1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 /* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status
{
65 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
67 u16 dael
:1; /* bit 2 Direct Access error Log */
68 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1
:2; /* bit 13:6 Reserved */
71 u16 reserved2
:6; /* bit 13:6 Reserved */
72 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl
{
82 u16 flcgo
:1; /* 0 Flash Cycle Go */
83 u16 flcycle
:2; /* 2:1 Flash Cycle */
84 u16 reserved
:5; /* 7:3 Reserved */
85 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn
:6; /* 15:10 Reserved */
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc
{
94 u32 grra
:8; /* 0:7 GbE region Read Access */
95 u32 grwa
:8; /* 8:15 GbE region Write Access */
96 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range
{
105 u32 base
:13; /* 0:12 Protected Range Base */
106 u32 reserved1
:2; /* 13:14 Reserved */
107 u32 rpe
:1; /* 15 Read Protection Enable */
108 u32 limit
:13; /* 16:28 Protected Range Limit */
109 u32 reserved2
:2; /* 29:30 Reserved */
110 u32 wpe
:1; /* 31 Write Protection Enable */
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
117 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
118 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
119 u32 offset
, u8 byte
);
120 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
122 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
124 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
126 static s32
e1000_read_flash_data32_ich8lan(struct e1000_hw
*hw
, u32 offset
,
128 static s32
e1000_read_flash_dword_ich8lan(struct e1000_hw
*hw
,
129 u32 offset
, u32
*data
);
130 static s32
e1000_write_flash_data32_ich8lan(struct e1000_hw
*hw
,
131 u32 offset
, u32 data
);
132 static s32
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw
*hw
,
133 u32 offset
, u32 dword
);
134 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
135 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
136 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
137 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
138 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
139 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
140 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
141 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
142 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
143 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
146 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
147 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
150 static int e1000_rar_set_pch2lan(struct e1000_hw
*hw
, u8
*addr
, u32 index
);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw
*hw
, u8
*addr
, u32 index
);
152 static u32
e1000_rar_get_count_pch_lpt(struct e1000_hw
*hw
);
153 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
);
155 static s32
e1000_disable_ulp_lpt_lp(struct e1000_hw
*hw
, bool force
);
156 static s32
e1000_setup_copper_link_pch_lpt(struct e1000_hw
*hw
);
157 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
);
159 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
161 return readw(hw
->flash_address
+ reg
);
164 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
166 return readl(hw
->flash_address
+ reg
);
169 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
171 writew(val
, hw
->flash_address
+ reg
);
174 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
176 writel(val
, hw
->flash_address
+ reg
);
179 #define er16flash(reg) __er16flash(hw, (reg))
180 #define er32flash(reg) __er32flash(hw, (reg))
181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
192 * Assumes the sw/fw/hw semaphore is already acquired.
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw
*hw
)
202 for (retry_count
= 0; retry_count
< 2; retry_count
++) {
203 ret_val
= e1e_rphy_locked(hw
, MII_PHYSID1
, &phy_reg
);
204 if (ret_val
|| (phy_reg
== 0xFFFF))
206 phy_id
= (u32
)(phy_reg
<< 16);
208 ret_val
= e1e_rphy_locked(hw
, MII_PHYSID2
, &phy_reg
);
209 if (ret_val
|| (phy_reg
== 0xFFFF)) {
213 phy_id
|= (u32
)(phy_reg
& PHY_REVISION_MASK
);
218 if (hw
->phy
.id
== phy_id
)
222 hw
->phy
.revision
= (u32
)(phy_reg
& ~PHY_REVISION_MASK
);
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
229 if (hw
->mac
.type
< e1000_pch_lpt
) {
230 hw
->phy
.ops
.release(hw
);
231 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
233 ret_val
= e1000e_get_phy_id(hw
);
234 hw
->phy
.ops
.acquire(hw
);
240 if ((hw
->mac
.type
== e1000_pch_lpt
) || (hw
->mac
.type
== e1000_pch_spt
)) {
241 /* Only unforce SMBus if ME is not active */
242 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
243 /* Unforce SMBus mode in PHY */
244 e1e_rphy_locked(hw
, CV_SMB_CTRL
, &phy_reg
);
245 phy_reg
&= ~CV_SMB_CTRL_FORCE_SMBUS
;
246 e1e_wphy_locked(hw
, CV_SMB_CTRL
, phy_reg
);
248 /* Unforce SMBus mode in MAC */
249 mac_reg
= er32(CTRL_EXT
);
250 mac_reg
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
251 ew32(CTRL_EXT
, mac_reg
);
259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260 * @hw: pointer to the HW structure
262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263 * used to reset the PHY to a quiescent state when necessary.
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw
*hw
)
269 /* Set Phy Config Counter to 50msec */
270 mac_reg
= er32(FEXTNVM3
);
271 mac_reg
&= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK
;
272 mac_reg
|= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC
;
273 ew32(FEXTNVM3
, mac_reg
);
275 /* Toggle LANPHYPC Value bit */
276 mac_reg
= er32(CTRL
);
277 mac_reg
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
278 mac_reg
&= ~E1000_CTRL_LANPHYPC_VALUE
;
281 usleep_range(10, 20);
282 mac_reg
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
286 if (hw
->mac
.type
< e1000_pch_lpt
) {
292 usleep_range(5000, 10000);
293 } while (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LPCD
) && count
--);
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
303 * Workarounds/flow necessary for PHY initialization during driver load
306 static s32
e1000_init_phy_workarounds_pchlan(struct e1000_hw
*hw
)
308 struct e1000_adapter
*adapter
= hw
->adapter
;
309 u32 mac_reg
, fwsm
= er32(FWSM
);
312 /* Gate automatic PHY configuration by hardware on managed and
313 * non-managed 82579 and newer adapters.
315 e1000_gate_hw_phy_config_ich8lan(hw
, true);
317 /* It is not possible to be certain of the current state of ULP
318 * so forcibly disable it.
320 hw
->dev_spec
.ich8lan
.ulp_state
= e1000_ulp_state_unknown
;
321 e1000_disable_ulp_lpt_lp(hw
, true);
323 ret_val
= hw
->phy
.ops
.acquire(hw
);
325 e_dbg("Failed to initialize PHY flow\n");
329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
330 * inaccessible and resetting the PHY is not blocked, toggle the
331 * LANPHYPC Value bit to force the interconnect to PCIe mode.
333 switch (hw
->mac
.type
) {
336 if (e1000_phy_is_accessible_pchlan(hw
))
339 /* Before toggling LANPHYPC, see if PHY is accessible by
340 * forcing MAC to SMBus mode first.
342 mac_reg
= er32(CTRL_EXT
);
343 mac_reg
|= E1000_CTRL_EXT_FORCE_SMBUS
;
344 ew32(CTRL_EXT
, mac_reg
);
346 /* Wait 50 milliseconds for MAC to finish any retries
347 * that it might be trying to perform from previous
348 * attempts to acknowledge any phy read requests.
354 if (e1000_phy_is_accessible_pchlan(hw
))
359 if ((hw
->mac
.type
== e1000_pchlan
) &&
360 (fwsm
& E1000_ICH_FWSM_FW_VALID
))
363 if (hw
->phy
.ops
.check_reset_block(hw
)) {
364 e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 ret_val
= -E1000_ERR_PHY
;
369 /* Toggle LANPHYPC Value bit */
370 e1000_toggle_lanphypc_pch_lpt(hw
);
371 if (hw
->mac
.type
>= e1000_pch_lpt
) {
372 if (e1000_phy_is_accessible_pchlan(hw
))
375 /* Toggling LANPHYPC brings the PHY out of SMBus mode
376 * so ensure that the MAC is also out of SMBus mode
378 mac_reg
= er32(CTRL_EXT
);
379 mac_reg
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
380 ew32(CTRL_EXT
, mac_reg
);
382 if (e1000_phy_is_accessible_pchlan(hw
))
385 ret_val
= -E1000_ERR_PHY
;
392 hw
->phy
.ops
.release(hw
);
395 /* Check to see if able to reset PHY. Print error if not */
396 if (hw
->phy
.ops
.check_reset_block(hw
)) {
397 e_err("Reset blocked by ME\n");
401 /* Reset the PHY before any access to it. Doing so, ensures
402 * that the PHY is in a known good state before we read/write
403 * PHY registers. The generic reset is sufficient here,
404 * because we haven't determined the PHY type yet.
406 ret_val
= e1000e_phy_hw_reset_generic(hw
);
410 /* On a successful reset, possibly need to wait for the PHY
411 * to quiesce to an accessible state before returning control
412 * to the calling function. If the PHY does not quiesce, then
413 * return E1000E_BLK_PHY_RESET, as this is the condition that
416 ret_val
= hw
->phy
.ops
.check_reset_block(hw
);
418 e_err("ME blocked access to PHY after reset\n");
422 /* Ungate automatic PHY configuration on non-managed 82579 */
423 if ((hw
->mac
.type
== e1000_pch2lan
) &&
424 !(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
425 usleep_range(10000, 20000);
426 e1000_gate_hw_phy_config_ich8lan(hw
, false);
433 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
434 * @hw: pointer to the HW structure
436 * Initialize family-specific PHY parameters and function pointers.
438 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
440 struct e1000_phy_info
*phy
= &hw
->phy
;
444 phy
->reset_delay_us
= 100;
446 phy
->ops
.set_page
= e1000_set_page_igp
;
447 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
448 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
449 phy
->ops
.read_reg_page
= e1000_read_phy_reg_page_hv
;
450 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
451 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
452 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
453 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
454 phy
->ops
.write_reg_page
= e1000_write_phy_reg_page_hv
;
455 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
456 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
457 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
459 phy
->id
= e1000_phy_unknown
;
461 ret_val
= e1000_init_phy_workarounds_pchlan(hw
);
465 if (phy
->id
== e1000_phy_unknown
)
466 switch (hw
->mac
.type
) {
468 ret_val
= e1000e_get_phy_id(hw
);
471 if ((phy
->id
!= 0) && (phy
->id
!= PHY_REVISION_MASK
))
477 /* In case the PHY needs to be in mdio slow mode,
478 * set slow mode and try to get the PHY id again.
480 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
483 ret_val
= e1000e_get_phy_id(hw
);
488 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
491 case e1000_phy_82577
:
492 case e1000_phy_82579
:
494 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
495 phy
->ops
.force_speed_duplex
=
496 e1000_phy_force_speed_duplex_82577
;
497 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
498 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
499 phy
->ops
.commit
= e1000e_phy_sw_reset
;
501 case e1000_phy_82578
:
502 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
503 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
504 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
505 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
508 ret_val
= -E1000_ERR_PHY
;
516 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517 * @hw: pointer to the HW structure
519 * Initialize family-specific PHY parameters and function pointers.
521 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
523 struct e1000_phy_info
*phy
= &hw
->phy
;
528 phy
->reset_delay_us
= 100;
530 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
531 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
533 /* We may need to do this twice - once for IGP and if that fails,
534 * we'll set BM func pointers and try again
536 ret_val
= e1000e_determine_phy_address(hw
);
538 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
539 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
540 ret_val
= e1000e_determine_phy_address(hw
);
542 e_dbg("Cannot determine PHY addr. Erroring out\n");
548 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
550 usleep_range(1000, 2000);
551 ret_val
= e1000e_get_phy_id(hw
);
558 case IGP03E1000_E_PHY_ID
:
559 phy
->type
= e1000_phy_igp_3
;
560 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
561 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
562 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
563 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
564 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
565 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
568 case IFE_PLUS_E_PHY_ID
:
570 phy
->type
= e1000_phy_ife
;
571 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
572 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
573 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
574 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
576 case BME1000_E_PHY_ID
:
577 phy
->type
= e1000_phy_bm
;
578 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
579 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
580 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
581 phy
->ops
.commit
= e1000e_phy_sw_reset
;
582 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
583 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
584 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
587 return -E1000_ERR_PHY
;
594 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595 * @hw: pointer to the HW structure
597 * Initialize family-specific NVM parameters and function
600 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
602 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
603 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
604 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
608 nvm
->type
= e1000_nvm_flash_sw
;
610 if (hw
->mac
.type
== e1000_pch_spt
) {
611 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 * STRAP register. This is because in SPT the GbE Flash region
613 * is no longer accessed through the flash registers. Instead,
614 * the mechanism has changed, and the Flash region access
615 * registers are now implemented in GbE memory space.
617 nvm
->flash_base_addr
= 0;
618 nvm_size
= (((er32(STRAP
) >> 1) & 0x1F) + 1)
619 * NVM_SIZE_MULTIPLIER
;
620 nvm
->flash_bank_size
= nvm_size
/ 2;
621 /* Adjust to word count */
622 nvm
->flash_bank_size
/= sizeof(u16
);
623 /* Set the base address for flash register access */
624 hw
->flash_address
= hw
->hw_addr
+ E1000_FLASH_BASE_ADDR
;
626 /* Can't read flash registers if register set isn't mapped. */
627 if (!hw
->flash_address
) {
628 e_dbg("ERROR: Flash registers not mapped\n");
629 return -E1000_ERR_CONFIG
;
632 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
634 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 * Add 1 to sector_end_addr since this sector is included in
638 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
639 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
641 /* flash_base_addr is byte-aligned */
642 nvm
->flash_base_addr
= sector_base_addr
643 << FLASH_SECTOR_ADDR_SHIFT
;
645 /* find total size of the NVM, then cut in half since the total
646 * size represents two separate NVM banks.
648 nvm
->flash_bank_size
= ((sector_end_addr
- sector_base_addr
)
649 << FLASH_SECTOR_ADDR_SHIFT
);
650 nvm
->flash_bank_size
/= 2;
651 /* Adjust to word count */
652 nvm
->flash_bank_size
/= sizeof(u16
);
655 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
657 /* Clear shadow ram */
658 for (i
= 0; i
< nvm
->word_size
; i
++) {
659 dev_spec
->shadow_ram
[i
].modified
= false;
660 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
667 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668 * @hw: pointer to the HW structure
670 * Initialize family-specific MAC parameters and function
673 static s32
e1000_init_mac_params_ich8lan(struct e1000_hw
*hw
)
675 struct e1000_mac_info
*mac
= &hw
->mac
;
677 /* Set media type function pointer */
678 hw
->phy
.media_type
= e1000_media_type_copper
;
680 /* Set mta register count */
681 mac
->mta_reg_count
= 32;
682 /* Set rar entry count */
683 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
684 if (mac
->type
== e1000_ich8lan
)
685 mac
->rar_entry_count
--;
687 mac
->has_fwsm
= true;
688 /* ARC subsystem not supported */
689 mac
->arc_subsystem_valid
= false;
690 /* Adaptive IFS supported */
691 mac
->adaptive_ifs
= true;
693 /* LED and other operations */
698 /* check management mode */
699 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
701 mac
->ops
.id_led_init
= e1000e_id_led_init_generic
;
703 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
705 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
707 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
708 /* turn on/off LED */
709 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
710 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
713 mac
->rar_entry_count
= E1000_PCH2_RAR_ENTRIES
;
714 mac
->ops
.rar_set
= e1000_rar_set_pch2lan
;
719 /* check management mode */
720 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
722 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
724 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
726 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
727 /* turn on/off LED */
728 mac
->ops
.led_on
= e1000_led_on_pchlan
;
729 mac
->ops
.led_off
= e1000_led_off_pchlan
;
735 if ((mac
->type
== e1000_pch_lpt
) || (mac
->type
== e1000_pch_spt
)) {
736 mac
->rar_entry_count
= E1000_PCH_LPT_RAR_ENTRIES
;
737 mac
->ops
.rar_set
= e1000_rar_set_pch_lpt
;
738 mac
->ops
.setup_physical_interface
=
739 e1000_setup_copper_link_pch_lpt
;
740 mac
->ops
.rar_get_count
= e1000_rar_get_count_pch_lpt
;
743 /* Enable PCS Lock-loss workaround for ICH8 */
744 if (mac
->type
== e1000_ich8lan
)
745 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
751 * __e1000_access_emi_reg_locked - Read/write EMI register
752 * @hw: pointer to the HW structure
753 * @addr: EMI address to program
754 * @data: pointer to value to read/write from/to the EMI address
755 * @read: boolean flag to indicate read or write
757 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
759 static s32
__e1000_access_emi_reg_locked(struct e1000_hw
*hw
, u16 address
,
760 u16
*data
, bool read
)
764 ret_val
= e1e_wphy_locked(hw
, I82579_EMI_ADDR
, address
);
769 ret_val
= e1e_rphy_locked(hw
, I82579_EMI_DATA
, data
);
771 ret_val
= e1e_wphy_locked(hw
, I82579_EMI_DATA
, *data
);
777 * e1000_read_emi_reg_locked - Read Extended Management Interface register
778 * @hw: pointer to the HW structure
779 * @addr: EMI address to program
780 * @data: value to be read from the EMI address
782 * Assumes the SW/FW/HW Semaphore is already acquired.
784 s32
e1000_read_emi_reg_locked(struct e1000_hw
*hw
, u16 addr
, u16
*data
)
786 return __e1000_access_emi_reg_locked(hw
, addr
, data
, true);
790 * e1000_write_emi_reg_locked - Write Extended Management Interface register
791 * @hw: pointer to the HW structure
792 * @addr: EMI address to program
793 * @data: value to be written to the EMI address
795 * Assumes the SW/FW/HW Semaphore is already acquired.
797 s32
e1000_write_emi_reg_locked(struct e1000_hw
*hw
, u16 addr
, u16 data
)
799 return __e1000_access_emi_reg_locked(hw
, addr
, &data
, false);
803 * e1000_set_eee_pchlan - Enable/disable EEE support
804 * @hw: pointer to the HW structure
806 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
807 * the link and the EEE capabilities of the link partner. The LPI Control
808 * register bits will remain set only if/when link is up.
810 * EEE LPI must not be asserted earlier than one second after link is up.
811 * On 82579, EEE LPI should not be enabled until such time otherwise there
812 * can be link issues with some switches. Other devices can have EEE LPI
813 * enabled immediately upon link up since they have a timer in hardware which
814 * prevents LPI from being asserted too early.
816 s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
818 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
820 u16 lpa
, pcs_status
, adv
, adv_addr
, lpi_ctrl
, data
;
822 switch (hw
->phy
.type
) {
823 case e1000_phy_82579
:
824 lpa
= I82579_EEE_LP_ABILITY
;
825 pcs_status
= I82579_EEE_PCS_STATUS
;
826 adv_addr
= I82579_EEE_ADVERTISEMENT
;
829 lpa
= I217_EEE_LP_ABILITY
;
830 pcs_status
= I217_EEE_PCS_STATUS
;
831 adv_addr
= I217_EEE_ADVERTISEMENT
;
837 ret_val
= hw
->phy
.ops
.acquire(hw
);
841 ret_val
= e1e_rphy_locked(hw
, I82579_LPI_CTRL
, &lpi_ctrl
);
845 /* Clear bits that enable EEE in various speeds */
846 lpi_ctrl
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
848 /* Enable EEE if not disabled by user */
849 if (!dev_spec
->eee_disable
) {
850 /* Save off link partner's EEE ability */
851 ret_val
= e1000_read_emi_reg_locked(hw
, lpa
,
852 &dev_spec
->eee_lp_ability
);
856 /* Read EEE advertisement */
857 ret_val
= e1000_read_emi_reg_locked(hw
, adv_addr
, &adv
);
861 /* Enable EEE only for speeds in which the link partner is
862 * EEE capable and for which we advertise EEE.
864 if (adv
& dev_spec
->eee_lp_ability
& I82579_EEE_1000_SUPPORTED
)
865 lpi_ctrl
|= I82579_LPI_CTRL_1000_ENABLE
;
867 if (adv
& dev_spec
->eee_lp_ability
& I82579_EEE_100_SUPPORTED
) {
868 e1e_rphy_locked(hw
, MII_LPA
, &data
);
869 if (data
& LPA_100FULL
)
870 lpi_ctrl
|= I82579_LPI_CTRL_100_ENABLE
;
872 /* EEE is not supported in 100Half, so ignore
873 * partner's EEE in 100 ability if full-duplex
876 dev_spec
->eee_lp_ability
&=
877 ~I82579_EEE_100_SUPPORTED
;
881 if (hw
->phy
.type
== e1000_phy_82579
) {
882 ret_val
= e1000_read_emi_reg_locked(hw
, I82579_LPI_PLL_SHUT
,
887 data
&= ~I82579_LPI_100_PLL_SHUT
;
888 ret_val
= e1000_write_emi_reg_locked(hw
, I82579_LPI_PLL_SHUT
,
892 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 ret_val
= e1000_read_emi_reg_locked(hw
, pcs_status
, &data
);
897 ret_val
= e1e_wphy_locked(hw
, I82579_LPI_CTRL
, lpi_ctrl
);
899 hw
->phy
.ops
.release(hw
);
905 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906 * @hw: pointer to the HW structure
907 * @link: link up bool flag
909 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910 * preventing further DMA write requests. Workaround the issue by disabling
911 * the de-assertion of the clock request when in 1Gpbs mode.
912 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913 * speeds in order to avoid Tx hangs.
915 static s32
e1000_k1_workaround_lpt_lp(struct e1000_hw
*hw
, bool link
)
917 u32 fextnvm6
= er32(FEXTNVM6
);
918 u32 status
= er32(STATUS
);
922 if (link
&& (status
& E1000_STATUS_SPEED_1000
)) {
923 ret_val
= hw
->phy
.ops
.acquire(hw
);
928 e1000e_read_kmrn_reg_locked(hw
, E1000_KMRNCTRLSTA_K1_CONFIG
,
934 e1000e_write_kmrn_reg_locked(hw
,
935 E1000_KMRNCTRLSTA_K1_CONFIG
,
937 ~E1000_KMRNCTRLSTA_K1_ENABLE
);
941 usleep_range(10, 20);
943 ew32(FEXTNVM6
, fextnvm6
| E1000_FEXTNVM6_REQ_PLL_CLK
);
946 e1000e_write_kmrn_reg_locked(hw
,
947 E1000_KMRNCTRLSTA_K1_CONFIG
,
950 hw
->phy
.ops
.release(hw
);
952 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 fextnvm6
&= ~E1000_FEXTNVM6_REQ_PLL_CLK
;
955 if ((hw
->phy
.revision
> 5) || !link
||
956 ((status
& E1000_STATUS_SPEED_100
) &&
957 (status
& E1000_STATUS_FD
)))
958 goto update_fextnvm6
;
960 ret_val
= e1e_rphy(hw
, I217_INBAND_CTRL
, ®
);
964 /* Clear link status transmit timeout */
965 reg
&= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK
;
967 if (status
& E1000_STATUS_SPEED_100
) {
968 /* Set inband Tx timeout to 5x10us for 100Half */
969 reg
|= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT
;
971 /* Do not extend the K1 entry latency for 100Half */
972 fextnvm6
&= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION
;
974 /* Set inband Tx timeout to 50x10us for 10Full/Half */
976 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT
;
978 /* Extend the K1 entry latency for 10 Mbps */
979 fextnvm6
|= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION
;
982 ret_val
= e1e_wphy(hw
, I217_INBAND_CTRL
, reg
);
987 ew32(FEXTNVM6
, fextnvm6
);
994 * e1000_platform_pm_pch_lpt - Set platform power management values
995 * @hw: pointer to the HW structure
996 * @link: bool indicating link status
998 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 * when link is up (which must not exceed the maximum latency supported
1001 * by the platform), otherwise specify there is no LTR requirement.
1002 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 * Capability register set, on this device LTR is set by writing the
1005 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 * message to the PMC.
1009 static s32
e1000_platform_pm_pch_lpt(struct e1000_hw
*hw
, bool link
)
1011 u32 reg
= link
<< (E1000_LTRV_REQ_SHIFT
+ E1000_LTRV_NOSNOOP_SHIFT
) |
1012 link
<< E1000_LTRV_REQ_SHIFT
| E1000_LTRV_SEND
;
1013 u16 lat_enc
= 0; /* latency encoded */
1016 u16 speed
, duplex
, scale
= 0;
1017 u16 max_snoop
, max_nosnoop
;
1018 u16 max_ltr_enc
; /* max LTR latency encoded */
1022 if (!hw
->adapter
->max_frame_size
) {
1023 e_dbg("max_frame_size not set.\n");
1024 return -E1000_ERR_CONFIG
;
1027 hw
->mac
.ops
.get_link_up_info(hw
, &speed
, &duplex
);
1029 e_dbg("Speed not set.\n");
1030 return -E1000_ERR_CONFIG
;
1033 /* Rx Packet Buffer Allocation size (KB) */
1034 rxa
= er32(PBA
) & E1000_PBA_RXA_MASK
;
1036 /* Determine the maximum latency tolerated by the device.
1038 * Per the PCIe spec, the tolerated latencies are encoded as
1039 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1042 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1045 value
= (rxa
> hw
->adapter
->max_frame_size
) ?
1046 (rxa
- hw
->adapter
->max_frame_size
) * (16000 / speed
) :
1049 while (value
> PCI_LTR_VALUE_MASK
) {
1051 value
= DIV_ROUND_UP(value
, BIT(5));
1053 if (scale
> E1000_LTRV_SCALE_MAX
) {
1054 e_dbg("Invalid LTR latency scale %d\n", scale
);
1055 return -E1000_ERR_CONFIG
;
1057 lat_enc
= (u16
)((scale
<< PCI_LTR_SCALE_SHIFT
) | value
);
1059 /* Determine the maximum latency tolerated by the platform */
1060 pci_read_config_word(hw
->adapter
->pdev
, E1000_PCI_LTR_CAP_LPT
,
1062 pci_read_config_word(hw
->adapter
->pdev
,
1063 E1000_PCI_LTR_CAP_LPT
+ 2, &max_nosnoop
);
1064 max_ltr_enc
= max_t(u16
, max_snoop
, max_nosnoop
);
1066 if (lat_enc
> max_ltr_enc
)
1067 lat_enc
= max_ltr_enc
;
1070 /* Set Snoop and No-Snoop latencies the same */
1071 reg
|= lat_enc
| (lat_enc
<< E1000_LTRV_NOSNOOP_SHIFT
);
1078 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 * @hw: pointer to the HW structure
1080 * @to_sx: boolean indicating a system power state transition to Sx
1082 * When link is down, configure ULP mode to significantly reduce the power
1083 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1084 * ME firmware to start the ULP configuration. If not on an ME enabled
1085 * system, configure the ULP mode by software.
1087 s32
e1000_enable_ulp_lpt_lp(struct e1000_hw
*hw
, bool to_sx
)
1094 if ((hw
->mac
.type
< e1000_pch_lpt
) ||
1095 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_LM
) ||
1096 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_V
) ||
1097 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_LM2
) ||
1098 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_V2
) ||
1099 (hw
->dev_spec
.ich8lan
.ulp_state
== e1000_ulp_state_on
))
1102 if (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
) {
1103 /* Request ME configure ULP mode in the PHY */
1104 mac_reg
= er32(H2ME
);
1105 mac_reg
|= E1000_H2ME_ULP
| E1000_H2ME_ENFORCE_SETTINGS
;
1106 ew32(H2ME
, mac_reg
);
1114 /* Poll up to 5 seconds for Cable Disconnected indication */
1115 while (!(er32(FEXT
) & E1000_FEXT_PHY_CABLE_DISCONNECTED
)) {
1116 /* Bail if link is re-acquired */
1117 if (er32(STATUS
) & E1000_STATUS_LU
)
1118 return -E1000_ERR_PHY
;
1125 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1127 E1000_FEXT_PHY_CABLE_DISCONNECTED
) ? "" : "not", i
* 50);
1130 ret_val
= hw
->phy
.ops
.acquire(hw
);
1134 /* Force SMBus mode in PHY */
1135 ret_val
= e1000_read_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, &phy_reg
);
1138 phy_reg
|= CV_SMB_CTRL_FORCE_SMBUS
;
1139 e1000_write_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, phy_reg
);
1141 /* Force SMBus mode in MAC */
1142 mac_reg
= er32(CTRL_EXT
);
1143 mac_reg
|= E1000_CTRL_EXT_FORCE_SMBUS
;
1144 ew32(CTRL_EXT
, mac_reg
);
1146 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1147 * LPLU and disable Gig speed when entering ULP
1149 if ((hw
->phy
.type
== e1000_phy_i217
) && (hw
->phy
.revision
== 6)) {
1150 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_OEM_BITS
,
1156 phy_reg
|= HV_OEM_BITS_LPLU
| HV_OEM_BITS_GBE_DIS
;
1158 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_OEM_BITS
,
1165 /* Set Inband ULP Exit, Reset to SMBus mode and
1166 * Disable SMBus Release on PERST# in PHY
1168 ret_val
= e1000_read_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, &phy_reg
);
1171 phy_reg
|= (I218_ULP_CONFIG1_RESET_TO_SMBUS
|
1172 I218_ULP_CONFIG1_DISABLE_SMB_PERST
);
1174 if (er32(WUFC
) & E1000_WUFC_LNKC
)
1175 phy_reg
|= I218_ULP_CONFIG1_WOL_HOST
;
1177 phy_reg
&= ~I218_ULP_CONFIG1_WOL_HOST
;
1179 phy_reg
|= I218_ULP_CONFIG1_STICKY_ULP
;
1180 phy_reg
&= ~I218_ULP_CONFIG1_INBAND_EXIT
;
1182 phy_reg
|= I218_ULP_CONFIG1_INBAND_EXIT
;
1183 phy_reg
&= ~I218_ULP_CONFIG1_STICKY_ULP
;
1184 phy_reg
&= ~I218_ULP_CONFIG1_WOL_HOST
;
1186 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1188 /* Set Disable SMBus Release on PERST# in MAC */
1189 mac_reg
= er32(FEXTNVM7
);
1190 mac_reg
|= E1000_FEXTNVM7_DISABLE_SMB_PERST
;
1191 ew32(FEXTNVM7
, mac_reg
);
1193 /* Commit ULP changes in PHY by starting auto ULP configuration */
1194 phy_reg
|= I218_ULP_CONFIG1_START
;
1195 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1197 if ((hw
->phy
.type
== e1000_phy_i217
) && (hw
->phy
.revision
== 6) &&
1198 to_sx
&& (er32(STATUS
) & E1000_STATUS_LU
)) {
1199 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_OEM_BITS
,
1206 hw
->phy
.ops
.release(hw
);
1209 e_dbg("Error in ULP enable flow: %d\n", ret_val
);
1211 hw
->dev_spec
.ich8lan
.ulp_state
= e1000_ulp_state_on
;
1217 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 * @hw: pointer to the HW structure
1219 * @force: boolean indicating whether or not to force disabling ULP
1221 * Un-configure ULP mode when link is up, the system is transitioned from
1222 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1223 * system, poll for an indication from ME that ULP has been un-configured.
1224 * If not on an ME enabled system, un-configure the ULP mode by software.
1226 * During nominal operation, this function is called when link is acquired
1227 * to disable ULP mode (force=false); otherwise, for example when unloading
1228 * the driver or during Sx->S0 transitions, this is called with force=true
1229 * to forcibly disable ULP.
1231 static s32
e1000_disable_ulp_lpt_lp(struct e1000_hw
*hw
, bool force
)
1238 if ((hw
->mac
.type
< e1000_pch_lpt
) ||
1239 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_LM
) ||
1240 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_V
) ||
1241 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_LM2
) ||
1242 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_V2
) ||
1243 (hw
->dev_spec
.ich8lan
.ulp_state
== e1000_ulp_state_off
))
1246 if (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
) {
1248 /* Request ME un-configure ULP mode in the PHY */
1249 mac_reg
= er32(H2ME
);
1250 mac_reg
&= ~E1000_H2ME_ULP
;
1251 mac_reg
|= E1000_H2ME_ENFORCE_SETTINGS
;
1252 ew32(H2ME
, mac_reg
);
1255 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1256 while (er32(FWSM
) & E1000_FWSM_ULP_CFG_DONE
) {
1258 ret_val
= -E1000_ERR_PHY
;
1262 usleep_range(10000, 20000);
1264 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i
* 10);
1267 mac_reg
= er32(H2ME
);
1268 mac_reg
&= ~E1000_H2ME_ENFORCE_SETTINGS
;
1269 ew32(H2ME
, mac_reg
);
1271 /* Clear H2ME.ULP after ME ULP configuration */
1272 mac_reg
= er32(H2ME
);
1273 mac_reg
&= ~E1000_H2ME_ULP
;
1274 ew32(H2ME
, mac_reg
);
1280 ret_val
= hw
->phy
.ops
.acquire(hw
);
1285 /* Toggle LANPHYPC Value bit */
1286 e1000_toggle_lanphypc_pch_lpt(hw
);
1288 /* Unforce SMBus mode in PHY */
1289 ret_val
= e1000_read_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, &phy_reg
);
1291 /* The MAC might be in PCIe mode, so temporarily force to
1292 * SMBus mode in order to access the PHY.
1294 mac_reg
= er32(CTRL_EXT
);
1295 mac_reg
|= E1000_CTRL_EXT_FORCE_SMBUS
;
1296 ew32(CTRL_EXT
, mac_reg
);
1300 ret_val
= e1000_read_phy_reg_hv_locked(hw
, CV_SMB_CTRL
,
1305 phy_reg
&= ~CV_SMB_CTRL_FORCE_SMBUS
;
1306 e1000_write_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, phy_reg
);
1308 /* Unforce SMBus mode in MAC */
1309 mac_reg
= er32(CTRL_EXT
);
1310 mac_reg
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
1311 ew32(CTRL_EXT
, mac_reg
);
1313 /* When ULP mode was previously entered, K1 was disabled by the
1314 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1316 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_PM_CTRL
, &phy_reg
);
1319 phy_reg
|= HV_PM_CTRL_K1_ENABLE
;
1320 e1000_write_phy_reg_hv_locked(hw
, HV_PM_CTRL
, phy_reg
);
1322 /* Clear ULP enabled configuration */
1323 ret_val
= e1000_read_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, &phy_reg
);
1326 phy_reg
&= ~(I218_ULP_CONFIG1_IND
|
1327 I218_ULP_CONFIG1_STICKY_ULP
|
1328 I218_ULP_CONFIG1_RESET_TO_SMBUS
|
1329 I218_ULP_CONFIG1_WOL_HOST
|
1330 I218_ULP_CONFIG1_INBAND_EXIT
|
1331 I218_ULP_CONFIG1_EN_ULP_LANPHYPC
|
1332 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST
|
1333 I218_ULP_CONFIG1_DISABLE_SMB_PERST
);
1334 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1336 /* Commit ULP changes by starting auto ULP configuration */
1337 phy_reg
|= I218_ULP_CONFIG1_START
;
1338 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1340 /* Clear Disable SMBus Release on PERST# in MAC */
1341 mac_reg
= er32(FEXTNVM7
);
1342 mac_reg
&= ~E1000_FEXTNVM7_DISABLE_SMB_PERST
;
1343 ew32(FEXTNVM7
, mac_reg
);
1346 hw
->phy
.ops
.release(hw
);
1348 e1000_phy_hw_reset(hw
);
1353 e_dbg("Error in ULP disable flow: %d\n", ret_val
);
1355 hw
->dev_spec
.ich8lan
.ulp_state
= e1000_ulp_state_off
;
1361 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1362 * @hw: pointer to the HW structure
1364 * Checks to see of the link status of the hardware has changed. If a
1365 * change in link status has been detected, then we read the PHY registers
1366 * to get the current speed/duplex if link exists.
1368 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
1370 struct e1000_mac_info
*mac
= &hw
->mac
;
1371 s32 ret_val
, tipg_reg
= 0;
1372 u16 emi_addr
, emi_val
= 0;
1376 /* We only want to go out to the PHY registers to see if Auto-Neg
1377 * has completed and/or if our link status has changed. The
1378 * get_link_status flag is set upon receiving a Link Status
1379 * Change or Rx Sequence Error interrupt.
1381 if (!mac
->get_link_status
)
1384 /* First we want to see if the MII Status Register reports
1385 * link. If so, then we want to get the current speed/duplex
1388 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1392 if (hw
->mac
.type
== e1000_pchlan
) {
1393 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
1398 /* When connected at 10Mbps half-duplex, some parts are excessively
1399 * aggressive resulting in many collisions. To avoid this, increase
1400 * the IPG and reduce Rx latency in the PHY.
1402 if (((hw
->mac
.type
== e1000_pch2lan
) ||
1403 (hw
->mac
.type
== e1000_pch_lpt
) ||
1404 (hw
->mac
.type
== e1000_pch_spt
)) && link
) {
1407 e1000e_get_speed_and_duplex_copper(hw
, &speed
, &duplex
);
1408 tipg_reg
= er32(TIPG
);
1409 tipg_reg
&= ~E1000_TIPG_IPGT_MASK
;
1411 if (duplex
== HALF_DUPLEX
&& speed
== SPEED_10
) {
1413 /* Reduce Rx latency in analog PHY */
1415 } else if (hw
->mac
.type
== e1000_pch_spt
&&
1416 duplex
== FULL_DUPLEX
&& speed
!= SPEED_1000
) {
1421 /* Roll back the default values */
1426 ew32(TIPG
, tipg_reg
);
1428 ret_val
= hw
->phy
.ops
.acquire(hw
);
1432 if (hw
->mac
.type
== e1000_pch2lan
)
1433 emi_addr
= I82579_RX_CONFIG
;
1435 emi_addr
= I217_RX_CONFIG
;
1436 ret_val
= e1000_write_emi_reg_locked(hw
, emi_addr
, emi_val
);
1438 if (hw
->mac
.type
== e1000_pch_lpt
||
1439 hw
->mac
.type
== e1000_pch_spt
) {
1442 e1e_rphy_locked(hw
, I217_PLL_CLOCK_GATE_REG
, &phy_reg
);
1443 phy_reg
&= ~I217_PLL_CLOCK_GATE_MASK
;
1444 if (speed
== SPEED_100
|| speed
== SPEED_10
)
1448 e1e_wphy_locked(hw
, I217_PLL_CLOCK_GATE_REG
, phy_reg
);
1450 hw
->phy
.ops
.release(hw
);
1455 if (hw
->mac
.type
== e1000_pch_spt
) {
1459 if (speed
== SPEED_1000
) {
1460 ret_val
= hw
->phy
.ops
.acquire(hw
);
1464 ret_val
= e1e_rphy_locked(hw
,
1468 hw
->phy
.ops
.release(hw
);
1472 ptr_gap
= (data
& (0x3FF << 2)) >> 2;
1473 if (ptr_gap
< 0x18) {
1474 data
&= ~(0x3FF << 2);
1475 data
|= (0x18 << 2);
1481 hw
->phy
.ops
.release(hw
);
1485 ret_val
= hw
->phy
.ops
.acquire(hw
);
1489 ret_val
= e1e_wphy_locked(hw
,
1492 hw
->phy
.ops
.release(hw
);
1500 /* I217 Packet Loss issue:
1501 * ensure that FEXTNVM4 Beacon Duration is set correctly
1503 * Set the Beacon Duration for I217 to 8 usec
1505 if ((hw
->mac
.type
== e1000_pch_lpt
) || (hw
->mac
.type
== e1000_pch_spt
)) {
1508 mac_reg
= er32(FEXTNVM4
);
1509 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
1510 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_8USEC
;
1511 ew32(FEXTNVM4
, mac_reg
);
1514 /* Work-around I218 hang issue */
1515 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPTLP_I218_LM
) ||
1516 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPTLP_I218_V
) ||
1517 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_LM3
) ||
1518 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_V3
)) {
1519 ret_val
= e1000_k1_workaround_lpt_lp(hw
, link
);
1523 if ((hw
->mac
.type
== e1000_pch_lpt
) ||
1524 (hw
->mac
.type
== e1000_pch_spt
)) {
1525 /* Set platform power management values for
1526 * Latency Tolerance Reporting (LTR)
1528 ret_val
= e1000_platform_pm_pch_lpt(hw
, link
);
1533 /* Clear link partner's EEE ability */
1534 hw
->dev_spec
.ich8lan
.eee_lp_ability
= 0;
1536 /* FEXTNVM6 K1-off workaround */
1537 if (hw
->mac
.type
== e1000_pch_spt
) {
1538 u32 pcieanacfg
= er32(PCIEANACFG
);
1539 u32 fextnvm6
= er32(FEXTNVM6
);
1541 if (pcieanacfg
& E1000_FEXTNVM6_K1_OFF_ENABLE
)
1542 fextnvm6
|= E1000_FEXTNVM6_K1_OFF_ENABLE
;
1544 fextnvm6
&= ~E1000_FEXTNVM6_K1_OFF_ENABLE
;
1546 ew32(FEXTNVM6
, fextnvm6
);
1550 return 0; /* No link detected */
1552 mac
->get_link_status
= false;
1554 switch (hw
->mac
.type
) {
1556 ret_val
= e1000_k1_workaround_lv(hw
);
1561 if (hw
->phy
.type
== e1000_phy_82578
) {
1562 ret_val
= e1000_link_stall_workaround_hv(hw
);
1567 /* Workaround for PCHx parts in half-duplex:
1568 * Set the number of preambles removed from the packet
1569 * when it is passed from the PHY to the MAC to prevent
1570 * the MAC from misinterpreting the packet type.
1572 e1e_rphy(hw
, HV_KMRN_FIFO_CTRLSTA
, &phy_reg
);
1573 phy_reg
&= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK
;
1575 if ((er32(STATUS
) & E1000_STATUS_FD
) != E1000_STATUS_FD
)
1576 phy_reg
|= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT
);
1578 e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, phy_reg
);
1584 /* Check if there was DownShift, must be checked
1585 * immediately after link-up
1587 e1000e_check_downshift(hw
);
1589 /* Enable/Disable EEE after link up */
1590 if (hw
->phy
.type
> e1000_phy_82579
) {
1591 ret_val
= e1000_set_eee_pchlan(hw
);
1596 /* If we are forcing speed/duplex, then we simply return since
1597 * we have already determined whether we have link or not.
1600 return -E1000_ERR_CONFIG
;
1602 /* Auto-Neg is enabled. Auto Speed Detection takes care
1603 * of MAC speed/duplex configuration. So we only need to
1604 * configure Collision Distance in the MAC.
1606 mac
->ops
.config_collision_dist(hw
);
1608 /* Configure Flow Control now that Auto-Neg has completed.
1609 * First, we need to restore the desired flow control
1610 * settings because we may have had to re-autoneg with a
1611 * different link partner.
1613 ret_val
= e1000e_config_fc_after_link_up(hw
);
1615 e_dbg("Error configuring flow control\n");
1620 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
1622 struct e1000_hw
*hw
= &adapter
->hw
;
1625 rc
= e1000_init_mac_params_ich8lan(hw
);
1629 rc
= e1000_init_nvm_params_ich8lan(hw
);
1633 switch (hw
->mac
.type
) {
1636 case e1000_ich10lan
:
1637 rc
= e1000_init_phy_params_ich8lan(hw
);
1643 rc
= e1000_init_phy_params_pchlan(hw
);
1651 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1652 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1654 if ((adapter
->hw
.phy
.type
== e1000_phy_ife
) ||
1655 ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
1656 (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LSECCK
)))) {
1657 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
1658 adapter
->max_hw_frame_size
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
1660 hw
->mac
.ops
.blink_led
= NULL
;
1663 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
1664 (adapter
->hw
.phy
.type
!= e1000_phy_ife
))
1665 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
1667 /* Enable workaround for 82579 w/ ME enabled */
1668 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
1669 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
1670 adapter
->flags2
|= FLAG2_PCIM2PCI_ARBITER_WA
;
1675 static DEFINE_MUTEX(nvm_mutex
);
1678 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1679 * @hw: pointer to the HW structure
1681 * Acquires the mutex for performing NVM operations.
1683 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused
*hw
)
1685 mutex_lock(&nvm_mutex
);
1691 * e1000_release_nvm_ich8lan - Release NVM mutex
1692 * @hw: pointer to the HW structure
1694 * Releases the mutex used while performing NVM operations.
1696 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused
*hw
)
1698 mutex_unlock(&nvm_mutex
);
1702 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1703 * @hw: pointer to the HW structure
1705 * Acquires the software control flag for performing PHY and select
1708 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
1710 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
1713 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE
,
1714 &hw
->adapter
->state
)) {
1715 e_dbg("contention for Phy access\n");
1716 return -E1000_ERR_PHY
;
1720 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1721 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
1729 e_dbg("SW has already locked the resource.\n");
1730 ret_val
= -E1000_ERR_CONFIG
;
1734 timeout
= SW_FLAG_TIMEOUT
;
1736 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
1737 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1740 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1741 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
1749 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1750 er32(FWSM
), extcnf_ctrl
);
1751 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
1752 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1753 ret_val
= -E1000_ERR_CONFIG
;
1759 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
1765 * e1000_release_swflag_ich8lan - Release software control flag
1766 * @hw: pointer to the HW structure
1768 * Releases the software control flag for performing PHY and select
1771 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
1775 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1777 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
) {
1778 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
1779 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1781 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1784 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
1788 * e1000_check_mng_mode_ich8lan - Checks management mode
1789 * @hw: pointer to the HW structure
1791 * This checks if the adapter has any manageability enabled.
1792 * This is a function pointer entry point only called by read/write
1793 * routines for the PHY and NVM parts.
1795 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
1800 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
1801 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
1802 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
1806 * e1000_check_mng_mode_pchlan - Checks management mode
1807 * @hw: pointer to the HW structure
1809 * This checks if the adapter has iAMT enabled.
1810 * This is a function pointer entry point only called by read/write
1811 * routines for the PHY and NVM parts.
1813 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
1818 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
1819 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
1823 * e1000_rar_set_pch2lan - Set receive address register
1824 * @hw: pointer to the HW structure
1825 * @addr: pointer to the receive address
1826 * @index: receive address array register
1828 * Sets the receive address array register at index to the address passed
1829 * in by addr. For 82579, RAR[0] is the base address register that is to
1830 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1831 * Use SHRA[0-3] in place of those reserved for ME.
1833 static int e1000_rar_set_pch2lan(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
1835 u32 rar_low
, rar_high
;
1837 /* HW expects these in little endian so we reverse the byte order
1838 * from network order (big endian) to little endian
1840 rar_low
= ((u32
)addr
[0] |
1841 ((u32
)addr
[1] << 8) |
1842 ((u32
)addr
[2] << 16) | ((u32
)addr
[3] << 24));
1844 rar_high
= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1846 /* If MAC address zero, no need to set the AV bit */
1847 if (rar_low
|| rar_high
)
1848 rar_high
|= E1000_RAH_AV
;
1851 ew32(RAL(index
), rar_low
);
1853 ew32(RAH(index
), rar_high
);
1858 /* RAR[1-6] are owned by manageability. Skip those and program the
1859 * next address into the SHRA register array.
1861 if (index
< (u32
)(hw
->mac
.rar_entry_count
)) {
1864 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1868 ew32(SHRAL(index
- 1), rar_low
);
1870 ew32(SHRAH(index
- 1), rar_high
);
1873 e1000_release_swflag_ich8lan(hw
);
1875 /* verify the register updates */
1876 if ((er32(SHRAL(index
- 1)) == rar_low
) &&
1877 (er32(SHRAH(index
- 1)) == rar_high
))
1880 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1881 (index
- 1), er32(FWSM
));
1885 e_dbg("Failed to write receive address at index %d\n", index
);
1886 return -E1000_ERR_CONFIG
;
1890 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1891 * @hw: pointer to the HW structure
1893 * Get the number of available receive registers that the Host can
1894 * program. SHRA[0-10] are the shared receive address registers
1895 * that are shared between the Host and manageability engine (ME).
1896 * ME can reserve any number of addresses and the host needs to be
1897 * able to tell how many available registers it has access to.
1899 static u32
e1000_rar_get_count_pch_lpt(struct e1000_hw
*hw
)
1904 wlock_mac
= er32(FWSM
) & E1000_FWSM_WLOCK_MAC_MASK
;
1905 wlock_mac
>>= E1000_FWSM_WLOCK_MAC_SHIFT
;
1907 switch (wlock_mac
) {
1909 /* All SHRA[0..10] and RAR[0] available */
1910 num_entries
= hw
->mac
.rar_entry_count
;
1913 /* Only RAR[0] available */
1917 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1918 num_entries
= wlock_mac
+ 1;
1926 * e1000_rar_set_pch_lpt - Set receive address registers
1927 * @hw: pointer to the HW structure
1928 * @addr: pointer to the receive address
1929 * @index: receive address array register
1931 * Sets the receive address register array at index to the address passed
1932 * in by addr. For LPT, RAR[0] is the base address register that is to
1933 * contain the MAC address. SHRA[0-10] are the shared receive address
1934 * registers that are shared between the Host and manageability engine (ME).
1936 static int e1000_rar_set_pch_lpt(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
1938 u32 rar_low
, rar_high
;
1941 /* HW expects these in little endian so we reverse the byte order
1942 * from network order (big endian) to little endian
1944 rar_low
= ((u32
)addr
[0] | ((u32
)addr
[1] << 8) |
1945 ((u32
)addr
[2] << 16) | ((u32
)addr
[3] << 24));
1947 rar_high
= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1949 /* If MAC address zero, no need to set the AV bit */
1950 if (rar_low
|| rar_high
)
1951 rar_high
|= E1000_RAH_AV
;
1954 ew32(RAL(index
), rar_low
);
1956 ew32(RAH(index
), rar_high
);
1961 /* The manageability engine (ME) can lock certain SHRAR registers that
1962 * it is using - those registers are unavailable for use.
1964 if (index
< hw
->mac
.rar_entry_count
) {
1965 wlock_mac
= er32(FWSM
) & E1000_FWSM_WLOCK_MAC_MASK
;
1966 wlock_mac
>>= E1000_FWSM_WLOCK_MAC_SHIFT
;
1968 /* Check if all SHRAR registers are locked */
1972 if ((wlock_mac
== 0) || (index
<= wlock_mac
)) {
1975 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1980 ew32(SHRAL_PCH_LPT(index
- 1), rar_low
);
1982 ew32(SHRAH_PCH_LPT(index
- 1), rar_high
);
1985 e1000_release_swflag_ich8lan(hw
);
1987 /* verify the register updates */
1988 if ((er32(SHRAL_PCH_LPT(index
- 1)) == rar_low
) &&
1989 (er32(SHRAH_PCH_LPT(index
- 1)) == rar_high
))
1995 e_dbg("Failed to write receive address at index %d\n", index
);
1996 return -E1000_ERR_CONFIG
;
2000 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2001 * @hw: pointer to the HW structure
2003 * Checks if firmware is blocking the reset of the PHY.
2004 * This is a function pointer entry point only called by
2007 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
2009 bool blocked
= false;
2012 while ((blocked
= !(er32(FWSM
) & E1000_ICH_FWSM_RSPCIPHY
)) &&
2014 usleep_range(10000, 20000);
2015 return blocked
? E1000_BLK_PHY_RESET
: 0;
2019 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2020 * @hw: pointer to the HW structure
2022 * Assumes semaphore already acquired.
2025 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
2028 u32 strap
= er32(STRAP
);
2029 u32 freq
= (strap
& E1000_STRAP_SMT_FREQ_MASK
) >>
2030 E1000_STRAP_SMT_FREQ_SHIFT
;
2033 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
2035 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
2039 phy_data
&= ~HV_SMB_ADDR_MASK
;
2040 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
2041 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
2043 if (hw
->phy
.type
== e1000_phy_i217
) {
2044 /* Restore SMBus frequency */
2046 phy_data
&= ~HV_SMB_ADDR_FREQ_MASK
;
2047 phy_data
|= (freq
& BIT(0)) <<
2048 HV_SMB_ADDR_FREQ_LOW_SHIFT
;
2049 phy_data
|= (freq
& BIT(1)) <<
2050 (HV_SMB_ADDR_FREQ_HIGH_SHIFT
- 1);
2052 e_dbg("Unsupported SMB frequency in PHY\n");
2056 return e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
2060 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2061 * @hw: pointer to the HW structure
2063 * SW should configure the LCD from the NVM extended configuration region
2064 * as a workaround for certain parts.
2066 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
2068 struct e1000_phy_info
*phy
= &hw
->phy
;
2069 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
2071 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
2073 /* Initialize the PHY from the NVM on ICH platforms. This
2074 * is needed due to an issue where the NVM configuration is
2075 * not properly autoloaded after power transitions.
2076 * Therefore, after each PHY reset, we will load the
2077 * configuration data out of the NVM manually.
2079 switch (hw
->mac
.type
) {
2081 if (phy
->type
!= e1000_phy_igp_3
)
2084 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
2085 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
2086 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
2094 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
2100 ret_val
= hw
->phy
.ops
.acquire(hw
);
2104 data
= er32(FEXTNVM
);
2105 if (!(data
& sw_cfg_mask
))
2108 /* Make sure HW does not configure LCD from PHY
2109 * extended configuration before SW configuration
2111 data
= er32(EXTCNF_CTRL
);
2112 if ((hw
->mac
.type
< e1000_pch2lan
) &&
2113 (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
))
2116 cnf_size
= er32(EXTCNF_SIZE
);
2117 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
2118 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
2122 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
2123 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
2125 if (((hw
->mac
.type
== e1000_pchlan
) &&
2126 !(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)) ||
2127 (hw
->mac
.type
> e1000_pchlan
)) {
2128 /* HW configures the SMBus address and LEDs when the
2129 * OEM and LCD Write Enable bits are set in the NVM.
2130 * When both NVM bits are cleared, SW will configure
2133 ret_val
= e1000_write_smbus_addr(hw
);
2137 data
= er32(LEDCTL
);
2138 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
2144 /* Configure LCD from extended configuration region. */
2146 /* cnf_base_addr is in DWORD */
2147 word_addr
= (u16
)(cnf_base_addr
<< 1);
2149 for (i
= 0; i
< cnf_size
; i
++) {
2150 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1, ®_data
);
2154 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
2159 /* Save off the PHY page for future writes. */
2160 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
2161 phy_page
= reg_data
;
2165 reg_addr
&= PHY_REG_MASK
;
2166 reg_addr
|= phy_page
;
2168 ret_val
= e1e_wphy_locked(hw
, (u32
)reg_addr
, reg_data
);
2174 hw
->phy
.ops
.release(hw
);
2179 * e1000_k1_gig_workaround_hv - K1 Si workaround
2180 * @hw: pointer to the HW structure
2181 * @link: link up bool flag
2183 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2184 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2185 * If link is down, the function will restore the default K1 setting located
2188 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
2192 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
2194 if (hw
->mac
.type
!= e1000_pchlan
)
2197 /* Wrap the whole flow with the sw flag */
2198 ret_val
= hw
->phy
.ops
.acquire(hw
);
2202 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2204 if (hw
->phy
.type
== e1000_phy_82578
) {
2205 ret_val
= e1e_rphy_locked(hw
, BM_CS_STATUS
,
2210 status_reg
&= (BM_CS_STATUS_LINK_UP
|
2211 BM_CS_STATUS_RESOLVED
|
2212 BM_CS_STATUS_SPEED_MASK
);
2214 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
2215 BM_CS_STATUS_RESOLVED
|
2216 BM_CS_STATUS_SPEED_1000
))
2220 if (hw
->phy
.type
== e1000_phy_82577
) {
2221 ret_val
= e1e_rphy_locked(hw
, HV_M_STATUS
, &status_reg
);
2225 status_reg
&= (HV_M_STATUS_LINK_UP
|
2226 HV_M_STATUS_AUTONEG_COMPLETE
|
2227 HV_M_STATUS_SPEED_MASK
);
2229 if (status_reg
== (HV_M_STATUS_LINK_UP
|
2230 HV_M_STATUS_AUTONEG_COMPLETE
|
2231 HV_M_STATUS_SPEED_1000
))
2235 /* Link stall fix for link up */
2236 ret_val
= e1e_wphy_locked(hw
, PHY_REG(770, 19), 0x0100);
2241 /* Link stall fix for link down */
2242 ret_val
= e1e_wphy_locked(hw
, PHY_REG(770, 19), 0x4100);
2247 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
2250 hw
->phy
.ops
.release(hw
);
2256 * e1000_configure_k1_ich8lan - Configure K1 power state
2257 * @hw: pointer to the HW structure
2258 * @enable: K1 state to configure
2260 * Configure the K1 power state based on the provided parameter.
2261 * Assumes semaphore already acquired.
2263 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2265 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
2273 ret_val
= e1000e_read_kmrn_reg_locked(hw
, E1000_KMRNCTRLSTA_K1_CONFIG
,
2279 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
2281 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
2283 ret_val
= e1000e_write_kmrn_reg_locked(hw
, E1000_KMRNCTRLSTA_K1_CONFIG
,
2288 usleep_range(20, 40);
2289 ctrl_ext
= er32(CTRL_EXT
);
2290 ctrl_reg
= er32(CTRL
);
2292 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
2293 reg
|= E1000_CTRL_FRCSPD
;
2296 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
2298 usleep_range(20, 40);
2299 ew32(CTRL
, ctrl_reg
);
2300 ew32(CTRL_EXT
, ctrl_ext
);
2302 usleep_range(20, 40);
2308 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2309 * @hw: pointer to the HW structure
2310 * @d0_state: boolean if entering d0 or d3 device state
2312 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2313 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2314 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2316 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
2322 if (hw
->mac
.type
< e1000_pchlan
)
2325 ret_val
= hw
->phy
.ops
.acquire(hw
);
2329 if (hw
->mac
.type
== e1000_pchlan
) {
2330 mac_reg
= er32(EXTCNF_CTRL
);
2331 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
2335 mac_reg
= er32(FEXTNVM
);
2336 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
2339 mac_reg
= er32(PHY_CTRL
);
2341 ret_val
= e1e_rphy_locked(hw
, HV_OEM_BITS
, &oem_reg
);
2345 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
2348 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
2349 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
2351 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
2352 oem_reg
|= HV_OEM_BITS_LPLU
;
2354 if (mac_reg
& (E1000_PHY_CTRL_GBE_DISABLE
|
2355 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
))
2356 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
2358 if (mac_reg
& (E1000_PHY_CTRL_D0A_LPLU
|
2359 E1000_PHY_CTRL_NOND0A_LPLU
))
2360 oem_reg
|= HV_OEM_BITS_LPLU
;
2363 /* Set Restart auto-neg to activate the bits */
2364 if ((d0_state
|| (hw
->mac
.type
!= e1000_pchlan
)) &&
2365 !hw
->phy
.ops
.check_reset_block(hw
))
2366 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
2368 ret_val
= e1e_wphy_locked(hw
, HV_OEM_BITS
, oem_reg
);
2371 hw
->phy
.ops
.release(hw
);
2377 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2378 * @hw: pointer to the HW structure
2380 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
2385 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
2389 data
|= HV_KMRN_MDIO_SLOW
;
2391 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
2397 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2398 * done after every PHY reset.
2400 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
2405 if (hw
->mac
.type
!= e1000_pchlan
)
2408 /* Set MDIO slow mode before any other MDIO access */
2409 if (hw
->phy
.type
== e1000_phy_82577
) {
2410 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
2415 if (((hw
->phy
.type
== e1000_phy_82577
) &&
2416 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
2417 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
2418 /* Disable generation of early preamble */
2419 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
2423 /* Preamble tuning for SSC */
2424 ret_val
= e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, 0xA204);
2429 if (hw
->phy
.type
== e1000_phy_82578
) {
2430 /* Return registers to default by doing a soft reset then
2431 * writing 0x3140 to the control register.
2433 if (hw
->phy
.revision
< 2) {
2434 e1000e_phy_sw_reset(hw
);
2435 ret_val
= e1e_wphy(hw
, MII_BMCR
, 0x3140);
2440 ret_val
= hw
->phy
.ops
.acquire(hw
);
2445 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
2446 hw
->phy
.ops
.release(hw
);
2450 /* Configure the K1 Si workaround during phy reset assuming there is
2451 * link so that it disables K1 if link is in 1Gbps.
2453 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
2457 /* Workaround for link disconnects on a busy hub in half duplex */
2458 ret_val
= hw
->phy
.ops
.acquire(hw
);
2461 ret_val
= e1e_rphy_locked(hw
, BM_PORT_GEN_CFG
, &phy_data
);
2464 ret_val
= e1e_wphy_locked(hw
, BM_PORT_GEN_CFG
, phy_data
& 0x00FF);
2468 /* set MSE higher to enable link to stay up when noise is high */
2469 ret_val
= e1000_write_emi_reg_locked(hw
, I82577_MSE_THRESHOLD
, 0x0034);
2471 hw
->phy
.ops
.release(hw
);
2477 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2478 * @hw: pointer to the HW structure
2480 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
2486 ret_val
= hw
->phy
.ops
.acquire(hw
);
2489 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2493 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2494 for (i
= 0; i
< (hw
->mac
.rar_entry_count
); i
++) {
2495 mac_reg
= er32(RAL(i
));
2496 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_L(i
),
2497 (u16
)(mac_reg
& 0xFFFF));
2498 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_M(i
),
2499 (u16
)((mac_reg
>> 16) & 0xFFFF));
2501 mac_reg
= er32(RAH(i
));
2502 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_H(i
),
2503 (u16
)(mac_reg
& 0xFFFF));
2504 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_CTRL(i
),
2505 (u16
)((mac_reg
& E1000_RAH_AV
)
2509 e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2512 hw
->phy
.ops
.release(hw
);
2516 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2518 * @hw: pointer to the HW structure
2519 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2521 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
2528 if (hw
->mac
.type
< e1000_pch2lan
)
2531 /* disable Rx path while enabling/disabling workaround */
2532 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
2533 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| BIT(14));
2538 /* Write Rx addresses (rar_entry_count for RAL/H, and
2539 * SHRAL/H) and initial CRC values to the MAC
2541 for (i
= 0; i
< hw
->mac
.rar_entry_count
; i
++) {
2542 u8 mac_addr
[ETH_ALEN
] = { 0 };
2543 u32 addr_high
, addr_low
;
2545 addr_high
= er32(RAH(i
));
2546 if (!(addr_high
& E1000_RAH_AV
))
2548 addr_low
= er32(RAL(i
));
2549 mac_addr
[0] = (addr_low
& 0xFF);
2550 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
2551 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
2552 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
2553 mac_addr
[4] = (addr_high
& 0xFF);
2554 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
2556 ew32(PCH_RAICC(i
), ~ether_crc_le(ETH_ALEN
, mac_addr
));
2559 /* Write Rx addresses to the PHY */
2560 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
2562 /* Enable jumbo frame workaround in the MAC */
2563 mac_reg
= er32(FFLT_DBG
);
2564 mac_reg
&= ~BIT(14);
2565 mac_reg
|= (7 << 15);
2566 ew32(FFLT_DBG
, mac_reg
);
2568 mac_reg
= er32(RCTL
);
2569 mac_reg
|= E1000_RCTL_SECRC
;
2570 ew32(RCTL
, mac_reg
);
2572 ret_val
= e1000e_read_kmrn_reg(hw
,
2573 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2577 ret_val
= e1000e_write_kmrn_reg(hw
,
2578 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2582 ret_val
= e1000e_read_kmrn_reg(hw
,
2583 E1000_KMRNCTRLSTA_HD_CTRL
,
2587 data
&= ~(0xF << 8);
2589 ret_val
= e1000e_write_kmrn_reg(hw
,
2590 E1000_KMRNCTRLSTA_HD_CTRL
,
2595 /* Enable jumbo frame workaround in the PHY */
2596 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
2597 data
&= ~(0x7F << 5);
2598 data
|= (0x37 << 5);
2599 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
2602 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
2604 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
2607 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
2608 data
&= ~(0x3FF << 2);
2609 data
|= (E1000_TX_PTR_GAP
<< 2);
2610 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
2613 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xF100);
2616 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
2617 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| BIT(10));
2621 /* Write MAC register values back to h/w defaults */
2622 mac_reg
= er32(FFLT_DBG
);
2623 mac_reg
&= ~(0xF << 14);
2624 ew32(FFLT_DBG
, mac_reg
);
2626 mac_reg
= er32(RCTL
);
2627 mac_reg
&= ~E1000_RCTL_SECRC
;
2628 ew32(RCTL
, mac_reg
);
2630 ret_val
= e1000e_read_kmrn_reg(hw
,
2631 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2635 ret_val
= e1000e_write_kmrn_reg(hw
,
2636 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2640 ret_val
= e1000e_read_kmrn_reg(hw
,
2641 E1000_KMRNCTRLSTA_HD_CTRL
,
2645 data
&= ~(0xF << 8);
2647 ret_val
= e1000e_write_kmrn_reg(hw
,
2648 E1000_KMRNCTRLSTA_HD_CTRL
,
2653 /* Write PHY register values back to h/w defaults */
2654 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
2655 data
&= ~(0x7F << 5);
2656 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
2659 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
2661 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
2664 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
2665 data
&= ~(0x3FF << 2);
2667 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
2670 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
2673 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
2674 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~BIT(10));
2679 /* re-enable Rx path after enabling/disabling workaround */
2680 return e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~BIT(14));
2684 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2685 * done after every PHY reset.
2687 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
2691 if (hw
->mac
.type
!= e1000_pch2lan
)
2694 /* Set MDIO slow mode before any other MDIO access */
2695 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
2699 ret_val
= hw
->phy
.ops
.acquire(hw
);
2702 /* set MSE higher to enable link to stay up when noise is high */
2703 ret_val
= e1000_write_emi_reg_locked(hw
, I82579_MSE_THRESHOLD
, 0x0034);
2706 /* drop link after 5 times MSE threshold was reached */
2707 ret_val
= e1000_write_emi_reg_locked(hw
, I82579_MSE_LINK_DOWN
, 0x0005);
2709 hw
->phy
.ops
.release(hw
);
2715 * e1000_k1_gig_workaround_lv - K1 Si workaround
2716 * @hw: pointer to the HW structure
2718 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2719 * Disable K1 in 1000Mbps and 100Mbps
2721 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
)
2726 if (hw
->mac
.type
!= e1000_pch2lan
)
2729 /* Set K1 beacon duration based on 10Mbs speed */
2730 ret_val
= e1e_rphy(hw
, HV_M_STATUS
, &status_reg
);
2734 if ((status_reg
& (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
))
2735 == (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
)) {
2737 (HV_M_STATUS_SPEED_1000
| HV_M_STATUS_SPEED_100
)) {
2740 /* LV 1G/100 Packet drop issue wa */
2741 ret_val
= e1e_rphy(hw
, HV_PM_CTRL
, &pm_phy_reg
);
2744 pm_phy_reg
&= ~HV_PM_CTRL_K1_ENABLE
;
2745 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, pm_phy_reg
);
2751 mac_reg
= er32(FEXTNVM4
);
2752 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
2753 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_16USEC
;
2754 ew32(FEXTNVM4
, mac_reg
);
2762 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2763 * @hw: pointer to the HW structure
2764 * @gate: boolean set to true to gate, false to ungate
2766 * Gate/ungate the automatic PHY configuration via hardware; perform
2767 * the configuration via software instead.
2769 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
)
2773 if (hw
->mac
.type
< e1000_pch2lan
)
2776 extcnf_ctrl
= er32(EXTCNF_CTRL
);
2779 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
2781 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
2783 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
2787 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2788 * @hw: pointer to the HW structure
2790 * Check the appropriate indication the MAC has finished configuring the
2791 * PHY after a software reset.
2793 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
2795 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
2797 /* Wait for basic configuration completes before proceeding */
2799 data
= er32(STATUS
);
2800 data
&= E1000_STATUS_LAN_INIT_DONE
;
2801 usleep_range(100, 200);
2802 } while ((!data
) && --loop
);
2804 /* If basic configuration is incomplete before the above loop
2805 * count reaches 0, loading the configuration from NVM will
2806 * leave the PHY in a bad state possibly resulting in no link.
2809 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2811 /* Clear the Init Done bit for the next init event */
2812 data
= er32(STATUS
);
2813 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
2818 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2819 * @hw: pointer to the HW structure
2821 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
2826 if (hw
->phy
.ops
.check_reset_block(hw
))
2829 /* Allow time for h/w to get to quiescent state after reset */
2830 usleep_range(10000, 20000);
2832 /* Perform any necessary post-reset workarounds */
2833 switch (hw
->mac
.type
) {
2835 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
2840 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
2848 /* Clear the host wakeup bit after lcd reset */
2849 if (hw
->mac
.type
>= e1000_pchlan
) {
2850 e1e_rphy(hw
, BM_PORT_GEN_CFG
, ®
);
2851 reg
&= ~BM_WUC_HOST_WU_BIT
;
2852 e1e_wphy(hw
, BM_PORT_GEN_CFG
, reg
);
2855 /* Configure the LCD with the extended configuration region in NVM */
2856 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
2860 /* Configure the LCD with the OEM bits in NVM */
2861 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
2863 if (hw
->mac
.type
== e1000_pch2lan
) {
2864 /* Ungate automatic PHY configuration on non-managed 82579 */
2865 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
2866 usleep_range(10000, 20000);
2867 e1000_gate_hw_phy_config_ich8lan(hw
, false);
2870 /* Set EEE LPI Update Timer to 200usec */
2871 ret_val
= hw
->phy
.ops
.acquire(hw
);
2874 ret_val
= e1000_write_emi_reg_locked(hw
,
2875 I82579_LPI_UPDATE_TIMER
,
2877 hw
->phy
.ops
.release(hw
);
2884 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2885 * @hw: pointer to the HW structure
2888 * This is a function pointer entry point called by drivers
2889 * or other shared routines.
2891 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
2895 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2896 if ((hw
->mac
.type
== e1000_pch2lan
) &&
2897 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
2898 e1000_gate_hw_phy_config_ich8lan(hw
, true);
2900 ret_val
= e1000e_phy_hw_reset_generic(hw
);
2904 return e1000_post_phy_reset_ich8lan(hw
);
2908 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2909 * @hw: pointer to the HW structure
2910 * @active: true to enable LPLU, false to disable
2912 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2913 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2914 * the phy speed. This function will manually set the LPLU bit and restart
2915 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2916 * since it configures the same bit.
2918 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
2923 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
2928 oem_reg
|= HV_OEM_BITS_LPLU
;
2930 oem_reg
&= ~HV_OEM_BITS_LPLU
;
2932 if (!hw
->phy
.ops
.check_reset_block(hw
))
2933 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
2935 return e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
2939 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2940 * @hw: pointer to the HW structure
2941 * @active: true to enable LPLU, false to disable
2943 * Sets the LPLU D0 state according to the active flag. When
2944 * activating LPLU this function also disables smart speed
2945 * and vice versa. LPLU will not be activated unless the
2946 * device autonegotiation advertisement meets standards of
2947 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2948 * This is a function pointer entry point only called by
2949 * PHY setup routines.
2951 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
2953 struct e1000_phy_info
*phy
= &hw
->phy
;
2958 if (phy
->type
== e1000_phy_ife
)
2961 phy_ctrl
= er32(PHY_CTRL
);
2964 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
2965 ew32(PHY_CTRL
, phy_ctrl
);
2967 if (phy
->type
!= e1000_phy_igp_3
)
2970 /* Call gig speed drop workaround on LPLU before accessing
2973 if (hw
->mac
.type
== e1000_ich8lan
)
2974 e1000e_gig_downshift_workaround_ich8lan(hw
);
2976 /* When LPLU is enabled, we should disable SmartSpeed */
2977 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
2980 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
2981 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
2985 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
2986 ew32(PHY_CTRL
, phy_ctrl
);
2988 if (phy
->type
!= e1000_phy_igp_3
)
2991 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2992 * during Dx states where the power conservation is most
2993 * important. During driver activity we should enable
2994 * SmartSpeed, so performance is maintained.
2996 if (phy
->smart_speed
== e1000_smart_speed_on
) {
2997 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3002 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
3003 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3007 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
3008 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3013 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
3014 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3025 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3026 * @hw: pointer to the HW structure
3027 * @active: true to enable LPLU, false to disable
3029 * Sets the LPLU D3 state according to the active flag. When
3030 * activating LPLU this function also disables smart speed
3031 * and vice versa. LPLU will not be activated unless the
3032 * device autonegotiation advertisement meets standards of
3033 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3034 * This is a function pointer entry point only called by
3035 * PHY setup routines.
3037 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
3039 struct e1000_phy_info
*phy
= &hw
->phy
;
3044 phy_ctrl
= er32(PHY_CTRL
);
3047 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
3048 ew32(PHY_CTRL
, phy_ctrl
);
3050 if (phy
->type
!= e1000_phy_igp_3
)
3053 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3054 * during Dx states where the power conservation is most
3055 * important. During driver activity we should enable
3056 * SmartSpeed, so performance is maintained.
3058 if (phy
->smart_speed
== e1000_smart_speed_on
) {
3059 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3064 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
3065 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3069 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
3070 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3075 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
3076 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3081 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
3082 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
3083 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
3084 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
3085 ew32(PHY_CTRL
, phy_ctrl
);
3087 if (phy
->type
!= e1000_phy_igp_3
)
3090 /* Call gig speed drop workaround on LPLU before accessing
3093 if (hw
->mac
.type
== e1000_ich8lan
)
3094 e1000e_gig_downshift_workaround_ich8lan(hw
);
3096 /* When LPLU is enabled, we should disable SmartSpeed */
3097 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
3101 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
3102 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
3109 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3110 * @hw: pointer to the HW structure
3111 * @bank: pointer to the variable that returns the active bank
3113 * Reads signature byte from the NVM using the flash access registers.
3114 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3116 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
3119 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3120 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
3121 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
3126 switch (hw
->mac
.type
) {
3128 bank1_offset
= nvm
->flash_bank_size
;
3129 act_offset
= E1000_ICH_NVM_SIG_WORD
;
3131 /* set bank to 0 in case flash read fails */
3135 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
,
3139 sig_byte
= (u8
)((nvm_dword
& 0xFF00) >> 8);
3140 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3141 E1000_ICH_NVM_SIG_VALUE
) {
3147 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
+
3152 sig_byte
= (u8
)((nvm_dword
& 0xFF00) >> 8);
3153 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3154 E1000_ICH_NVM_SIG_VALUE
) {
3159 e_dbg("ERROR: No valid NVM bank present\n");
3160 return -E1000_ERR_NVM
;
3164 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
3165 E1000_EECD_SEC1VAL_VALID_MASK
) {
3166 if (eecd
& E1000_EECD_SEC1VAL
)
3173 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3176 /* set bank to 0 in case flash read fails */
3180 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
3184 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3185 E1000_ICH_NVM_SIG_VALUE
) {
3191 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
3196 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3197 E1000_ICH_NVM_SIG_VALUE
) {
3202 e_dbg("ERROR: No valid NVM bank present\n");
3203 return -E1000_ERR_NVM
;
3208 * e1000_read_nvm_spt - NVM access for SPT
3209 * @hw: pointer to the HW structure
3210 * @offset: The offset (in bytes) of the word(s) to read.
3211 * @words: Size of data to read in words.
3212 * @data: pointer to the word(s) to read at offset.
3214 * Reads a word(s) from the NVM
3216 static s32
e1000_read_nvm_spt(struct e1000_hw
*hw
, u16 offset
, u16 words
,
3219 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3220 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3228 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
3230 e_dbg("nvm parameter(s) out of bounds\n");
3231 ret_val
= -E1000_ERR_NVM
;
3235 nvm
->ops
.acquire(hw
);
3237 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3239 e_dbg("Could not detect valid bank, assuming bank 0\n");
3243 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
3244 act_offset
+= offset
;
3248 for (i
= 0; i
< words
; i
+= 2) {
3249 if (words
- i
== 1) {
3250 if (dev_spec
->shadow_ram
[offset
+ i
].modified
) {
3252 dev_spec
->shadow_ram
[offset
+ i
].value
;
3254 offset_to_read
= act_offset
+ i
-
3255 ((act_offset
+ i
) % 2);
3257 e1000_read_flash_dword_ich8lan(hw
,
3262 if ((act_offset
+ i
) % 2 == 0)
3263 data
[i
] = (u16
)(dword
& 0xFFFF);
3265 data
[i
] = (u16
)((dword
>> 16) & 0xFFFF);
3268 offset_to_read
= act_offset
+ i
;
3269 if (!(dev_spec
->shadow_ram
[offset
+ i
].modified
) ||
3270 !(dev_spec
->shadow_ram
[offset
+ i
+ 1].modified
)) {
3272 e1000_read_flash_dword_ich8lan(hw
,
3278 if (dev_spec
->shadow_ram
[offset
+ i
].modified
)
3280 dev_spec
->shadow_ram
[offset
+ i
].value
;
3282 data
[i
] = (u16
)(dword
& 0xFFFF);
3283 if (dev_spec
->shadow_ram
[offset
+ i
].modified
)
3285 dev_spec
->shadow_ram
[offset
+ i
+ 1].value
;
3287 data
[i
+ 1] = (u16
)(dword
>> 16 & 0xFFFF);
3291 nvm
->ops
.release(hw
);
3295 e_dbg("NVM read error: %d\n", ret_val
);
3301 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3302 * @hw: pointer to the HW structure
3303 * @offset: The offset (in bytes) of the word(s) to read.
3304 * @words: Size of data to read in words
3305 * @data: Pointer to the word(s) to read at offset.
3307 * Reads a word(s) from the NVM using the flash access registers.
3309 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
3312 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3313 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3319 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
3321 e_dbg("nvm parameter(s) out of bounds\n");
3322 ret_val
= -E1000_ERR_NVM
;
3326 nvm
->ops
.acquire(hw
);
3328 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3330 e_dbg("Could not detect valid bank, assuming bank 0\n");
3334 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
3335 act_offset
+= offset
;
3338 for (i
= 0; i
< words
; i
++) {
3339 if (dev_spec
->shadow_ram
[offset
+ i
].modified
) {
3340 data
[i
] = dev_spec
->shadow_ram
[offset
+ i
].value
;
3342 ret_val
= e1000_read_flash_word_ich8lan(hw
,
3351 nvm
->ops
.release(hw
);
3355 e_dbg("NVM read error: %d\n", ret_val
);
3361 * e1000_flash_cycle_init_ich8lan - Initialize flash
3362 * @hw: pointer to the HW structure
3364 * This function does initial flash setup so that a new read/write/erase cycle
3367 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
3369 union ich8_hws_flash_status hsfsts
;
3370 s32 ret_val
= -E1000_ERR_NVM
;
3372 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3374 /* Check if the flash descriptor is valid */
3375 if (!hsfsts
.hsf_status
.fldesvalid
) {
3376 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3377 return -E1000_ERR_NVM
;
3380 /* Clear FCERR and DAEL in hw status by writing 1 */
3381 hsfsts
.hsf_status
.flcerr
= 1;
3382 hsfsts
.hsf_status
.dael
= 1;
3383 if (hw
->mac
.type
== e1000_pch_spt
)
3384 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
& 0xFFFF);
3386 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
3388 /* Either we should have a hardware SPI cycle in progress
3389 * bit to check against, in order to start a new cycle or
3390 * FDONE bit should be changed in the hardware so that it
3391 * is 1 after hardware reset, which can then be used as an
3392 * indication whether a cycle is in progress or has been
3396 if (!hsfsts
.hsf_status
.flcinprog
) {
3397 /* There is no cycle running at present,
3398 * so we can start a cycle.
3399 * Begin by setting Flash Cycle Done.
3401 hsfsts
.hsf_status
.flcdone
= 1;
3402 if (hw
->mac
.type
== e1000_pch_spt
)
3403 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
& 0xFFFF);
3405 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
3410 /* Otherwise poll for sometime so the current
3411 * cycle has a chance to end before giving up.
3413 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
3414 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3415 if (!hsfsts
.hsf_status
.flcinprog
) {
3422 /* Successful in waiting for previous cycle to timeout,
3423 * now set the Flash Cycle Done.
3425 hsfsts
.hsf_status
.flcdone
= 1;
3426 if (hw
->mac
.type
== e1000_pch_spt
)
3427 ew32flash(ICH_FLASH_HSFSTS
,
3428 hsfsts
.regval
& 0xFFFF);
3430 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
3432 e_dbg("Flash controller busy, cannot get access\n");
3440 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3441 * @hw: pointer to the HW structure
3442 * @timeout: maximum time to wait for completion
3444 * This function starts a flash cycle and waits for its completion.
3446 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
3448 union ich8_hws_flash_ctrl hsflctl
;
3449 union ich8_hws_flash_status hsfsts
;
3452 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3453 if (hw
->mac
.type
== e1000_pch_spt
)
3454 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
) >> 16;
3456 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
3457 hsflctl
.hsf_ctrl
.flcgo
= 1;
3459 if (hw
->mac
.type
== e1000_pch_spt
)
3460 ew32flash(ICH_FLASH_HSFSTS
, hsflctl
.regval
<< 16);
3462 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
3464 /* wait till FDONE bit is set to 1 */
3466 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3467 if (hsfsts
.hsf_status
.flcdone
)
3470 } while (i
++ < timeout
);
3472 if (hsfsts
.hsf_status
.flcdone
&& !hsfsts
.hsf_status
.flcerr
)
3475 return -E1000_ERR_NVM
;
3479 * e1000_read_flash_dword_ich8lan - Read dword from flash
3480 * @hw: pointer to the HW structure
3481 * @offset: offset to data location
3482 * @data: pointer to the location for storing the data
3484 * Reads the flash dword at offset into data. Offset is converted
3485 * to bytes before read.
3487 static s32
e1000_read_flash_dword_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3490 /* Must convert word offset into bytes. */
3492 return e1000_read_flash_data32_ich8lan(hw
, offset
, data
);
3496 * e1000_read_flash_word_ich8lan - Read word from flash
3497 * @hw: pointer to the HW structure
3498 * @offset: offset to data location
3499 * @data: pointer to the location for storing the data
3501 * Reads the flash word at offset into data. Offset is converted
3502 * to bytes before read.
3504 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3507 /* Must convert offset into bytes. */
3510 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
3514 * e1000_read_flash_byte_ich8lan - Read byte from flash
3515 * @hw: pointer to the HW structure
3516 * @offset: The offset of the byte to read.
3517 * @data: Pointer to a byte to store the value read.
3519 * Reads a single byte from the NVM using the flash access registers.
3521 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3527 /* In SPT, only 32 bits access is supported,
3528 * so this function should not be called.
3530 if (hw
->mac
.type
== e1000_pch_spt
)
3531 return -E1000_ERR_NVM
;
3533 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
3544 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3545 * @hw: pointer to the HW structure
3546 * @offset: The offset (in bytes) of the byte or word to read.
3547 * @size: Size of data to read, 1=byte 2=word
3548 * @data: Pointer to the word to store the value read.
3550 * Reads a byte or word from the NVM using the flash access registers.
3552 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3555 union ich8_hws_flash_status hsfsts
;
3556 union ich8_hws_flash_ctrl hsflctl
;
3557 u32 flash_linear_addr
;
3559 s32 ret_val
= -E1000_ERR_NVM
;
3562 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
3563 return -E1000_ERR_NVM
;
3565 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
3566 hw
->nvm
.flash_base_addr
);
3571 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
3575 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
3576 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3577 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
3578 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
3579 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
3581 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
3584 e1000_flash_cycle_ich8lan(hw
,
3585 ICH_FLASH_READ_COMMAND_TIMEOUT
);
3587 /* Check if FCERR is set to 1, if set to 1, clear it
3588 * and try the whole sequence a few more times, else
3589 * read in (shift in) the Flash Data0, the order is
3590 * least significant byte first msb to lsb
3593 flash_data
= er32flash(ICH_FLASH_FDATA0
);
3595 *data
= (u8
)(flash_data
& 0x000000FF);
3597 *data
= (u16
)(flash_data
& 0x0000FFFF);
3600 /* If we've gotten here, then things are probably
3601 * completely hosed, but if the error condition is
3602 * detected, it won't hurt to give it another try...
3603 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3605 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3606 if (hsfsts
.hsf_status
.flcerr
) {
3607 /* Repeat for some time before giving up. */
3609 } else if (!hsfsts
.hsf_status
.flcdone
) {
3610 e_dbg("Timeout error - flash cycle did not complete.\n");
3614 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
3620 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3621 * @hw: pointer to the HW structure
3622 * @offset: The offset (in bytes) of the dword to read.
3623 * @data: Pointer to the dword to store the value read.
3625 * Reads a byte or word from the NVM using the flash access registers.
3628 static s32
e1000_read_flash_data32_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3631 union ich8_hws_flash_status hsfsts
;
3632 union ich8_hws_flash_ctrl hsflctl
;
3633 u32 flash_linear_addr
;
3634 s32 ret_val
= -E1000_ERR_NVM
;
3637 if (offset
> ICH_FLASH_LINEAR_ADDR_MASK
||
3638 hw
->mac
.type
!= e1000_pch_spt
)
3639 return -E1000_ERR_NVM
;
3640 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
3641 hw
->nvm
.flash_base_addr
);
3646 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
3649 /* In SPT, This register is in Lan memory space, not flash.
3650 * Therefore, only 32 bit access is supported
3652 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
) >> 16;
3654 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3655 hsflctl
.hsf_ctrl
.fldbcount
= sizeof(u32
) - 1;
3656 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
3657 /* In SPT, This register is in Lan memory space, not flash.
3658 * Therefore, only 32 bit access is supported
3660 ew32flash(ICH_FLASH_HSFSTS
, (u32
)hsflctl
.regval
<< 16);
3661 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
3664 e1000_flash_cycle_ich8lan(hw
,
3665 ICH_FLASH_READ_COMMAND_TIMEOUT
);
3667 /* Check if FCERR is set to 1, if set to 1, clear it
3668 * and try the whole sequence a few more times, else
3669 * read in (shift in) the Flash Data0, the order is
3670 * least significant byte first msb to lsb
3673 *data
= er32flash(ICH_FLASH_FDATA0
);
3676 /* If we've gotten here, then things are probably
3677 * completely hosed, but if the error condition is
3678 * detected, it won't hurt to give it another try...
3679 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3681 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3682 if (hsfsts
.hsf_status
.flcerr
) {
3683 /* Repeat for some time before giving up. */
3685 } else if (!hsfsts
.hsf_status
.flcdone
) {
3686 e_dbg("Timeout error - flash cycle did not complete.\n");
3690 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
3696 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3697 * @hw: pointer to the HW structure
3698 * @offset: The offset (in bytes) of the word(s) to write.
3699 * @words: Size of data to write in words
3700 * @data: Pointer to the word(s) to write at offset.
3702 * Writes a byte or word to the NVM using the flash access registers.
3704 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
3707 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3708 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3711 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
3713 e_dbg("nvm parameter(s) out of bounds\n");
3714 return -E1000_ERR_NVM
;
3717 nvm
->ops
.acquire(hw
);
3719 for (i
= 0; i
< words
; i
++) {
3720 dev_spec
->shadow_ram
[offset
+ i
].modified
= true;
3721 dev_spec
->shadow_ram
[offset
+ i
].value
= data
[i
];
3724 nvm
->ops
.release(hw
);
3730 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3731 * @hw: pointer to the HW structure
3733 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3734 * which writes the checksum to the shadow ram. The changes in the shadow
3735 * ram are then committed to the EEPROM by processing each bank at a time
3736 * checking for the modified bit and writing only the pending changes.
3737 * After a successful commit, the shadow ram is cleared and is ready for
3740 static s32
e1000_update_nvm_checksum_spt(struct e1000_hw
*hw
)
3742 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3743 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3744 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
3748 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
3752 if (nvm
->type
!= e1000_nvm_flash_sw
)
3755 nvm
->ops
.acquire(hw
);
3757 /* We're writing to the opposite bank so if we're on bank 1,
3758 * write to bank 0 etc. We also need to erase the segment that
3759 * is going to be written
3761 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3763 e_dbg("Could not detect valid bank, assuming bank 0\n");
3768 new_bank_offset
= nvm
->flash_bank_size
;
3769 old_bank_offset
= 0;
3770 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
3774 old_bank_offset
= nvm
->flash_bank_size
;
3775 new_bank_offset
= 0;
3776 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
3780 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
+= 2) {
3781 /* Determine whether to write the value stored
3782 * in the other NVM bank or a modified value stored
3785 ret_val
= e1000_read_flash_dword_ich8lan(hw
,
3786 i
+ old_bank_offset
,
3789 if (dev_spec
->shadow_ram
[i
].modified
) {
3790 dword
&= 0xffff0000;
3791 dword
|= (dev_spec
->shadow_ram
[i
].value
& 0xffff);
3793 if (dev_spec
->shadow_ram
[i
+ 1].modified
) {
3794 dword
&= 0x0000ffff;
3795 dword
|= ((dev_spec
->shadow_ram
[i
+ 1].value
& 0xffff)
3801 /* If the word is 0x13, then make sure the signature bits
3802 * (15:14) are 11b until the commit has completed.
3803 * This will allow us to write 10b which indicates the
3804 * signature is valid. We want to do this after the write
3805 * has completed so that we don't mark the segment valid
3806 * while the write is still in progress
3808 if (i
== E1000_ICH_NVM_SIG_WORD
- 1)
3809 dword
|= E1000_ICH_NVM_SIG_MASK
<< 16;
3811 /* Convert offset to bytes. */
3812 act_offset
= (i
+ new_bank_offset
) << 1;
3814 usleep_range(100, 200);
3816 /* Write the data to the new bank. Offset in words */
3817 act_offset
= i
+ new_bank_offset
;
3818 ret_val
= e1000_retry_write_flash_dword_ich8lan(hw
, act_offset
,
3824 /* Don't bother writing the segment valid bits if sector
3825 * programming failed.
3828 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3829 e_dbg("Flash commit failed.\n");
3833 /* Finally validate the new segment by setting bit 15:14
3834 * to 10b in word 0x13 , this can be done without an
3835 * erase as well since these bits are 11 to start with
3836 * and we need to change bit 14 to 0b
3838 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
3840 /*offset in words but we read dword */
3842 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
, &dword
);
3847 dword
&= 0xBFFFFFFF;
3848 ret_val
= e1000_retry_write_flash_dword_ich8lan(hw
, act_offset
, dword
);
3853 /* And invalidate the previously valid segment by setting
3854 * its signature word (0x13) high_byte to 0b. This can be
3855 * done without an erase because flash erase sets all bits
3856 * to 1's. We can write 1's to 0's without an erase
3858 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
3860 /* offset in words but we read dword */
3861 act_offset
= old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
- 1;
3862 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
, &dword
);
3867 dword
&= 0x00FFFFFF;
3868 ret_val
= e1000_retry_write_flash_dword_ich8lan(hw
, act_offset
, dword
);
3873 /* Great! Everything worked, we can now clear the cached entries. */
3874 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
3875 dev_spec
->shadow_ram
[i
].modified
= false;
3876 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
3880 nvm
->ops
.release(hw
);
3882 /* Reload the EEPROM, or else modifications will not appear
3883 * until after the next adapter reset.
3886 nvm
->ops
.reload(hw
);
3887 usleep_range(10000, 20000);
3892 e_dbg("NVM update error: %d\n", ret_val
);
3898 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3899 * @hw: pointer to the HW structure
3901 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3902 * which writes the checksum to the shadow ram. The changes in the shadow
3903 * ram are then committed to the EEPROM by processing each bank at a time
3904 * checking for the modified bit and writing only the pending changes.
3905 * After a successful commit, the shadow ram is cleared and is ready for
3908 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
3910 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3911 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3912 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
3916 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
3920 if (nvm
->type
!= e1000_nvm_flash_sw
)
3923 nvm
->ops
.acquire(hw
);
3925 /* We're writing to the opposite bank so if we're on bank 1,
3926 * write to bank 0 etc. We also need to erase the segment that
3927 * is going to be written
3929 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3931 e_dbg("Could not detect valid bank, assuming bank 0\n");
3936 new_bank_offset
= nvm
->flash_bank_size
;
3937 old_bank_offset
= 0;
3938 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
3942 old_bank_offset
= nvm
->flash_bank_size
;
3943 new_bank_offset
= 0;
3944 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
3948 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
3949 if (dev_spec
->shadow_ram
[i
].modified
) {
3950 data
= dev_spec
->shadow_ram
[i
].value
;
3952 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
3959 /* If the word is 0x13, then make sure the signature bits
3960 * (15:14) are 11b until the commit has completed.
3961 * This will allow us to write 10b which indicates the
3962 * signature is valid. We want to do this after the write
3963 * has completed so that we don't mark the segment valid
3964 * while the write is still in progress
3966 if (i
== E1000_ICH_NVM_SIG_WORD
)
3967 data
|= E1000_ICH_NVM_SIG_MASK
;
3969 /* Convert offset to bytes. */
3970 act_offset
= (i
+ new_bank_offset
) << 1;
3972 usleep_range(100, 200);
3973 /* Write the bytes to the new bank. */
3974 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
3980 usleep_range(100, 200);
3981 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
3988 /* Don't bother writing the segment valid bits if sector
3989 * programming failed.
3992 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3993 e_dbg("Flash commit failed.\n");
3997 /* Finally validate the new segment by setting bit 15:14
3998 * to 10b in word 0x13 , this can be done without an
3999 * erase as well since these bits are 11 to start with
4000 * and we need to change bit 14 to 0b
4002 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
4003 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
4008 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
4014 /* And invalidate the previously valid segment by setting
4015 * its signature word (0x13) high_byte to 0b. This can be
4016 * done without an erase because flash erase sets all bits
4017 * to 1's. We can write 1's to 0's without an erase
4019 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
4020 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
4024 /* Great! Everything worked, we can now clear the cached entries. */
4025 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
4026 dev_spec
->shadow_ram
[i
].modified
= false;
4027 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
4031 nvm
->ops
.release(hw
);
4033 /* Reload the EEPROM, or else modifications will not appear
4034 * until after the next adapter reset.
4037 nvm
->ops
.reload(hw
);
4038 usleep_range(10000, 20000);
4043 e_dbg("NVM update error: %d\n", ret_val
);
4049 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4050 * @hw: pointer to the HW structure
4052 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4053 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4054 * calculated, in which case we need to calculate the checksum and set bit 6.
4056 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
4061 u16 valid_csum_mask
;
4063 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4064 * the checksum needs to be fixed. This bit is an indication that
4065 * the NVM was prepared by OEM software and did not calculate
4066 * the checksum...a likely scenario.
4068 switch (hw
->mac
.type
) {
4072 valid_csum_mask
= NVM_COMPAT_VALID_CSUM
;
4075 word
= NVM_FUTURE_INIT_WORD1
;
4076 valid_csum_mask
= NVM_FUTURE_INIT_WORD1_VALID_CSUM
;
4080 ret_val
= e1000_read_nvm(hw
, word
, 1, &data
);
4084 if (!(data
& valid_csum_mask
)) {
4085 data
|= valid_csum_mask
;
4086 ret_val
= e1000_write_nvm(hw
, word
, 1, &data
);
4089 ret_val
= e1000e_update_nvm_checksum(hw
);
4094 return e1000e_validate_nvm_checksum_generic(hw
);
4098 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4099 * @hw: pointer to the HW structure
4101 * To prevent malicious write/erase of the NVM, set it to be read-only
4102 * so that the hardware ignores all write/erase cycles of the NVM via
4103 * the flash control registers. The shadow-ram copy of the NVM will
4104 * still be updated, however any updates to this copy will not stick
4105 * across driver reloads.
4107 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
4109 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
4110 union ich8_flash_protected_range pr0
;
4111 union ich8_hws_flash_status hsfsts
;
4114 nvm
->ops
.acquire(hw
);
4116 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
4118 /* Write-protect GbE Sector of NVM */
4119 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
4120 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
4121 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
4122 pr0
.range
.wpe
= true;
4123 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
4125 /* Lock down a subset of GbE Flash Control Registers, e.g.
4126 * PR0 to prevent the write-protection from being lifted.
4127 * Once FLOCKDN is set, the registers protected by it cannot
4128 * be written until FLOCKDN is cleared by a hardware reset.
4130 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4131 hsfsts
.hsf_status
.flockdn
= true;
4132 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
4134 nvm
->ops
.release(hw
);
4138 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4139 * @hw: pointer to the HW structure
4140 * @offset: The offset (in bytes) of the byte/word to read.
4141 * @size: Size of data to read, 1=byte 2=word
4142 * @data: The byte(s) to write to the NVM.
4144 * Writes one/two bytes to the NVM using the flash access registers.
4146 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
4149 union ich8_hws_flash_status hsfsts
;
4150 union ich8_hws_flash_ctrl hsflctl
;
4151 u32 flash_linear_addr
;
4156 if (hw
->mac
.type
== e1000_pch_spt
) {
4157 if (size
!= 4 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
4158 return -E1000_ERR_NVM
;
4160 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
4161 return -E1000_ERR_NVM
;
4164 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
4165 hw
->nvm
.flash_base_addr
);
4170 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
4173 /* In SPT, This register is in Lan memory space, not
4174 * flash. Therefore, only 32 bit access is supported
4176 if (hw
->mac
.type
== e1000_pch_spt
)
4177 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
) >> 16;
4179 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
4181 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4182 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
4183 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
4184 /* In SPT, This register is in Lan memory space,
4185 * not flash. Therefore, only 32 bit access is
4188 if (hw
->mac
.type
== e1000_pch_spt
)
4189 ew32flash(ICH_FLASH_HSFSTS
, hsflctl
.regval
<< 16);
4191 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
4193 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
4196 flash_data
= (u32
)data
& 0x00FF;
4198 flash_data
= (u32
)data
;
4200 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
4202 /* check if FCERR is set to 1 , if set to 1, clear it
4203 * and try the whole sequence a few more times else done
4206 e1000_flash_cycle_ich8lan(hw
,
4207 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
4211 /* If we're here, then things are most likely
4212 * completely hosed, but if the error condition
4213 * is detected, it won't hurt to give it another
4214 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4216 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4217 if (hsfsts
.hsf_status
.flcerr
)
4218 /* Repeat for some time before giving up. */
4220 if (!hsfsts
.hsf_status
.flcdone
) {
4221 e_dbg("Timeout error - flash cycle did not complete.\n");
4224 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
4230 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4231 * @hw: pointer to the HW structure
4232 * @offset: The offset (in bytes) of the dwords to read.
4233 * @data: The 4 bytes to write to the NVM.
4235 * Writes one/two/four bytes to the NVM using the flash access registers.
4237 static s32
e1000_write_flash_data32_ich8lan(struct e1000_hw
*hw
, u32 offset
,
4240 union ich8_hws_flash_status hsfsts
;
4241 union ich8_hws_flash_ctrl hsflctl
;
4242 u32 flash_linear_addr
;
4246 if (hw
->mac
.type
== e1000_pch_spt
) {
4247 if (offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
4248 return -E1000_ERR_NVM
;
4250 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
4251 hw
->nvm
.flash_base_addr
);
4255 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
4259 /* In SPT, This register is in Lan memory space, not
4260 * flash. Therefore, only 32 bit access is supported
4262 if (hw
->mac
.type
== e1000_pch_spt
)
4263 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
)
4266 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
4268 hsflctl
.hsf_ctrl
.fldbcount
= sizeof(u32
) - 1;
4269 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
4271 /* In SPT, This register is in Lan memory space,
4272 * not flash. Therefore, only 32 bit access is
4275 if (hw
->mac
.type
== e1000_pch_spt
)
4276 ew32flash(ICH_FLASH_HSFSTS
, hsflctl
.regval
<< 16);
4278 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
4280 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
4282 ew32flash(ICH_FLASH_FDATA0
, data
);
4284 /* check if FCERR is set to 1 , if set to 1, clear it
4285 * and try the whole sequence a few more times else done
4288 e1000_flash_cycle_ich8lan(hw
,
4289 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
4294 /* If we're here, then things are most likely
4295 * completely hosed, but if the error condition
4296 * is detected, it won't hurt to give it another
4297 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4299 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4301 if (hsfsts
.hsf_status
.flcerr
)
4302 /* Repeat for some time before giving up. */
4304 if (!hsfsts
.hsf_status
.flcdone
) {
4305 e_dbg("Timeout error - flash cycle did not complete.\n");
4308 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
4314 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4315 * @hw: pointer to the HW structure
4316 * @offset: The index of the byte to read.
4317 * @data: The byte to write to the NVM.
4319 * Writes a single byte to the NVM using the flash access registers.
4321 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
4324 u16 word
= (u16
)data
;
4326 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
4330 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4331 * @hw: pointer to the HW structure
4332 * @offset: The offset of the word to write.
4333 * @dword: The dword to write to the NVM.
4335 * Writes a single dword to the NVM using the flash access registers.
4336 * Goes through a retry algorithm before giving up.
4338 static s32
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw
*hw
,
4339 u32 offset
, u32 dword
)
4342 u16 program_retries
;
4344 /* Must convert word offset into bytes. */
4346 ret_val
= e1000_write_flash_data32_ich8lan(hw
, offset
, dword
);
4350 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
4351 e_dbg("Retrying Byte %8.8X at offset %u\n", dword
, offset
);
4352 usleep_range(100, 200);
4353 ret_val
= e1000_write_flash_data32_ich8lan(hw
, offset
, dword
);
4357 if (program_retries
== 100)
4358 return -E1000_ERR_NVM
;
4364 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4365 * @hw: pointer to the HW structure
4366 * @offset: The offset of the byte to write.
4367 * @byte: The byte to write to the NVM.
4369 * Writes a single byte to the NVM using the flash access registers.
4370 * Goes through a retry algorithm before giving up.
4372 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
4373 u32 offset
, u8 byte
)
4376 u16 program_retries
;
4378 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
4382 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
4383 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
4384 usleep_range(100, 200);
4385 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
4389 if (program_retries
== 100)
4390 return -E1000_ERR_NVM
;
4396 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4397 * @hw: pointer to the HW structure
4398 * @bank: 0 for first bank, 1 for second bank, etc.
4400 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4401 * bank N is 4096 * N + flash_reg_addr.
4403 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
4405 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
4406 union ich8_hws_flash_status hsfsts
;
4407 union ich8_hws_flash_ctrl hsflctl
;
4408 u32 flash_linear_addr
;
4409 /* bank size is in 16bit words - adjust to bytes */
4410 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
4413 s32 j
, iteration
, sector_size
;
4415 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4417 /* Determine HW Sector size: Read BERASE bits of hw flash status
4419 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4420 * consecutive sectors. The start index for the nth Hw sector
4421 * can be calculated as = bank * 4096 + n * 256
4422 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4423 * The start index for the nth Hw sector can be calculated
4425 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4426 * (ich9 only, otherwise error condition)
4427 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4429 switch (hsfsts
.hsf_status
.berasesz
) {
4431 /* Hw sector size 256 */
4432 sector_size
= ICH_FLASH_SEG_SIZE_256
;
4433 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
4436 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
4440 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
4444 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
4448 return -E1000_ERR_NVM
;
4451 /* Start with the base address, then add the sector offset. */
4452 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
4453 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
4455 for (j
= 0; j
< iteration
; j
++) {
4457 u32 timeout
= ICH_FLASH_ERASE_COMMAND_TIMEOUT
;
4460 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
4464 /* Write a value 11 (block Erase) in Flash
4465 * Cycle field in hw flash control
4467 if (hw
->mac
.type
== e1000_pch_spt
)
4469 er32flash(ICH_FLASH_HSFSTS
) >> 16;
4471 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
4473 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
4474 if (hw
->mac
.type
== e1000_pch_spt
)
4475 ew32flash(ICH_FLASH_HSFSTS
,
4476 hsflctl
.regval
<< 16);
4478 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
4480 /* Write the last 24 bits of an index within the
4481 * block into Flash Linear address field in Flash
4484 flash_linear_addr
+= (j
* sector_size
);
4485 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
4487 ret_val
= e1000_flash_cycle_ich8lan(hw
, timeout
);
4491 /* Check if FCERR is set to 1. If 1,
4492 * clear it and try the whole sequence
4493 * a few more times else Done
4495 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4496 if (hsfsts
.hsf_status
.flcerr
)
4497 /* repeat for some time before giving up */
4499 else if (!hsfsts
.hsf_status
.flcdone
)
4501 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
4508 * e1000_valid_led_default_ich8lan - Set the default LED settings
4509 * @hw: pointer to the HW structure
4510 * @data: Pointer to the LED settings
4512 * Reads the LED default settings from the NVM to data. If the NVM LED
4513 * settings is all 0's or F's, set the LED default to a valid LED default
4516 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
4520 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
4522 e_dbg("NVM Read Error\n");
4526 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
4527 *data
= ID_LED_DEFAULT_ICH8LAN
;
4533 * e1000_id_led_init_pchlan - store LED configurations
4534 * @hw: pointer to the HW structure
4536 * PCH does not control LEDs via the LEDCTL register, rather it uses
4537 * the PHY LED configuration register.
4539 * PCH also does not have an "always on" or "always off" mode which
4540 * complicates the ID feature. Instead of using the "on" mode to indicate
4541 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4542 * use "link_up" mode. The LEDs will still ID on request if there is no
4543 * link based on logic in e1000_led_[on|off]_pchlan().
4545 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
4547 struct e1000_mac_info
*mac
= &hw
->mac
;
4549 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
4550 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
4551 u16 data
, i
, temp
, shift
;
4553 /* Get default ID LED modes */
4554 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
4558 mac
->ledctl_default
= er32(LEDCTL
);
4559 mac
->ledctl_mode1
= mac
->ledctl_default
;
4560 mac
->ledctl_mode2
= mac
->ledctl_default
;
4562 for (i
= 0; i
< 4; i
++) {
4563 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
4566 case ID_LED_ON1_DEF2
:
4567 case ID_LED_ON1_ON2
:
4568 case ID_LED_ON1_OFF2
:
4569 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4570 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
4572 case ID_LED_OFF1_DEF2
:
4573 case ID_LED_OFF1_ON2
:
4574 case ID_LED_OFF1_OFF2
:
4575 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4576 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
4583 case ID_LED_DEF1_ON2
:
4584 case ID_LED_ON1_ON2
:
4585 case ID_LED_OFF1_ON2
:
4586 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4587 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
4589 case ID_LED_DEF1_OFF2
:
4590 case ID_LED_ON1_OFF2
:
4591 case ID_LED_OFF1_OFF2
:
4592 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4593 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
4605 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4606 * @hw: pointer to the HW structure
4608 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4609 * register, so the the bus width is hard coded.
4611 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
4613 struct e1000_bus_info
*bus
= &hw
->bus
;
4616 ret_val
= e1000e_get_bus_info_pcie(hw
);
4618 /* ICH devices are "PCI Express"-ish. They have
4619 * a configuration space, but do not contain
4620 * PCI Express Capability registers, so bus width
4621 * must be hardcoded.
4623 if (bus
->width
== e1000_bus_width_unknown
)
4624 bus
->width
= e1000_bus_width_pcie_x1
;
4630 * e1000_reset_hw_ich8lan - Reset the hardware
4631 * @hw: pointer to the HW structure
4633 * Does a full reset of the hardware which includes a reset of the PHY and
4636 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
4638 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
4643 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4644 * on the last TLP read/write transaction when MAC is reset.
4646 ret_val
= e1000e_disable_pcie_master(hw
);
4648 e_dbg("PCI-E Master disable polling has failed.\n");
4650 e_dbg("Masking off all interrupts\n");
4651 ew32(IMC
, 0xffffffff);
4653 /* Disable the Transmit and Receive units. Then delay to allow
4654 * any pending transactions to complete before we hit the MAC
4655 * with the global reset.
4658 ew32(TCTL
, E1000_TCTL_PSP
);
4661 usleep_range(10000, 20000);
4663 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4664 if (hw
->mac
.type
== e1000_ich8lan
) {
4665 /* Set Tx and Rx buffer allocation to 8k apiece. */
4666 ew32(PBA
, E1000_PBA_8K
);
4667 /* Set Packet Buffer Size to 16k. */
4668 ew32(PBS
, E1000_PBS_16K
);
4671 if (hw
->mac
.type
== e1000_pchlan
) {
4672 /* Save the NVM K1 bit setting */
4673 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, &kum_cfg
);
4677 if (kum_cfg
& E1000_NVM_K1_ENABLE
)
4678 dev_spec
->nvm_k1_enabled
= true;
4680 dev_spec
->nvm_k1_enabled
= false;
4685 if (!hw
->phy
.ops
.check_reset_block(hw
)) {
4686 /* Full-chip reset requires MAC and PHY reset at the same
4687 * time to make sure the interface between MAC and the
4688 * external PHY is reset.
4690 ctrl
|= E1000_CTRL_PHY_RST
;
4692 /* Gate automatic PHY configuration by hardware on
4695 if ((hw
->mac
.type
== e1000_pch2lan
) &&
4696 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
4697 e1000_gate_hw_phy_config_ich8lan(hw
, true);
4699 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
4700 e_dbg("Issuing a global reset to ich8lan\n");
4701 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
4702 /* cannot issue a flush here because it hangs the hardware */
4705 /* Set Phy Config Counter to 50msec */
4706 if (hw
->mac
.type
== e1000_pch2lan
) {
4707 reg
= er32(FEXTNVM3
);
4708 reg
&= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK
;
4709 reg
|= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC
;
4710 ew32(FEXTNVM3
, reg
);
4714 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
4716 if (ctrl
& E1000_CTRL_PHY_RST
) {
4717 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
4721 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
4726 /* For PCH, this write will make sure that any noise
4727 * will be detected as a CRC error and be dropped rather than show up
4728 * as a bad packet to the DMA engine.
4730 if (hw
->mac
.type
== e1000_pchlan
)
4731 ew32(CRC_OFFSET
, 0x65656565);
4733 ew32(IMC
, 0xffffffff);
4736 reg
= er32(KABGTXD
);
4737 reg
|= E1000_KABGTXD_BGSQLBIAS
;
4744 * e1000_init_hw_ich8lan - Initialize the hardware
4745 * @hw: pointer to the HW structure
4747 * Prepares the hardware for transmit and receive by doing the following:
4748 * - initialize hardware bits
4749 * - initialize LED identification
4750 * - setup receive address registers
4751 * - setup flow control
4752 * - setup transmit descriptors
4753 * - clear statistics
4755 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
4757 struct e1000_mac_info
*mac
= &hw
->mac
;
4758 u32 ctrl_ext
, txdctl
, snoop
;
4762 e1000_initialize_hw_bits_ich8lan(hw
);
4764 /* Initialize identification LED */
4765 ret_val
= mac
->ops
.id_led_init(hw
);
4766 /* An error is not fatal and we should not stop init due to this */
4768 e_dbg("Error initializing identification LED\n");
4770 /* Setup the receive address. */
4771 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
4773 /* Zero out the Multicast HASH table */
4774 e_dbg("Zeroing the MTA\n");
4775 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
4776 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
4778 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4779 * the ME. Disable wakeup by clearing the host wakeup bit.
4780 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4782 if (hw
->phy
.type
== e1000_phy_82578
) {
4783 e1e_rphy(hw
, BM_PORT_GEN_CFG
, &i
);
4784 i
&= ~BM_WUC_HOST_WU_BIT
;
4785 e1e_wphy(hw
, BM_PORT_GEN_CFG
, i
);
4786 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
4791 /* Setup link and flow control */
4792 ret_val
= mac
->ops
.setup_link(hw
);
4794 /* Set the transmit descriptor write-back policy for both queues */
4795 txdctl
= er32(TXDCTL(0));
4796 txdctl
= ((txdctl
& ~E1000_TXDCTL_WTHRESH
) |
4797 E1000_TXDCTL_FULL_TX_DESC_WB
);
4798 txdctl
= ((txdctl
& ~E1000_TXDCTL_PTHRESH
) |
4799 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
);
4800 ew32(TXDCTL(0), txdctl
);
4801 txdctl
= er32(TXDCTL(1));
4802 txdctl
= ((txdctl
& ~E1000_TXDCTL_WTHRESH
) |
4803 E1000_TXDCTL_FULL_TX_DESC_WB
);
4804 txdctl
= ((txdctl
& ~E1000_TXDCTL_PTHRESH
) |
4805 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
);
4806 ew32(TXDCTL(1), txdctl
);
4808 /* ICH8 has opposite polarity of no_snoop bits.
4809 * By default, we should use snoop behavior.
4811 if (mac
->type
== e1000_ich8lan
)
4812 snoop
= PCIE_ICH8_SNOOP_ALL
;
4814 snoop
= (u32
)~(PCIE_NO_SNOOP_ALL
);
4815 e1000e_set_pcie_no_snoop(hw
, snoop
);
4817 ctrl_ext
= er32(CTRL_EXT
);
4818 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
4819 ew32(CTRL_EXT
, ctrl_ext
);
4821 /* Clear all of the statistics registers (clear on read). It is
4822 * important that we do this after we have tried to establish link
4823 * because the symbol error count will increment wildly if there
4826 e1000_clear_hw_cntrs_ich8lan(hw
);
4832 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4833 * @hw: pointer to the HW structure
4835 * Sets/Clears required hardware bits necessary for correctly setting up the
4836 * hardware for transmit and receive.
4838 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
4842 /* Extended Device Control */
4843 reg
= er32(CTRL_EXT
);
4845 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4846 if (hw
->mac
.type
>= e1000_pchlan
)
4847 reg
|= E1000_CTRL_EXT_PHYPDEN
;
4848 ew32(CTRL_EXT
, reg
);
4850 /* Transmit Descriptor Control 0 */
4851 reg
= er32(TXDCTL(0));
4853 ew32(TXDCTL(0), reg
);
4855 /* Transmit Descriptor Control 1 */
4856 reg
= er32(TXDCTL(1));
4858 ew32(TXDCTL(1), reg
);
4860 /* Transmit Arbitration Control 0 */
4861 reg
= er32(TARC(0));
4862 if (hw
->mac
.type
== e1000_ich8lan
)
4863 reg
|= BIT(28) | BIT(29);
4864 reg
|= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4867 /* Transmit Arbitration Control 1 */
4868 reg
= er32(TARC(1));
4869 if (er32(TCTL
) & E1000_TCTL_MULR
)
4873 reg
|= BIT(24) | BIT(26) | BIT(30);
4877 if (hw
->mac
.type
== e1000_ich8lan
) {
4883 /* work-around descriptor data corruption issue during nfs v2 udp
4884 * traffic, just disable the nfs filtering capability
4887 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
4889 /* Disable IPv6 extension header parsing because some malformed
4890 * IPv6 headers can hang the Rx.
4892 if (hw
->mac
.type
== e1000_ich8lan
)
4893 reg
|= (E1000_RFCTL_IPV6_EX_DIS
| E1000_RFCTL_NEW_IPV6_EXT_DIS
);
4896 /* Enable ECC on Lynxpoint */
4897 if ((hw
->mac
.type
== e1000_pch_lpt
) ||
4898 (hw
->mac
.type
== e1000_pch_spt
)) {
4899 reg
= er32(PBECCSTS
);
4900 reg
|= E1000_PBECCSTS_ECC_ENABLE
;
4901 ew32(PBECCSTS
, reg
);
4904 reg
|= E1000_CTRL_MEHE
;
4910 * e1000_setup_link_ich8lan - Setup flow control and link settings
4911 * @hw: pointer to the HW structure
4913 * Determines which flow control settings to use, then configures flow
4914 * control. Calls the appropriate media-specific link configuration
4915 * function. Assuming the adapter has a valid link partner, a valid link
4916 * should be established. Assumes the hardware has previously been reset
4917 * and the transmitter and receiver are not enabled.
4919 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
4923 if (hw
->phy
.ops
.check_reset_block(hw
))
4926 /* ICH parts do not have a word in the NVM to determine
4927 * the default flow control setting, so we explicitly
4930 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
4931 /* Workaround h/w hang when Tx flow control enabled */
4932 if (hw
->mac
.type
== e1000_pchlan
)
4933 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
4935 hw
->fc
.requested_mode
= e1000_fc_full
;
4938 /* Save off the requested flow control mode for use later. Depending
4939 * on the link partner's capabilities, we may or may not use this mode.
4941 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
4943 e_dbg("After fix-ups FlowControl is now = %x\n", hw
->fc
.current_mode
);
4945 /* Continue to configure the copper link. */
4946 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
4950 ew32(FCTTV
, hw
->fc
.pause_time
);
4951 if ((hw
->phy
.type
== e1000_phy_82578
) ||
4952 (hw
->phy
.type
== e1000_phy_82579
) ||
4953 (hw
->phy
.type
== e1000_phy_i217
) ||
4954 (hw
->phy
.type
== e1000_phy_82577
)) {
4955 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
4957 ret_val
= e1e_wphy(hw
, PHY_REG(BM_PORT_CTRL_PAGE
, 27),
4963 return e1000e_set_fc_watermarks(hw
);
4967 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4968 * @hw: pointer to the HW structure
4970 * Configures the kumeran interface to the PHY to wait the appropriate time
4971 * when polling the PHY, then call the generic setup_copper_link to finish
4972 * configuring the copper link.
4974 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
4981 ctrl
|= E1000_CTRL_SLU
;
4982 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
4985 /* Set the mac to wait the maximum time between each iteration
4986 * and increase the max iterations when polling the phy;
4987 * this fixes erroneous timeouts at 10Mbps.
4989 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
4992 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
4997 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
5002 switch (hw
->phy
.type
) {
5003 case e1000_phy_igp_3
:
5004 ret_val
= e1000e_copper_link_setup_igp(hw
);
5009 case e1000_phy_82578
:
5010 ret_val
= e1000e_copper_link_setup_m88(hw
);
5014 case e1000_phy_82577
:
5015 case e1000_phy_82579
:
5016 ret_val
= e1000_copper_link_setup_82577(hw
);
5021 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
5025 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
5027 switch (hw
->phy
.mdix
) {
5029 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
5032 reg_data
|= IFE_PMC_FORCE_MDIX
;
5036 reg_data
|= IFE_PMC_AUTO_MDIX
;
5039 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
5047 return e1000e_setup_copper_link(hw
);
5051 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5052 * @hw: pointer to the HW structure
5054 * Calls the PHY specific link setup function and then calls the
5055 * generic setup_copper_link to finish configuring the link for
5056 * Lynxpoint PCH devices
5058 static s32
e1000_setup_copper_link_pch_lpt(struct e1000_hw
*hw
)
5064 ctrl
|= E1000_CTRL_SLU
;
5065 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
5068 ret_val
= e1000_copper_link_setup_82577(hw
);
5072 return e1000e_setup_copper_link(hw
);
5076 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5077 * @hw: pointer to the HW structure
5078 * @speed: pointer to store current link speed
5079 * @duplex: pointer to store the current link duplex
5081 * Calls the generic get_speed_and_duplex to retrieve the current link
5082 * information and then calls the Kumeran lock loss workaround for links at
5085 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
5090 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
5094 if ((hw
->mac
.type
== e1000_ich8lan
) &&
5095 (hw
->phy
.type
== e1000_phy_igp_3
) && (*speed
== SPEED_1000
)) {
5096 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
5103 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5104 * @hw: pointer to the HW structure
5106 * Work-around for 82566 Kumeran PCS lock loss:
5107 * On link status change (i.e. PCI reset, speed change) and link is up and
5109 * 0) if workaround is optionally disabled do nothing
5110 * 1) wait 1ms for Kumeran link to come up
5111 * 2) check Kumeran Diagnostic register PCS lock loss bit
5112 * 3) if not set the link is locked (all is good), otherwise...
5114 * 5) repeat up to 10 times
5115 * Note: this is only called for IGP3 copper when speed is 1gb.
5117 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
5119 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
5125 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
5128 /* Make sure link is up before proceeding. If not just return.
5129 * Attempting this while link is negotiating fouled up link
5132 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
5136 for (i
= 0; i
< 10; i
++) {
5137 /* read once to clear */
5138 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
5141 /* and again to get new status */
5142 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
5146 /* check for PCS lock */
5147 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
5150 /* Issue PHY reset */
5151 e1000_phy_hw_reset(hw
);
5154 /* Disable GigE link negotiation */
5155 phy_ctrl
= er32(PHY_CTRL
);
5156 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
5157 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
5158 ew32(PHY_CTRL
, phy_ctrl
);
5160 /* Call gig speed drop workaround on Gig disable before accessing
5163 e1000e_gig_downshift_workaround_ich8lan(hw
);
5165 /* unable to acquire PCS lock */
5166 return -E1000_ERR_PHY
;
5170 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5171 * @hw: pointer to the HW structure
5172 * @state: boolean value used to set the current Kumeran workaround state
5174 * If ICH8, set the current Kumeran workaround state (enabled - true
5175 * /disabled - false).
5177 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
5180 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
5182 if (hw
->mac
.type
!= e1000_ich8lan
) {
5183 e_dbg("Workaround applies to ICH8 only.\n");
5187 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
5191 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5192 * @hw: pointer to the HW structure
5194 * Workaround for 82566 power-down on D3 entry:
5195 * 1) disable gigabit link
5196 * 2) write VR power-down enable
5198 * Continue if successful, else issue LCD reset and repeat
5200 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
5206 if (hw
->phy
.type
!= e1000_phy_igp_3
)
5209 /* Try the workaround twice (if needed) */
5212 reg
= er32(PHY_CTRL
);
5213 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
5214 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
5215 ew32(PHY_CTRL
, reg
);
5217 /* Call gig speed drop workaround on Gig disable before
5218 * accessing any PHY registers
5220 if (hw
->mac
.type
== e1000_ich8lan
)
5221 e1000e_gig_downshift_workaround_ich8lan(hw
);
5223 /* Write VR power-down enable */
5224 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
5225 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
5226 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
5228 /* Read it back and test */
5229 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
5230 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
5231 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
5234 /* Issue PHY reset and repeat at most one more time */
5236 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
5242 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5243 * @hw: pointer to the HW structure
5245 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5246 * LPLU, Gig disable, MDIC PHY reset):
5247 * 1) Set Kumeran Near-end loopback
5248 * 2) Clear Kumeran Near-end loopback
5249 * Should only be called for ICH8[m] devices with any 1G Phy.
5251 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
5256 if ((hw
->mac
.type
!= e1000_ich8lan
) || (hw
->phy
.type
== e1000_phy_ife
))
5259 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
5263 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
5264 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
5268 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
5269 e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
, reg_data
);
5273 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5274 * @hw: pointer to the HW structure
5276 * During S0 to Sx transition, it is possible the link remains at gig
5277 * instead of negotiating to a lower speed. Before going to Sx, set
5278 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5279 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5280 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5281 * needs to be written.
5282 * Parts that support (and are linked to a partner which support) EEE in
5283 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5284 * than 10Mbps w/o EEE.
5286 void e1000_suspend_workarounds_ich8lan(struct e1000_hw
*hw
)
5288 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
5292 phy_ctrl
= er32(PHY_CTRL
);
5293 phy_ctrl
|= E1000_PHY_CTRL_GBE_DISABLE
;
5295 if (hw
->phy
.type
== e1000_phy_i217
) {
5296 u16 phy_reg
, device_id
= hw
->adapter
->pdev
->device
;
5298 if ((device_id
== E1000_DEV_ID_PCH_LPTLP_I218_LM
) ||
5299 (device_id
== E1000_DEV_ID_PCH_LPTLP_I218_V
) ||
5300 (device_id
== E1000_DEV_ID_PCH_I218_LM3
) ||
5301 (device_id
== E1000_DEV_ID_PCH_I218_V3
) ||
5302 (hw
->mac
.type
== e1000_pch_spt
)) {
5303 u32 fextnvm6
= er32(FEXTNVM6
);
5305 ew32(FEXTNVM6
, fextnvm6
& ~E1000_FEXTNVM6_REQ_PLL_CLK
);
5308 ret_val
= hw
->phy
.ops
.acquire(hw
);
5312 if (!dev_spec
->eee_disable
) {
5316 e1000_read_emi_reg_locked(hw
,
5317 I217_EEE_ADVERTISEMENT
,
5322 /* Disable LPLU if both link partners support 100BaseT
5323 * EEE and 100Full is advertised on both ends of the
5324 * link, and enable Auto Enable LPI since there will
5325 * be no driver to enable LPI while in Sx.
5327 if ((eee_advert
& I82579_EEE_100_SUPPORTED
) &&
5328 (dev_spec
->eee_lp_ability
&
5329 I82579_EEE_100_SUPPORTED
) &&
5330 (hw
->phy
.autoneg_advertised
& ADVERTISE_100_FULL
)) {
5331 phy_ctrl
&= ~(E1000_PHY_CTRL_D0A_LPLU
|
5332 E1000_PHY_CTRL_NOND0A_LPLU
);
5334 /* Set Auto Enable LPI after link up */
5336 I217_LPI_GPIO_CTRL
, &phy_reg
);
5337 phy_reg
|= I217_LPI_GPIO_CTRL_AUTO_EN_LPI
;
5339 I217_LPI_GPIO_CTRL
, phy_reg
);
5343 /* For i217 Intel Rapid Start Technology support,
5344 * when the system is going into Sx and no manageability engine
5345 * is present, the driver must configure proxy to reset only on
5346 * power good. LPI (Low Power Idle) state must also reset only
5347 * on power good, as well as the MTA (Multicast table array).
5348 * The SMBus release must also be disabled on LCD reset.
5350 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
5351 /* Enable proxy to reset only on power good. */
5352 e1e_rphy_locked(hw
, I217_PROXY_CTRL
, &phy_reg
);
5353 phy_reg
|= I217_PROXY_CTRL_AUTO_DISABLE
;
5354 e1e_wphy_locked(hw
, I217_PROXY_CTRL
, phy_reg
);
5356 /* Set bit enable LPI (EEE) to reset only on
5359 e1e_rphy_locked(hw
, I217_SxCTRL
, &phy_reg
);
5360 phy_reg
|= I217_SxCTRL_ENABLE_LPI_RESET
;
5361 e1e_wphy_locked(hw
, I217_SxCTRL
, phy_reg
);
5363 /* Disable the SMB release on LCD reset. */
5364 e1e_rphy_locked(hw
, I217_MEMPWR
, &phy_reg
);
5365 phy_reg
&= ~I217_MEMPWR_DISABLE_SMB_RELEASE
;
5366 e1e_wphy_locked(hw
, I217_MEMPWR
, phy_reg
);
5369 /* Enable MTA to reset for Intel Rapid Start Technology
5372 e1e_rphy_locked(hw
, I217_CGFREG
, &phy_reg
);
5373 phy_reg
|= I217_CGFREG_ENABLE_MTA_RESET
;
5374 e1e_wphy_locked(hw
, I217_CGFREG
, phy_reg
);
5377 hw
->phy
.ops
.release(hw
);
5380 ew32(PHY_CTRL
, phy_ctrl
);
5382 if (hw
->mac
.type
== e1000_ich8lan
)
5383 e1000e_gig_downshift_workaround_ich8lan(hw
);
5385 if (hw
->mac
.type
>= e1000_pchlan
) {
5386 e1000_oem_bits_config_ich8lan(hw
, false);
5388 /* Reset PHY to activate OEM bits on 82577/8 */
5389 if (hw
->mac
.type
== e1000_pchlan
)
5390 e1000e_phy_hw_reset_generic(hw
);
5392 ret_val
= hw
->phy
.ops
.acquire(hw
);
5395 e1000_write_smbus_addr(hw
);
5396 hw
->phy
.ops
.release(hw
);
5401 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5402 * @hw: pointer to the HW structure
5404 * During Sx to S0 transitions on non-managed devices or managed devices
5405 * on which PHY resets are not blocked, if the PHY registers cannot be
5406 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5408 * On i217, setup Intel Rapid Start Technology.
5410 void e1000_resume_workarounds_pchlan(struct e1000_hw
*hw
)
5414 if (hw
->mac
.type
< e1000_pch2lan
)
5417 ret_val
= e1000_init_phy_workarounds_pchlan(hw
);
5419 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val
);
5423 /* For i217 Intel Rapid Start Technology support when the system
5424 * is transitioning from Sx and no manageability engine is present
5425 * configure SMBus to restore on reset, disable proxy, and enable
5426 * the reset on MTA (Multicast table array).
5428 if (hw
->phy
.type
== e1000_phy_i217
) {
5431 ret_val
= hw
->phy
.ops
.acquire(hw
);
5433 e_dbg("Failed to setup iRST\n");
5437 /* Clear Auto Enable LPI after link up */
5438 e1e_rphy_locked(hw
, I217_LPI_GPIO_CTRL
, &phy_reg
);
5439 phy_reg
&= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI
;
5440 e1e_wphy_locked(hw
, I217_LPI_GPIO_CTRL
, phy_reg
);
5442 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
5443 /* Restore clear on SMB if no manageability engine
5446 ret_val
= e1e_rphy_locked(hw
, I217_MEMPWR
, &phy_reg
);
5449 phy_reg
|= I217_MEMPWR_DISABLE_SMB_RELEASE
;
5450 e1e_wphy_locked(hw
, I217_MEMPWR
, phy_reg
);
5453 e1e_wphy_locked(hw
, I217_PROXY_CTRL
, 0);
5455 /* Enable reset on MTA */
5456 ret_val
= e1e_rphy_locked(hw
, I217_CGFREG
, &phy_reg
);
5459 phy_reg
&= ~I217_CGFREG_ENABLE_MTA_RESET
;
5460 e1e_wphy_locked(hw
, I217_CGFREG
, phy_reg
);
5463 e_dbg("Error %d in resume workarounds\n", ret_val
);
5464 hw
->phy
.ops
.release(hw
);
5469 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5470 * @hw: pointer to the HW structure
5472 * Return the LED back to the default configuration.
5474 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
5476 if (hw
->phy
.type
== e1000_phy_ife
)
5477 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
5479 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
5484 * e1000_led_on_ich8lan - Turn LEDs on
5485 * @hw: pointer to the HW structure
5489 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
5491 if (hw
->phy
.type
== e1000_phy_ife
)
5492 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
5493 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
5495 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
5500 * e1000_led_off_ich8lan - Turn LEDs off
5501 * @hw: pointer to the HW structure
5503 * Turn off the LEDs.
5505 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
5507 if (hw
->phy
.type
== e1000_phy_ife
)
5508 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
5509 (IFE_PSCL_PROBE_MODE
|
5510 IFE_PSCL_PROBE_LEDS_OFF
));
5512 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
5517 * e1000_setup_led_pchlan - Configures SW controllable LED
5518 * @hw: pointer to the HW structure
5520 * This prepares the SW controllable LED for use.
5522 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
5524 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_mode1
);
5528 * e1000_cleanup_led_pchlan - Restore the default LED operation
5529 * @hw: pointer to the HW structure
5531 * Return the LED back to the default configuration.
5533 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
5535 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_default
);
5539 * e1000_led_on_pchlan - Turn LEDs on
5540 * @hw: pointer to the HW structure
5544 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
5546 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
5549 /* If no link, then turn LED on by setting the invert bit
5550 * for each LED that's mode is "link_up" in ledctl_mode2.
5552 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
5553 for (i
= 0; i
< 3; i
++) {
5554 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
5555 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
5556 E1000_LEDCTL_MODE_LINK_UP
)
5558 if (led
& E1000_PHY_LED0_IVRT
)
5559 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
5561 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
5565 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
5569 * e1000_led_off_pchlan - Turn LEDs off
5570 * @hw: pointer to the HW structure
5572 * Turn off the LEDs.
5574 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
5576 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
5579 /* If no link, then turn LED off by clearing the invert bit
5580 * for each LED that's mode is "link_up" in ledctl_mode1.
5582 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
5583 for (i
= 0; i
< 3; i
++) {
5584 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
5585 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
5586 E1000_LEDCTL_MODE_LINK_UP
)
5588 if (led
& E1000_PHY_LED0_IVRT
)
5589 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
5591 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
5595 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
5599 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5600 * @hw: pointer to the HW structure
5602 * Read appropriate register for the config done bit for completion status
5603 * and configure the PHY through s/w for EEPROM-less parts.
5605 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5606 * config done bit, so only an error is logged and continues. If we were
5607 * to return with error, EEPROM-less silicon would not be able to be reset
5610 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
5616 e1000e_get_cfg_done_generic(hw
);
5618 /* Wait for indication from h/w that it has completed basic config */
5619 if (hw
->mac
.type
>= e1000_ich10lan
) {
5620 e1000_lan_init_done_ich8lan(hw
);
5622 ret_val
= e1000e_get_auto_rd_done(hw
);
5624 /* When auto config read does not complete, do not
5625 * return with an error. This can happen in situations
5626 * where there is no eeprom and prevents getting link.
5628 e_dbg("Auto Read Done did not complete\n");
5633 /* Clear PHY Reset Asserted bit */
5634 status
= er32(STATUS
);
5635 if (status
& E1000_STATUS_PHYRA
)
5636 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
5638 e_dbg("PHY Reset Asserted not set - needs delay\n");
5640 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5641 if (hw
->mac
.type
<= e1000_ich9lan
) {
5642 if (!(er32(EECD
) & E1000_EECD_PRES
) &&
5643 (hw
->phy
.type
== e1000_phy_igp_3
)) {
5644 e1000e_phy_init_script_igp3(hw
);
5647 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
5648 /* Maybe we should do a basic PHY config */
5649 e_dbg("EEPROM not present\n");
5650 ret_val
= -E1000_ERR_CONFIG
;
5658 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5659 * @hw: pointer to the HW structure
5661 * In the case of a PHY power down to save power, or to turn off link during a
5662 * driver unload, or wake on lan is not enabled, remove the link.
5664 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
5666 /* If the management interface is not enabled, then power down */
5667 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
5668 hw
->phy
.ops
.check_reset_block(hw
)))
5669 e1000_power_down_phy_copper(hw
);
5673 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5674 * @hw: pointer to the HW structure
5676 * Clears hardware counters specific to the silicon family and calls
5677 * clear_hw_cntrs_generic to clear all general purpose counters.
5679 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
5684 e1000e_clear_hw_cntrs_base(hw
);
5700 /* Clear PHY statistics registers */
5701 if ((hw
->phy
.type
== e1000_phy_82578
) ||
5702 (hw
->phy
.type
== e1000_phy_82579
) ||
5703 (hw
->phy
.type
== e1000_phy_i217
) ||
5704 (hw
->phy
.type
== e1000_phy_82577
)) {
5705 ret_val
= hw
->phy
.ops
.acquire(hw
);
5708 ret_val
= hw
->phy
.ops
.set_page(hw
,
5709 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
5712 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
5713 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
5714 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
5715 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
5716 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
5717 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
5718 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
5719 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
5720 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
5721 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
5722 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
5723 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
5724 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
5725 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
5727 hw
->phy
.ops
.release(hw
);
5731 static const struct e1000_mac_operations ich8_mac_ops
= {
5732 /* check_mng_mode dependent on mac type */
5733 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
5734 /* cleanup_led dependent on mac type */
5735 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
5736 .get_bus_info
= e1000_get_bus_info_ich8lan
,
5737 .set_lan_id
= e1000_set_lan_id_single_port
,
5738 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
5739 /* led_on dependent on mac type */
5740 /* led_off dependent on mac type */
5741 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
5742 .reset_hw
= e1000_reset_hw_ich8lan
,
5743 .init_hw
= e1000_init_hw_ich8lan
,
5744 .setup_link
= e1000_setup_link_ich8lan
,
5745 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
5746 /* id_led_init dependent on mac type */
5747 .config_collision_dist
= e1000e_config_collision_dist_generic
,
5748 .rar_set
= e1000e_rar_set_generic
,
5749 .rar_get_count
= e1000e_rar_get_count_generic
,
5752 static const struct e1000_phy_operations ich8_phy_ops
= {
5753 .acquire
= e1000_acquire_swflag_ich8lan
,
5754 .check_reset_block
= e1000_check_reset_block_ich8lan
,
5756 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
5757 .get_cable_length
= e1000e_get_cable_length_igp_2
,
5758 .read_reg
= e1000e_read_phy_reg_igp
,
5759 .release
= e1000_release_swflag_ich8lan
,
5760 .reset
= e1000_phy_hw_reset_ich8lan
,
5761 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
5762 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
5763 .write_reg
= e1000e_write_phy_reg_igp
,
5766 static const struct e1000_nvm_operations ich8_nvm_ops
= {
5767 .acquire
= e1000_acquire_nvm_ich8lan
,
5768 .read
= e1000_read_nvm_ich8lan
,
5769 .release
= e1000_release_nvm_ich8lan
,
5770 .reload
= e1000e_reload_nvm_generic
,
5771 .update
= e1000_update_nvm_checksum_ich8lan
,
5772 .valid_led_default
= e1000_valid_led_default_ich8lan
,
5773 .validate
= e1000_validate_nvm_checksum_ich8lan
,
5774 .write
= e1000_write_nvm_ich8lan
,
5777 static const struct e1000_nvm_operations spt_nvm_ops
= {
5778 .acquire
= e1000_acquire_nvm_ich8lan
,
5779 .release
= e1000_release_nvm_ich8lan
,
5780 .read
= e1000_read_nvm_spt
,
5781 .update
= e1000_update_nvm_checksum_spt
,
5782 .reload
= e1000e_reload_nvm_generic
,
5783 .valid_led_default
= e1000_valid_led_default_ich8lan
,
5784 .validate
= e1000_validate_nvm_checksum_ich8lan
,
5785 .write
= e1000_write_nvm_ich8lan
,
5788 const struct e1000_info e1000_ich8_info
= {
5789 .mac
= e1000_ich8lan
,
5790 .flags
= FLAG_HAS_WOL
5792 | FLAG_HAS_CTRLEXT_ON_LOAD
5797 .max_hw_frame_size
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
,
5798 .get_variants
= e1000_get_variants_ich8lan
,
5799 .mac_ops
= &ich8_mac_ops
,
5800 .phy_ops
= &ich8_phy_ops
,
5801 .nvm_ops
= &ich8_nvm_ops
,
5804 const struct e1000_info e1000_ich9_info
= {
5805 .mac
= e1000_ich9lan
,
5806 .flags
= FLAG_HAS_JUMBO_FRAMES
5809 | FLAG_HAS_CTRLEXT_ON_LOAD
5814 .max_hw_frame_size
= DEFAULT_JUMBO
,
5815 .get_variants
= e1000_get_variants_ich8lan
,
5816 .mac_ops
= &ich8_mac_ops
,
5817 .phy_ops
= &ich8_phy_ops
,
5818 .nvm_ops
= &ich8_nvm_ops
,
5821 const struct e1000_info e1000_ich10_info
= {
5822 .mac
= e1000_ich10lan
,
5823 .flags
= FLAG_HAS_JUMBO_FRAMES
5826 | FLAG_HAS_CTRLEXT_ON_LOAD
5831 .max_hw_frame_size
= DEFAULT_JUMBO
,
5832 .get_variants
= e1000_get_variants_ich8lan
,
5833 .mac_ops
= &ich8_mac_ops
,
5834 .phy_ops
= &ich8_phy_ops
,
5835 .nvm_ops
= &ich8_nvm_ops
,
5838 const struct e1000_info e1000_pch_info
= {
5839 .mac
= e1000_pchlan
,
5840 .flags
= FLAG_IS_ICH
5842 | FLAG_HAS_CTRLEXT_ON_LOAD
5845 | FLAG_HAS_JUMBO_FRAMES
5846 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
5848 .flags2
= FLAG2_HAS_PHY_STATS
,
5850 .max_hw_frame_size
= 4096,
5851 .get_variants
= e1000_get_variants_ich8lan
,
5852 .mac_ops
= &ich8_mac_ops
,
5853 .phy_ops
= &ich8_phy_ops
,
5854 .nvm_ops
= &ich8_nvm_ops
,
5857 const struct e1000_info e1000_pch2_info
= {
5858 .mac
= e1000_pch2lan
,
5859 .flags
= FLAG_IS_ICH
5861 | FLAG_HAS_HW_TIMESTAMP
5862 | FLAG_HAS_CTRLEXT_ON_LOAD
5865 | FLAG_HAS_JUMBO_FRAMES
5867 .flags2
= FLAG2_HAS_PHY_STATS
5870 .max_hw_frame_size
= 9022,
5871 .get_variants
= e1000_get_variants_ich8lan
,
5872 .mac_ops
= &ich8_mac_ops
,
5873 .phy_ops
= &ich8_phy_ops
,
5874 .nvm_ops
= &ich8_nvm_ops
,
5877 const struct e1000_info e1000_pch_lpt_info
= {
5878 .mac
= e1000_pch_lpt
,
5879 .flags
= FLAG_IS_ICH
5881 | FLAG_HAS_HW_TIMESTAMP
5882 | FLAG_HAS_CTRLEXT_ON_LOAD
5885 | FLAG_HAS_JUMBO_FRAMES
5887 .flags2
= FLAG2_HAS_PHY_STATS
5889 | FLAG2_CHECK_SYSTIM_OVERFLOW
,
5891 .max_hw_frame_size
= 9022,
5892 .get_variants
= e1000_get_variants_ich8lan
,
5893 .mac_ops
= &ich8_mac_ops
,
5894 .phy_ops
= &ich8_phy_ops
,
5895 .nvm_ops
= &ich8_nvm_ops
,
5898 const struct e1000_info e1000_pch_spt_info
= {
5899 .mac
= e1000_pch_spt
,
5900 .flags
= FLAG_IS_ICH
5902 | FLAG_HAS_HW_TIMESTAMP
5903 | FLAG_HAS_CTRLEXT_ON_LOAD
5906 | FLAG_HAS_JUMBO_FRAMES
5908 .flags2
= FLAG2_HAS_PHY_STATS
5911 .max_hw_frame_size
= 9022,
5912 .get_variants
= e1000_get_variants_ich8lan
,
5913 .mac_ops
= &ich8_mac_ops
,
5914 .phy_ops
= &ich8_phy_ops
,
5915 .nvm_ops
= &spt_nvm_ops
,