receiver(adapter);
1444 usleep_range(500, 1000);
1446 return 0;
1449 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1451 struct e1000_hw *hw = &adapter->hw;
1452 u32 ctrl = er32(CTRL);
1453 int link;
1455 /* special requirements for 82571/82572 fiber adapters */
1457 /* jump through hoops to make sure link is up because serdes
1458 * link is hardwired up
1460 ctrl |= E1000_CTRL_SLU;
1461 ew32(CTRL, ctrl);
1463 /* disable autoneg */
1464 ctrl = er32(TXCW);
1465 ctrl &= ~BIT(31);
1466 ew32(TXCW, ctrl);
1468 link = (er32(STATUS) & E1000_STATUS_LU);
1470 if (!link) {
1471 /* set invert loss of signal */
1472 ctrl = er32(CTRL);
1473 ctrl |= E1000_CTRL_ILOS;
1474 ew32(CTRL, ctrl);
1477 /* special write to serdes control register to enable SerDes analog
1478 * loopback
1480 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1481 e1e_flush();
1482 usleep_range(10000, 20000);
1484 return 0;
1487 /* only call this for fiber/serdes connections to es2lan */
1488 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1490 struct e1000_hw *hw = &adapter->hw;
1491 u32 ctrlext = er32(CTRL_EXT);
1492 u32 ctrl = er32(CTRL);
1494 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1495 * on mac_type 80003es2lan)
1497 adapter->tx_fifo_head = ctrlext;
1499 /* clear the serdes mode bits, putting the device into mac loopback */
1500 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1501 ew32(CTRL_EXT, ctrlext);
1503 /* force speed to 1000/FD, link up */
1504 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1506 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1507 ew32(CTRL, ctrl);
1509 /* set mac loopback */
1510 ctrl = er32(RCTL);
1511 ctrl |= E1000_RCTL_LBM_MAC;
1512 ew32(RCTL, ctrl);
1514 /* set testing mode parameters (no need to reset later) */
1515 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1516 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1517 ew32(KMRNCTRLSTA,
1518 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1520 return 0;
1523 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1525 struct e1000_hw *hw = &adapter->hw;
1526 u32 rctl, fext_nvm11, tarc0;
1528 if (hw->mac.type == e1000_pch_spt) {
1529 fext_nvm11 = er32(FEXTNVM11);
1530 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1531 ew32(FEXTNVM11, fext_nvm11);
1532 tarc0 = er32(TARC(0));
1533 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1534 tarc0 &= 0xcfffffff;
1535 /* set bit 29 (value of MULR requests is now 2) */
1536 tarc0 |= 0x20000000;
1537 ew32(TARC(0), tarc0);
1539 if (hw->phy.media_type == e1000_media_type_fiber ||
1540 hw->phy.media_type == e1000_media_type_internal_serdes) {
1541 switch (hw->mac.type) {
1542 case e1000_80003es2lan:
1543 return e1000_set_es2lan_mac_loopback(adapter);
1544 case e1000_82571:
1545 case e1000_82572:
1546 return e1000_set_82571_fiber_loopback(adapter);
1547 default:
1548 rctl = er32(RCTL);
1549 rctl |= E1000_RCTL_LBM_TCVR;
1550 ew32(RCTL, rctl);
1551 return 0;
1553 } else if (hw->phy.media_type == e1000_media_type_copper) {
1554 return e1000_integrated_phy_loopback(adapter);
1557 return 7;
1560 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1562 struct e1000_hw *hw = &adapter->hw;
1563 u32 rctl, fext_nvm11, tarc0;
1564 u16 phy_reg;
1566 rctl = er32(RCTL);
1567 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1568 ew32(RCTL, rctl);
1570 switch (hw->mac.type) {
1571 case e1000_pch_spt:
1572 fext_nvm11 = er32(FEXTNVM11);
1573 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1574 ew32(FEXTNVM11, fext_nvm11);
1575 tarc0 = er32(TARC(0));
1576 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1577 /* set bit 29 (value of MULR requests is now 0) */
1578 tarc0 &= 0xcfffffff;
1579 ew32(TARC(0), tarc0);
1580 /* fall through */
1581 case e1000_80003es2lan:
1582 if (hw->phy.media_type == e1000_media_type_fiber ||
1583 hw->phy.media_type == e1000_media_type_internal_serdes) {
1584 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1585 ew32(CTRL_EXT, adapter->tx_fifo_head);
1586 adapter->tx_fifo_head = 0;
1588 /* fall through */
1589 case e1000_82571:
1590 case e1000_82572:
1591 if (hw->phy.media_type == e1000_media_type_fiber ||
1592 hw->phy.media_type == e1000_media_type_internal_serdes) {
1593 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1594 e1e_flush();
1595 usleep_range(10000, 20000);
1596 break;
1598 /* Fall Through */
1599 default:
1600 hw->mac.autoneg = 1;
1601 if (hw->phy.type == e1000_phy_gg82563)
1602 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1603 e1e_rphy(hw, MII_BMCR, &phy_reg);
1604 if (phy_reg & BMCR_LOOPBACK) {
1605 phy_reg &= ~BMCR_LOOPBACK;
1606 e1e_wphy(hw, MII_BMCR, phy_reg);
1607 if (hw->phy.ops.commit)
1608 hw->phy.ops.commit(hw);
1610 break;
1614 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1615 unsigned int frame_size)
1617 memset(skb->data, 0xFF, frame_size);
1618 frame_size &= ~1;
1619 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1620 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1621 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1624 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1625 unsigned int frame_size)
1627 frame_size &= ~1;
1628 if (*(skb->data + 3) == 0xFF)
1629 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1630 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1631 return 0;
1632 return 13;
1635 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1637 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1638 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1639 struct pci_dev *pdev = adapter->pdev;
1640 struct e1000_hw *hw = &adapter->hw;
1641 struct e1000_buffer *buffer_info;
1642 int i, j, k, l;
1643 int lc;
1644 int good_cnt;
1645 int ret_val = 0;
1646 unsigned long time;
1648 ew32(RDT(0), rx_ring->count - 1);
1650 /* Calculate the loop count based on the largest descriptor ring
1651 * The idea is to wrap the largest ring a number of times using 64
1652 * send/receive pairs during each loop
1655 if (rx_ring->count <= tx_ring->count)
1656 lc = ((tx_ring->count / 64) * 2) + 1;
1657 else
1658 lc = ((rx_ring->count / 64) * 2) + 1;
1660 k = 0;
1661 l = 0;
1662 /* loop count loop */
1663 for (j = 0; j <= lc; j++) {
1664 /* send the packets */
1665 for (i = 0; i < 64; i++) {
1666 buffer_info = &tx_ring->buffer_info[k];
1668 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1669 dma_sync_single_for_device(&pdev->dev,
1670 buffer_info->dma,
1671 buffer_info->length,
1672 DMA_TO_DEVICE);
1673 k++;
1674 if (k == tx_ring->count)
1675 k = 0;
1677 ew32(TDT(0), k);
1678 e1e_flush();
1679 msleep(200);
1680 time = jiffies; /* set the start time for the receive */
1681 good_cnt = 0;
1682 /* receive the sent packets */
1683 do {
1684 buffer_info = &rx_ring->buffer_info[l];
1686 dma_sync_single_for_cpu(&pdev->dev,
1687 buffer_info->dma, 2048,
1688 DMA_FROM_DEVICE);
1690 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1691 1024);
1692 if (!ret_val)
1693 good_cnt++;
1694 l++;
1695 if (l == rx_ring->count)
1696 l = 0;
1697 /* time + 20 msecs (200 msecs on 2.4) is more than
1698 * enough time to complete the receives, if it's
1699 * exceeded, break and error off
1701 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1702 if (good_cnt != 64) {
1703 ret_val = 13; /* ret_val is the same as mis-compare */
1704 break;
1706 if (time_after(jiffies, time + 20)) {
1707 ret_val = 14; /* error code for time out error */
1708 break;
1711 return ret_val;
1714 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1716 struct e1000_hw *hw = &adapter->hw;
1718 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719 if (hw->phy.ops.check_reset_block &&
1720 hw->phy.ops.check_reset_block(hw)) {
1721 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1722 *data = 0;
1723 goto out;
1726 *data = e1000_setup_desc_rings(adapter);
1727 if (*data)
1728 goto out;
1730 *data = e1000_setup_loopback_test(adapter);
1731 if (*data)
1732 goto err_loopback;
1734 *data = e1000_run_loopback_test(adapter);
1735 e1000_loopback_cleanup(adapter);
1737 err_loopback:
1738 e1000_free_desc_rings(adapter);
1739 out:
1740 return *data;
1743 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1745 struct e1000_hw *hw = &adapter->hw;
1747 *data = 0;
1748 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1749 int i = 0;
1751 hw->mac.serdes_has_link = false;
1753 /* On some blade server designs, link establishment
1754 * could take as long as 2-3 minutes
1756 do {
1757 hw->mac.ops.check_for_link(hw);
1758 if (hw->mac.serdes_has_link)
1759 return *data;
1760 msleep(20);
1761 } while (i++ < 3750);
1763 *data = 1;
1764 } else {
1765 hw->mac.ops.check_for_link(hw);
1766 if (hw->mac.autoneg)
1767 /* On some Phy/switch combinations, link establishment
1768 * can take a few seconds more than expected.
1770 msleep_interruptible(5000);
1772 if (!(er32(STATUS) & E1000_STATUS_LU))
1773 *data = 1;
1775 return *data;
1778 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1779 int sset)
1781 switch (sset) {
1782 case ETH_SS_TEST:
1783 return E1000_TEST_LEN;
1784 case ETH_SS_STATS:
1785 return E1000_STATS_LEN;
1786 default:
1787 return -EOPNOTSUPP;
1791 static void e1000_diag_test(struct net_device *netdev,
1792 struct ethtool_test *eth_test, u64 *data)
1794 struct e1000_adapter *adapter = netdev_priv(netdev);
1795 u16 autoneg_advertised;
1796 u8 forced_speed_duplex;
1797 u8 autoneg;
1798 bool if_running = netif_running(netdev);
1800 pm_runtime_get_sync(netdev->dev.parent);
1802 set_bit(__E1000_TESTING, &adapter->state);
1804 if (!if_running) {
1805 /* Get control of and reset hardware */
1806 if (adapter->flags & FLAG_HAS_AMT)
1807 e1000e_get_hw_control(adapter);
1809 e1000e_power_up_phy(adapter);
1811 adapter->hw.phy.autoneg_wait_to_complete = 1;
1812 e1000e_reset(adapter);
1813 adapter->hw.phy.autoneg_wait_to_complete = 0;
1816 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1817 /* Offline tests */
1819 /* save speed, duplex, autoneg settings */
1820 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1821 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1822 autoneg = adapter->hw.mac.autoneg;
1824 e_info("offline testing starting\n");
1826 if (if_running)
1827 /* indicate we're in test mode */
1828 e1000e_close(netdev);
1830 if (e1000_reg_test(adapter, &data[0]))
1831 eth_test->flags |= ETH_TEST_FL_FAILED;
1833 e1000e_reset(adapter);
1834 if (e1000_eeprom_test(adapter, &data[1]))
1835 eth_test->flags |= ETH_TEST_FL_FAILED;
1837 e1000e_reset(adapter);
1838 if (e1000_intr_test(adapter, &data[2]))
1839 eth_test->flags |= ETH_TEST_FL_FAILED;
1841 e1000e_reset(adapter);
1842 if (e1000_loopback_test(adapter, &data[3]))
1843 eth_test->flags |= ETH_TEST_FL_FAILED;
1845 /* force this routine to wait until autoneg complete/timeout */
1846 adapter->hw.phy.autoneg_wait_to_complete = 1;
1847 e1000e_reset(adapter);
1848 adapter->hw.phy.autoneg_wait_to_complete = 0;
1850 if (e1000_link_test(adapter, &data[4]))
1851 eth_test->flags |= ETH_TEST_FL_FAILED;
1853 /* restore speed, duplex, autoneg settings */
1854 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1855 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1856 adapter->hw.mac.autoneg = autoneg;
1857 e1000e_reset(adapter);
1859 clear_bit(__E1000_TESTING, &adapter->state);
1860 if (if_running)
1861 e1000e_open(netdev);
1862 } else {
1863 /* Online tests */
1865 e_info("online testing starting\n");
1867 /* register, eeprom, intr and loopback tests not run online */
1868 data[0] = 0;
1869 data[1] = 0;
1870 data[2] = 0;
1871 data[3] = 0;
1873 if (e1000_link_test(adapter, &data[4]))
1874 eth_test->flags |= ETH_TEST_FL_FAILED;
1876 clear_bit(__E1000_TESTING, &adapter->state);
1879 if (!if_running) {
1880 e1000e_reset(adapter);
1882 if (adapter->flags & FLAG_HAS_AMT)
1883 e1000e_release_hw_control(adapter);
1886 msleep_interruptible(4 * 1000);
1888 pm_runtime_put_sync(netdev->dev.parent);
1891 static void e1000_get_wol(struct net_device *netdev,
1892 struct ethtool_wolinfo *wol)
1894 struct e1000_adapter *adapter = netdev_priv(netdev);
1896 wol->supported = 0;
1897 wol->wolopts = 0;
1899 if (!(adapter->flags & FLAG_HAS_WOL) ||
1900 !device_can_wakeup(&adapter->pdev->dev))
1901 return;
1903 wol->supported = WAKE_UCAST | WAKE_MCAST |
1904 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1906 /* apply any specific unsupported masks here */
1907 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1908 wol->supported &= ~WAKE_UCAST;
1910 if (adapter->wol & E1000_WUFC_EX)
1911 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1914 if (adapter->wol & E1000_WUFC_EX)
1915 wol->wolopts |= WAKE_UCAST;
1916 if (adapter->wol & E1000_WUFC_MC)
1917 wol->wolopts |= WAKE_MCAST;
1918 if (adapter->wol & E1000_WUFC_BC)
1919 wol->wolopts |= WAKE_BCAST;
1920 if (adapter->wol & E1000_WUFC_MAG)
1921 wol->wolopts |= WAKE_MAGIC;
1922 if (adapter->wol & E1000_WUFC_LNKC)
1923 wol->wolopts |= WAKE_PHY;
1926 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1928 struct e1000_adapter *adapter = netdev_priv(netdev);
1930 if (!(adapter->flags & FLAG_HAS_WOL) ||
1931 !device_can_wakeup(&adapter->pdev->dev) ||
1932 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1933 WAKE_MAGIC | WAKE_PHY)))
1934 return -EOPNOTSUPP;
1936 /* these settings will always override what we currently have */
1937 adapter->wol = 0;
1939 if (wol->wolopts & WAKE_UCAST)
1940 adapter->wol |= E1000_WUFC_EX;
1941 if (wol->wolopts & WAKE_MCAST)
1942 adapter->wol |= E1000_WUFC_MC;
1943 if (wol->wolopts & WAKE_BCAST)
1944 adapter->wol |= E1000_WUFC_BC;
1945 if (wol->wolopts & WAKE_MAGIC)
1946 adapter->wol |= E1000_WUFC_MAG;
1947 if (wol->wolopts & WAKE_PHY)
1948 adapter->wol |= E1000_WUFC_LNKC;
1950 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1952 return 0;
1955 static int e1000_set_phys_id(struct net_device *netdev,
1956 enum ethtool_phys_id_state state)
1958 struct e1000_adapter *adapter = netdev_priv(netdev);
1959 struct e1000_hw *hw = &adapter->hw;
1961 switch (state) {
1962 case ETHTOOL_ID_ACTIVE:
1963 pm_runtime_get_sync(netdev->dev.parent);
1965 if (!hw->mac.ops.blink_led)
1966 return 2; /* cycle on/off twice per second */
1968 hw->mac.ops.blink_led(hw);
1969 break;
1971 case ETHTOOL_ID_INACTIVE:
1972 if (hw->phy.type == e1000_phy_ife)
1973 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1974 hw->mac.ops.led_off(hw);
1975 hw->mac.ops.cleanup_led(hw);
1976 pm_runtime_put_sync(netdev->dev.parent);
1977 break;
1979 case ETHTOOL_ID_ON:
1980 hw->mac.ops.led_on(hw);
1981 break;
1983 case ETHTOOL_ID_OFF:
1984 hw->mac.ops.led_off(hw);
1985 break;
1988 return 0;
1991 static int e1000_get_coalesce(struct net_device *netdev,
1992 struct ethtool_coalesce *ec)
1994 struct e1000_adapter *adapter = netdev_priv(netdev);
1996 if (adapter->itr_setting <= 4)
1997 ec->rx_coalesce_usecs = adapter->itr_setting;
1998 else
1999 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2001 return 0;
2004 static int e1000_set_coalesce(struct net_device *netdev,
2005 struct ethtool_coalesce *ec)
2007 struct e1000_adapter *adapter = netdev_priv(netdev);
2009 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2010 ((ec->rx_coalesce_usecs > 4) &&
2011 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2012 (ec->rx_coalesce_usecs == 2))
2013 return -EINVAL;
2015 if (ec->rx_coalesce_usecs == 4) {
2016 adapter->itr_setting = 4;
2017 adapter->itr = adapter->itr_setting;
2018 } else if (ec->rx_coalesce_usecs <= 3) {
2019 adapter->itr = 20000;
2020 adapter->itr_setting = ec->rx_coalesce_usecs;
2021 } else {
2022 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2023 adapter->itr_setting = adapter->itr & ~3;
2026 pm_runtime_get_sync(netdev->dev.parent);
2028 if (adapter->itr_setting != 0)
2029 e1000e_write_itr(adapter, adapter->itr);
2030 else
2031 e1000e_write_itr(adapter, 0);
2033 pm_runtime_put_sync(netdev->dev.parent);
2035 return 0;
2038 static int e1000_nway_reset(struct net_device *netdev)
2040 struct e1000_adapter *adapter = netdev_priv(netdev);
2042 if (!netif_running(netdev))
2043 return -EAGAIN;
2045 if (!adapter->hw.mac.autoneg)
2046 return -EINVAL;
2048 pm_runtime_get_sync(netdev->dev.parent);
2049 e1000e_reinit_locked(adapter);
2050 pm_runtime_put_sync(netdev->dev.parent);
2052 return 0;
2055 static void e1000_get_ethtool_stats(struct net_device *netdev,
2056 struct ethtool_stats __always_unused *stats,
2057 u64 *data)
2059 struct e1000_adapter *adapter = netdev_priv(netdev);
2060 struct rtnl_link_stats64 net_stats;
2061 int i;
2062 char *p = NULL;
2064 pm_runtime_get_sync(netdev->dev.parent);
2066 e1000e_get_stats64(netdev, &net_stats);
2068 pm_runtime_put_sync(netdev->dev.parent);
2070 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071 switch (e1000_gstrings_stats[i].type) {
2072 case NETDEV_STATS:
2073 p = (char *)&net_stats +
2074 e1000_gstrings_stats[i].stat_offset;
2075 break;
2076 case E1000_STATS:
2077 p = (char *)adapter +
2078 e1000_gstrings_stats[i].stat_offset;
2079 break;
2080 default:
2081 data[i] = 0;
2082 continue;
2085 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2086 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2090 static void e1000_get_strings(struct net_device __always_unused *netdev,
2091 u32 stringset, u8 *data)
2093 u8 *p = data;
2094 int i;
2096 switch (stringset) {
2097 case ETH_SS_TEST:
2098 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2099 break;
2100 case ETH_SS_STATS:
2101 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2102 memcpy(p, e1000_gstrings_stats[i].stat_string,
2103 ETH_GSTRING_LEN);
2104 p += ETH_GSTRING_LEN;
2106 break;
2110 static int e1000_get_rxnfc(struct net_device *netdev,
2111 struct ethtool_rxnfc *info,
2112 u32 __always_unused *rule_locs)
2114 info->data = 0;
2116 switch (info->cmd) {
2117 case ETHTOOL_GRXFH: {
2118 struct e1000_adapter *adapter = netdev_priv(netdev);
2119 struct e1000_hw *hw = &adapter->hw;
2120 u32 mrqc;
2122 pm_runtime_get_sync(netdev->dev.parent);
2123 mrqc = er32(MRQC);
2124 pm_runtime_put_sync(netdev->dev.parent);
2126 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2127 return 0;
2129 switch (info->flow_type) {
2130 case TCP_V4_FLOW:
2131 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2132 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2133 /* fall through */
2134 case UDP_V4_FLOW:
2135 case SCTP_V4_FLOW:
2136 case AH_ESP_V4_FLOW:
2137 case IPV4_FLOW:
2138 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2139 info->data |= RXH_IP_SRC | RXH_IP_DST;
2140 break;
2141 case TCP_V6_FLOW:
2142 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2143 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144 /* fall through */
2145 case UDP_V6_FLOW:
2146 case SCTP_V6_FLOW:
2147 case AH_ESP_V6_FLOW:
2148 case IPV6_FLOW:
2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2150 info->data |= RXH_IP_SRC | RXH_IP_DST;
2151 break;
2152 default:
2153 break;
2155 return 0;
2157 default:
2158 return -EOPNOTSUPP;
2162 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2164 struct e1000_adapter *adapter = netdev_priv(netdev);
2165 struct e1000_hw *hw = &adapter->hw;
2166 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2167 u32 ret_val;
2169 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2170 return -EOPNOTSUPP;
2172 switch (hw->phy.type) {
2173 case e1000_phy_82579:
2174 cap_addr = I82579_EEE_CAPABILITY;
2175 lpa_addr = I82579_EEE_LP_ABILITY;
2176 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2177 break;
2178 case e1000_phy_i217:
2179 cap_addr = I217_EEE_CAPABILITY;
2180 lpa_addr = I217_EEE_LP_ABILITY;
2181 pcs_stat_addr = I217_EEE_PCS_STATUS;
2182 break;
2183 default:
2184 return -EOPNOTSUPP;
2187 pm_runtime_get_sync(netdev->dev.parent);
2189 ret_val = hw->phy.ops.acquire(hw);
2190 if (ret_val) {
2191 pm_runtime_put_sync(netdev->dev.parent);
2192 return -EBUSY;
2195 /* EEE Capability */
2196 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2197 if (ret_val)
2198 goto release;
2199 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2201 /* EEE Advertised */
2202 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2204 /* EEE Link Partner Advertised */
2205 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2206 if (ret_val)
2207 goto release;
2208 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2210 /* EEE PCS Status */
2211 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2212 if (ret_val)
2213 goto release;
2214 if (hw->phy.type == e1000_phy_82579)
2215 phy_data <<= 8;
2217 /* Result of the EEE auto negotiation - there is no register that
2218 * has the status of the EEE negotiation so do a best-guess based
2219 * on whether Tx or Rx LPI indications have been received.
2221 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2222 edata->eee_active = true;
2224 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2225 edata->tx_lpi_enabled = true;
2226 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2228 release:
2229 hw->phy.ops.release(hw);
2230 if (ret_val)
2231 ret_val = -ENODATA;
2233 pm_runtime_put_sync(netdev->dev.parent);
2235 return ret_val;
2238 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2240 struct e1000_adapter *adapter = netdev_priv(netdev);
2241 struct e1000_hw *hw = &adapter->hw;
2242 struct ethtool_eee eee_curr;
2243 s32 ret_val;
2245 ret_val = e1000e_get_eee(netdev, &eee_curr);
2246 if (ret_val)
2247 return ret_val;
2249 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2250 e_err("Setting EEE tx-lpi is not supported\n");
2251 return -EINVAL;
2254 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2255 e_err("Setting EEE Tx LPI timer is not supported\n");
2256 return -EINVAL;
2259 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2260 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2261 return -EINVAL;
2264 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2266 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2268 pm_runtime_get_sync(netdev->dev.parent);
2270 /* reset the link */
2271 if (netif_running(netdev))
2272 e1000e_reinit_locked(adapter);
2273 else
2274 e1000e_reset(adapter);
2276 pm_runtime_put_sync(netdev->dev.parent);
2278 return 0;
2281 static int e1000e_get_ts_info(struct net_device *netdev,
2282 struct ethtool_ts_info *info)
2284 struct e1000_adapter *adapter = netdev_priv(netdev);
2286 ethtool_op_get_ts_info(netdev, info);
2288 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2289 return 0;
2291 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2292 SOF_TIMESTAMPING_RX_HARDWARE |
2293 SOF_TIMESTAMPING_RAW_HARDWARE);
2295 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2297 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2298 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2299 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2300 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2301 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2302 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2303 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2304 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2305 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2306 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2307 BIT(HWTSTAMP_FILTER_ALL));
2309 if (adapter->ptp_clock)
2310 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2312 return 0;
2315 static const struct ethtool_ops e1000_ethtool_ops = {
2316 .get_settings = e1000_get_settings,
2317 .set_settings = e1000_set_settings,
2318 .get_drvinfo = e1000_get_drvinfo,
2319 .get_regs_len = e1000_get_regs_len,
2320 .get_regs = e1000_get_regs,
2321 .get_wol = e1000_get_wol,
2322 .set_wol = e1000_set_wol,
2323 .get_msglevel = e1000_get_msglevel,
2324 .set_msglevel = e1000_set_msglevel,
2325 .nway_reset = e1000_nway_reset,
2326 .get_link = ethtool_op_get_link,
2327 .get_eeprom_len = e1000_get_eeprom_len,
2328 .get_eeprom = e1000_get_eeprom,
2329 .set_eeprom = e1000_set_eeprom,
2330 .get_ringparam = e1000_get_ringparam,
2331 .set_ringparam = e1000_set_ringparam,
2332 .get_pauseparam = e1000_get_pauseparam,
2333 .set_pauseparam = e1000_set_pauseparam,
2334 .self_test = e1000_diag_test,
2335 .get_strings = e1000_get_strings,
2336 .set_phys_id = e1000_set_phys_id,
2337 .get_ethtool_stats = e1000_get_ethtool_stats,
2338 .get_sset_count = e1000e_get_sset_count,
2339 .get_coalesce = e1000_get_coalesce,
2340 .set_coalesce = e1000_set_coalesce,
2341 .get_rxnfc = e1000_get_rxnfc,
2342 .get_ts_info = e1000e_get_ts_info,
2343 .get_eee = e1000e_get_eee,
2344 .set_eee = e1000e_set_eee,
2347 void e1000e_set_ethtool_ops(struct net_device *netdev)
2349 netdev->ethtool_ops = &e1000_ethtool_ops;