x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
blobf3aaca743ea3ff3a2250547e47fb8d1c275f0cea
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 /* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
59 #include "e1000.h"
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 struct ich8_hsfsts {
65 u16 flcdone:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr:1; /* bit 1 Flash Cycle Error */
67 u16 dael:1; /* bit 2 Direct Access error Log */
68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1:2; /* bit 13:6 Reserved */
71 u16 reserved2:6; /* bit 13:6 Reserved */
72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
74 } hsf_status;
75 u16 regval;
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 struct ich8_hsflctl {
82 u16 flcgo:1; /* 0 Flash Cycle Go */
83 u16 flcycle:2; /* 2:1 Flash Cycle */
84 u16 reserved:5; /* 7:3 Reserved */
85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn:6; /* 15:10 Reserved */
87 } hsf_ctrl;
88 u16 regval;
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 struct ich8_flracc {
94 u32 grra:8; /* 0:7 GbE region Read Access */
95 u32 grwa:8; /* 8:15 GbE region Write Access */
96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
98 } hsf_flregacc;
99 u16 regval;
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 struct ich8_pr {
105 u32 base:13; /* 0:12 Protected Range Base */
106 u32 reserved1:2; /* 13:14 Reserved */
107 u32 rpe:1; /* 15 Read Protection Enable */
108 u32 limit:13; /* 16:28 Protected Range Limit */
109 u32 reserved2:2; /* 29:30 Reserved */
110 u32 wpe:1; /* 31 Write Protection Enable */
111 } range;
112 u32 regval;
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
161 return readw(hw->flash_address + reg);
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
166 return readl(hw->flash_address + reg);
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
171 writew(val, hw->flash_address + reg);
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
176 writel(val, hw->flash_address + reg);
179 #define er16flash(reg) __er16flash(hw, (reg))
180 #define er32flash(reg) __er32flash(hw, (reg))
181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
192 * Assumes the sw/fw/hw semaphore is already acquired.
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
196 u16 phy_reg = 0;
197 u32 phy_id = 0;
198 s32 ret_val = 0;
199 u16 retry_count;
200 u32 mac_reg = 0;
202 for (retry_count = 0; retry_count < 2; retry_count++) {
203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF))
205 continue;
206 phy_id = (u32)(phy_reg << 16);
208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 if (ret_val || (phy_reg == 0xFFFF)) {
210 phy_id = 0;
211 continue;
213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 break;
217 if (hw->phy.id) {
218 if (hw->phy.id == phy_id)
219 goto out;
220 } else if (phy_id) {
221 hw->phy.id = phy_id;
222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 goto out;
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
229 if (hw->mac.type < e1000_pch_lpt) {
230 hw->phy.ops.release(hw);
231 ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 if (!ret_val)
233 ret_val = e1000e_get_phy_id(hw);
234 hw->phy.ops.acquire(hw);
237 if (ret_val)
238 return false;
239 out:
240 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
241 /* Only unforce SMBus if ME is not active */
242 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 /* Unforce SMBus mode in PHY */
244 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
248 /* Unforce SMBus mode in MAC */
249 mac_reg = er32(CTRL_EXT);
250 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 ew32(CTRL_EXT, mac_reg);
255 return true;
259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260 * @hw: pointer to the HW structure
262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263 * used to reset the PHY to a quiescent state when necessary.
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
267 u32 mac_reg;
269 /* Set Phy Config Counter to 50msec */
270 mac_reg = er32(FEXTNVM3);
271 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 ew32(FEXTNVM3, mac_reg);
275 /* Toggle LANPHYPC Value bit */
276 mac_reg = er32(CTRL);
277 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 ew32(CTRL, mac_reg);
280 e1e_flush();
281 usleep_range(10, 20);
282 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 ew32(CTRL, mac_reg);
284 e1e_flush();
286 if (hw->mac.type < e1000_pch_lpt) {
287 msleep(50);
288 } else {
289 u16 count = 20;
291 do {
292 usleep_range(5000, 10000);
293 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
295 msleep(30);
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
303 * Workarounds/flow necessary for PHY initialization during driver load
304 * and resume paths.
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
308 struct e1000_adapter *adapter = hw->adapter;
309 u32 mac_reg, fwsm = er32(FWSM);
310 s32 ret_val;
312 /* Gate automatic PHY configuration by hardware on managed and
313 * non-managed 82579 and newer adapters.
315 e1000_gate_hw_phy_config_ich8lan(hw, true);
317 /* It is not possible to be certain of the current state of ULP
318 * so forcibly disable it.
320 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 e1000_disable_ulp_lpt_lp(hw, true);
323 ret_val = hw->phy.ops.acquire(hw);
324 if (ret_val) {
325 e_dbg("Failed to initialize PHY flow\n");
326 goto out;
329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
330 * inaccessible and resetting the PHY is not blocked, toggle the
331 * LANPHYPC Value bit to force the interconnect to PCIe mode.
333 switch (hw->mac.type) {
334 case e1000_pch_lpt:
335 case e1000_pch_spt:
336 if (e1000_phy_is_accessible_pchlan(hw))
337 break;
339 /* Before toggling LANPHYPC, see if PHY is accessible by
340 * forcing MAC to SMBus mode first.
342 mac_reg = er32(CTRL_EXT);
343 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
344 ew32(CTRL_EXT, mac_reg);
346 /* Wait 50 milliseconds for MAC to finish any retries
347 * that it might be trying to perform from previous
348 * attempts to acknowledge any phy read requests.
350 msleep(50);
352 /* fall-through */
353 case e1000_pch2lan:
354 if (e1000_phy_is_accessible_pchlan(hw))
355 break;
357 /* fall-through */
358 case e1000_pchlan:
359 if ((hw->mac.type == e1000_pchlan) &&
360 (fwsm & E1000_ICH_FWSM_FW_VALID))
361 break;
363 if (hw->phy.ops.check_reset_block(hw)) {
364 e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 ret_val = -E1000_ERR_PHY;
366 break;
369 /* Toggle LANPHYPC Value bit */
370 e1000_toggle_lanphypc_pch_lpt(hw);
371 if (hw->mac.type >= e1000_pch_lpt) {
372 if (e1000_phy_is_accessible_pchlan(hw))
373 break;
375 /* Toggling LANPHYPC brings the PHY out of SMBus mode
376 * so ensure that the MAC is also out of SMBus mode
378 mac_reg = er32(CTRL_EXT);
379 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
380 ew32(CTRL_EXT, mac_reg);
382 if (e1000_phy_is_accessible_pchlan(hw))
383 break;
385 ret_val = -E1000_ERR_PHY;
387 break;
388 default:
389 break;
392 hw->phy.ops.release(hw);
393 if (!ret_val) {
395 /* Check to see if able to reset PHY. Print error if not */
396 if (hw->phy.ops.check_reset_block(hw)) {
397 e_err("Reset blocked by ME\n");
398 goto out;
401 /* Reset the PHY before any access to it. Doing so, ensures
402 * that the PHY is in a known good state before we read/write
403 * PHY registers. The generic reset is sufficient here,
404 * because we haven't determined the PHY type yet.
406 ret_val = e1000e_phy_hw_reset_generic(hw);
407 if (ret_val)
408 goto out;
410 /* On a successful reset, possibly need to wait for the PHY
411 * to quiesce to an accessible state before returning control
412 * to the calling function. If the PHY does not quiesce, then
413 * return E1000E_BLK_PHY_RESET, as this is the condition that
414 * the PHY is in.
416 ret_val = hw->phy.ops.check_reset_block(hw);
417 if (ret_val)
418 e_err("ME blocked access to PHY after reset\n");
421 out:
422 /* Ungate automatic PHY configuration on non-managed 82579 */
423 if ((hw->mac.type == e1000_pch2lan) &&
424 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
425 usleep_range(10000, 20000);
426 e1000_gate_hw_phy_config_ich8lan(hw, false);
429 return ret_val;
433 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
434 * @hw: pointer to the HW structure
436 * Initialize family-specific PHY parameters and function pointers.
438 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 struct e1000_phy_info *phy = &hw->phy;
441 s32 ret_val;
443 phy->addr = 1;
444 phy->reset_delay_us = 100;
446 phy->ops.set_page = e1000_set_page_igp;
447 phy->ops.read_reg = e1000_read_phy_reg_hv;
448 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
451 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
452 phy->ops.write_reg = e1000_write_phy_reg_hv;
453 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
454 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
455 phy->ops.power_up = e1000_power_up_phy_copper;
456 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459 phy->id = e1000_phy_unknown;
461 ret_val = e1000_init_phy_workarounds_pchlan(hw);
462 if (ret_val)
463 return ret_val;
465 if (phy->id == e1000_phy_unknown)
466 switch (hw->mac.type) {
467 default:
468 ret_val = e1000e_get_phy_id(hw);
469 if (ret_val)
470 return ret_val;
471 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
472 break;
473 /* fall-through */
474 case e1000_pch2lan:
475 case e1000_pch_lpt:
476 case e1000_pch_spt:
477 /* In case the PHY needs to be in mdio slow mode,
478 * set slow mode and try to get the PHY id again.
480 ret_val = e1000_set_mdio_slow_mode_hv(hw);
481 if (ret_val)
482 return ret_val;
483 ret_val = e1000e_get_phy_id(hw);
484 if (ret_val)
485 return ret_val;
486 break;
488 phy->type = e1000e_get_phy_type_from_id(phy->id);
490 switch (phy->type) {
491 case e1000_phy_82577:
492 case e1000_phy_82579:
493 case e1000_phy_i217:
494 phy->ops.check_polarity = e1000_check_polarity_82577;
495 phy->ops.force_speed_duplex =
496 e1000_phy_force_speed_duplex_82577;
497 phy->ops.get_cable_length = e1000_get_cable_length_82577;
498 phy->ops.get_info = e1000_get_phy_info_82577;
499 phy->ops.commit = e1000e_phy_sw_reset;
500 break;
501 case e1000_phy_82578:
502 phy->ops.check_polarity = e1000_check_polarity_m88;
503 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
504 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
505 phy->ops.get_info = e1000e_get_phy_info_m88;
506 break;
507 default:
508 ret_val = -E1000_ERR_PHY;
509 break;
512 return ret_val;
516 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517 * @hw: pointer to the HW structure
519 * Initialize family-specific PHY parameters and function pointers.
521 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523 struct e1000_phy_info *phy = &hw->phy;
524 s32 ret_val;
525 u16 i = 0;
527 phy->addr = 1;
528 phy->reset_delay_us = 100;
530 phy->ops.power_up = e1000_power_up_phy_copper;
531 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
533 /* We may need to do this twice - once for IGP and if that fails,
534 * we'll set BM func pointers and try again
536 ret_val = e1000e_determine_phy_address(hw);
537 if (ret_val) {
538 phy->ops.write_reg = e1000e_write_phy_reg_bm;
539 phy->ops.read_reg = e1000e_read_phy_reg_bm;
540 ret_val = e1000e_determine_phy_address(hw);
541 if (ret_val) {
542 e_dbg("Cannot determine PHY addr. Erroring out\n");
543 return ret_val;
547 phy->id = 0;
548 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
549 (i++ < 100)) {
550 usleep_range(1000, 2000);
551 ret_val = e1000e_get_phy_id(hw);
552 if (ret_val)
553 return ret_val;
556 /* Verify phy id */
557 switch (phy->id) {
558 case IGP03E1000_E_PHY_ID:
559 phy->type = e1000_phy_igp_3;
560 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
561 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
562 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
563 phy->ops.get_info = e1000e_get_phy_info_igp;
564 phy->ops.check_polarity = e1000_check_polarity_igp;
565 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
566 break;
567 case IFE_E_PHY_ID:
568 case IFE_PLUS_E_PHY_ID:
569 case IFE_C_E_PHY_ID:
570 phy->type = e1000_phy_ife;
571 phy->autoneg_mask = E1000_ALL_NOT_GIG;
572 phy->ops.get_info = e1000_get_phy_info_ife;
573 phy->ops.check_polarity = e1000_check_polarity_ife;
574 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
575 break;
576 case BME1000_E_PHY_ID:
577 phy->type = e1000_phy_bm;
578 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
579 phy->ops.read_reg = e1000e_read_phy_reg_bm;
580 phy->ops.write_reg = e1000e_write_phy_reg_bm;
581 phy->ops.commit = e1000e_phy_sw_reset;
582 phy->ops.get_info = e1000e_get_phy_info_m88;
583 phy->ops.check_polarity = e1000_check_polarity_m88;
584 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
585 break;
586 default:
587 return -E1000_ERR_PHY;
590 return 0;
594 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595 * @hw: pointer to the HW structure
597 * Initialize family-specific NVM parameters and function
598 * pointers.
600 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
602 struct e1000_nvm_info *nvm = &hw->nvm;
603 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
604 u32 gfpreg, sector_base_addr, sector_end_addr;
605 u16 i;
606 u32 nvm_size;
608 nvm->type = e1000_nvm_flash_sw;
610 if (hw->mac.type == e1000_pch_spt) {
611 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 * STRAP register. This is because in SPT the GbE Flash region
613 * is no longer accessed through the flash registers. Instead,
614 * the mechanism has changed, and the Flash region access
615 * registers are now implemented in GbE memory space.
617 nvm->flash_base_addr = 0;
618 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
619 * NVM_SIZE_MULTIPLIER;
620 nvm->flash_bank_size = nvm_size / 2;
621 /* Adjust to word count */
622 nvm->flash_bank_size /= sizeof(u16);
623 /* Set the base address for flash register access */
624 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
625 } else {
626 /* Can't read flash registers if register set isn't mapped. */
627 if (!hw->flash_address) {
628 e_dbg("ERROR: Flash registers not mapped\n");
629 return -E1000_ERR_CONFIG;
632 gfpreg = er32flash(ICH_FLASH_GFPREG);
634 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 * Add 1 to sector_end_addr since this sector is included in
636 * the overall size.
638 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
639 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
641 /* flash_base_addr is byte-aligned */
642 nvm->flash_base_addr = sector_base_addr
643 << FLASH_SECTOR_ADDR_SHIFT;
645 /* find total size of the NVM, then cut in half since the total
646 * size represents two separate NVM banks.
648 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
649 << FLASH_SECTOR_ADDR_SHIFT);
650 nvm->flash_bank_size /= 2;
651 /* Adjust to word count */
652 nvm->flash_bank_size /= sizeof(u16);
655 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
657 /* Clear shadow ram */
658 for (i = 0; i < nvm->word_size; i++) {
659 dev_spec->shadow_ram[i].modified = false;
660 dev_spec->shadow_ram[i].value = 0xFFFF;
663 return 0;
667 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668 * @hw: pointer to the HW structure
670 * Initialize family-specific MAC parameters and function
671 * pointers.
673 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
675 struct e1000_mac_info *mac = &hw->mac;
677 /* Set media type function pointer */
678 hw->phy.media_type = e1000_media_type_copper;
680 /* Set mta register count */
681 mac->mta_reg_count = 32;
682 /* Set rar entry count */
683 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
684 if (mac->type == e1000_ich8lan)
685 mac->rar_entry_count--;
686 /* FWSM register */
687 mac->has_fwsm = true;
688 /* ARC subsystem not supported */
689 mac->arc_subsystem_valid = false;
690 /* Adaptive IFS supported */
691 mac->adaptive_ifs = true;
693 /* LED and other operations */
694 switch (mac->type) {
695 case e1000_ich8lan:
696 case e1000_ich9lan:
697 case e1000_ich10lan:
698 /* check management mode */
699 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
700 /* ID LED init */
701 mac->ops.id_led_init = e1000e_id_led_init_generic;
702 /* blink LED */
703 mac->ops.blink_led = e1000e_blink_led_generic;
704 /* setup LED */
705 mac->ops.setup_led = e1000e_setup_led_generic;
706 /* cleanup LED */
707 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
708 /* turn on/off LED */
709 mac->ops.led_on = e1000_led_on_ich8lan;
710 mac->ops.led_off = e1000_led_off_ich8lan;
711 break;
712 case e1000_pch2lan:
713 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
714 mac->ops.rar_set = e1000_rar_set_pch2lan;
715 /* fall-through */
716 case e1000_pch_lpt:
717 case e1000_pch_spt:
718 case e1000_pchlan:
719 /* check management mode */
720 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
721 /* ID LED init */
722 mac->ops.id_led_init = e1000_id_led_init_pchlan;
723 /* setup LED */
724 mac->ops.setup_led = e1000_setup_led_pchlan;
725 /* cleanup LED */
726 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
727 /* turn on/off LED */
728 mac->ops.led_on = e1000_led_on_pchlan;
729 mac->ops.led_off = e1000_led_off_pchlan;
730 break;
731 default:
732 break;
735 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
736 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
737 mac->ops.rar_set = e1000_rar_set_pch_lpt;
738 mac->ops.setup_physical_interface =
739 e1000_setup_copper_link_pch_lpt;
740 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
743 /* Enable PCS Lock-loss workaround for ICH8 */
744 if (mac->type == e1000_ich8lan)
745 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
747 return 0;
751 * __e1000_access_emi_reg_locked - Read/write EMI register
752 * @hw: pointer to the HW structure
753 * @addr: EMI address to program
754 * @data: pointer to value to read/write from/to the EMI address
755 * @read: boolean flag to indicate read or write
757 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
759 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
760 u16 *data, bool read)
762 s32 ret_val;
764 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
765 if (ret_val)
766 return ret_val;
768 if (read)
769 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
770 else
771 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
773 return ret_val;
777 * e1000_read_emi_reg_locked - Read Extended Management Interface register
778 * @hw: pointer to the HW structure
779 * @addr: EMI address to program
780 * @data: value to be read from the EMI address
782 * Assumes the SW/FW/HW Semaphore is already acquired.
784 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
786 return __e1000_access_emi_reg_locked(hw, addr, data, true);
790 * e1000_write_emi_reg_locked - Write Extended Management Interface register
791 * @hw: pointer to the HW structure
792 * @addr: EMI address to program
793 * @data: value to be written to the EMI address
795 * Assumes the SW/FW/HW Semaphore is already acquired.
797 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
799 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
803 * e1000_set_eee_pchlan - Enable/disable EEE support
804 * @hw: pointer to the HW structure
806 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
807 * the link and the EEE capabilities of the link partner. The LPI Control
808 * register bits will remain set only if/when link is up.
810 * EEE LPI must not be asserted earlier than one second after link is up.
811 * On 82579, EEE LPI should not be enabled until such time otherwise there
812 * can be link issues with some switches. Other devices can have EEE LPI
813 * enabled immediately upon link up since they have a timer in hardware which
814 * prevents LPI from being asserted too early.
816 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
818 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
819 s32 ret_val;
820 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
822 switch (hw->phy.type) {
823 case e1000_phy_82579:
824 lpa = I82579_EEE_LP_ABILITY;
825 pcs_status = I82579_EEE_PCS_STATUS;
826 adv_addr = I82579_EEE_ADVERTISEMENT;
827 break;
828 case e1000_phy_i217:
829 lpa = I217_EEE_LP_ABILITY;
830 pcs_status = I217_EEE_PCS_STATUS;
831 adv_addr = I217_EEE_ADVERTISEMENT;
832 break;
833 default:
834 return 0;
837 ret_val = hw->phy.ops.acquire(hw);
838 if (ret_val)
839 return ret_val;
841 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
842 if (ret_val)
843 goto release;
845 /* Clear bits that enable EEE in various speeds */
846 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
848 /* Enable EEE if not disabled by user */
849 if (!dev_spec->eee_disable) {
850 /* Save off link partner's EEE ability */
851 ret_val = e1000_read_emi_reg_locked(hw, lpa,
852 &dev_spec->eee_lp_ability);
853 if (ret_val)
854 goto release;
856 /* Read EEE advertisement */
857 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
858 if (ret_val)
859 goto release;
861 /* Enable EEE only for speeds in which the link partner is
862 * EEE capable and for which we advertise EEE.
864 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
865 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
867 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
868 e1e_rphy_locked(hw, MII_LPA, &data);
869 if (data & LPA_100FULL)
870 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
871 else
872 /* EEE is not supported in 100Half, so ignore
873 * partner's EEE in 100 ability if full-duplex
874 * is not advertised.
876 dev_spec->eee_lp_ability &=
877 ~I82579_EEE_100_SUPPORTED;
881 if (hw->phy.type == e1000_phy_82579) {
882 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
883 &data);
884 if (ret_val)
885 goto release;
887 data &= ~I82579_LPI_100_PLL_SHUT;
888 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
889 data);
892 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
894 if (ret_val)
895 goto release;
897 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
898 release:
899 hw->phy.ops.release(hw);
901 return ret_val;
905 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906 * @hw: pointer to the HW structure
907 * @link: link up bool flag
909 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910 * preventing further DMA write requests. Workaround the issue by disabling
911 * the de-assertion of the clock request when in 1Gpbs mode.
912 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913 * speeds in order to avoid Tx hangs.
915 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
917 u32 fextnvm6 = er32(FEXTNVM6);
918 u32 status = er32(STATUS);
919 s32 ret_val = 0;
920 u16 reg;
922 if (link && (status & E1000_STATUS_SPEED_1000)) {
923 ret_val = hw->phy.ops.acquire(hw);
924 if (ret_val)
925 return ret_val;
927 ret_val =
928 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
929 &reg);
930 if (ret_val)
931 goto release;
933 ret_val =
934 e1000e_write_kmrn_reg_locked(hw,
935 E1000_KMRNCTRLSTA_K1_CONFIG,
936 reg &
937 ~E1000_KMRNCTRLSTA_K1_ENABLE);
938 if (ret_val)
939 goto release;
941 usleep_range(10, 20);
943 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
945 ret_val =
946 e1000e_write_kmrn_reg_locked(hw,
947 E1000_KMRNCTRLSTA_K1_CONFIG,
948 reg);
949 release:
950 hw->phy.ops.release(hw);
951 } else {
952 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
955 if ((hw->phy.revision > 5) || !link ||
956 ((status & E1000_STATUS_SPEED_100) &&
957 (status & E1000_STATUS_FD)))
958 goto update_fextnvm6;
960 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
961 if (ret_val)
962 return ret_val;
964 /* Clear link status transmit timeout */
965 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
967 if (status & E1000_STATUS_SPEED_100) {
968 /* Set inband Tx timeout to 5x10us for 100Half */
969 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
971 /* Do not extend the K1 entry latency for 100Half */
972 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
973 } else {
974 /* Set inband Tx timeout to 50x10us for 10Full/Half */
975 reg |= 50 <<
976 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
978 /* Extend the K1 entry latency for 10 Mbps */
979 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
982 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
983 if (ret_val)
984 return ret_val;
986 update_fextnvm6:
987 ew32(FEXTNVM6, fextnvm6);
990 return ret_val;
994 * e1000_platform_pm_pch_lpt - Set platform power management values
995 * @hw: pointer to the HW structure
996 * @link: bool indicating link status
998 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 * when link is up (which must not exceed the maximum latency supported
1001 * by the platform), otherwise specify there is no LTR requirement.
1002 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 * Capability register set, on this device LTR is set by writing the
1005 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 * message to the PMC.
1009 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1011 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013 u16 lat_enc = 0; /* latency encoded */
1015 if (link) {
1016 u16 speed, duplex, scale = 0;
1017 u16 max_snoop, max_nosnoop;
1018 u16 max_ltr_enc; /* max LTR latency encoded */
1019 u64 value;
1020 u32 rxa;
1022 if (!hw->adapter->max_frame_size) {
1023 e_dbg("max_frame_size not set.\n");
1024 return -E1000_ERR_CONFIG;
1027 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028 if (!speed) {
1029 e_dbg("Speed not set.\n");
1030 return -E1000_ERR_CONFIG;
1033 /* Rx Packet Buffer Allocation size (KB) */
1034 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1036 /* Determine the maximum latency tolerated by the device.
1038 * Per the PCIe spec, the tolerated latencies are encoded as
1039 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1042 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1044 rxa *= 512;
1045 value = (rxa > hw->adapter->max_frame_size) ?
1046 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1049 while (value > PCI_LTR_VALUE_MASK) {
1050 scale++;
1051 value = DIV_ROUND_UP(value, BIT(5));
1053 if (scale > E1000_LTRV_SCALE_MAX) {
1054 e_dbg("Invalid LTR latency scale %d\n", scale);
1055 return -E1000_ERR_CONFIG;
1057 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1059 /* Determine the maximum latency tolerated by the platform */
1060 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061 &max_snoop);
1062 pci_read_config_word(hw->adapter->pdev,
1063 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1066 if (lat_enc > max_ltr_enc)
1067 lat_enc = max_ltr_enc;
1070 /* Set Snoop and No-Snoop latencies the same */
1071 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072 ew32(LTRV, reg);
1074 return 0;
1078 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 * @hw: pointer to the HW structure
1080 * @to_sx: boolean indicating a system power state transition to Sx
1082 * When link is down, configure ULP mode to significantly reduce the power
1083 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1084 * ME firmware to start the ULP configuration. If not on an ME enabled
1085 * system, configure the ULP mode by software.
1087 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1089 u32 mac_reg;
1090 s32 ret_val = 0;
1091 u16 phy_reg;
1092 u16 oem_reg = 0;
1094 if ((hw->mac.type < e1000_pch_lpt) ||
1095 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100 return 0;
1102 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103 /* Request ME configure ULP mode in the PHY */
1104 mac_reg = er32(H2ME);
1105 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106 ew32(H2ME, mac_reg);
1108 goto out;
1111 if (!to_sx) {
1112 int i = 0;
1114 /* Poll up to 5 seconds for Cable Disconnected indication */
1115 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116 /* Bail if link is re-acquired */
1117 if (er32(STATUS) & E1000_STATUS_LU)
1118 return -E1000_ERR_PHY;
1120 if (i++ == 100)
1121 break;
1123 msleep(50);
1125 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126 (er32(FEXT) &
1127 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1130 ret_val = hw->phy.ops.acquire(hw);
1131 if (ret_val)
1132 goto out;
1134 /* Force SMBus mode in PHY */
1135 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136 if (ret_val)
1137 goto release;
1138 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1141 /* Force SMBus mode in MAC */
1142 mac_reg = er32(CTRL_EXT);
1143 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144 ew32(CTRL_EXT, mac_reg);
1146 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1147 * LPLU and disable Gig speed when entering ULP
1149 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151 &oem_reg);
1152 if (ret_val)
1153 goto release;
1155 phy_reg = oem_reg;
1156 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1158 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159 phy_reg);
1161 if (ret_val)
1162 goto release;
1165 /* Set Inband ULP Exit, Reset to SMBus mode and
1166 * Disable SMBus Release on PERST# in PHY
1168 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169 if (ret_val)
1170 goto release;
1171 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173 if (to_sx) {
1174 if (er32(WUFC) & E1000_WUFC_LNKC)
1175 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176 else
1177 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1179 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181 } else {
1182 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1186 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1188 /* Set Disable SMBus Release on PERST# in MAC */
1189 mac_reg = er32(FEXTNVM7);
1190 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191 ew32(FEXTNVM7, mac_reg);
1193 /* Commit ULP changes in PHY by starting auto ULP configuration */
1194 phy_reg |= I218_ULP_CONFIG1_START;
1195 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1197 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200 oem_reg);
1201 if (ret_val)
1202 goto release;
1205 release:
1206 hw->phy.ops.release(hw);
1207 out:
1208 if (ret_val)
1209 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210 else
1211 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1213 return ret_val;
1217 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 * @hw: pointer to the HW structure
1219 * @force: boolean indicating whether or not to force disabling ULP
1221 * Un-configure ULP mode when link is up, the system is transitioned from
1222 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1223 * system, poll for an indication from ME that ULP has been un-configured.
1224 * If not on an ME enabled system, un-configure the ULP mode by software.
1226 * During nominal operation, this function is called when link is acquired
1227 * to disable ULP mode (force=false); otherwise, for example when unloading
1228 * the driver or during Sx->S0 transitions, this is called with force=true
1229 * to forcibly disable ULP.
1231 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1233 s32 ret_val = 0;
1234 u32 mac_reg;
1235 u16 phy_reg;
1236 int i = 0;
1238 if ((hw->mac.type < e1000_pch_lpt) ||
1239 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244 return 0;
1246 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1247 if (force) {
1248 /* Request ME un-configure ULP mode in the PHY */
1249 mac_reg = er32(H2ME);
1250 mac_reg &= ~E1000_H2ME_ULP;
1251 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252 ew32(H2ME, mac_reg);
1255 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1256 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257 if (i++ == 30) {
1258 ret_val = -E1000_ERR_PHY;
1259 goto out;
1262 usleep_range(10000, 20000);
1264 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1266 if (force) {
1267 mac_reg = er32(H2ME);
1268 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269 ew32(H2ME, mac_reg);
1270 } else {
1271 /* Clear H2ME.ULP after ME ULP configuration */
1272 mac_reg = er32(H2ME);
1273 mac_reg &= ~E1000_H2ME_ULP;
1274 ew32(H2ME, mac_reg);
1277 goto out;
1280 ret_val = hw->phy.ops.acquire(hw);
1281 if (ret_val)
1282 goto out;
1284 if (force)
1285 /* Toggle LANPHYPC Value bit */
1286 e1000_toggle_lanphypc_pch_lpt(hw);
1288 /* Unforce SMBus mode in PHY */
1289 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290 if (ret_val) {
1291 /* The MAC might be in PCIe mode, so temporarily force to
1292 * SMBus mode in order to access the PHY.
1294 mac_reg = er32(CTRL_EXT);
1295 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296 ew32(CTRL_EXT, mac_reg);
1298 msleep(50);
1300 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301 &phy_reg);
1302 if (ret_val)
1303 goto release;
1305 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1308 /* Unforce SMBus mode in MAC */
1309 mac_reg = er32(CTRL_EXT);
1310 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311 ew32(CTRL_EXT, mac_reg);
1313 /* When ULP mode was previously entered, K1 was disabled by the
1314 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1316 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317 if (ret_val)
1318 goto release;
1319 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1322 /* Clear ULP enabled configuration */
1323 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324 if (ret_val)
1325 goto release;
1326 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327 I218_ULP_CONFIG1_STICKY_ULP |
1328 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329 I218_ULP_CONFIG1_WOL_HOST |
1330 I218_ULP_CONFIG1_INBAND_EXIT |
1331 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1332 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1333 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1334 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1336 /* Commit ULP changes by starting auto ULP configuration */
1337 phy_reg |= I218_ULP_CONFIG1_START;
1338 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1340 /* Clear Disable SMBus Release on PERST# in MAC */
1341 mac_reg = er32(FEXTNVM7);
1342 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1343 ew32(FEXTNVM7, mac_reg);
1345 release:
1346 hw->phy.ops.release(hw);
1347 if (force) {
1348 e1000_phy_hw_reset(hw);
1349 msleep(50);
1351 out:
1352 if (ret_val)
1353 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1354 else
1355 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1357 return ret_val;
1361 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1362 * @hw: pointer to the HW structure
1364 * Checks to see of the link status of the hardware has changed. If a
1365 * change in link status has been detected, then we read the PHY registers
1366 * to get the current speed/duplex if link exists.
1368 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1370 struct e1000_mac_info *mac = &hw->mac;
1371 s32 ret_val, tipg_reg = 0;
1372 u16 emi_addr, emi_val = 0;
1373 bool link;
1374 u16 phy_reg;
1376 /* We only want to go out to the PHY registers to see if Auto-Neg
1377 * has completed and/or if our link status has changed. The
1378 * get_link_status flag is set upon receiving a Link Status
1379 * Change or Rx Sequence Error interrupt.
1381 if (!mac->get_link_status)
1382 return 0;
1384 /* First we want to see if the MII Status Register reports
1385 * link. If so, then we want to get the current speed/duplex
1386 * of the PHY.
1388 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1389 if (ret_val)
1390 return ret_val;
1392 if (hw->mac.type == e1000_pchlan) {
1393 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1394 if (ret_val)
1395 return ret_val;
1398 /* When connected at 10Mbps half-duplex, some parts are excessively
1399 * aggressive resulting in many collisions. To avoid this, increase
1400 * the IPG and reduce Rx latency in the PHY.
1402 if (((hw->mac.type == e1000_pch2lan) ||
1403 (hw->mac.type == e1000_pch_lpt) ||
1404 (hw->mac.type == e1000_pch_spt)) && link) {
1405 u16 speed, duplex;
1407 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1408 tipg_reg = er32(TIPG);
1409 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1411 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1412 tipg_reg |= 0xFF;
1413 /* Reduce Rx latency in analog PHY */
1414 emi_val = 0;
1415 } else if (hw->mac.type == e1000_pch_spt &&
1416 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1417 tipg_reg |= 0xC;
1418 emi_val = 1;
1419 } else {
1421 /* Roll back the default values */
1422 tipg_reg |= 0x08;
1423 emi_val = 1;
1426 ew32(TIPG, tipg_reg);
1428 ret_val = hw->phy.ops.acquire(hw);
1429 if (ret_val)
1430 return ret_val;
1432 if (hw->mac.type == e1000_pch2lan)
1433 emi_addr = I82579_RX_CONFIG;
1434 else
1435 emi_addr = I217_RX_CONFIG;
1436 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1438 if (hw->mac.type == e1000_pch_lpt ||
1439 hw->mac.type == e1000_pch_spt) {
1440 u16 phy_reg;
1442 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444 if (speed == SPEED_100 || speed == SPEED_10)
1445 phy_reg |= 0x3E8;
1446 else
1447 phy_reg |= 0xFA;
1448 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1450 hw->phy.ops.release(hw);
1452 if (ret_val)
1453 return ret_val;
1455 if (hw->mac.type == e1000_pch_spt) {
1456 u16 data;
1457 u16 ptr_gap;
1459 if (speed == SPEED_1000) {
1460 ret_val = hw->phy.ops.acquire(hw);
1461 if (ret_val)
1462 return ret_val;
1464 ret_val = e1e_rphy_locked(hw,
1465 PHY_REG(776, 20),
1466 &data);
1467 if (ret_val) {
1468 hw->phy.ops.release(hw);
1469 return ret_val;
1472 ptr_gap = (data & (0x3FF << 2)) >> 2;
1473 if (ptr_gap < 0x18) {
1474 data &= ~(0x3FF << 2);
1475 data |= (0x18 << 2);
1476 ret_val =
1477 e1e_wphy_locked(hw,
1478 PHY_REG(776, 20),
1479 data);
1481 hw->phy.ops.release(hw);
1482 if (ret_val)
1483 return ret_val;
1484 } else {
1485 ret_val = hw->phy.ops.acquire(hw);
1486 if (ret_val)
1487 return ret_val;
1489 ret_val = e1e_wphy_locked(hw,
1490 PHY_REG(776, 20),
1491 0xC023);
1492 hw->phy.ops.release(hw);
1493 if (ret_val)
1494 return ret_val;
1500 /* I217 Packet Loss issue:
1501 * ensure that FEXTNVM4 Beacon Duration is set correctly
1502 * on power up.
1503 * Set the Beacon Duration for I217 to 8 usec
1505 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1506 u32 mac_reg;
1508 mac_reg = er32(FEXTNVM4);
1509 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511 ew32(FEXTNVM4, mac_reg);
1514 /* Work-around I218 hang issue */
1515 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520 if (ret_val)
1521 return ret_val;
1523 if ((hw->mac.type == e1000_pch_lpt) ||
1524 (hw->mac.type == e1000_pch_spt)) {
1525 /* Set platform power management values for
1526 * Latency Tolerance Reporting (LTR)
1528 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529 if (ret_val)
1530 return ret_val;
1533 /* Clear link partner's EEE ability */
1534 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1536 /* FEXTNVM6 K1-off workaround */
1537 if (hw->mac.type == e1000_pch_spt) {
1538 u32 pcieanacfg = er32(PCIEANACFG);
1539 u32 fextnvm6 = er32(FEXTNVM6);
1541 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1542 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1543 else
1544 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1546 ew32(FEXTNVM6, fextnvm6);
1549 if (!link)
1550 return 0; /* No link detected */
1552 mac->get_link_status = false;
1554 switch (hw->mac.type) {
1555 case e1000_pch2lan:
1556 ret_val = e1000_k1_workaround_lv(hw);
1557 if (ret_val)
1558 return ret_val;
1559 /* fall-thru */
1560 case e1000_pchlan:
1561 if (hw->phy.type == e1000_phy_82578) {
1562 ret_val = e1000_link_stall_workaround_hv(hw);
1563 if (ret_val)
1564 return ret_val;
1567 /* Workaround for PCHx parts in half-duplex:
1568 * Set the number of preambles removed from the packet
1569 * when it is passed from the PHY to the MAC to prevent
1570 * the MAC from misinterpreting the packet type.
1572 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1573 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1575 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1576 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1578 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1579 break;
1580 default:
1581 break;
1584 /* Check if there was DownShift, must be checked
1585 * immediately after link-up
1587 e1000e_check_downshift(hw);
1589 /* Enable/Disable EEE after link up */
1590 if (hw->phy.type > e1000_phy_82579) {
1591 ret_val = e1000_set_eee_pchlan(hw);
1592 if (ret_val)
1593 return ret_val;
1596 /* If we are forcing speed/duplex, then we simply return since
1597 * we have already determined whether we have link or not.
1599 if (!mac->autoneg)
1600 return -E1000_ERR_CONFIG;
1602 /* Auto-Neg is enabled. Auto Speed Detection takes care
1603 * of MAC speed/duplex configuration. So we only need to
1604 * configure Collision Distance in the MAC.
1606 mac->ops.config_collision_dist(hw);
1608 /* Configure Flow Control now that Auto-Neg has completed.
1609 * First, we need to restore the desired flow control
1610 * settings because we may have had to re-autoneg with a
1611 * different link partner.
1613 ret_val = e1000e_config_fc_after_link_up(hw);
1614 if (ret_val)
1615 e_dbg("Error configuring flow control\n");
1617 return ret_val;
1620 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1622 struct e1000_hw *hw = &adapter->hw;
1623 s32 rc;
1625 rc = e1000_init_mac_params_ich8lan(hw);
1626 if (rc)
1627 return rc;
1629 rc = e1000_init_nvm_params_ich8lan(hw);
1630 if (rc)
1631 return rc;
1633 switch (hw->mac.type) {
1634 case e1000_ich8lan:
1635 case e1000_ich9lan:
1636 case e1000_ich10lan:
1637 rc = e1000_init_phy_params_ich8lan(hw);
1638 break;
1639 case e1000_pchlan:
1640 case e1000_pch2lan:
1641 case e1000_pch_lpt:
1642 case e1000_pch_spt:
1643 rc = e1000_init_phy_params_pchlan(hw);
1644 break;
1645 default:
1646 break;
1648 if (rc)
1649 return rc;
1651 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1652 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1654 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1655 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1656 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1657 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1658 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1660 hw->mac.ops.blink_led = NULL;
1663 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1664 (adapter->hw.phy.type != e1000_phy_ife))
1665 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1667 /* Enable workaround for 82579 w/ ME enabled */
1668 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1669 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1670 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1672 return 0;
1675 static DEFINE_MUTEX(nvm_mutex);
1678 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1679 * @hw: pointer to the HW structure
1681 * Acquires the mutex for performing NVM operations.
1683 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1685 mutex_lock(&nvm_mutex);
1687 return 0;
1691 * e1000_release_nvm_ich8lan - Release NVM mutex
1692 * @hw: pointer to the HW structure
1694 * Releases the mutex used while performing NVM operations.
1696 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1698 mutex_unlock(&nvm_mutex);
1702 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1703 * @hw: pointer to the HW structure
1705 * Acquires the software control flag for performing PHY and select
1706 * MAC CSR accesses.
1708 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1710 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1711 s32 ret_val = 0;
1713 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1714 &hw->adapter->state)) {
1715 e_dbg("contention for Phy access\n");
1716 return -E1000_ERR_PHY;
1719 while (timeout) {
1720 extcnf_ctrl = er32(EXTCNF_CTRL);
1721 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1722 break;
1724 mdelay(1);
1725 timeout--;
1728 if (!timeout) {
1729 e_dbg("SW has already locked the resource.\n");
1730 ret_val = -E1000_ERR_CONFIG;
1731 goto out;
1734 timeout = SW_FLAG_TIMEOUT;
1736 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1737 ew32(EXTCNF_CTRL, extcnf_ctrl);
1739 while (timeout) {
1740 extcnf_ctrl = er32(EXTCNF_CTRL);
1741 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1742 break;
1744 mdelay(1);
1745 timeout--;
1748 if (!timeout) {
1749 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1750 er32(FWSM), extcnf_ctrl);
1751 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1752 ew32(EXTCNF_CTRL, extcnf_ctrl);
1753 ret_val = -E1000_ERR_CONFIG;
1754 goto out;
1757 out:
1758 if (ret_val)
1759 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1761 return ret_val;
1765 * e1000_release_swflag_ich8lan - Release software control flag
1766 * @hw: pointer to the HW structure
1768 * Releases the software control flag for performing PHY and select
1769 * MAC CSR accesses.
1771 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1773 u32 extcnf_ctrl;
1775 extcnf_ctrl = er32(EXTCNF_CTRL);
1777 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1778 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1779 ew32(EXTCNF_CTRL, extcnf_ctrl);
1780 } else {
1781 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1784 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1788 * e1000_check_mng_mode_ich8lan - Checks management mode
1789 * @hw: pointer to the HW structure
1791 * This checks if the adapter has any manageability enabled.
1792 * This is a function pointer entry point only called by read/write
1793 * routines for the PHY and NVM parts.
1795 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1797 u32 fwsm;
1799 fwsm = er32(FWSM);
1800 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1801 ((fwsm & E1000_FWSM_MODE_MASK) ==
1802 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1806 * e1000_check_mng_mode_pchlan - Checks management mode
1807 * @hw: pointer to the HW structure
1809 * This checks if the adapter has iAMT enabled.
1810 * This is a function pointer entry point only called by read/write
1811 * routines for the PHY and NVM parts.
1813 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1815 u32 fwsm;
1817 fwsm = er32(FWSM);
1818 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1819 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1823 * e1000_rar_set_pch2lan - Set receive address register
1824 * @hw: pointer to the HW structure
1825 * @addr: pointer to the receive address
1826 * @index: receive address array register
1828 * Sets the receive address array register at index to the address passed
1829 * in by addr. For 82579, RAR[0] is the base address register that is to
1830 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1831 * Use SHRA[0-3] in place of those reserved for ME.
1833 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1835 u32 rar_low, rar_high;
1837 /* HW expects these in little endian so we reverse the byte order
1838 * from network order (big endian) to little endian
1840 rar_low = ((u32)addr[0] |
1841 ((u32)addr[1] << 8) |
1842 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1844 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1846 /* If MAC address zero, no need to set the AV bit */
1847 if (rar_low || rar_high)
1848 rar_high |= E1000_RAH_AV;
1850 if (index == 0) {
1851 ew32(RAL(index), rar_low);
1852 e1e_flush();
1853 ew32(RAH(index), rar_high);
1854 e1e_flush();
1855 return 0;
1858 /* RAR[1-6] are owned by manageability. Skip those and program the
1859 * next address into the SHRA register array.
1861 if (index < (u32)(hw->mac.rar_entry_count)) {
1862 s32 ret_val;
1864 ret_val = e1000_acquire_swflag_ich8lan(hw);
1865 if (ret_val)
1866 goto out;
1868 ew32(SHRAL(index - 1), rar_low);
1869 e1e_flush();
1870 ew32(SHRAH(index - 1), rar_high);
1871 e1e_flush();
1873 e1000_release_swflag_ich8lan(hw);
1875 /* verify the register updates */
1876 if ((er32(SHRAL(index - 1)) == rar_low) &&
1877 (er32(SHRAH(index - 1)) == rar_high))
1878 return 0;
1880 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1881 (index - 1), er32(FWSM));
1884 out:
1885 e_dbg("Failed to write receive address at index %d\n", index);
1886 return -E1000_ERR_CONFIG;
1890 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1891 * @hw: pointer to the HW structure
1893 * Get the number of available receive registers that the Host can
1894 * program. SHRA[0-10] are the shared receive address registers
1895 * that are shared between the Host and manageability engine (ME).
1896 * ME can reserve any number of addresses and the host needs to be
1897 * able to tell how many available registers it has access to.
1899 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1901 u32 wlock_mac;
1902 u32 num_entries;
1904 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1905 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1907 switch (wlock_mac) {
1908 case 0:
1909 /* All SHRA[0..10] and RAR[0] available */
1910 num_entries = hw->mac.rar_entry_count;
1911 break;
1912 case 1:
1913 /* Only RAR[0] available */
1914 num_entries = 1;
1915 break;
1916 default:
1917 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1918 num_entries = wlock_mac + 1;
1919 break;
1922 return num_entries;
1926 * e1000_rar_set_pch_lpt - Set receive address registers
1927 * @hw: pointer to the HW structure
1928 * @addr: pointer to the receive address
1929 * @index: receive address array register
1931 * Sets the receive address register array at index to the address passed
1932 * in by addr. For LPT, RAR[0] is the base address register that is to
1933 * contain the MAC address. SHRA[0-10] are the shared receive address
1934 * registers that are shared between the Host and manageability engine (ME).
1936 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1938 u32 rar_low, rar_high;
1939 u32 wlock_mac;
1941 /* HW expects these in little endian so we reverse the byte order
1942 * from network order (big endian) to little endian
1944 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1945 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1947 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1949 /* If MAC address zero, no need to set the AV bit */
1950 if (rar_low || rar_high)
1951 rar_high |= E1000_RAH_AV;
1953 if (index == 0) {
1954 ew32(RAL(index), rar_low);
1955 e1e_flush();
1956 ew32(RAH(index), rar_high);
1957 e1e_flush();
1958 return 0;
1961 /* The manageability engine (ME) can lock certain SHRAR registers that
1962 * it is using - those registers are unavailable for use.
1964 if (index < hw->mac.rar_entry_count) {
1965 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1968 /* Check if all SHRAR registers are locked */
1969 if (wlock_mac == 1)
1970 goto out;
1972 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1973 s32 ret_val;
1975 ret_val = e1000_acquire_swflag_ich8lan(hw);
1977 if (ret_val)
1978 goto out;
1980 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1981 e1e_flush();
1982 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1983 e1e_flush();
1985 e1000_release_swflag_ich8lan(hw);
1987 /* verify the register updates */
1988 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1989 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1990 return 0;
1994 out:
1995 e_dbg("Failed to write receive address at index %d\n", index);
1996 return -E1000_ERR_CONFIG;
2000 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2001 * @hw: pointer to the HW structure
2003 * Checks if firmware is blocking the reset of the PHY.
2004 * This is a function pointer entry point only called by
2005 * reset routines.
2007 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2009 bool blocked = false;
2010 int i = 0;
2012 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2013 (i++ < 30))
2014 usleep_range(10000, 20000);
2015 return blocked ? E1000_BLK_PHY_RESET : 0;
2019 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2020 * @hw: pointer to the HW structure
2022 * Assumes semaphore already acquired.
2025 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2027 u16 phy_data;
2028 u32 strap = er32(STRAP);
2029 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2030 E1000_STRAP_SMT_FREQ_SHIFT;
2031 s32 ret_val;
2033 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2035 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2036 if (ret_val)
2037 return ret_val;
2039 phy_data &= ~HV_SMB_ADDR_MASK;
2040 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2041 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2043 if (hw->phy.type == e1000_phy_i217) {
2044 /* Restore SMBus frequency */
2045 if (freq--) {
2046 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2047 phy_data |= (freq & BIT(0)) <<
2048 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2049 phy_data |= (freq & BIT(1)) <<
2050 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2051 } else {
2052 e_dbg("Unsupported SMB frequency in PHY\n");
2056 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2060 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2061 * @hw: pointer to the HW structure
2063 * SW should configure the LCD from the NVM extended configuration region
2064 * as a workaround for certain parts.
2066 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2068 struct e1000_phy_info *phy = &hw->phy;
2069 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2070 s32 ret_val = 0;
2071 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2073 /* Initialize the PHY from the NVM on ICH platforms. This
2074 * is needed due to an issue where the NVM configuration is
2075 * not properly autoloaded after power transitions.
2076 * Therefore, after each PHY reset, we will load the
2077 * configuration data out of the NVM manually.
2079 switch (hw->mac.type) {
2080 case e1000_ich8lan:
2081 if (phy->type != e1000_phy_igp_3)
2082 return ret_val;
2084 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2085 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2086 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2087 break;
2089 /* Fall-thru */
2090 case e1000_pchlan:
2091 case e1000_pch2lan:
2092 case e1000_pch_lpt:
2093 case e1000_pch_spt:
2094 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2095 break;
2096 default:
2097 return ret_val;
2100 ret_val = hw->phy.ops.acquire(hw);
2101 if (ret_val)
2102 return ret_val;
2104 data = er32(FEXTNVM);
2105 if (!(data & sw_cfg_mask))
2106 goto release;
2108 /* Make sure HW does not configure LCD from PHY
2109 * extended configuration before SW configuration
2111 data = er32(EXTCNF_CTRL);
2112 if ((hw->mac.type < e1000_pch2lan) &&
2113 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2114 goto release;
2116 cnf_size = er32(EXTCNF_SIZE);
2117 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2118 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2119 if (!cnf_size)
2120 goto release;
2122 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2123 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2125 if (((hw->mac.type == e1000_pchlan) &&
2126 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2127 (hw->mac.type > e1000_pchlan)) {
2128 /* HW configures the SMBus address and LEDs when the
2129 * OEM and LCD Write Enable bits are set in the NVM.
2130 * When both NVM bits are cleared, SW will configure
2131 * them instead.
2133 ret_val = e1000_write_smbus_addr(hw);
2134 if (ret_val)
2135 goto release;
2137 data = er32(LEDCTL);
2138 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2139 (u16)data);
2140 if (ret_val)
2141 goto release;
2144 /* Configure LCD from extended configuration region. */
2146 /* cnf_base_addr is in DWORD */
2147 word_addr = (u16)(cnf_base_addr << 1);
2149 for (i = 0; i < cnf_size; i++) {
2150 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2151 if (ret_val)
2152 goto release;
2154 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2155 1, &reg_addr);
2156 if (ret_val)
2157 goto release;
2159 /* Save off the PHY page for future writes. */
2160 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2161 phy_page = reg_data;
2162 continue;
2165 reg_addr &= PHY_REG_MASK;
2166 reg_addr |= phy_page;
2168 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2169 if (ret_val)
2170 goto release;
2173 release:
2174 hw->phy.ops.release(hw);
2175 return ret_val;
2179 * e1000_k1_gig_workaround_hv - K1 Si workaround
2180 * @hw: pointer to the HW structure
2181 * @link: link up bool flag
2183 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2184 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2185 * If link is down, the function will restore the default K1 setting located
2186 * in the NVM.
2188 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2190 s32 ret_val = 0;
2191 u16 status_reg = 0;
2192 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2194 if (hw->mac.type != e1000_pchlan)
2195 return 0;
2197 /* Wrap the whole flow with the sw flag */
2198 ret_val = hw->phy.ops.acquire(hw);
2199 if (ret_val)
2200 return ret_val;
2202 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2203 if (link) {
2204 if (hw->phy.type == e1000_phy_82578) {
2205 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2206 &status_reg);
2207 if (ret_val)
2208 goto release;
2210 status_reg &= (BM_CS_STATUS_LINK_UP |
2211 BM_CS_STATUS_RESOLVED |
2212 BM_CS_STATUS_SPEED_MASK);
2214 if (status_reg == (BM_CS_STATUS_LINK_UP |
2215 BM_CS_STATUS_RESOLVED |
2216 BM_CS_STATUS_SPEED_1000))
2217 k1_enable = false;
2220 if (hw->phy.type == e1000_phy_82577) {
2221 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2222 if (ret_val)
2223 goto release;
2225 status_reg &= (HV_M_STATUS_LINK_UP |
2226 HV_M_STATUS_AUTONEG_COMPLETE |
2227 HV_M_STATUS_SPEED_MASK);
2229 if (status_reg == (HV_M_STATUS_LINK_UP |
2230 HV_M_STATUS_AUTONEG_COMPLETE |
2231 HV_M_STATUS_SPEED_1000))
2232 k1_enable = false;
2235 /* Link stall fix for link up */
2236 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2237 if (ret_val)
2238 goto release;
2240 } else {
2241 /* Link stall fix for link down */
2242 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2243 if (ret_val)
2244 goto release;
2247 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2249 release:
2250 hw->phy.ops.release(hw);
2252 return ret_val;
2256 * e1000_configure_k1_ich8lan - Configure K1 power state
2257 * @hw: pointer to the HW structure
2258 * @enable: K1 state to configure
2260 * Configure the K1 power state based on the provided parameter.
2261 * Assumes semaphore already acquired.
2263 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2265 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2267 s32 ret_val;
2268 u32 ctrl_reg = 0;
2269 u32 ctrl_ext = 0;
2270 u32 reg = 0;
2271 u16 kmrn_reg = 0;
2273 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2274 &kmrn_reg);
2275 if (ret_val)
2276 return ret_val;
2278 if (k1_enable)
2279 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2280 else
2281 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2283 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2284 kmrn_reg);
2285 if (ret_val)
2286 return ret_val;
2288 usleep_range(20, 40);
2289 ctrl_ext = er32(CTRL_EXT);
2290 ctrl_reg = er32(CTRL);
2292 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2293 reg |= E1000_CTRL_FRCSPD;
2294 ew32(CTRL, reg);
2296 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2297 e1e_flush();
2298 usleep_range(20, 40);
2299 ew32(CTRL, ctrl_reg);
2300 ew32(CTRL_EXT, ctrl_ext);
2301 e1e_flush();
2302 usleep_range(20, 40);
2304 return 0;
2308 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2309 * @hw: pointer to the HW structure
2310 * @d0_state: boolean if entering d0 or d3 device state
2312 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2313 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2314 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2316 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2318 s32 ret_val = 0;
2319 u32 mac_reg;
2320 u16 oem_reg;
2322 if (hw->mac.type < e1000_pchlan)
2323 return ret_val;
2325 ret_val = hw->phy.ops.acquire(hw);
2326 if (ret_val)
2327 return ret_val;
2329 if (hw->mac.type == e1000_pchlan) {
2330 mac_reg = er32(EXTCNF_CTRL);
2331 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2332 goto release;
2335 mac_reg = er32(FEXTNVM);
2336 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2337 goto release;
2339 mac_reg = er32(PHY_CTRL);
2341 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2342 if (ret_val)
2343 goto release;
2345 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2347 if (d0_state) {
2348 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2349 oem_reg |= HV_OEM_BITS_GBE_DIS;
2351 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2352 oem_reg |= HV_OEM_BITS_LPLU;
2353 } else {
2354 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2355 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2356 oem_reg |= HV_OEM_BITS_GBE_DIS;
2358 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2359 E1000_PHY_CTRL_NOND0A_LPLU))
2360 oem_reg |= HV_OEM_BITS_LPLU;
2363 /* Set Restart auto-neg to activate the bits */
2364 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2365 !hw->phy.ops.check_reset_block(hw))
2366 oem_reg |= HV_OEM_BITS_RESTART_AN;
2368 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2370 release:
2371 hw->phy.ops.release(hw);
2373 return ret_val;
2377 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2378 * @hw: pointer to the HW structure
2380 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2382 s32 ret_val;
2383 u16 data;
2385 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2386 if (ret_val)
2387 return ret_val;
2389 data |= HV_KMRN_MDIO_SLOW;
2391 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2393 return ret_val;
2397 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2398 * done after every PHY reset.
2400 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2402 s32 ret_val = 0;
2403 u16 phy_data;
2405 if (hw->mac.type != e1000_pchlan)
2406 return 0;
2408 /* Set MDIO slow mode before any other MDIO access */
2409 if (hw->phy.type == e1000_phy_82577) {
2410 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2411 if (ret_val)
2412 return ret_val;
2415 if (((hw->phy.type == e1000_phy_82577) &&
2416 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2417 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2418 /* Disable generation of early preamble */
2419 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2420 if (ret_val)
2421 return ret_val;
2423 /* Preamble tuning for SSC */
2424 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2425 if (ret_val)
2426 return ret_val;
2429 if (hw->phy.type == e1000_phy_82578) {
2430 /* Return registers to default by doing a soft reset then
2431 * writing 0x3140 to the control register.
2433 if (hw->phy.revision < 2) {
2434 e1000e_phy_sw_reset(hw);
2435 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2439 /* Select page 0 */
2440 ret_val = hw->phy.ops.acquire(hw);
2441 if (ret_val)
2442 return ret_val;
2444 hw->phy.addr = 1;
2445 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2446 hw->phy.ops.release(hw);
2447 if (ret_val)
2448 return ret_val;
2450 /* Configure the K1 Si workaround during phy reset assuming there is
2451 * link so that it disables K1 if link is in 1Gbps.
2453 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2454 if (ret_val)
2455 return ret_val;
2457 /* Workaround for link disconnects on a busy hub in half duplex */
2458 ret_val = hw->phy.ops.acquire(hw);
2459 if (ret_val)
2460 return ret_val;
2461 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2462 if (ret_val)
2463 goto release;
2464 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2465 if (ret_val)
2466 goto release;
2468 /* set MSE higher to enable link to stay up when noise is high */
2469 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2470 release:
2471 hw->phy.ops.release(hw);
2473 return ret_val;
2477 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2478 * @hw: pointer to the HW structure
2480 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2482 u32 mac_reg;
2483 u16 i, phy_reg = 0;
2484 s32 ret_val;
2486 ret_val = hw->phy.ops.acquire(hw);
2487 if (ret_val)
2488 return;
2489 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2490 if (ret_val)
2491 goto release;
2493 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2494 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2495 mac_reg = er32(RAL(i));
2496 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2497 (u16)(mac_reg & 0xFFFF));
2498 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2499 (u16)((mac_reg >> 16) & 0xFFFF));
2501 mac_reg = er32(RAH(i));
2502 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2503 (u16)(mac_reg & 0xFFFF));
2504 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2505 (u16)((mac_reg & E1000_RAH_AV)
2506 >> 16));
2509 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2511 release:
2512 hw->phy.ops.release(hw);
2516 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2517 * with 82579 PHY
2518 * @hw: pointer to the HW structure
2519 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2521 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2523 s32 ret_val = 0;
2524 u16 phy_reg, data;
2525 u32 mac_reg;
2526 u16 i;
2528 if (hw->mac.type < e1000_pch2lan)
2529 return 0;
2531 /* disable Rx path while enabling/disabling workaround */
2532 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2533 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2534 if (ret_val)
2535 return ret_val;
2537 if (enable) {
2538 /* Write Rx addresses (rar_entry_count for RAL/H, and
2539 * SHRAL/H) and initial CRC values to the MAC
2541 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2542 u8 mac_addr[ETH_ALEN] = { 0 };
2543 u32 addr_high, addr_low;
2545 addr_high = er32(RAH(i));
2546 if (!(addr_high & E1000_RAH_AV))
2547 continue;
2548 addr_low = er32(RAL(i));
2549 mac_addr[0] = (addr_low & 0xFF);
2550 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2551 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2552 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2553 mac_addr[4] = (addr_high & 0xFF);
2554 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2556 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2559 /* Write Rx addresses to the PHY */
2560 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2562 /* Enable jumbo frame workaround in the MAC */
2563 mac_reg = er32(FFLT_DBG);
2564 mac_reg &= ~BIT(14);
2565 mac_reg |= (7 << 15);
2566 ew32(FFLT_DBG, mac_reg);
2568 mac_reg = er32(RCTL);
2569 mac_reg |= E1000_RCTL_SECRC;
2570 ew32(RCTL, mac_reg);
2572 ret_val = e1000e_read_kmrn_reg(hw,
2573 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2574 &data);
2575 if (ret_val)
2576 return ret_val;
2577 ret_val = e1000e_write_kmrn_reg(hw,
2578 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2579 data | BIT(0));
2580 if (ret_val)
2581 return ret_val;
2582 ret_val = e1000e_read_kmrn_reg(hw,
2583 E1000_KMRNCTRLSTA_HD_CTRL,
2584 &data);
2585 if (ret_val)
2586 return ret_val;
2587 data &= ~(0xF << 8);
2588 data |= (0xB << 8);
2589 ret_val = e1000e_write_kmrn_reg(hw,
2590 E1000_KMRNCTRLSTA_HD_CTRL,
2591 data);
2592 if (ret_val)
2593 return ret_val;
2595 /* Enable jumbo frame workaround in the PHY */
2596 e1e_rphy(hw, PHY_REG(769, 23), &data);
2597 data &= ~(0x7F << 5);
2598 data |= (0x37 << 5);
2599 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2600 if (ret_val)
2601 return ret_val;
2602 e1e_rphy(hw, PHY_REG(769, 16), &data);
2603 data &= ~BIT(13);
2604 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2605 if (ret_val)
2606 return ret_val;
2607 e1e_rphy(hw, PHY_REG(776, 20), &data);
2608 data &= ~(0x3FF << 2);
2609 data |= (E1000_TX_PTR_GAP << 2);
2610 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2611 if (ret_val)
2612 return ret_val;
2613 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2614 if (ret_val)
2615 return ret_val;
2616 e1e_rphy(hw, HV_PM_CTRL, &data);
2617 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2618 if (ret_val)
2619 return ret_val;
2620 } else {
2621 /* Write MAC register values back to h/w defaults */
2622 mac_reg = er32(FFLT_DBG);
2623 mac_reg &= ~(0xF << 14);
2624 ew32(FFLT_DBG, mac_reg);
2626 mac_reg = er32(RCTL);
2627 mac_reg &= ~E1000_RCTL_SECRC;
2628 ew32(RCTL, mac_reg);
2630 ret_val = e1000e_read_kmrn_reg(hw,
2631 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2632 &data);
2633 if (ret_val)
2634 return ret_val;
2635 ret_val = e1000e_write_kmrn_reg(hw,
2636 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2637 data & ~BIT(0));
2638 if (ret_val)
2639 return ret_val;
2640 ret_val = e1000e_read_kmrn_reg(hw,
2641 E1000_KMRNCTRLSTA_HD_CTRL,
2642 &data);
2643 if (ret_val)
2644 return ret_val;
2645 data &= ~(0xF << 8);
2646 data |= (0xB << 8);
2647 ret_val = e1000e_write_kmrn_reg(hw,
2648 E1000_KMRNCTRLSTA_HD_CTRL,
2649 data);
2650 if (ret_val)
2651 return ret_val;
2653 /* Write PHY register values back to h/w defaults */
2654 e1e_rphy(hw, PHY_REG(769, 23), &data);
2655 data &= ~(0x7F << 5);
2656 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2657 if (ret_val)
2658 return ret_val;
2659 e1e_rphy(hw, PHY_REG(769, 16), &data);
2660 data |= BIT(13);
2661 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2662 if (ret_val)
2663 return ret_val;
2664 e1e_rphy(hw, PHY_REG(776, 20), &data);
2665 data &= ~(0x3FF << 2);
2666 data |= (0x8 << 2);
2667 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2668 if (ret_val)
2669 return ret_val;
2670 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2671 if (ret_val)
2672 return ret_val;
2673 e1e_rphy(hw, HV_PM_CTRL, &data);
2674 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2675 if (ret_val)
2676 return ret_val;
2679 /* re-enable Rx path after enabling/disabling workaround */
2680 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2684 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2685 * done after every PHY reset.
2687 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2689 s32 ret_val = 0;
2691 if (hw->mac.type != e1000_pch2lan)
2692 return 0;
2694 /* Set MDIO slow mode before any other MDIO access */
2695 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2696 if (ret_val)
2697 return ret_val;
2699 ret_val = hw->phy.ops.acquire(hw);
2700 if (ret_val)
2701 return ret_val;
2702 /* set MSE higher to enable link to stay up when noise is high */
2703 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2704 if (ret_val)
2705 goto release;
2706 /* drop link after 5 times MSE threshold was reached */
2707 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2708 release:
2709 hw->phy.ops.release(hw);
2711 return ret_val;
2715 * e1000_k1_gig_workaround_lv - K1 Si workaround
2716 * @hw: pointer to the HW structure
2718 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2719 * Disable K1 in 1000Mbps and 100Mbps
2721 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2723 s32 ret_val = 0;
2724 u16 status_reg = 0;
2726 if (hw->mac.type != e1000_pch2lan)
2727 return 0;
2729 /* Set K1 beacon duration based on 10Mbs speed */
2730 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2731 if (ret_val)
2732 return ret_val;
2734 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2735 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2736 if (status_reg &
2737 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2738 u16 pm_phy_reg;
2740 /* LV 1G/100 Packet drop issue wa */
2741 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2742 if (ret_val)
2743 return ret_val;
2744 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2745 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2746 if (ret_val)
2747 return ret_val;
2748 } else {
2749 u32 mac_reg;
2751 mac_reg = er32(FEXTNVM4);
2752 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2753 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2754 ew32(FEXTNVM4, mac_reg);
2758 return ret_val;
2762 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2763 * @hw: pointer to the HW structure
2764 * @gate: boolean set to true to gate, false to ungate
2766 * Gate/ungate the automatic PHY configuration via hardware; perform
2767 * the configuration via software instead.
2769 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2771 u32 extcnf_ctrl;
2773 if (hw->mac.type < e1000_pch2lan)
2774 return;
2776 extcnf_ctrl = er32(EXTCNF_CTRL);
2778 if (gate)
2779 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2780 else
2781 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2783 ew32(EXTCNF_CTRL, extcnf_ctrl);
2787 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2788 * @hw: pointer to the HW structure
2790 * Check the appropriate indication the MAC has finished configuring the
2791 * PHY after a software reset.
2793 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2795 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2797 /* Wait for basic configuration completes before proceeding */
2798 do {
2799 data = er32(STATUS);
2800 data &= E1000_STATUS_LAN_INIT_DONE;
2801 usleep_range(100, 200);
2802 } while ((!data) && --loop);
2804 /* If basic configuration is incomplete before the above loop
2805 * count reaches 0, loading the configuration from NVM will
2806 * leave the PHY in a bad state possibly resulting in no link.
2808 if (loop == 0)
2809 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2811 /* Clear the Init Done bit for the next init event */
2812 data = er32(STATUS);
2813 data &= ~E1000_STATUS_LAN_INIT_DONE;
2814 ew32(STATUS, data);
2818 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2819 * @hw: pointer to the HW structure
2821 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2823 s32 ret_val = 0;
2824 u16 reg;
2826 if (hw->phy.ops.check_reset_block(hw))
2827 return 0;
2829 /* Allow time for h/w to get to quiescent state after reset */
2830 usleep_range(10000, 20000);
2832 /* Perform any necessary post-reset workarounds */
2833 switch (hw->mac.type) {
2834 case e1000_pchlan:
2835 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2836 if (ret_val)
2837 return ret_val;
2838 break;
2839 case e1000_pch2lan:
2840 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2841 if (ret_val)
2842 return ret_val;
2843 break;
2844 default:
2845 break;
2848 /* Clear the host wakeup bit after lcd reset */
2849 if (hw->mac.type >= e1000_pchlan) {
2850 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2851 reg &= ~BM_WUC_HOST_WU_BIT;
2852 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2855 /* Configure the LCD with the extended configuration region in NVM */
2856 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2857 if (ret_val)
2858 return ret_val;
2860 /* Configure the LCD with the OEM bits in NVM */
2861 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2863 if (hw->mac.type == e1000_pch2lan) {
2864 /* Ungate automatic PHY configuration on non-managed 82579 */
2865 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2866 usleep_range(10000, 20000);
2867 e1000_gate_hw_phy_config_ich8lan(hw, false);
2870 /* Set EEE LPI Update Timer to 200usec */
2871 ret_val = hw->phy.ops.acquire(hw);
2872 if (ret_val)
2873 return ret_val;
2874 ret_val = e1000_write_emi_reg_locked(hw,
2875 I82579_LPI_UPDATE_TIMER,
2876 0x1387);
2877 hw->phy.ops.release(hw);
2880 return ret_val;
2884 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2885 * @hw: pointer to the HW structure
2887 * Resets the PHY
2888 * This is a function pointer entry point called by drivers
2889 * or other shared routines.
2891 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2893 s32 ret_val = 0;
2895 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2896 if ((hw->mac.type == e1000_pch2lan) &&
2897 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2898 e1000_gate_hw_phy_config_ich8lan(hw, true);
2900 ret_val = e1000e_phy_hw_reset_generic(hw);
2901 if (ret_val)
2902 return ret_val;
2904 return e1000_post_phy_reset_ich8lan(hw);
2908 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2909 * @hw: pointer to the HW structure
2910 * @active: true to enable LPLU, false to disable
2912 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2913 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2914 * the phy speed. This function will manually set the LPLU bit and restart
2915 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2916 * since it configures the same bit.
2918 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2920 s32 ret_val;
2921 u16 oem_reg;
2923 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2924 if (ret_val)
2925 return ret_val;
2927 if (active)
2928 oem_reg |= HV_OEM_BITS_LPLU;
2929 else
2930 oem_reg &= ~HV_OEM_BITS_LPLU;
2932 if (!hw->phy.ops.check_reset_block(hw))
2933 oem_reg |= HV_OEM_BITS_RESTART_AN;
2935 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2939 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2940 * @hw: pointer to the HW structure
2941 * @active: true to enable LPLU, false to disable
2943 * Sets the LPLU D0 state according to the active flag. When
2944 * activating LPLU this function also disables smart speed
2945 * and vice versa. LPLU will not be activated unless the
2946 * device autonegotiation advertisement meets standards of
2947 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2948 * This is a function pointer entry point only called by
2949 * PHY setup routines.
2951 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2953 struct e1000_phy_info *phy = &hw->phy;
2954 u32 phy_ctrl;
2955 s32 ret_val = 0;
2956 u16 data;
2958 if (phy->type == e1000_phy_ife)
2959 return 0;
2961 phy_ctrl = er32(PHY_CTRL);
2963 if (active) {
2964 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2965 ew32(PHY_CTRL, phy_ctrl);
2967 if (phy->type != e1000_phy_igp_3)
2968 return 0;
2970 /* Call gig speed drop workaround on LPLU before accessing
2971 * any PHY registers
2973 if (hw->mac.type == e1000_ich8lan)
2974 e1000e_gig_downshift_workaround_ich8lan(hw);
2976 /* When LPLU is enabled, we should disable SmartSpeed */
2977 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2978 if (ret_val)
2979 return ret_val;
2980 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2981 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2982 if (ret_val)
2983 return ret_val;
2984 } else {
2985 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2986 ew32(PHY_CTRL, phy_ctrl);
2988 if (phy->type != e1000_phy_igp_3)
2989 return 0;
2991 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2992 * during Dx states where the power conservation is most
2993 * important. During driver activity we should enable
2994 * SmartSpeed, so performance is maintained.
2996 if (phy->smart_speed == e1000_smart_speed_on) {
2997 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2998 &data);
2999 if (ret_val)
3000 return ret_val;
3002 data |= IGP01E1000_PSCFR_SMART_SPEED;
3003 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004 data);
3005 if (ret_val)
3006 return ret_val;
3007 } else if (phy->smart_speed == e1000_smart_speed_off) {
3008 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3009 &data);
3010 if (ret_val)
3011 return ret_val;
3013 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015 data);
3016 if (ret_val)
3017 return ret_val;
3021 return 0;
3025 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3026 * @hw: pointer to the HW structure
3027 * @active: true to enable LPLU, false to disable
3029 * Sets the LPLU D3 state according to the active flag. When
3030 * activating LPLU this function also disables smart speed
3031 * and vice versa. LPLU will not be activated unless the
3032 * device autonegotiation advertisement meets standards of
3033 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3034 * This is a function pointer entry point only called by
3035 * PHY setup routines.
3037 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3039 struct e1000_phy_info *phy = &hw->phy;
3040 u32 phy_ctrl;
3041 s32 ret_val = 0;
3042 u16 data;
3044 phy_ctrl = er32(PHY_CTRL);
3046 if (!active) {
3047 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3048 ew32(PHY_CTRL, phy_ctrl);
3050 if (phy->type != e1000_phy_igp_3)
3051 return 0;
3053 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3054 * during Dx states where the power conservation is most
3055 * important. During driver activity we should enable
3056 * SmartSpeed, so performance is maintained.
3058 if (phy->smart_speed == e1000_smart_speed_on) {
3059 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060 &data);
3061 if (ret_val)
3062 return ret_val;
3064 data |= IGP01E1000_PSCFR_SMART_SPEED;
3065 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 data);
3067 if (ret_val)
3068 return ret_val;
3069 } else if (phy->smart_speed == e1000_smart_speed_off) {
3070 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071 &data);
3072 if (ret_val)
3073 return ret_val;
3075 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 data);
3078 if (ret_val)
3079 return ret_val;
3081 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3082 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3083 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3084 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3085 ew32(PHY_CTRL, phy_ctrl);
3087 if (phy->type != e1000_phy_igp_3)
3088 return 0;
3090 /* Call gig speed drop workaround on LPLU before accessing
3091 * any PHY registers
3093 if (hw->mac.type == e1000_ich8lan)
3094 e1000e_gig_downshift_workaround_ich8lan(hw);
3096 /* When LPLU is enabled, we should disable SmartSpeed */
3097 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3098 if (ret_val)
3099 return ret_val;
3101 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3102 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3105 return ret_val;
3109 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3110 * @hw: pointer to the HW structure
3111 * @bank: pointer to the variable that returns the active bank
3113 * Reads signature byte from the NVM using the flash access registers.
3114 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3116 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3118 u32 eecd;
3119 struct e1000_nvm_info *nvm = &hw->nvm;
3120 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3121 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3122 u32 nvm_dword = 0;
3123 u8 sig_byte = 0;
3124 s32 ret_val;
3126 switch (hw->mac.type) {
3127 case e1000_pch_spt:
3128 bank1_offset = nvm->flash_bank_size;
3129 act_offset = E1000_ICH_NVM_SIG_WORD;
3131 /* set bank to 0 in case flash read fails */
3132 *bank = 0;
3134 /* Check bank 0 */
3135 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3136 &nvm_dword);
3137 if (ret_val)
3138 return ret_val;
3139 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3140 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3141 E1000_ICH_NVM_SIG_VALUE) {
3142 *bank = 0;
3143 return 0;
3146 /* Check bank 1 */
3147 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3148 bank1_offset,
3149 &nvm_dword);
3150 if (ret_val)
3151 return ret_val;
3152 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3153 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3154 E1000_ICH_NVM_SIG_VALUE) {
3155 *bank = 1;
3156 return 0;
3159 e_dbg("ERROR: No valid NVM bank present\n");
3160 return -E1000_ERR_NVM;
3161 case e1000_ich8lan:
3162 case e1000_ich9lan:
3163 eecd = er32(EECD);
3164 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3165 E1000_EECD_SEC1VAL_VALID_MASK) {
3166 if (eecd & E1000_EECD_SEC1VAL)
3167 *bank = 1;
3168 else
3169 *bank = 0;
3171 return 0;
3173 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3174 /* fall-thru */
3175 default:
3176 /* set bank to 0 in case flash read fails */
3177 *bank = 0;
3179 /* Check bank 0 */
3180 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3181 &sig_byte);
3182 if (ret_val)
3183 return ret_val;
3184 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3185 E1000_ICH_NVM_SIG_VALUE) {
3186 *bank = 0;
3187 return 0;
3190 /* Check bank 1 */
3191 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3192 bank1_offset,
3193 &sig_byte);
3194 if (ret_val)
3195 return ret_val;
3196 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3197 E1000_ICH_NVM_SIG_VALUE) {
3198 *bank = 1;
3199 return 0;
3202 e_dbg("ERROR: No valid NVM bank present\n");
3203 return -E1000_ERR_NVM;
3208 * e1000_read_nvm_spt - NVM access for SPT
3209 * @hw: pointer to the HW structure
3210 * @offset: The offset (in bytes) of the word(s) to read.
3211 * @words: Size of data to read in words.
3212 * @data: pointer to the word(s) to read at offset.
3214 * Reads a word(s) from the NVM
3216 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3217 u16 *data)
3219 struct e1000_nvm_info *nvm = &hw->nvm;
3220 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3221 u32 act_offset;
3222 s32 ret_val = 0;
3223 u32 bank = 0;
3224 u32 dword = 0;
3225 u16 offset_to_read;
3226 u16 i;
3228 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3229 (words == 0)) {
3230 e_dbg("nvm parameter(s) out of bounds\n");
3231 ret_val = -E1000_ERR_NVM;
3232 goto out;
3235 nvm->ops.acquire(hw);
3237 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3238 if (ret_val) {
3239 e_dbg("Could not detect valid bank, assuming bank 0\n");
3240 bank = 0;
3243 act_offset = (bank) ? nvm->flash_bank_size : 0;
3244 act_offset += offset;
3246 ret_val = 0;
3248 for (i = 0; i < words; i += 2) {
3249 if (words - i == 1) {
3250 if (dev_spec->shadow_ram[offset + i].modified) {
3251 data[i] =
3252 dev_spec->shadow_ram[offset + i].value;
3253 } else {
3254 offset_to_read = act_offset + i -
3255 ((act_offset + i) % 2);
3256 ret_val =
3257 e1000_read_flash_dword_ich8lan(hw,
3258 offset_to_read,
3259 &dword);
3260 if (ret_val)
3261 break;
3262 if ((act_offset + i) % 2 == 0)
3263 data[i] = (u16)(dword & 0xFFFF);
3264 else
3265 data[i] = (u16)((dword >> 16) & 0xFFFF);
3267 } else {
3268 offset_to_read = act_offset + i;
3269 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3270 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3271 ret_val =
3272 e1000_read_flash_dword_ich8lan(hw,
3273 offset_to_read,
3274 &dword);
3275 if (ret_val)
3276 break;
3278 if (dev_spec->shadow_ram[offset + i].modified)
3279 data[i] =
3280 dev_spec->shadow_ram[offset + i].value;
3281 else
3282 data[i] = (u16)(dword & 0xFFFF);
3283 if (dev_spec->shadow_ram[offset + i].modified)
3284 data[i + 1] =
3285 dev_spec->shadow_ram[offset + i + 1].value;
3286 else
3287 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3291 nvm->ops.release(hw);
3293 out:
3294 if (ret_val)
3295 e_dbg("NVM read error: %d\n", ret_val);
3297 return ret_val;
3301 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3302 * @hw: pointer to the HW structure
3303 * @offset: The offset (in bytes) of the word(s) to read.
3304 * @words: Size of data to read in words
3305 * @data: Pointer to the word(s) to read at offset.
3307 * Reads a word(s) from the NVM using the flash access registers.
3309 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3310 u16 *data)
3312 struct e1000_nvm_info *nvm = &hw->nvm;
3313 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3314 u32 act_offset;
3315 s32 ret_val = 0;
3316 u32 bank = 0;
3317 u16 i, word;
3319 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3320 (words == 0)) {
3321 e_dbg("nvm parameter(s) out of bounds\n");
3322 ret_val = -E1000_ERR_NVM;
3323 goto out;
3326 nvm->ops.acquire(hw);
3328 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3329 if (ret_val) {
3330 e_dbg("Could not detect valid bank, assuming bank 0\n");
3331 bank = 0;
3334 act_offset = (bank) ? nvm->flash_bank_size : 0;
3335 act_offset += offset;
3337 ret_val = 0;
3338 for (i = 0; i < words; i++) {
3339 if (dev_spec->shadow_ram[offset + i].modified) {
3340 data[i] = dev_spec->shadow_ram[offset + i].value;
3341 } else {
3342 ret_val = e1000_read_flash_word_ich8lan(hw,
3343 act_offset + i,
3344 &word);
3345 if (ret_val)
3346 break;
3347 data[i] = word;
3351 nvm->ops.release(hw);
3353 out:
3354 if (ret_val)
3355 e_dbg("NVM read error: %d\n", ret_val);
3357 return ret_val;
3361 * e1000_flash_cycle_init_ich8lan - Initialize flash
3362 * @hw: pointer to the HW structure
3364 * This function does initial flash setup so that a new read/write/erase cycle
3365 * can be started.
3367 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3369 union ich8_hws_flash_status hsfsts;
3370 s32 ret_val = -E1000_ERR_NVM;
3372 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3374 /* Check if the flash descriptor is valid */
3375 if (!hsfsts.hsf_status.fldesvalid) {
3376 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3377 return -E1000_ERR_NVM;
3380 /* Clear FCERR and DAEL in hw status by writing 1 */
3381 hsfsts.hsf_status.flcerr = 1;
3382 hsfsts.hsf_status.dael = 1;
3383 if (hw->mac.type == e1000_pch_spt)
3384 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3385 else
3386 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3388 /* Either we should have a hardware SPI cycle in progress
3389 * bit to check against, in order to start a new cycle or
3390 * FDONE bit should be changed in the hardware so that it
3391 * is 1 after hardware reset, which can then be used as an
3392 * indication whether a cycle is in progress or has been
3393 * completed.
3396 if (!hsfsts.hsf_status.flcinprog) {
3397 /* There is no cycle running at present,
3398 * so we can start a cycle.
3399 * Begin by setting Flash Cycle Done.
3401 hsfsts.hsf_status.flcdone = 1;
3402 if (hw->mac.type == e1000_pch_spt)
3403 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3404 else
3405 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3406 ret_val = 0;
3407 } else {
3408 s32 i;
3410 /* Otherwise poll for sometime so the current
3411 * cycle has a chance to end before giving up.
3413 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3414 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3415 if (!hsfsts.hsf_status.flcinprog) {
3416 ret_val = 0;
3417 break;
3419 udelay(1);
3421 if (!ret_val) {
3422 /* Successful in waiting for previous cycle to timeout,
3423 * now set the Flash Cycle Done.
3425 hsfsts.hsf_status.flcdone = 1;
3426 if (hw->mac.type == e1000_pch_spt)
3427 ew32flash(ICH_FLASH_HSFSTS,
3428 hsfsts.regval & 0xFFFF);
3429 else
3430 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3431 } else {
3432 e_dbg("Flash controller busy, cannot get access\n");
3436 return ret_val;
3440 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3441 * @hw: pointer to the HW structure
3442 * @timeout: maximum time to wait for completion
3444 * This function starts a flash cycle and waits for its completion.
3446 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3448 union ich8_hws_flash_ctrl hsflctl;
3449 union ich8_hws_flash_status hsfsts;
3450 u32 i = 0;
3452 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3453 if (hw->mac.type == e1000_pch_spt)
3454 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3455 else
3456 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3457 hsflctl.hsf_ctrl.flcgo = 1;
3459 if (hw->mac.type == e1000_pch_spt)
3460 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3461 else
3462 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3464 /* wait till FDONE bit is set to 1 */
3465 do {
3466 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3467 if (hsfsts.hsf_status.flcdone)
3468 break;
3469 udelay(1);
3470 } while (i++ < timeout);
3472 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3473 return 0;
3475 return -E1000_ERR_NVM;
3479 * e1000_read_flash_dword_ich8lan - Read dword from flash
3480 * @hw: pointer to the HW structure
3481 * @offset: offset to data location
3482 * @data: pointer to the location for storing the data
3484 * Reads the flash dword at offset into data. Offset is converted
3485 * to bytes before read.
3487 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3488 u32 *data)
3490 /* Must convert word offset into bytes. */
3491 offset <<= 1;
3492 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3496 * e1000_read_flash_word_ich8lan - Read word from flash
3497 * @hw: pointer to the HW structure
3498 * @offset: offset to data location
3499 * @data: pointer to the location for storing the data
3501 * Reads the flash word at offset into data. Offset is converted
3502 * to bytes before read.
3504 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3505 u16 *data)
3507 /* Must convert offset into bytes. */
3508 offset <<= 1;
3510 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3514 * e1000_read_flash_byte_ich8lan - Read byte from flash
3515 * @hw: pointer to the HW structure
3516 * @offset: The offset of the byte to read.
3517 * @data: Pointer to a byte to store the value read.
3519 * Reads a single byte from the NVM using the flash access registers.
3521 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3522 u8 *data)
3524 s32 ret_val;
3525 u16 word = 0;
3527 /* In SPT, only 32 bits access is supported,
3528 * so this function should not be called.
3530 if (hw->mac.type == e1000_pch_spt)
3531 return -E1000_ERR_NVM;
3532 else
3533 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3535 if (ret_val)
3536 return ret_val;
3538 *data = (u8)word;
3540 return 0;
3544 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3545 * @hw: pointer to the HW structure
3546 * @offset: The offset (in bytes) of the byte or word to read.
3547 * @size: Size of data to read, 1=byte 2=word
3548 * @data: Pointer to the word to store the value read.
3550 * Reads a byte or word from the NVM using the flash access registers.
3552 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3553 u8 size, u16 *data)
3555 union ich8_hws_flash_status hsfsts;
3556 union ich8_hws_flash_ctrl hsflctl;
3557 u32 flash_linear_addr;
3558 u32 flash_data = 0;
3559 s32 ret_val = -E1000_ERR_NVM;
3560 u8 count = 0;
3562 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3563 return -E1000_ERR_NVM;
3565 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3566 hw->nvm.flash_base_addr);
3568 do {
3569 udelay(1);
3570 /* Steps */
3571 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3572 if (ret_val)
3573 break;
3575 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3576 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3577 hsflctl.hsf_ctrl.fldbcount = size - 1;
3578 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3579 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3581 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3583 ret_val =
3584 e1000_flash_cycle_ich8lan(hw,
3585 ICH_FLASH_READ_COMMAND_TIMEOUT);
3587 /* Check if FCERR is set to 1, if set to 1, clear it
3588 * and try the whole sequence a few more times, else
3589 * read in (shift in) the Flash Data0, the order is
3590 * least significant byte first msb to lsb
3592 if (!ret_val) {
3593 flash_data = er32flash(ICH_FLASH_FDATA0);
3594 if (size == 1)
3595 *data = (u8)(flash_data & 0x000000FF);
3596 else if (size == 2)
3597 *data = (u16)(flash_data & 0x0000FFFF);
3598 break;
3599 } else {
3600 /* If we've gotten here, then things are probably
3601 * completely hosed, but if the error condition is
3602 * detected, it won't hurt to give it another try...
3603 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3605 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3606 if (hsfsts.hsf_status.flcerr) {
3607 /* Repeat for some time before giving up. */
3608 continue;
3609 } else if (!hsfsts.hsf_status.flcdone) {
3610 e_dbg("Timeout error - flash cycle did not complete.\n");
3611 break;
3614 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3616 return ret_val;
3620 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3621 * @hw: pointer to the HW structure
3622 * @offset: The offset (in bytes) of the dword to read.
3623 * @data: Pointer to the dword to store the value read.
3625 * Reads a byte or word from the NVM using the flash access registers.
3628 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3629 u32 *data)
3631 union ich8_hws_flash_status hsfsts;
3632 union ich8_hws_flash_ctrl hsflctl;
3633 u32 flash_linear_addr;
3634 s32 ret_val = -E1000_ERR_NVM;
3635 u8 count = 0;
3637 if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3638 hw->mac.type != e1000_pch_spt)
3639 return -E1000_ERR_NVM;
3640 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3641 hw->nvm.flash_base_addr);
3643 do {
3644 udelay(1);
3645 /* Steps */
3646 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3647 if (ret_val)
3648 break;
3649 /* In SPT, This register is in Lan memory space, not flash.
3650 * Therefore, only 32 bit access is supported
3652 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3654 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3655 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3656 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3657 /* In SPT, This register is in Lan memory space, not flash.
3658 * Therefore, only 32 bit access is supported
3660 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3661 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3663 ret_val =
3664 e1000_flash_cycle_ich8lan(hw,
3665 ICH_FLASH_READ_COMMAND_TIMEOUT);
3667 /* Check if FCERR is set to 1, if set to 1, clear it
3668 * and try the whole sequence a few more times, else
3669 * read in (shift in) the Flash Data0, the order is
3670 * least significant byte first msb to lsb
3672 if (!ret_val) {
3673 *data = er32flash(ICH_FLASH_FDATA0);
3674 break;
3675 } else {
3676 /* If we've gotten here, then things are probably
3677 * completely hosed, but if the error condition is
3678 * detected, it won't hurt to give it another try...
3679 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3681 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3682 if (hsfsts.hsf_status.flcerr) {
3683 /* Repeat for some time before giving up. */
3684 continue;
3685 } else if (!hsfsts.hsf_status.flcdone) {
3686 e_dbg("Timeout error - flash cycle did not complete.\n");
3687 break;
3690 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3692 return ret_val;
3696 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3697 * @hw: pointer to the HW structure
3698 * @offset: The offset (in bytes) of the word(s) to write.
3699 * @words: Size of data to write in words
3700 * @data: Pointer to the word(s) to write at offset.
3702 * Writes a byte or word to the NVM using the flash access registers.
3704 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3705 u16 *data)
3707 struct e1000_nvm_info *nvm = &hw->nvm;
3708 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3709 u16 i;
3711 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3712 (words == 0)) {
3713 e_dbg("nvm parameter(s) out of bounds\n");
3714 return -E1000_ERR_NVM;
3717 nvm->ops.acquire(hw);
3719 for (i = 0; i < words; i++) {
3720 dev_spec->shadow_ram[offset + i].modified = true;
3721 dev_spec->shadow_ram[offset + i].value = data[i];
3724 nvm->ops.release(hw);
3726 return 0;
3730 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3731 * @hw: pointer to the HW structure
3733 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3734 * which writes the checksum to the shadow ram. The changes in the shadow
3735 * ram are then committed to the EEPROM by processing each bank at a time
3736 * checking for the modified bit and writing only the pending changes.
3737 * After a successful commit, the shadow ram is cleared and is ready for
3738 * future writes.
3740 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3742 struct e1000_nvm_info *nvm = &hw->nvm;
3743 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3744 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3745 s32 ret_val;
3746 u32 dword = 0;
3748 ret_val = e1000e_update_nvm_checksum_generic(hw);
3749 if (ret_val)
3750 goto out;
3752 if (nvm->type != e1000_nvm_flash_sw)
3753 goto out;
3755 nvm->ops.acquire(hw);
3757 /* We're writing to the opposite bank so if we're on bank 1,
3758 * write to bank 0 etc. We also need to erase the segment that
3759 * is going to be written
3761 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3762 if (ret_val) {
3763 e_dbg("Could not detect valid bank, assuming bank 0\n");
3764 bank = 0;
3767 if (bank == 0) {
3768 new_bank_offset = nvm->flash_bank_size;
3769 old_bank_offset = 0;
3770 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3771 if (ret_val)
3772 goto release;
3773 } else {
3774 old_bank_offset = nvm->flash_bank_size;
3775 new_bank_offset = 0;
3776 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3777 if (ret_val)
3778 goto release;
3780 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3781 /* Determine whether to write the value stored
3782 * in the other NVM bank or a modified value stored
3783 * in the shadow RAM
3785 ret_val = e1000_read_flash_dword_ich8lan(hw,
3786 i + old_bank_offset,
3787 &dword);
3789 if (dev_spec->shadow_ram[i].modified) {
3790 dword &= 0xffff0000;
3791 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3793 if (dev_spec->shadow_ram[i + 1].modified) {
3794 dword &= 0x0000ffff;
3795 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3796 << 16);
3798 if (ret_val)
3799 break;
3801 /* If the word is 0x13, then make sure the signature bits
3802 * (15:14) are 11b until the commit has completed.
3803 * This will allow us to write 10b which indicates the
3804 * signature is valid. We want to do this after the write
3805 * has completed so that we don't mark the segment valid
3806 * while the write is still in progress
3808 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3809 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3811 /* Convert offset to bytes. */
3812 act_offset = (i + new_bank_offset) << 1;
3814 usleep_range(100, 200);
3816 /* Write the data to the new bank. Offset in words */
3817 act_offset = i + new_bank_offset;
3818 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3819 dword);
3820 if (ret_val)
3821 break;
3824 /* Don't bother writing the segment valid bits if sector
3825 * programming failed.
3827 if (ret_val) {
3828 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3829 e_dbg("Flash commit failed.\n");
3830 goto release;
3833 /* Finally validate the new segment by setting bit 15:14
3834 * to 10b in word 0x13 , this can be done without an
3835 * erase as well since these bits are 11 to start with
3836 * and we need to change bit 14 to 0b
3838 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3840 /*offset in words but we read dword */
3841 --act_offset;
3842 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3844 if (ret_val)
3845 goto release;
3847 dword &= 0xBFFFFFFF;
3848 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3850 if (ret_val)
3851 goto release;
3853 /* And invalidate the previously valid segment by setting
3854 * its signature word (0x13) high_byte to 0b. This can be
3855 * done without an erase because flash erase sets all bits
3856 * to 1's. We can write 1's to 0's without an erase
3858 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3860 /* offset in words but we read dword */
3861 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3862 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3864 if (ret_val)
3865 goto release;
3867 dword &= 0x00FFFFFF;
3868 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3870 if (ret_val)
3871 goto release;
3873 /* Great! Everything worked, we can now clear the cached entries. */
3874 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3875 dev_spec->shadow_ram[i].modified = false;
3876 dev_spec->shadow_ram[i].value = 0xFFFF;
3879 release:
3880 nvm->ops.release(hw);
3882 /* Reload the EEPROM, or else modifications will not appear
3883 * until after the next adapter reset.
3885 if (!ret_val) {
3886 nvm->ops.reload(hw);
3887 usleep_range(10000, 20000);
3890 out:
3891 if (ret_val)
3892 e_dbg("NVM update error: %d\n", ret_val);
3894 return ret_val;
3898 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3899 * @hw: pointer to the HW structure
3901 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3902 * which writes the checksum to the shadow ram. The changes in the shadow
3903 * ram are then committed to the EEPROM by processing each bank at a time
3904 * checking for the modified bit and writing only the pending changes.
3905 * After a successful commit, the shadow ram is cleared and is ready for
3906 * future writes.
3908 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3910 struct e1000_nvm_info *nvm = &hw->nvm;
3911 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3912 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3913 s32 ret_val;
3914 u16 data = 0;
3916 ret_val = e1000e_update_nvm_checksum_generic(hw);
3917 if (ret_val)
3918 goto out;
3920 if (nvm->type != e1000_nvm_flash_sw)
3921 goto out;
3923 nvm->ops.acquire(hw);
3925 /* We're writing to the opposite bank so if we're on bank 1,
3926 * write to bank 0 etc. We also need to erase the segment that
3927 * is going to be written
3929 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3930 if (ret_val) {
3931 e_dbg("Could not detect valid bank, assuming bank 0\n");
3932 bank = 0;
3935 if (bank == 0) {
3936 new_bank_offset = nvm->flash_bank_size;
3937 old_bank_offset = 0;
3938 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3939 if (ret_val)
3940 goto release;
3941 } else {
3942 old_bank_offset = nvm->flash_bank_size;
3943 new_bank_offset = 0;
3944 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3945 if (ret_val)
3946 goto release;
3948 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3949 if (dev_spec->shadow_ram[i].modified) {
3950 data = dev_spec->shadow_ram[i].value;
3951 } else {
3952 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3953 old_bank_offset,
3954 &data);
3955 if (ret_val)
3956 break;
3959 /* If the word is 0x13, then make sure the signature bits
3960 * (15:14) are 11b until the commit has completed.
3961 * This will allow us to write 10b which indicates the
3962 * signature is valid. We want to do this after the write
3963 * has completed so that we don't mark the segment valid
3964 * while the write is still in progress
3966 if (i == E1000_ICH_NVM_SIG_WORD)
3967 data |= E1000_ICH_NVM_SIG_MASK;
3969 /* Convert offset to bytes. */
3970 act_offset = (i + new_bank_offset) << 1;
3972 usleep_range(100, 200);
3973 /* Write the bytes to the new bank. */
3974 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3975 act_offset,
3976 (u8)data);
3977 if (ret_val)
3978 break;
3980 usleep_range(100, 200);
3981 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3982 act_offset + 1,
3983 (u8)(data >> 8));
3984 if (ret_val)
3985 break;
3988 /* Don't bother writing the segment valid bits if sector
3989 * programming failed.
3991 if (ret_val) {
3992 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3993 e_dbg("Flash commit failed.\n");
3994 goto release;
3997 /* Finally validate the new segment by setting bit 15:14
3998 * to 10b in word 0x13 , this can be done without an
3999 * erase as well since these bits are 11 to start with
4000 * and we need to change bit 14 to 0b
4002 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4003 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4004 if (ret_val)
4005 goto release;
4007 data &= 0xBFFF;
4008 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4009 act_offset * 2 + 1,
4010 (u8)(data >> 8));
4011 if (ret_val)
4012 goto release;
4014 /* And invalidate the previously valid segment by setting
4015 * its signature word (0x13) high_byte to 0b. This can be
4016 * done without an erase because flash erase sets all bits
4017 * to 1's. We can write 1's to 0's without an erase
4019 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4020 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4021 if (ret_val)
4022 goto release;
4024 /* Great! Everything worked, we can now clear the cached entries. */
4025 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4026 dev_spec->shadow_ram[i].modified = false;
4027 dev_spec->shadow_ram[i].value = 0xFFFF;
4030 release:
4031 nvm->ops.release(hw);
4033 /* Reload the EEPROM, or else modifications will not appear
4034 * until after the next adapter reset.
4036 if (!ret_val) {
4037 nvm->ops.reload(hw);
4038 usleep_range(10000, 20000);
4041 out:
4042 if (ret_val)
4043 e_dbg("NVM update error: %d\n", ret_val);
4045 return ret_val;
4049 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4050 * @hw: pointer to the HW structure
4052 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4053 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4054 * calculated, in which case we need to calculate the checksum and set bit 6.
4056 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4058 s32 ret_val;
4059 u16 data;
4060 u16 word;
4061 u16 valid_csum_mask;
4063 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4064 * the checksum needs to be fixed. This bit is an indication that
4065 * the NVM was prepared by OEM software and did not calculate
4066 * the checksum...a likely scenario.
4068 switch (hw->mac.type) {
4069 case e1000_pch_lpt:
4070 case e1000_pch_spt:
4071 word = NVM_COMPAT;
4072 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4073 break;
4074 default:
4075 word = NVM_FUTURE_INIT_WORD1;
4076 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4077 break;
4080 ret_val = e1000_read_nvm(hw, word, 1, &data);
4081 if (ret_val)
4082 return ret_val;
4084 if (!(data & valid_csum_mask)) {
4085 data |= valid_csum_mask;
4086 ret_val = e1000_write_nvm(hw, word, 1, &data);
4087 if (ret_val)
4088 return ret_val;
4089 ret_val = e1000e_update_nvm_checksum(hw);
4090 if (ret_val)
4091 return ret_val;
4094 return e1000e_validate_nvm_checksum_generic(hw);
4098 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4099 * @hw: pointer to the HW structure
4101 * To prevent malicious write/erase of the NVM, set it to be read-only
4102 * so that the hardware ignores all write/erase cycles of the NVM via
4103 * the flash control registers. The shadow-ram copy of the NVM will
4104 * still be updated, however any updates to this copy will not stick
4105 * across driver reloads.
4107 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4109 struct e1000_nvm_info *nvm = &hw->nvm;
4110 union ich8_flash_protected_range pr0;
4111 union ich8_hws_flash_status hsfsts;
4112 u32 gfpreg;
4114 nvm->ops.acquire(hw);
4116 gfpreg = er32flash(ICH_FLASH_GFPREG);
4118 /* Write-protect GbE Sector of NVM */
4119 pr0.regval = er32flash(ICH_FLASH_PR0);
4120 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4121 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4122 pr0.range.wpe = true;
4123 ew32flash(ICH_FLASH_PR0, pr0.regval);
4125 /* Lock down a subset of GbE Flash Control Registers, e.g.
4126 * PR0 to prevent the write-protection from being lifted.
4127 * Once FLOCKDN is set, the registers protected by it cannot
4128 * be written until FLOCKDN is cleared by a hardware reset.
4130 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4131 hsfsts.hsf_status.flockdn = true;
4132 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4134 nvm->ops.release(hw);
4138 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4139 * @hw: pointer to the HW structure
4140 * @offset: The offset (in bytes) of the byte/word to read.
4141 * @size: Size of data to read, 1=byte 2=word
4142 * @data: The byte(s) to write to the NVM.
4144 * Writes one/two bytes to the NVM using the flash access registers.
4146 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4147 u8 size, u16 data)
4149 union ich8_hws_flash_status hsfsts;
4150 union ich8_hws_flash_ctrl hsflctl;
4151 u32 flash_linear_addr;
4152 u32 flash_data = 0;
4153 s32 ret_val;
4154 u8 count = 0;
4156 if (hw->mac.type == e1000_pch_spt) {
4157 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4158 return -E1000_ERR_NVM;
4159 } else {
4160 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4161 return -E1000_ERR_NVM;
4164 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4165 hw->nvm.flash_base_addr);
4167 do {
4168 udelay(1);
4169 /* Steps */
4170 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4171 if (ret_val)
4172 break;
4173 /* In SPT, This register is in Lan memory space, not
4174 * flash. Therefore, only 32 bit access is supported
4176 if (hw->mac.type == e1000_pch_spt)
4177 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4178 else
4179 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4181 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4182 hsflctl.hsf_ctrl.fldbcount = size - 1;
4183 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4184 /* In SPT, This register is in Lan memory space,
4185 * not flash. Therefore, only 32 bit access is
4186 * supported
4188 if (hw->mac.type == e1000_pch_spt)
4189 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4190 else
4191 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4193 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4195 if (size == 1)
4196 flash_data = (u32)data & 0x00FF;
4197 else
4198 flash_data = (u32)data;
4200 ew32flash(ICH_FLASH_FDATA0, flash_data);
4202 /* check if FCERR is set to 1 , if set to 1, clear it
4203 * and try the whole sequence a few more times else done
4205 ret_val =
4206 e1000_flash_cycle_ich8lan(hw,
4207 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4208 if (!ret_val)
4209 break;
4211 /* If we're here, then things are most likely
4212 * completely hosed, but if the error condition
4213 * is detected, it won't hurt to give it another
4214 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4216 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4217 if (hsfsts.hsf_status.flcerr)
4218 /* Repeat for some time before giving up. */
4219 continue;
4220 if (!hsfsts.hsf_status.flcdone) {
4221 e_dbg("Timeout error - flash cycle did not complete.\n");
4222 break;
4224 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4226 return ret_val;
4230 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4231 * @hw: pointer to the HW structure
4232 * @offset: The offset (in bytes) of the dwords to read.
4233 * @data: The 4 bytes to write to the NVM.
4235 * Writes one/two/four bytes to the NVM using the flash access registers.
4237 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4238 u32 data)
4240 union ich8_hws_flash_status hsfsts;
4241 union ich8_hws_flash_ctrl hsflctl;
4242 u32 flash_linear_addr;
4243 s32 ret_val;
4244 u8 count = 0;
4246 if (hw->mac.type == e1000_pch_spt) {
4247 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4248 return -E1000_ERR_NVM;
4250 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4251 hw->nvm.flash_base_addr);
4252 do {
4253 udelay(1);
4254 /* Steps */
4255 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4256 if (ret_val)
4257 break;
4259 /* In SPT, This register is in Lan memory space, not
4260 * flash. Therefore, only 32 bit access is supported
4262 if (hw->mac.type == e1000_pch_spt)
4263 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4264 >> 16;
4265 else
4266 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4268 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4269 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4271 /* In SPT, This register is in Lan memory space,
4272 * not flash. Therefore, only 32 bit access is
4273 * supported
4275 if (hw->mac.type == e1000_pch_spt)
4276 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4277 else
4278 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4280 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4282 ew32flash(ICH_FLASH_FDATA0, data);
4284 /* check if FCERR is set to 1 , if set to 1, clear it
4285 * and try the whole sequence a few more times else done
4287 ret_val =
4288 e1000_flash_cycle_ich8lan(hw,
4289 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4291 if (!ret_val)
4292 break;
4294 /* If we're here, then things are most likely
4295 * completely hosed, but if the error condition
4296 * is detected, it won't hurt to give it another
4297 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4299 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4301 if (hsfsts.hsf_status.flcerr)
4302 /* Repeat for some time before giving up. */
4303 continue;
4304 if (!hsfsts.hsf_status.flcdone) {
4305 e_dbg("Timeout error - flash cycle did not complete.\n");
4306 break;
4308 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4310 return ret_val;
4314 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4315 * @hw: pointer to the HW structure
4316 * @offset: The index of the byte to read.
4317 * @data: The byte to write to the NVM.
4319 * Writes a single byte to the NVM using the flash access registers.
4321 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4322 u8 data)
4324 u16 word = (u16)data;
4326 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4330 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4331 * @hw: pointer to the HW structure
4332 * @offset: The offset of the word to write.
4333 * @dword: The dword to write to the NVM.
4335 * Writes a single dword to the NVM using the flash access registers.
4336 * Goes through a retry algorithm before giving up.
4338 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4339 u32 offset, u32 dword)
4341 s32 ret_val;
4342 u16 program_retries;
4344 /* Must convert word offset into bytes. */
4345 offset <<= 1;
4346 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4348 if (!ret_val)
4349 return ret_val;
4350 for (program_retries = 0; program_retries < 100; program_retries++) {
4351 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4352 usleep_range(100, 200);
4353 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354 if (!ret_val)
4355 break;
4357 if (program_retries == 100)
4358 return -E1000_ERR_NVM;
4360 return 0;
4364 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4365 * @hw: pointer to the HW structure
4366 * @offset: The offset of the byte to write.
4367 * @byte: The byte to write to the NVM.
4369 * Writes a single byte to the NVM using the flash access registers.
4370 * Goes through a retry algorithm before giving up.
4372 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4373 u32 offset, u8 byte)
4375 s32 ret_val;
4376 u16 program_retries;
4378 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4379 if (!ret_val)
4380 return ret_val;
4382 for (program_retries = 0; program_retries < 100; program_retries++) {
4383 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4384 usleep_range(100, 200);
4385 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386 if (!ret_val)
4387 break;
4389 if (program_retries == 100)
4390 return -E1000_ERR_NVM;
4392 return 0;
4396 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4397 * @hw: pointer to the HW structure
4398 * @bank: 0 for first bank, 1 for second bank, etc.
4400 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4401 * bank N is 4096 * N + flash_reg_addr.
4403 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4405 struct e1000_nvm_info *nvm = &hw->nvm;
4406 union ich8_hws_flash_status hsfsts;
4407 union ich8_hws_flash_ctrl hsflctl;
4408 u32 flash_linear_addr;
4409 /* bank size is in 16bit words - adjust to bytes */
4410 u32 flash_bank_size = nvm->flash_bank_size * 2;
4411 s32 ret_val;
4412 s32 count = 0;
4413 s32 j, iteration, sector_size;
4415 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4417 /* Determine HW Sector size: Read BERASE bits of hw flash status
4418 * register
4419 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4420 * consecutive sectors. The start index for the nth Hw sector
4421 * can be calculated as = bank * 4096 + n * 256
4422 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4423 * The start index for the nth Hw sector can be calculated
4424 * as = bank * 4096
4425 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4426 * (ich9 only, otherwise error condition)
4427 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4429 switch (hsfsts.hsf_status.berasesz) {
4430 case 0:
4431 /* Hw sector size 256 */
4432 sector_size = ICH_FLASH_SEG_SIZE_256;
4433 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4434 break;
4435 case 1:
4436 sector_size = ICH_FLASH_SEG_SIZE_4K;
4437 iteration = 1;
4438 break;
4439 case 2:
4440 sector_size = ICH_FLASH_SEG_SIZE_8K;
4441 iteration = 1;
4442 break;
4443 case 3:
4444 sector_size = ICH_FLASH_SEG_SIZE_64K;
4445 iteration = 1;
4446 break;
4447 default:
4448 return -E1000_ERR_NVM;
4451 /* Start with the base address, then add the sector offset. */
4452 flash_linear_addr = hw->nvm.flash_base_addr;
4453 flash_linear_addr += (bank) ? flash_bank_size : 0;
4455 for (j = 0; j < iteration; j++) {
4456 do {
4457 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4459 /* Steps */
4460 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4461 if (ret_val)
4462 return ret_val;
4464 /* Write a value 11 (block Erase) in Flash
4465 * Cycle field in hw flash control
4467 if (hw->mac.type == e1000_pch_spt)
4468 hsflctl.regval =
4469 er32flash(ICH_FLASH_HSFSTS) >> 16;
4470 else
4471 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4473 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4474 if (hw->mac.type == e1000_pch_spt)
4475 ew32flash(ICH_FLASH_HSFSTS,
4476 hsflctl.regval << 16);
4477 else
4478 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4480 /* Write the last 24 bits of an index within the
4481 * block into Flash Linear address field in Flash
4482 * Address.
4484 flash_linear_addr += (j * sector_size);
4485 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4487 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4488 if (!ret_val)
4489 break;
4491 /* Check if FCERR is set to 1. If 1,
4492 * clear it and try the whole sequence
4493 * a few more times else Done
4495 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4496 if (hsfsts.hsf_status.flcerr)
4497 /* repeat for some time before giving up */
4498 continue;
4499 else if (!hsfsts.hsf_status.flcdone)
4500 return ret_val;
4501 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4504 return 0;
4508 * e1000_valid_led_default_ich8lan - Set the default LED settings
4509 * @hw: pointer to the HW structure
4510 * @data: Pointer to the LED settings
4512 * Reads the LED default settings from the NVM to data. If the NVM LED
4513 * settings is all 0's or F's, set the LED default to a valid LED default
4514 * setting.
4516 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4518 s32 ret_val;
4520 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4521 if (ret_val) {
4522 e_dbg("NVM Read Error\n");
4523 return ret_val;
4526 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4527 *data = ID_LED_DEFAULT_ICH8LAN;
4529 return 0;
4533 * e1000_id_led_init_pchlan - store LED configurations
4534 * @hw: pointer to the HW structure
4536 * PCH does not control LEDs via the LEDCTL register, rather it uses
4537 * the PHY LED configuration register.
4539 * PCH also does not have an "always on" or "always off" mode which
4540 * complicates the ID feature. Instead of using the "on" mode to indicate
4541 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4542 * use "link_up" mode. The LEDs will still ID on request if there is no
4543 * link based on logic in e1000_led_[on|off]_pchlan().
4545 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4547 struct e1000_mac_info *mac = &hw->mac;
4548 s32 ret_val;
4549 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4550 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4551 u16 data, i, temp, shift;
4553 /* Get default ID LED modes */
4554 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4555 if (ret_val)
4556 return ret_val;
4558 mac->ledctl_default = er32(LEDCTL);
4559 mac->ledctl_mode1 = mac->ledctl_default;
4560 mac->ledctl_mode2 = mac->ledctl_default;
4562 for (i = 0; i < 4; i++) {
4563 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4564 shift = (i * 5);
4565 switch (temp) {
4566 case ID_LED_ON1_DEF2:
4567 case ID_LED_ON1_ON2:
4568 case ID_LED_ON1_OFF2:
4569 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4570 mac->ledctl_mode1 |= (ledctl_on << shift);
4571 break;
4572 case ID_LED_OFF1_DEF2:
4573 case ID_LED_OFF1_ON2:
4574 case ID_LED_OFF1_OFF2:
4575 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4576 mac->ledctl_mode1 |= (ledctl_off << shift);
4577 break;
4578 default:
4579 /* Do nothing */
4580 break;
4582 switch (temp) {
4583 case ID_LED_DEF1_ON2:
4584 case ID_LED_ON1_ON2:
4585 case ID_LED_OFF1_ON2:
4586 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4587 mac->ledctl_mode2 |= (ledctl_on << shift);
4588 break;
4589 case ID_LED_DEF1_OFF2:
4590 case ID_LED_ON1_OFF2:
4591 case ID_LED_OFF1_OFF2:
4592 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4593 mac->ledctl_mode2 |= (ledctl_off << shift);
4594 break;
4595 default:
4596 /* Do nothing */
4597 break;
4601 return 0;
4605 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4606 * @hw: pointer to the HW structure
4608 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4609 * register, so the the bus width is hard coded.
4611 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4613 struct e1000_bus_info *bus = &hw->bus;
4614 s32 ret_val;
4616 ret_val = e1000e_get_bus_info_pcie(hw);
4618 /* ICH devices are "PCI Express"-ish. They have
4619 * a configuration space, but do not contain
4620 * PCI Express Capability registers, so bus width
4621 * must be hardcoded.
4623 if (bus->width == e1000_bus_width_unknown)
4624 bus->width = e1000_bus_width_pcie_x1;
4626 return ret_val;
4630 * e1000_reset_hw_ich8lan - Reset the hardware
4631 * @hw: pointer to the HW structure
4633 * Does a full reset of the hardware which includes a reset of the PHY and
4634 * MAC.
4636 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4638 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4639 u16 kum_cfg;
4640 u32 ctrl, reg;
4641 s32 ret_val;
4643 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4644 * on the last TLP read/write transaction when MAC is reset.
4646 ret_val = e1000e_disable_pcie_master(hw);
4647 if (ret_val)
4648 e_dbg("PCI-E Master disable polling has failed.\n");
4650 e_dbg("Masking off all interrupts\n");
4651 ew32(IMC, 0xffffffff);
4653 /* Disable the Transmit and Receive units. Then delay to allow
4654 * any pending transactions to complete before we hit the MAC
4655 * with the global reset.
4657 ew32(RCTL, 0);
4658 ew32(TCTL, E1000_TCTL_PSP);
4659 e1e_flush();
4661 usleep_range(10000, 20000);
4663 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4664 if (hw->mac.type == e1000_ich8lan) {
4665 /* Set Tx and Rx buffer allocation to 8k apiece. */
4666 ew32(PBA, E1000_PBA_8K);
4667 /* Set Packet Buffer Size to 16k. */
4668 ew32(PBS, E1000_PBS_16K);
4671 if (hw->mac.type == e1000_pchlan) {
4672 /* Save the NVM K1 bit setting */
4673 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4674 if (ret_val)
4675 return ret_val;
4677 if (kum_cfg & E1000_NVM_K1_ENABLE)
4678 dev_spec->nvm_k1_enabled = true;
4679 else
4680 dev_spec->nvm_k1_enabled = false;
4683 ctrl = er32(CTRL);
4685 if (!hw->phy.ops.check_reset_block(hw)) {
4686 /* Full-chip reset requires MAC and PHY reset at the same
4687 * time to make sure the interface between MAC and the
4688 * external PHY is reset.
4690 ctrl |= E1000_CTRL_PHY_RST;
4692 /* Gate automatic PHY configuration by hardware on
4693 * non-managed 82579
4695 if ((hw->mac.type == e1000_pch2lan) &&
4696 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4697 e1000_gate_hw_phy_config_ich8lan(hw, true);
4699 ret_val = e1000_acquire_swflag_ich8lan(hw);
4700 e_dbg("Issuing a global reset to ich8lan\n");
4701 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4702 /* cannot issue a flush here because it hangs the hardware */
4703 msleep(20);
4705 /* Set Phy Config Counter to 50msec */
4706 if (hw->mac.type == e1000_pch2lan) {
4707 reg = er32(FEXTNVM3);
4708 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4709 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4710 ew32(FEXTNVM3, reg);
4713 if (!ret_val)
4714 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4716 if (ctrl & E1000_CTRL_PHY_RST) {
4717 ret_val = hw->phy.ops.get_cfg_done(hw);
4718 if (ret_val)
4719 return ret_val;
4721 ret_val = e1000_post_phy_reset_ich8lan(hw);
4722 if (ret_val)
4723 return ret_val;
4726 /* For PCH, this write will make sure that any noise
4727 * will be detected as a CRC error and be dropped rather than show up
4728 * as a bad packet to the DMA engine.
4730 if (hw->mac.type == e1000_pchlan)
4731 ew32(CRC_OFFSET, 0x65656565);
4733 ew32(IMC, 0xffffffff);
4734 er32(ICR);
4736 reg = er32(KABGTXD);
4737 reg |= E1000_KABGTXD_BGSQLBIAS;
4738 ew32(KABGTXD, reg);
4740 return 0;
4744 * e1000_init_hw_ich8lan - Initialize the hardware
4745 * @hw: pointer to the HW structure
4747 * Prepares the hardware for transmit and receive by doing the following:
4748 * - initialize hardware bits
4749 * - initialize LED identification
4750 * - setup receive address registers
4751 * - setup flow control
4752 * - setup transmit descriptors
4753 * - clear statistics
4755 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4757 struct e1000_mac_info *mac = &hw->mac;
4758 u32 ctrl_ext, txdctl, snoop;
4759 s32 ret_val;
4760 u16 i;
4762 e1000_initialize_hw_bits_ich8lan(hw);
4764 /* Initialize identification LED */
4765 ret_val = mac->ops.id_led_init(hw);
4766 /* An error is not fatal and we should not stop init due to this */
4767 if (ret_val)
4768 e_dbg("Error initializing identification LED\n");
4770 /* Setup the receive address. */
4771 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4773 /* Zero out the Multicast HASH table */
4774 e_dbg("Zeroing the MTA\n");
4775 for (i = 0; i < mac->mta_reg_count; i++)
4776 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4778 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4779 * the ME. Disable wakeup by clearing the host wakeup bit.
4780 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4782 if (hw->phy.type == e1000_phy_82578) {
4783 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4784 i &= ~BM_WUC_HOST_WU_BIT;
4785 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4786 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4787 if (ret_val)
4788 return ret_val;
4791 /* Setup link and flow control */
4792 ret_val = mac->ops.setup_link(hw);
4794 /* Set the transmit descriptor write-back policy for both queues */
4795 txdctl = er32(TXDCTL(0));
4796 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4797 E1000_TXDCTL_FULL_TX_DESC_WB);
4798 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4799 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4800 ew32(TXDCTL(0), txdctl);
4801 txdctl = er32(TXDCTL(1));
4802 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4803 E1000_TXDCTL_FULL_TX_DESC_WB);
4804 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4805 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4806 ew32(TXDCTL(1), txdctl);
4808 /* ICH8 has opposite polarity of no_snoop bits.
4809 * By default, we should use snoop behavior.
4811 if (mac->type == e1000_ich8lan)
4812 snoop = PCIE_ICH8_SNOOP_ALL;
4813 else
4814 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4815 e1000e_set_pcie_no_snoop(hw, snoop);
4817 ctrl_ext = er32(CTRL_EXT);
4818 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4819 ew32(CTRL_EXT, ctrl_ext);
4821 /* Clear all of the statistics registers (clear on read). It is
4822 * important that we do this after we have tried to establish link
4823 * because the symbol error count will increment wildly if there
4824 * is no link.
4826 e1000_clear_hw_cntrs_ich8lan(hw);
4828 return ret_val;
4832 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4833 * @hw: pointer to the HW structure
4835 * Sets/Clears required hardware bits necessary for correctly setting up the
4836 * hardware for transmit and receive.
4838 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4840 u32 reg;
4842 /* Extended Device Control */
4843 reg = er32(CTRL_EXT);
4844 reg |= BIT(22);
4845 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4846 if (hw->mac.type >= e1000_pchlan)
4847 reg |= E1000_CTRL_EXT_PHYPDEN;
4848 ew32(CTRL_EXT, reg);
4850 /* Transmit Descriptor Control 0 */
4851 reg = er32(TXDCTL(0));
4852 reg |= BIT(22);
4853 ew32(TXDCTL(0), reg);
4855 /* Transmit Descriptor Control 1 */
4856 reg = er32(TXDCTL(1));
4857 reg |= BIT(22);
4858 ew32(TXDCTL(1), reg);
4860 /* Transmit Arbitration Control 0 */
4861 reg = er32(TARC(0));
4862 if (hw->mac.type == e1000_ich8lan)
4863 reg |= BIT(28) | BIT(29);
4864 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4865 ew32(TARC(0), reg);
4867 /* Transmit Arbitration Control 1 */
4868 reg = er32(TARC(1));
4869 if (er32(TCTL) & E1000_TCTL_MULR)
4870 reg &= ~BIT(28);
4871 else
4872 reg |= BIT(28);
4873 reg |= BIT(24) | BIT(26) | BIT(30);
4874 ew32(TARC(1), reg);
4876 /* Device Status */
4877 if (hw->mac.type == e1000_ich8lan) {
4878 reg = er32(STATUS);
4879 reg &= ~BIT(31);
4880 ew32(STATUS, reg);
4883 /* work-around descriptor data corruption issue during nfs v2 udp
4884 * traffic, just disable the nfs filtering capability
4886 reg = er32(RFCTL);
4887 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4889 /* Disable IPv6 extension header parsing because some malformed
4890 * IPv6 headers can hang the Rx.
4892 if (hw->mac.type == e1000_ich8lan)
4893 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4894 ew32(RFCTL, reg);
4896 /* Enable ECC on Lynxpoint */
4897 if ((hw->mac.type == e1000_pch_lpt) ||
4898 (hw->mac.type == e1000_pch_spt)) {
4899 reg = er32(PBECCSTS);
4900 reg |= E1000_PBECCSTS_ECC_ENABLE;
4901 ew32(PBECCSTS, reg);
4903 reg = er32(CTRL);
4904 reg |= E1000_CTRL_MEHE;
4905 ew32(CTRL, reg);
4910 * e1000_setup_link_ich8lan - Setup flow control and link settings
4911 * @hw: pointer to the HW structure
4913 * Determines which flow control settings to use, then configures flow
4914 * control. Calls the appropriate media-specific link configuration
4915 * function. Assuming the adapter has a valid link partner, a valid link
4916 * should be established. Assumes the hardware has previously been reset
4917 * and the transmitter and receiver are not enabled.
4919 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4921 s32 ret_val;
4923 if (hw->phy.ops.check_reset_block(hw))
4924 return 0;
4926 /* ICH parts do not have a word in the NVM to determine
4927 * the default flow control setting, so we explicitly
4928 * set it to full.
4930 if (hw->fc.requested_mode == e1000_fc_default) {
4931 /* Workaround h/w hang when Tx flow control enabled */
4932 if (hw->mac.type == e1000_pchlan)
4933 hw->fc.requested_mode = e1000_fc_rx_pause;
4934 else
4935 hw->fc.requested_mode = e1000_fc_full;
4938 /* Save off the requested flow control mode for use later. Depending
4939 * on the link partner's capabilities, we may or may not use this mode.
4941 hw->fc.current_mode = hw->fc.requested_mode;
4943 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4945 /* Continue to configure the copper link. */
4946 ret_val = hw->mac.ops.setup_physical_interface(hw);
4947 if (ret_val)
4948 return ret_val;
4950 ew32(FCTTV, hw->fc.pause_time);
4951 if ((hw->phy.type == e1000_phy_82578) ||
4952 (hw->phy.type == e1000_phy_82579) ||
4953 (hw->phy.type == e1000_phy_i217) ||
4954 (hw->phy.type == e1000_phy_82577)) {
4955 ew32(FCRTV_PCH, hw->fc.refresh_time);
4957 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4958 hw->fc.pause_time);
4959 if (ret_val)
4960 return ret_val;
4963 return e1000e_set_fc_watermarks(hw);
4967 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4968 * @hw: pointer to the HW structure
4970 * Configures the kumeran interface to the PHY to wait the appropriate time
4971 * when polling the PHY, then call the generic setup_copper_link to finish
4972 * configuring the copper link.
4974 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4976 u32 ctrl;
4977 s32 ret_val;
4978 u16 reg_data;
4980 ctrl = er32(CTRL);
4981 ctrl |= E1000_CTRL_SLU;
4982 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4983 ew32(CTRL, ctrl);
4985 /* Set the mac to wait the maximum time between each iteration
4986 * and increase the max iterations when polling the phy;
4987 * this fixes erroneous timeouts at 10Mbps.
4989 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4990 if (ret_val)
4991 return ret_val;
4992 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4993 &reg_data);
4994 if (ret_val)
4995 return ret_val;
4996 reg_data |= 0x3F;
4997 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4998 reg_data);
4999 if (ret_val)
5000 return ret_val;
5002 switch (hw->phy.type) {
5003 case e1000_phy_igp_3:
5004 ret_val = e1000e_copper_link_setup_igp(hw);
5005 if (ret_val)
5006 return ret_val;
5007 break;
5008 case e1000_phy_bm:
5009 case e1000_phy_82578:
5010 ret_val = e1000e_copper_link_setup_m88(hw);
5011 if (ret_val)
5012 return ret_val;
5013 break;
5014 case e1000_phy_82577:
5015 case e1000_phy_82579:
5016 ret_val = e1000_copper_link_setup_82577(hw);
5017 if (ret_val)
5018 return ret_val;
5019 break;
5020 case e1000_phy_ife:
5021 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5022 if (ret_val)
5023 return ret_val;
5025 reg_data &= ~IFE_PMC_AUTO_MDIX;
5027 switch (hw->phy.mdix) {
5028 case 1:
5029 reg_data &= ~IFE_PMC_FORCE_MDIX;
5030 break;
5031 case 2:
5032 reg_data |= IFE_PMC_FORCE_MDIX;
5033 break;
5034 case 0:
5035 default:
5036 reg_data |= IFE_PMC_AUTO_MDIX;
5037 break;
5039 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5040 if (ret_val)
5041 return ret_val;
5042 break;
5043 default:
5044 break;
5047 return e1000e_setup_copper_link(hw);
5051 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5052 * @hw: pointer to the HW structure
5054 * Calls the PHY specific link setup function and then calls the
5055 * generic setup_copper_link to finish configuring the link for
5056 * Lynxpoint PCH devices
5058 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5060 u32 ctrl;
5061 s32 ret_val;
5063 ctrl = er32(CTRL);
5064 ctrl |= E1000_CTRL_SLU;
5065 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5066 ew32(CTRL, ctrl);
5068 ret_val = e1000_copper_link_setup_82577(hw);
5069 if (ret_val)
5070 return ret_val;
5072 return e1000e_setup_copper_link(hw);
5076 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5077 * @hw: pointer to the HW structure
5078 * @speed: pointer to store current link speed
5079 * @duplex: pointer to store the current link duplex
5081 * Calls the generic get_speed_and_duplex to retrieve the current link
5082 * information and then calls the Kumeran lock loss workaround for links at
5083 * gigabit speeds.
5085 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5086 u16 *duplex)
5088 s32 ret_val;
5090 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5091 if (ret_val)
5092 return ret_val;
5094 if ((hw->mac.type == e1000_ich8lan) &&
5095 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5096 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5099 return ret_val;
5103 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5104 * @hw: pointer to the HW structure
5106 * Work-around for 82566 Kumeran PCS lock loss:
5107 * On link status change (i.e. PCI reset, speed change) and link is up and
5108 * speed is gigabit-
5109 * 0) if workaround is optionally disabled do nothing
5110 * 1) wait 1ms for Kumeran link to come up
5111 * 2) check Kumeran Diagnostic register PCS lock loss bit
5112 * 3) if not set the link is locked (all is good), otherwise...
5113 * 4) reset the PHY
5114 * 5) repeat up to 10 times
5115 * Note: this is only called for IGP3 copper when speed is 1gb.
5117 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5119 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5120 u32 phy_ctrl;
5121 s32 ret_val;
5122 u16 i, data;
5123 bool link;
5125 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5126 return 0;
5128 /* Make sure link is up before proceeding. If not just return.
5129 * Attempting this while link is negotiating fouled up link
5130 * stability
5132 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5133 if (!link)
5134 return 0;
5136 for (i = 0; i < 10; i++) {
5137 /* read once to clear */
5138 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5139 if (ret_val)
5140 return ret_val;
5141 /* and again to get new status */
5142 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5143 if (ret_val)
5144 return ret_val;
5146 /* check for PCS lock */
5147 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5148 return 0;
5150 /* Issue PHY reset */
5151 e1000_phy_hw_reset(hw);
5152 mdelay(5);
5154 /* Disable GigE link negotiation */
5155 phy_ctrl = er32(PHY_CTRL);
5156 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5157 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5158 ew32(PHY_CTRL, phy_ctrl);
5160 /* Call gig speed drop workaround on Gig disable before accessing
5161 * any PHY registers
5163 e1000e_gig_downshift_workaround_ich8lan(hw);
5165 /* unable to acquire PCS lock */
5166 return -E1000_ERR_PHY;
5170 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5171 * @hw: pointer to the HW structure
5172 * @state: boolean value used to set the current Kumeran workaround state
5174 * If ICH8, set the current Kumeran workaround state (enabled - true
5175 * /disabled - false).
5177 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5178 bool state)
5180 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5182 if (hw->mac.type != e1000_ich8lan) {
5183 e_dbg("Workaround applies to ICH8 only.\n");
5184 return;
5187 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5191 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5192 * @hw: pointer to the HW structure
5194 * Workaround for 82566 power-down on D3 entry:
5195 * 1) disable gigabit link
5196 * 2) write VR power-down enable
5197 * 3) read it back
5198 * Continue if successful, else issue LCD reset and repeat
5200 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5202 u32 reg;
5203 u16 data;
5204 u8 retry = 0;
5206 if (hw->phy.type != e1000_phy_igp_3)
5207 return;
5209 /* Try the workaround twice (if needed) */
5210 do {
5211 /* Disable link */
5212 reg = er32(PHY_CTRL);
5213 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5214 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5215 ew32(PHY_CTRL, reg);
5217 /* Call gig speed drop workaround on Gig disable before
5218 * accessing any PHY registers
5220 if (hw->mac.type == e1000_ich8lan)
5221 e1000e_gig_downshift_workaround_ich8lan(hw);
5223 /* Write VR power-down enable */
5224 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5225 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5226 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5228 /* Read it back and test */
5229 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5230 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5231 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5232 break;
5234 /* Issue PHY reset and repeat at most one more time */
5235 reg = er32(CTRL);
5236 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5237 retry++;
5238 } while (retry);
5242 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5243 * @hw: pointer to the HW structure
5245 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5246 * LPLU, Gig disable, MDIC PHY reset):
5247 * 1) Set Kumeran Near-end loopback
5248 * 2) Clear Kumeran Near-end loopback
5249 * Should only be called for ICH8[m] devices with any 1G Phy.
5251 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5253 s32 ret_val;
5254 u16 reg_data;
5256 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5257 return;
5259 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5260 &reg_data);
5261 if (ret_val)
5262 return;
5263 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5264 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5265 reg_data);
5266 if (ret_val)
5267 return;
5268 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5269 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5273 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5274 * @hw: pointer to the HW structure
5276 * During S0 to Sx transition, it is possible the link remains at gig
5277 * instead of negotiating to a lower speed. Before going to Sx, set
5278 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5279 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5280 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5281 * needs to be written.
5282 * Parts that support (and are linked to a partner which support) EEE in
5283 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5284 * than 10Mbps w/o EEE.
5286 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5288 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5289 u32 phy_ctrl;
5290 s32 ret_val;
5292 phy_ctrl = er32(PHY_CTRL);
5293 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5295 if (hw->phy.type == e1000_phy_i217) {
5296 u16 phy_reg, device_id = hw->adapter->pdev->device;
5298 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5299 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5300 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5301 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5302 (hw->mac.type == e1000_pch_spt)) {
5303 u32 fextnvm6 = er32(FEXTNVM6);
5305 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5308 ret_val = hw->phy.ops.acquire(hw);
5309 if (ret_val)
5310 goto out;
5312 if (!dev_spec->eee_disable) {
5313 u16 eee_advert;
5315 ret_val =
5316 e1000_read_emi_reg_locked(hw,
5317 I217_EEE_ADVERTISEMENT,
5318 &eee_advert);
5319 if (ret_val)
5320 goto release;
5322 /* Disable LPLU if both link partners support 100BaseT
5323 * EEE and 100Full is advertised on both ends of the
5324 * link, and enable Auto Enable LPI since there will
5325 * be no driver to enable LPI while in Sx.
5327 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5328 (dev_spec->eee_lp_ability &
5329 I82579_EEE_100_SUPPORTED) &&
5330 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5331 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5332 E1000_PHY_CTRL_NOND0A_LPLU);
5334 /* Set Auto Enable LPI after link up */
5335 e1e_rphy_locked(hw,
5336 I217_LPI_GPIO_CTRL, &phy_reg);
5337 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5338 e1e_wphy_locked(hw,
5339 I217_LPI_GPIO_CTRL, phy_reg);
5343 /* For i217 Intel Rapid Start Technology support,
5344 * when the system is going into Sx and no manageability engine
5345 * is present, the driver must configure proxy to reset only on
5346 * power good. LPI (Low Power Idle) state must also reset only
5347 * on power good, as well as the MTA (Multicast table array).
5348 * The SMBus release must also be disabled on LCD reset.
5350 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5351 /* Enable proxy to reset only on power good. */
5352 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5353 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5354 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5356 /* Set bit enable LPI (EEE) to reset only on
5357 * power good.
5359 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5360 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5361 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5363 /* Disable the SMB release on LCD reset. */
5364 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5365 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5366 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5369 /* Enable MTA to reset for Intel Rapid Start Technology
5370 * Support
5372 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5373 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5374 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5376 release:
5377 hw->phy.ops.release(hw);
5379 out:
5380 ew32(PHY_CTRL, phy_ctrl);
5382 if (hw->mac.type == e1000_ich8lan)
5383 e1000e_gig_downshift_workaround_ich8lan(hw);
5385 if (hw->mac.type >= e1000_pchlan) {
5386 e1000_oem_bits_config_ich8lan(hw, false);
5388 /* Reset PHY to activate OEM bits on 82577/8 */
5389 if (hw->mac.type == e1000_pchlan)
5390 e1000e_phy_hw_reset_generic(hw);
5392 ret_val = hw->phy.ops.acquire(hw);
5393 if (ret_val)
5394 return;
5395 e1000_write_smbus_addr(hw);
5396 hw->phy.ops.release(hw);
5401 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5402 * @hw: pointer to the HW structure
5404 * During Sx to S0 transitions on non-managed devices or managed devices
5405 * on which PHY resets are not blocked, if the PHY registers cannot be
5406 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5407 * the PHY.
5408 * On i217, setup Intel Rapid Start Technology.
5410 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5412 s32 ret_val;
5414 if (hw->mac.type < e1000_pch2lan)
5415 return;
5417 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5418 if (ret_val) {
5419 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5420 return;
5423 /* For i217 Intel Rapid Start Technology support when the system
5424 * is transitioning from Sx and no manageability engine is present
5425 * configure SMBus to restore on reset, disable proxy, and enable
5426 * the reset on MTA (Multicast table array).
5428 if (hw->phy.type == e1000_phy_i217) {
5429 u16 phy_reg;
5431 ret_val = hw->phy.ops.acquire(hw);
5432 if (ret_val) {
5433 e_dbg("Failed to setup iRST\n");
5434 return;
5437 /* Clear Auto Enable LPI after link up */
5438 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5439 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5440 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5442 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5443 /* Restore clear on SMB if no manageability engine
5444 * is present
5446 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5447 if (ret_val)
5448 goto release;
5449 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5450 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5452 /* Disable Proxy */
5453 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5455 /* Enable reset on MTA */
5456 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5457 if (ret_val)
5458 goto release;
5459 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5460 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5461 release:
5462 if (ret_val)
5463 e_dbg("Error %d in resume workarounds\n", ret_val);
5464 hw->phy.ops.release(hw);
5469 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5470 * @hw: pointer to the HW structure
5472 * Return the LED back to the default configuration.
5474 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5476 if (hw->phy.type == e1000_phy_ife)
5477 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5479 ew32(LEDCTL, hw->mac.ledctl_default);
5480 return 0;
5484 * e1000_led_on_ich8lan - Turn LEDs on
5485 * @hw: pointer to the HW structure
5487 * Turn on the LEDs.
5489 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5491 if (hw->phy.type == e1000_phy_ife)
5492 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5493 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5495 ew32(LEDCTL, hw->mac.ledctl_mode2);
5496 return 0;
5500 * e1000_led_off_ich8lan - Turn LEDs off
5501 * @hw: pointer to the HW structure
5503 * Turn off the LEDs.
5505 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5507 if (hw->phy.type == e1000_phy_ife)
5508 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5509 (IFE_PSCL_PROBE_MODE |
5510 IFE_PSCL_PROBE_LEDS_OFF));
5512 ew32(LEDCTL, hw->mac.ledctl_mode1);
5513 return 0;
5517 * e1000_setup_led_pchlan - Configures SW controllable LED
5518 * @hw: pointer to the HW structure
5520 * This prepares the SW controllable LED for use.
5522 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5524 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5528 * e1000_cleanup_led_pchlan - Restore the default LED operation
5529 * @hw: pointer to the HW structure
5531 * Return the LED back to the default configuration.
5533 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5535 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5539 * e1000_led_on_pchlan - Turn LEDs on
5540 * @hw: pointer to the HW structure
5542 * Turn on the LEDs.
5544 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5546 u16 data = (u16)hw->mac.ledctl_mode2;
5547 u32 i, led;
5549 /* If no link, then turn LED on by setting the invert bit
5550 * for each LED that's mode is "link_up" in ledctl_mode2.
5552 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5553 for (i = 0; i < 3; i++) {
5554 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5555 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5556 E1000_LEDCTL_MODE_LINK_UP)
5557 continue;
5558 if (led & E1000_PHY_LED0_IVRT)
5559 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5560 else
5561 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5565 return e1e_wphy(hw, HV_LED_CONFIG, data);
5569 * e1000_led_off_pchlan - Turn LEDs off
5570 * @hw: pointer to the HW structure
5572 * Turn off the LEDs.
5574 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5576 u16 data = (u16)hw->mac.ledctl_mode1;
5577 u32 i, led;
5579 /* If no link, then turn LED off by clearing the invert bit
5580 * for each LED that's mode is "link_up" in ledctl_mode1.
5582 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5583 for (i = 0; i < 3; i++) {
5584 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5585 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5586 E1000_LEDCTL_MODE_LINK_UP)
5587 continue;
5588 if (led & E1000_PHY_LED0_IVRT)
5589 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5590 else
5591 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5595 return e1e_wphy(hw, HV_LED_CONFIG, data);
5599 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5600 * @hw: pointer to the HW structure
5602 * Read appropriate register for the config done bit for completion status
5603 * and configure the PHY through s/w for EEPROM-less parts.
5605 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5606 * config done bit, so only an error is logged and continues. If we were
5607 * to return with error, EEPROM-less silicon would not be able to be reset
5608 * or change link.
5610 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5612 s32 ret_val = 0;
5613 u32 bank = 0;
5614 u32 status;
5616 e1000e_get_cfg_done_generic(hw);
5618 /* Wait for indication from h/w that it has completed basic config */
5619 if (hw->mac.type >= e1000_ich10lan) {
5620 e1000_lan_init_done_ich8lan(hw);
5621 } else {
5622 ret_val = e1000e_get_auto_rd_done(hw);
5623 if (ret_val) {
5624 /* When auto config read does not complete, do not
5625 * return with an error. This can happen in situations
5626 * where there is no eeprom and prevents getting link.
5628 e_dbg("Auto Read Done did not complete\n");
5629 ret_val = 0;
5633 /* Clear PHY Reset Asserted bit */
5634 status = er32(STATUS);
5635 if (status & E1000_STATUS_PHYRA)
5636 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5637 else
5638 e_dbg("PHY Reset Asserted not set - needs delay\n");
5640 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5641 if (hw->mac.type <= e1000_ich9lan) {
5642 if (!(er32(EECD) & E1000_EECD_PRES) &&
5643 (hw->phy.type == e1000_phy_igp_3)) {
5644 e1000e_phy_init_script_igp3(hw);
5646 } else {
5647 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5648 /* Maybe we should do a basic PHY config */
5649 e_dbg("EEPROM not present\n");
5650 ret_val = -E1000_ERR_CONFIG;
5654 return ret_val;
5658 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5659 * @hw: pointer to the HW structure
5661 * In the case of a PHY power down to save power, or to turn off link during a
5662 * driver unload, or wake on lan is not enabled, remove the link.
5664 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5666 /* If the management interface is not enabled, then power down */
5667 if (!(hw->mac.ops.check_mng_mode(hw) ||
5668 hw->phy.ops.check_reset_block(hw)))
5669 e1000_power_down_phy_copper(hw);
5673 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5674 * @hw: pointer to the HW structure
5676 * Clears hardware counters specific to the silicon family and calls
5677 * clear_hw_cntrs_generic to clear all general purpose counters.
5679 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5681 u16 phy_data;
5682 s32 ret_val;
5684 e1000e_clear_hw_cntrs_base(hw);
5686 er32(ALGNERRC);
5687 er32(RXERRC);
5688 er32(TNCRS);
5689 er32(CEXTERR);
5690 er32(TSCTC);
5691 er32(TSCTFC);
5693 er32(MGTPRC);
5694 er32(MGTPDC);
5695 er32(MGTPTC);
5697 er32(IAC);
5698 er32(ICRXOC);
5700 /* Clear PHY statistics registers */
5701 if ((hw->phy.type == e1000_phy_82578) ||
5702 (hw->phy.type == e1000_phy_82579) ||
5703 (hw->phy.type == e1000_phy_i217) ||
5704 (hw->phy.type == e1000_phy_82577)) {
5705 ret_val = hw->phy.ops.acquire(hw);
5706 if (ret_val)
5707 return;
5708 ret_val = hw->phy.ops.set_page(hw,
5709 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5710 if (ret_val)
5711 goto release;
5712 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5713 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5714 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5715 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5716 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5717 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5718 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5719 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5720 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5721 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5722 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5723 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5724 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5725 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5726 release:
5727 hw->phy.ops.release(hw);
5731 static const struct e1000_mac_operations ich8_mac_ops = {
5732 /* check_mng_mode dependent on mac type */
5733 .check_for_link = e1000_check_for_copper_link_ich8lan,
5734 /* cleanup_led dependent on mac type */
5735 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5736 .get_bus_info = e1000_get_bus_info_ich8lan,
5737 .set_lan_id = e1000_set_lan_id_single_port,
5738 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5739 /* led_on dependent on mac type */
5740 /* led_off dependent on mac type */
5741 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5742 .reset_hw = e1000_reset_hw_ich8lan,
5743 .init_hw = e1000_init_hw_ich8lan,
5744 .setup_link = e1000_setup_link_ich8lan,
5745 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5746 /* id_led_init dependent on mac type */
5747 .config_collision_dist = e1000e_config_collision_dist_generic,
5748 .rar_set = e1000e_rar_set_generic,
5749 .rar_get_count = e1000e_rar_get_count_generic,
5752 static const struct e1000_phy_operations ich8_phy_ops = {
5753 .acquire = e1000_acquire_swflag_ich8lan,
5754 .check_reset_block = e1000_check_reset_block_ich8lan,
5755 .commit = NULL,
5756 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5757 .get_cable_length = e1000e_get_cable_length_igp_2,
5758 .read_reg = e1000e_read_phy_reg_igp,
5759 .release = e1000_release_swflag_ich8lan,
5760 .reset = e1000_phy_hw_reset_ich8lan,
5761 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5762 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5763 .write_reg = e1000e_write_phy_reg_igp,
5766 static const struct e1000_nvm_operations ich8_nvm_ops = {
5767 .acquire = e1000_acquire_nvm_ich8lan,
5768 .read = e1000_read_nvm_ich8lan,
5769 .release = e1000_release_nvm_ich8lan,
5770 .reload = e1000e_reload_nvm_generic,
5771 .update = e1000_update_nvm_checksum_ich8lan,
5772 .valid_led_default = e1000_valid_led_default_ich8lan,
5773 .validate = e1000_validate_nvm_checksum_ich8lan,
5774 .write = e1000_write_nvm_ich8lan,
5777 static const struct e1000_nvm_operations spt_nvm_ops = {
5778 .acquire = e1000_acquire_nvm_ich8lan,
5779 .release = e1000_release_nvm_ich8lan,
5780 .read = e1000_read_nvm_spt,
5781 .update = e1000_update_nvm_checksum_spt,
5782 .reload = e1000e_reload_nvm_generic,
5783 .valid_led_default = e1000_valid_led_default_ich8lan,
5784 .validate = e1000_validate_nvm_checksum_ich8lan,
5785 .write = e1000_write_nvm_ich8lan,
5788 const struct e1000_info e1000_ich8_info = {
5789 .mac = e1000_ich8lan,
5790 .flags = FLAG_HAS_WOL
5791 | FLAG_IS_ICH
5792 | FLAG_HAS_CTRLEXT_ON_LOAD
5793 | FLAG_HAS_AMT
5794 | FLAG_HAS_FLASH
5795 | FLAG_APME_IN_WUC,
5796 .pba = 8,
5797 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5798 .get_variants = e1000_get_variants_ich8lan,
5799 .mac_ops = &ich8_mac_ops,
5800 .phy_ops = &ich8_phy_ops,
5801 .nvm_ops = &ich8_nvm_ops,
5804 const struct e1000_info e1000_ich9_info = {
5805 .mac = e1000_ich9lan,
5806 .flags = FLAG_HAS_JUMBO_FRAMES
5807 | FLAG_IS_ICH
5808 | FLAG_HAS_WOL
5809 | FLAG_HAS_CTRLEXT_ON_LOAD
5810 | FLAG_HAS_AMT
5811 | FLAG_HAS_FLASH
5812 | FLAG_APME_IN_WUC,
5813 .pba = 18,
5814 .max_hw_frame_size = DEFAULT_JUMBO,
5815 .get_variants = e1000_get_variants_ich8lan,
5816 .mac_ops = &ich8_mac_ops,
5817 .phy_ops = &ich8_phy_ops,
5818 .nvm_ops = &ich8_nvm_ops,
5821 const struct e1000_info e1000_ich10_info = {
5822 .mac = e1000_ich10lan,
5823 .flags = FLAG_HAS_JUMBO_FRAMES
5824 | FLAG_IS_ICH
5825 | FLAG_HAS_WOL
5826 | FLAG_HAS_CTRLEXT_ON_LOAD
5827 | FLAG_HAS_AMT
5828 | FLAG_HAS_FLASH
5829 | FLAG_APME_IN_WUC,
5830 .pba = 18,
5831 .max_hw_frame_size = DEFAULT_JUMBO,
5832 .get_variants = e1000_get_variants_ich8lan,
5833 .mac_ops = &ich8_mac_ops,
5834 .phy_ops = &ich8_phy_ops,
5835 .nvm_ops = &ich8_nvm_ops,
5838 const struct e1000_info e1000_pch_info = {
5839 .mac = e1000_pchlan,
5840 .flags = FLAG_IS_ICH
5841 | FLAG_HAS_WOL
5842 | FLAG_HAS_CTRLEXT_ON_LOAD
5843 | FLAG_HAS_AMT
5844 | FLAG_HAS_FLASH
5845 | FLAG_HAS_JUMBO_FRAMES
5846 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5847 | FLAG_APME_IN_WUC,
5848 .flags2 = FLAG2_HAS_PHY_STATS,
5849 .pba = 26,
5850 .max_hw_frame_size = 4096,
5851 .get_variants = e1000_get_variants_ich8lan,
5852 .mac_ops = &ich8_mac_ops,
5853 .phy_ops = &ich8_phy_ops,
5854 .nvm_ops = &ich8_nvm_ops,
5857 const struct e1000_info e1000_pch2_info = {
5858 .mac = e1000_pch2lan,
5859 .flags = FLAG_IS_ICH
5860 | FLAG_HAS_WOL
5861 | FLAG_HAS_HW_TIMESTAMP
5862 | FLAG_HAS_CTRLEXT_ON_LOAD
5863 | FLAG_HAS_AMT
5864 | FLAG_HAS_FLASH
5865 | FLAG_HAS_JUMBO_FRAMES
5866 | FLAG_APME_IN_WUC,
5867 .flags2 = FLAG2_HAS_PHY_STATS
5868 | FLAG2_HAS_EEE,
5869 .pba = 26,
5870 .max_hw_frame_size = 9022,
5871 .get_variants = e1000_get_variants_ich8lan,
5872 .mac_ops = &ich8_mac_ops,
5873 .phy_ops = &ich8_phy_ops,
5874 .nvm_ops = &ich8_nvm_ops,
5877 const struct e1000_info e1000_pch_lpt_info = {
5878 .mac = e1000_pch_lpt,
5879 .flags = FLAG_IS_ICH
5880 | FLAG_HAS_WOL
5881 | FLAG_HAS_HW_TIMESTAMP
5882 | FLAG_HAS_CTRLEXT_ON_LOAD
5883 | FLAG_HAS_AMT
5884 | FLAG_HAS_FLASH
5885 | FLAG_HAS_JUMBO_FRAMES
5886 | FLAG_APME_IN_WUC,
5887 .flags2 = FLAG2_HAS_PHY_STATS
5888 | FLAG2_HAS_EEE
5889 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5890 .pba = 26,
5891 .max_hw_frame_size = 9022,
5892 .get_variants = e1000_get_variants_ich8lan,
5893 .mac_ops = &ich8_mac_ops,
5894 .phy_ops = &ich8_phy_ops,
5895 .nvm_ops = &ich8_nvm_ops,
5898 const struct e1000_info e1000_pch_spt_info = {
5899 .mac = e1000_pch_spt,
5900 .flags = FLAG_IS_ICH
5901 | FLAG_HAS_WOL
5902 | FLAG_HAS_HW_TIMESTAMP
5903 | FLAG_HAS_CTRLEXT_ON_LOAD
5904 | FLAG_HAS_AMT
5905 | FLAG_HAS_FLASH
5906 | FLAG_HAS_JUMBO_FRAMES
5907 | FLAG_APME_IN_WUC,
5908 .flags2 = FLAG2_HAS_PHY_STATS
5909 | FLAG2_HAS_EEE,
5910 .pba = 26,
5911 .max_hw_frame_size = 9022,
5912 .get_variants = e1000_get_variants_ich8lan,
5913 .mac_ops = &ich8_mac_ops,
5914 .phy_ops = &ich8_phy_ops,
5915 .nvm_ops = &spt_nvm_ops,