1 /*******************************************************************************
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
30 /* Interrupt Throttling and Rate Limiting Goodies */
32 #define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */
33 #define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */
34 #define I40E_ITR_100K 0x0005
35 #define I40E_ITR_50K 0x000A
36 #define I40E_ITR_20K 0x0019
37 #define I40E_ITR_18K 0x001B
38 #define I40E_ITR_8K 0x003E
39 #define I40E_ITR_4K 0x007A
40 #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
41 #define I40E_ITR_RX_DEF I40E_ITR_20K
42 #define I40E_ITR_TX_DEF I40E_ITR_20K
43 #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
44 #define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */
45 #define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */
46 #define I40E_DEFAULT_IRQ_WORK 256
47 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
48 #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
49 #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
50 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
51 * the value of the rate limit is non-zero
53 #define INTRL_ENA BIT(6)
54 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
55 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
56 #define I40E_INTRL_8K 125 /* 8000 ints/sec */
57 #define I40E_INTRL_62K 16 /* 62500 ints/sec */
58 #define I40E_INTRL_83K 12 /* 83333 ints/sec */
60 #define I40E_QUEUE_END_OF_LIST 0x7FF
62 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
63 * registers and QINT registers or more generally anywhere in the manual
64 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
65 * register but instead is a special value meaning "don't update" ITR0/1/2.
71 I40E_ITR_NONE
= 3 /* ITR_NONE must not be used as an index */
74 /* these are indexes into ITRN registers */
75 #define I40E_RX_ITR I40E_IDX_ITR0
76 #define I40E_TX_ITR I40E_IDX_ITR1
77 #define I40E_PE_ITR I40E_IDX_ITR2
79 /* Supported RSS offloads */
80 #define I40E_DEFAULT_RSS_HENA ( \
81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
82 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
83 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
84 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
85 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
86 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
87 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
89 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
90 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
91 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
93 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
94 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
95 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
96 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
97 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
98 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
99 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
101 #define i40e_pf_get_default_rss_hena(pf) \
102 (((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
103 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
105 /* Supported Rx Buffer Sizes (a multiple of 128) */
106 #define I40E_RXBUFFER_256 256
107 #define I40E_RXBUFFER_2048 2048
108 #define I40E_RXBUFFER_3072 3072 /* For FCoE MTU of 2158 */
109 #define I40E_RXBUFFER_4096 4096
110 #define I40E_RXBUFFER_8192 8192
111 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
113 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
114 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
115 * this adds up to 512 bytes of extra data meaning the smallest allocation
116 * we could have is 1K.
117 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
118 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
120 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
121 #define i40e_rx_desc i40e_32byte_rx_desc
124 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
125 * @rx_desc: pointer to receive descriptor (in le64 format)
126 * @stat_err_bits: value to mask
128 * This function does some fast chicanery in order to return the
129 * value of the mask which is really only used for boolean tests.
130 * The status_error_len doesn't need to be shifted because it begins
133 static inline bool i40e_test_staterr(union i40e_rx_desc
*rx_desc
,
134 const u64 stat_err_bits
)
136 return !!(rx_desc
->wb
.qword1
.status_error_len
&
137 cpu_to_le64(stat_err_bits
));
140 /* How many Rx Buffers do we bundle into one write to the hardware ? */
141 #define I40E_RX_BUFFER_WRITE 16 /* Must be power of 2 */
142 #define I40E_RX_INCREMENT(r, i) \
145 if ((i) == (r)->count) \
147 r->next_to_clean = i; \
150 #define I40E_RX_NEXT_DESC(r, i, n) \
153 if ((i) == (r)->count) \
155 (n) = I40E_RX_DESC((r), (i)); \
158 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
160 I40E_RX_NEXT_DESC((r), (i), (n)); \
164 #define I40E_MAX_BUFFER_TXD 8
165 #define I40E_MIN_TX_LEN 17
167 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
168 * In order to align with the read requests we will align the value to
169 * the nearest 4K which represents our maximum read request size.
171 #define I40E_MAX_READ_REQ_SIZE 4096
172 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
173 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
174 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
177 * i40e_txd_use_count - estimate the number of descriptors needed for Tx
178 * @size: transmit request size in bytes
180 * Due to hardware alignment restrictions (4K alignment), we need to
181 * assume that we can have no more than 12K of data per descriptor, even
182 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
183 * Thus, we need to divide by 12K. But division is slow! Instead,
184 * we decompose the operation into shifts and one relatively cheap
185 * multiply operation.
187 * To divide by 12K, we first divide by 4K, then divide by 3:
188 * To divide by 4K, shift right by 12 bits
189 * To divide by 3, multiply by 85, then divide by 256
190 * (Divide by 256 is done by shifting right by 8 bits)
191 * Finally, we add one to round up. Because 256 isn't an exact multiple of
192 * 3, we'll underestimate near each multiple of 12K. This is actually more
193 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
194 * segment. For our purposes this is accurate out to 1M which is orders of
195 * magnitude greater than our largest possible GSO size.
197 * This would then be implemented as:
198 * return (((size >> 12) * 85) >> 8) + 1;
200 * Since multiplication and division are commutative, we can reorder
202 * return ((size * 85) >> 20) + 1;
204 static inline unsigned int i40e_txd_use_count(unsigned int size
)
206 return ((size
* 85) >> 20) + 1;
209 /* Tx Descriptors needed, worst case */
210 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
211 #define I40E_MIN_DESC_PENDING 4
213 #define I40E_TX_FLAGS_HW_VLAN BIT(1)
214 #define I40E_TX_FLAGS_SW_VLAN BIT(2)
215 #define I40E_TX_FLAGS_TSO BIT(3)
216 #define I40E_TX_FLAGS_IPV4 BIT(4)
217 #define I40E_TX_FLAGS_IPV6 BIT(5)
218 #define I40E_TX_FLAGS_FCCRC BIT(6)
219 #define I40E_TX_FLAGS_FSO BIT(7)
220 #define I40E_TX_FLAGS_FD_SB BIT(9)
221 #define I40E_TX_FLAGS_VXLAN_TUNNEL BIT(10)
222 #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
223 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
224 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
225 #define I40E_TX_FLAGS_VLAN_SHIFT 16
227 struct i40e_tx_buffer
{
228 struct i40e_tx_desc
*next_to_watch
;
233 unsigned int bytecount
;
234 unsigned short gso_segs
;
236 DEFINE_DMA_UNMAP_ADDR(dma
);
237 DEFINE_DMA_UNMAP_LEN(len
);
241 struct i40e_rx_buffer
{
244 unsigned int page_offset
;
247 struct i40e_queue_stats
{
252 struct i40e_tx_queue_stats
{
258 u64 tx_lost_interrupt
;
261 struct i40e_rx_queue_stats
{
263 u64 alloc_page_failed
;
264 u64 alloc_buff_failed
;
265 u64 page_reuse_count
;
269 enum i40e_ring_state_t
{
270 __I40E_TX_FDIR_INIT_DONE
,
271 __I40E_TX_XPS_INIT_DONE
,
274 /* some useful defines for virtchannel interface, which
275 * is the only remaining user of header split
277 #define I40E_RX_DTYPE_NO_SPLIT 0
278 #define I40E_RX_DTYPE_HEADER_SPLIT 1
279 #define I40E_RX_DTYPE_SPLIT_ALWAYS 2
280 #define I40E_RX_SPLIT_L2 0x1
281 #define I40E_RX_SPLIT_IP 0x2
282 #define I40E_RX_SPLIT_TCP_UDP 0x4
283 #define I40E_RX_SPLIT_SCTP 0x8
285 /* struct that defines a descriptor ring, associated with a VSI */
287 struct i40e_ring
*next
; /* pointer to next ring in q_vector */
288 void *desc
; /* Descriptor ring memory */
289 struct device
*dev
; /* Used for DMA mapping */
290 struct net_device
*netdev
; /* netdev ring maps to */
292 struct i40e_tx_buffer
*tx_bi
;
293 struct i40e_rx_buffer
*rx_bi
;
296 u16 queue_index
; /* Queue number of ring */
297 u8 dcb_tc
; /* Traffic class of ring */
300 /* high bit set means dynamic, use accessors routines to read/write.
301 * hardware only supports 2us resolution for the ITR registers.
302 * these values always store the USER setting, and must be converted
303 * before programming to a register.
308 u16 count
; /* Number of descriptors */
309 u16 reg_idx
; /* HW register index of the ring */
312 /* used in interrupt processing */
319 bool ring_active
; /* is ring online or not */
320 bool arm_wb
; /* do something to arm write back */
324 #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
327 struct i40e_queue_stats stats
;
328 struct u64_stats_sync syncp
;
330 struct i40e_tx_queue_stats tx_stats
;
331 struct i40e_rx_queue_stats rx_stats
;
334 unsigned int size
; /* length of descriptor ring in bytes */
335 dma_addr_t dma
; /* physical address of ring */
337 struct i40e_vsi
*vsi
; /* Backreference to associated VSI */
338 struct i40e_q_vector
*q_vector
; /* Backreference to associated vector */
340 struct rcu_head rcu
; /* to avoid race on free */
342 struct sk_buff
*skb
; /* When i40evf_clean_rx_ring_irq() must
343 * return before it sees the EOP for
344 * the current packet, we save that skb
345 * here and resume receiving this
346 * packet the next time
347 * i40evf_clean_rx_ring_irq() is called
350 } ____cacheline_internodealigned_in_smp
;
352 enum i40e_latency_range
{
353 I40E_LOWEST_LATENCY
= 0,
354 I40E_LOW_LATENCY
= 1,
355 I40E_BULK_LATENCY
= 2,
356 I40E_ULTRA_LATENCY
= 3,
359 struct i40e_ring_container
{
360 /* array of pointers to rings */
361 struct i40e_ring
*ring
;
362 unsigned int total_bytes
; /* total bytes processed this int */
363 unsigned int total_packets
; /* total packets processed this int */
365 enum i40e_latency_range latency_range
;
369 /* iterator for handling rings in ring container */
370 #define i40e_for_each_ring(pos, head) \
371 for (pos = (head).ring; pos != NULL; pos = pos->next)
373 bool i40evf_alloc_rx_buffers(struct i40e_ring
*rxr
, u16 cleaned_count
);
374 netdev_tx_t
i40evf_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
375 void i40evf_clean_tx_ring(struct i40e_ring
*tx_ring
);
376 void i40evf_clean_rx_ring(struct i40e_ring
*rx_ring
);
377 int i40evf_setup_tx_descriptors(struct i40e_ring
*tx_ring
);
378 int i40evf_setup_rx_descriptors(struct i40e_ring
*rx_ring
);
379 void i40evf_free_tx_resources(struct i40e_ring
*tx_ring
);
380 void i40evf_free_rx_resources(struct i40e_ring
*rx_ring
);
381 int i40evf_napi_poll(struct napi_struct
*napi
, int budget
);
382 void i40evf_force_wb(struct i40e_vsi
*vsi
, struct i40e_q_vector
*q_vector
);
383 u32
i40evf_get_tx_pending(struct i40e_ring
*ring
, bool in_sw
);
384 int __i40evf_maybe_stop_tx(struct i40e_ring
*tx_ring
, int size
);
385 bool __i40evf_chk_linearize(struct sk_buff
*skb
);
388 * i40e_get_head - Retrieve head from head writeback
389 * @tx_ring: Tx ring to fetch head of
391 * Returns value of Tx ring head based on value stored
392 * in head write-back location
394 static inline u32
i40e_get_head(struct i40e_ring
*tx_ring
)
396 void *head
= (struct i40e_tx_desc
*)tx_ring
->desc
+ tx_ring
->count
;
398 return le32_to_cpu(*(volatile __le32
*)head
);
402 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
404 * @tx_ring: ring to send buffer on
406 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
407 * there is not enough descriptors available in this ring since we need at least
410 static inline int i40e_xmit_descriptor_count(struct sk_buff
*skb
)
412 const struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[0];
413 unsigned int nr_frags
= skb_shinfo(skb
)->nr_frags
;
414 int count
= 0, size
= skb_headlen(skb
);
417 count
+= i40e_txd_use_count(size
);
422 size
= skb_frag_size(frag
++);
429 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
430 * @tx_ring: the ring to be checked
431 * @size: the size buffer we want to assure is available
433 * Returns 0 if stop is not needed
435 static inline int i40e_maybe_stop_tx(struct i40e_ring
*tx_ring
, int size
)
437 if (likely(I40E_DESC_UNUSED(tx_ring
) >= size
))
439 return __i40evf_maybe_stop_tx(tx_ring
, size
);
443 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
445 * @count: number of buffers used
447 * Note: Our HW can't scatter-gather more than 8 fragments to build
448 * a packet on the wire and so we need to figure out the cases where we
449 * need to linearize the skb.
451 static inline bool i40e_chk_linearize(struct sk_buff
*skb
, int count
)
453 /* Both TSO and single send will work if count is less than 8 */
454 if (likely(count
< I40E_MAX_BUFFER_TXD
))
458 return __i40evf_chk_linearize(skb
);
460 /* we can support up to 8 data buffers for a single send */
461 return count
!= I40E_MAX_BUFFER_TXD
;
465 * i40e_rx_is_fcoe - returns true if the Rx packet type is FCoE
466 * @ptype: the packet type field from Rx descriptor write-back
468 static inline bool i40e_rx_is_fcoe(u16 ptype
)
470 return (ptype
>= I40E_RX_PTYPE_L2_FCOE_PAY3
) &&
471 (ptype
<= I40E_RX_PTYPE_L2_FCOE_VFT_FCOTHER
);
475 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
476 * @ring: Tx ring to find the netdev equivalent of
478 static inline struct netdev_queue
*txring_txq(const struct i40e_ring
*ring
)
480 return netdev_get_tx_queue(ring
->netdev
, ring
->queue_index
);
482 #endif /* _I40E_TXRX_H_ */