1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2016 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
38 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
39 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
41 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
45 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
48 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
50 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
51 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
);
52 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
53 u16 words
, u16
*data
);
54 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
55 u16 words
, u16
*data
);
56 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
58 static s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
);
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X
[IXGBE_MVALS_IDX_LIMIT
] = {
62 IXGBE_MVALS_INIT(8259X
)
66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
68 * @hw: pointer to hardware structure
70 * There are several phys that do not support autoneg flow control. This
71 * function check the device id to see if the associated phy supports
72 * autoneg flow control.
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
)
76 bool supported
= false;
77 ixgbe_link_speed speed
;
80 switch (hw
->phy
.media_type
) {
81 case ixgbe_media_type_fiber
:
82 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
83 /* if link is down, assume supported */
85 supported
= speed
== IXGBE_LINK_SPEED_1GB_FULL
?
90 case ixgbe_media_type_backplane
:
93 case ixgbe_media_type_copper
:
94 /* only some copper devices support flow control autoneg */
95 switch (hw
->device_id
) {
96 case IXGBE_DEV_ID_82599_T3_LOM
:
97 case IXGBE_DEV_ID_X540T
:
98 case IXGBE_DEV_ID_X540T1
:
99 case IXGBE_DEV_ID_X550T
:
100 case IXGBE_DEV_ID_X550T1
:
101 case IXGBE_DEV_ID_X550EM_X_10G_T
:
102 case IXGBE_DEV_ID_X550EM_A_10G_T
:
103 case IXGBE_DEV_ID_X550EM_A_1G_T
:
104 case IXGBE_DEV_ID_X550EM_A_1G_T_L
:
118 * ixgbe_setup_fc_generic - Set up flow control
119 * @hw: pointer to hardware structure
121 * Called at init time to set up flow control.
123 s32
ixgbe_setup_fc_generic(struct ixgbe_hw
*hw
)
126 u32 reg
= 0, reg_bp
= 0;
131 * Validate the requested mode. Strict IEEE mode does not allow
132 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
134 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
135 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
136 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
140 * 10gig parts do not have a word in the EEPROM to determine the
141 * default flow control setting, so we explicitly set it to full.
143 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
144 hw
->fc
.requested_mode
= ixgbe_fc_full
;
147 * Set up the 1G and 10G flow control advertisement registers so the
148 * HW will be able to do fc autoneg once the cable is plugged in. If
149 * we link at 10G, the 1G advertisement is harmless and vice versa.
151 switch (hw
->phy
.media_type
) {
152 case ixgbe_media_type_backplane
:
153 /* some MAC's need RMW protection on AUTOC */
154 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, ®_bp
);
158 /* only backplane uses autoc so fall though */
159 case ixgbe_media_type_fiber
:
160 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
163 case ixgbe_media_type_copper
:
164 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
165 MDIO_MMD_AN
, ®_cu
);
172 * The possible values of fc.requested_mode are:
173 * 0: Flow control is completely disabled
174 * 1: Rx flow control is enabled (we can receive pause frames,
175 * but not send pause frames).
176 * 2: Tx flow control is enabled (we can send pause frames but
177 * we do not support receiving pause frames).
178 * 3: Both Rx and Tx flow control (symmetric) are enabled.
181 switch (hw
->fc
.requested_mode
) {
183 /* Flow control completely disabled by software override. */
184 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
185 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
186 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
|
187 IXGBE_AUTOC_ASM_PAUSE
);
188 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
189 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
191 case ixgbe_fc_tx_pause
:
193 * Tx Flow control is enabled, and Rx Flow control is
194 * disabled by software override.
196 reg
|= IXGBE_PCS1GANA_ASM_PAUSE
;
197 reg
&= ~IXGBE_PCS1GANA_SYM_PAUSE
;
198 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
199 reg_bp
|= IXGBE_AUTOC_ASM_PAUSE
;
200 reg_bp
&= ~IXGBE_AUTOC_SYM_PAUSE
;
201 } else if (hw
->phy
.media_type
== ixgbe_media_type_copper
) {
202 reg_cu
|= IXGBE_TAF_ASM_PAUSE
;
203 reg_cu
&= ~IXGBE_TAF_SYM_PAUSE
;
206 case ixgbe_fc_rx_pause
:
208 * Rx Flow control is enabled and Tx Flow control is
209 * disabled by software override. Since there really
210 * isn't a way to advertise that we are capable of RX
211 * Pause ONLY, we will advertise that we support both
212 * symmetric and asymmetric Rx PAUSE, as such we fall
213 * through to the fc_full statement. Later, we will
214 * disable the adapter's ability to send PAUSE frames.
217 /* Flow control (both Rx and Tx) is enabled by SW override. */
218 reg
|= IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
;
219 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
220 reg_bp
|= IXGBE_AUTOC_SYM_PAUSE
|
221 IXGBE_AUTOC_ASM_PAUSE
;
222 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
223 reg_cu
|= IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
;
226 hw_dbg(hw
, "Flow control param set incorrectly\n");
227 return IXGBE_ERR_CONFIG
;
230 if (hw
->mac
.type
!= ixgbe_mac_X540
) {
232 * Enable auto-negotiation between the MAC & PHY;
233 * the MAC will advertise clause 37 flow control.
235 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
236 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
238 /* Disable AN timeout */
239 if (hw
->fc
.strict_ieee
)
240 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
242 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
243 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
247 * AUTOC restart handles negotiation of 1G and 10G on backplane
248 * and copper. There is no need to set the PCS1GCTL register.
251 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
252 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
253 * LESM is on, likewise reset_pipeline requries the lock as
254 * it also writes AUTOC.
256 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, reg_bp
, locked
);
260 } else if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) &&
261 ixgbe_device_supports_autoneg_fc(hw
)) {
262 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
,
263 MDIO_MMD_AN
, reg_cu
);
266 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
271 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
272 * @hw: pointer to hardware structure
274 * Starts the hardware by filling the bus info structure and media type, clears
275 * all on chip counters, initializes receive address registers, multicast
276 * table, VLAN filter table, calls routine to set up link and flow control
277 * settings, and leaves transmit and receive units disabled and uninitialized
279 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
285 /* Set the media type */
286 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
288 /* Identify the PHY */
289 hw
->phy
.ops
.identify(hw
);
291 /* Clear the VLAN filter table */
292 hw
->mac
.ops
.clear_vfta(hw
);
294 /* Clear statistics registers */
295 hw
->mac
.ops
.clear_hw_cntrs(hw
);
297 /* Set No Snoop Disable */
298 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
299 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
300 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
301 IXGBE_WRITE_FLUSH(hw
);
303 /* Setup flow control if method for doing so */
304 if (hw
->mac
.ops
.setup_fc
) {
305 ret_val
= hw
->mac
.ops
.setup_fc(hw
);
310 /* Cashe bit indicating need for crosstalk fix */
311 switch (hw
->mac
.type
) {
312 case ixgbe_mac_82599EB
:
313 case ixgbe_mac_X550EM_x
:
314 case ixgbe_mac_x550em_a
:
315 hw
->mac
.ops
.get_device_caps(hw
, &device_caps
);
316 if (device_caps
& IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR
)
317 hw
->need_crosstalk_fix
= false;
319 hw
->need_crosstalk_fix
= true;
322 hw
->need_crosstalk_fix
= false;
326 /* Clear adapter stopped flag */
327 hw
->adapter_stopped
= false;
333 * ixgbe_start_hw_gen2 - Init sequence for common device family
334 * @hw: pointer to hw structure
336 * Performs the init sequence common to the second generation
338 * Devices in the second generation:
342 s32
ixgbe_start_hw_gen2(struct ixgbe_hw
*hw
)
346 /* Clear the rate limiters */
347 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
348 IXGBE_WRITE_REG(hw
, IXGBE_RTTDQSEL
, i
);
349 IXGBE_WRITE_REG(hw
, IXGBE_RTTBCNRC
, 0);
351 IXGBE_WRITE_FLUSH(hw
);
353 #ifndef CONFIG_ARCH_WANT_RELAX_ORDER
354 /* Disable relaxed ordering */
355 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
358 regval
= IXGBE_READ_REG(hw
, IXGBE_DCA_TXCTRL_82599(i
));
359 regval
&= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN
;
360 IXGBE_WRITE_REG(hw
, IXGBE_DCA_TXCTRL_82599(i
), regval
);
363 for (i
= 0; i
< hw
->mac
.max_rx_queues
; i
++) {
366 regval
= IXGBE_READ_REG(hw
, IXGBE_DCA_RXCTRL(i
));
367 regval
&= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN
|
368 IXGBE_DCA_RXCTRL_HEAD_WRO_EN
);
369 IXGBE_WRITE_REG(hw
, IXGBE_DCA_RXCTRL(i
), regval
);
376 * ixgbe_init_hw_generic - Generic hardware initialization
377 * @hw: pointer to hardware structure
379 * Initialize the hardware by resetting the hardware, filling the bus info
380 * structure and media type, clears all on chip counters, initializes receive
381 * address registers, multicast table, VLAN filter table, calls routine to set
382 * up link and flow control settings, and leaves transmit and receive units
383 * disabled and uninitialized
385 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
389 /* Reset the hardware */
390 status
= hw
->mac
.ops
.reset_hw(hw
);
394 status
= hw
->mac
.ops
.start_hw(hw
);
397 /* Initialize the LED link active for LED blink support */
398 hw
->mac
.ops
.init_led_link_act(hw
);
404 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
405 * @hw: pointer to hardware structure
407 * Clears all hardware statistics counters by reading them from the hardware
408 * Statistics counters are clear on read.
410 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
414 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
415 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
416 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
417 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
418 for (i
= 0; i
< 8; i
++)
419 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
421 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
422 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
423 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
424 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
425 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
426 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
427 IXGBE_READ_REG(hw
, IXGBE_LXONRXCNT
);
428 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXCNT
);
430 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
431 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
434 for (i
= 0; i
< 8; i
++) {
435 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
436 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
437 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
438 IXGBE_READ_REG(hw
, IXGBE_PXONRXCNT(i
));
439 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXCNT(i
));
441 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
442 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
445 if (hw
->mac
.type
>= ixgbe_mac_82599EB
)
446 for (i
= 0; i
< 8; i
++)
447 IXGBE_READ_REG(hw
, IXGBE_PXON2OFFCNT(i
));
448 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
449 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
450 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
451 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
452 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
453 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
454 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
455 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
456 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
457 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
458 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
459 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
460 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
461 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
462 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
463 for (i
= 0; i
< 8; i
++)
464 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
465 IXGBE_READ_REG(hw
, IXGBE_RUC
);
466 IXGBE_READ_REG(hw
, IXGBE_RFC
);
467 IXGBE_READ_REG(hw
, IXGBE_ROC
);
468 IXGBE_READ_REG(hw
, IXGBE_RJC
);
469 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
470 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
471 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
472 IXGBE_READ_REG(hw
, IXGBE_TORL
);
473 IXGBE_READ_REG(hw
, IXGBE_TORH
);
474 IXGBE_READ_REG(hw
, IXGBE_TPR
);
475 IXGBE_READ_REG(hw
, IXGBE_TPT
);
476 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
477 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
478 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
479 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
480 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
481 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
482 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
483 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
484 for (i
= 0; i
< 16; i
++) {
485 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
486 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
487 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
488 IXGBE_READ_REG(hw
, IXGBE_QBRC_L(i
));
489 IXGBE_READ_REG(hw
, IXGBE_QBRC_H(i
));
490 IXGBE_READ_REG(hw
, IXGBE_QBTC_L(i
));
491 IXGBE_READ_REG(hw
, IXGBE_QBTC_H(i
));
492 IXGBE_READ_REG(hw
, IXGBE_QPRDC(i
));
494 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
495 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
499 if (hw
->mac
.type
== ixgbe_mac_X550
|| hw
->mac
.type
== ixgbe_mac_X540
) {
501 hw
->phy
.ops
.identify(hw
);
502 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECL
, MDIO_MMD_PCS
, &i
);
503 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECH
, MDIO_MMD_PCS
, &i
);
504 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECL
, MDIO_MMD_PCS
, &i
);
505 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECH
, MDIO_MMD_PCS
, &i
);
512 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
513 * @hw: pointer to hardware structure
514 * @pba_num: stores the part number string from the EEPROM
515 * @pba_num_size: part number string buffer length
517 * Reads the part number string from the EEPROM.
519 s32
ixgbe_read_pba_string_generic(struct ixgbe_hw
*hw
, u8
*pba_num
,
528 if (pba_num
== NULL
) {
529 hw_dbg(hw
, "PBA string buffer was null\n");
530 return IXGBE_ERR_INVALID_ARGUMENT
;
533 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
535 hw_dbg(hw
, "NVM Read Error\n");
539 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &pba_ptr
);
541 hw_dbg(hw
, "NVM Read Error\n");
546 * if data is not ptr guard the PBA must be in legacy format which
547 * means pba_ptr is actually our second data word for the PBA number
548 * and we can decode it into an ascii string
550 if (data
!= IXGBE_PBANUM_PTR_GUARD
) {
551 hw_dbg(hw
, "NVM PBA number is not stored as string\n");
553 /* we will need 11 characters to store the PBA */
554 if (pba_num_size
< 11) {
555 hw_dbg(hw
, "PBA string buffer too small\n");
556 return IXGBE_ERR_NO_SPACE
;
559 /* extract hex string from data and pba_ptr */
560 pba_num
[0] = (data
>> 12) & 0xF;
561 pba_num
[1] = (data
>> 8) & 0xF;
562 pba_num
[2] = (data
>> 4) & 0xF;
563 pba_num
[3] = data
& 0xF;
564 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
565 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
568 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
569 pba_num
[9] = pba_ptr
& 0xF;
571 /* put a null character on the end of our string */
574 /* switch all the data but the '-' to hex char */
575 for (offset
= 0; offset
< 10; offset
++) {
576 if (pba_num
[offset
] < 0xA)
577 pba_num
[offset
] += '0';
578 else if (pba_num
[offset
] < 0x10)
579 pba_num
[offset
] += 'A' - 0xA;
585 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
, &length
);
587 hw_dbg(hw
, "NVM Read Error\n");
591 if (length
== 0xFFFF || length
== 0) {
592 hw_dbg(hw
, "NVM PBA number section invalid length\n");
593 return IXGBE_ERR_PBA_SECTION
;
596 /* check if pba_num buffer is big enough */
597 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
598 hw_dbg(hw
, "PBA string buffer too small\n");
599 return IXGBE_ERR_NO_SPACE
;
602 /* trim pba length from start of string */
606 for (offset
= 0; offset
< length
; offset
++) {
607 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
+ offset
, &data
);
609 hw_dbg(hw
, "NVM Read Error\n");
612 pba_num
[offset
* 2] = (u8
)(data
>> 8);
613 pba_num
[(offset
* 2) + 1] = (u8
)(data
& 0xFF);
615 pba_num
[offset
* 2] = '\0';
621 * ixgbe_get_mac_addr_generic - Generic get MAC address
622 * @hw: pointer to hardware structure
623 * @mac_addr: Adapter MAC address
625 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
626 * A reset of the adapter must be performed prior to calling this function
627 * in order for the MAC address to have been loaded from the EEPROM into RAR0
629 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
635 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
636 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
638 for (i
= 0; i
< 4; i
++)
639 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
641 for (i
= 0; i
< 2; i
++)
642 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
647 enum ixgbe_bus_width
ixgbe_convert_bus_width(u16 link_status
)
649 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
650 case IXGBE_PCI_LINK_WIDTH_1
:
651 return ixgbe_bus_width_pcie_x1
;
652 case IXGBE_PCI_LINK_WIDTH_2
:
653 return ixgbe_bus_width_pcie_x2
;
654 case IXGBE_PCI_LINK_WIDTH_4
:
655 return ixgbe_bus_width_pcie_x4
;
656 case IXGBE_PCI_LINK_WIDTH_8
:
657 return ixgbe_bus_width_pcie_x8
;
659 return ixgbe_bus_width_unknown
;
663 enum ixgbe_bus_speed
ixgbe_convert_bus_speed(u16 link_status
)
665 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
666 case IXGBE_PCI_LINK_SPEED_2500
:
667 return ixgbe_bus_speed_2500
;
668 case IXGBE_PCI_LINK_SPEED_5000
:
669 return ixgbe_bus_speed_5000
;
670 case IXGBE_PCI_LINK_SPEED_8000
:
671 return ixgbe_bus_speed_8000
;
673 return ixgbe_bus_speed_unknown
;
678 * ixgbe_get_bus_info_generic - Generic set PCI bus info
679 * @hw: pointer to hardware structure
681 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
683 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
687 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
689 /* Get the negotiated link width and speed from PCI config space */
690 link_status
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_LINK_STATUS
);
692 hw
->bus
.width
= ixgbe_convert_bus_width(link_status
);
693 hw
->bus
.speed
= ixgbe_convert_bus_speed(link_status
);
695 hw
->mac
.ops
.set_lan_id(hw
);
701 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
702 * @hw: pointer to the HW structure
704 * Determines the LAN function id by reading memory-mapped registers
705 * and swaps the port value if requested.
707 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
709 struct ixgbe_bus_info
*bus
= &hw
->bus
;
713 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
714 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
715 bus
->lan_id
= bus
->func
;
717 /* check for a port swap */
718 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS(hw
));
719 if (reg
& IXGBE_FACTPS_LFS
)
722 /* Get MAC instance from EEPROM for configuring CS4227 */
723 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_A_SFP
) {
724 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CTRL_4
, &ee_ctrl_4
);
725 bus
->instance_id
= (ee_ctrl_4
& IXGBE_EE_CTRL_4_INST_ID
) >>
726 IXGBE_EE_CTRL_4_INST_ID_SHIFT
;
731 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
732 * @hw: pointer to hardware structure
734 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
735 * disables transmit and receive units. The adapter_stopped flag is used by
736 * the shared code and drivers to determine if the adapter is in a stopped
737 * state and should not touch the hardware.
739 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
745 * Set the adapter_stopped flag so other driver functions stop touching
748 hw
->adapter_stopped
= true;
750 /* Disable the receive unit */
751 hw
->mac
.ops
.disable_rx(hw
);
753 /* Clear interrupt mask to stop interrupts from being generated */
754 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
756 /* Clear any pending interrupts, flush previous writes */
757 IXGBE_READ_REG(hw
, IXGBE_EICR
);
759 /* Disable the transmit unit. Each queue must be disabled. */
760 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++)
761 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), IXGBE_TXDCTL_SWFLSH
);
763 /* Disable the receive unit by stopping each queue */
764 for (i
= 0; i
< hw
->mac
.max_rx_queues
; i
++) {
765 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
766 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
767 reg_val
|= IXGBE_RXDCTL_SWFLSH
;
768 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
771 /* flush all queues disables */
772 IXGBE_WRITE_FLUSH(hw
);
773 usleep_range(1000, 2000);
776 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
777 * access and verify no pending requests
779 return ixgbe_disable_pcie_master(hw
);
783 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
784 * @hw: pointer to hardware structure
786 * Store the index for the link active LED. This will be used to support
789 s32
ixgbe_init_led_link_act_generic(struct ixgbe_hw
*hw
)
791 struct ixgbe_mac_info
*mac
= &hw
->mac
;
792 u32 led_reg
, led_mode
;
795 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
797 /* Get LED link active from the LEDCTL register */
798 for (i
= 0; i
< 4; i
++) {
799 led_mode
= led_reg
>> IXGBE_LED_MODE_SHIFT(i
);
801 if ((led_mode
& IXGBE_LED_MODE_MASK_BASE
) ==
802 IXGBE_LED_LINK_ACTIVE
) {
803 mac
->led_link_act
= i
;
808 /* If LEDCTL register does not have the LED link active set, then use
809 * known MAC defaults.
811 switch (hw
->mac
.type
) {
812 case ixgbe_mac_x550em_a
:
813 mac
->led_link_act
= 0;
815 case ixgbe_mac_X550EM_x
:
816 mac
->led_link_act
= 1;
819 mac
->led_link_act
= 2;
826 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
827 * @hw: pointer to hardware structure
828 * @index: led number to turn on
830 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
832 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
835 return IXGBE_ERR_PARAM
;
837 /* To turn on the LED, set mode to ON. */
838 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
839 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
840 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
841 IXGBE_WRITE_FLUSH(hw
);
847 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
848 * @hw: pointer to hardware structure
849 * @index: led number to turn off
851 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
853 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
856 return IXGBE_ERR_PARAM
;
858 /* To turn off the LED, set mode to OFF. */
859 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
860 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
861 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
862 IXGBE_WRITE_FLUSH(hw
);
868 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
869 * @hw: pointer to hardware structure
871 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
872 * ixgbe_hw struct in order to set up EEPROM access.
874 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
876 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
880 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
881 eeprom
->type
= ixgbe_eeprom_none
;
882 /* Set default semaphore delay to 10ms which is a well
884 eeprom
->semaphore_delay
= 10;
885 /* Clear EEPROM page size, it will be initialized as needed */
886 eeprom
->word_page_size
= 0;
889 * Check for EEPROM present first.
890 * If not present leave as none
892 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
893 if (eec
& IXGBE_EEC_PRES
) {
894 eeprom
->type
= ixgbe_eeprom_spi
;
897 * SPI EEPROM is assumed here. This code would need to
898 * change if a future EEPROM is not SPI.
900 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
901 IXGBE_EEC_SIZE_SHIFT
);
902 eeprom
->word_size
= BIT(eeprom_size
+
903 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
906 if (eec
& IXGBE_EEC_ADDR_SIZE
)
907 eeprom
->address_bits
= 16;
909 eeprom
->address_bits
= 8;
910 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: %d\n",
911 eeprom
->type
, eeprom
->word_size
, eeprom
->address_bits
);
918 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
919 * @hw: pointer to hardware structure
920 * @offset: offset within the EEPROM to write
921 * @words: number of words
922 * @data: 16 bit word(s) to write to EEPROM
924 * Reads 16 bit word(s) from EEPROM through bit-bang method
926 s32
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
927 u16 words
, u16
*data
)
932 hw
->eeprom
.ops
.init_params(hw
);
935 return IXGBE_ERR_INVALID_ARGUMENT
;
937 if (offset
+ words
> hw
->eeprom
.word_size
)
938 return IXGBE_ERR_EEPROM
;
941 * The EEPROM page size cannot be queried from the chip. We do lazy
942 * initialization. It is worth to do that when we write large buffer.
944 if ((hw
->eeprom
.word_page_size
== 0) &&
945 (words
> IXGBE_EEPROM_PAGE_SIZE_MAX
))
946 ixgbe_detect_eeprom_page_size_generic(hw
, offset
);
949 * We cannot hold synchronization semaphores for too long
950 * to avoid other entity starvation. However it is more efficient
951 * to read in bursts than synchronizing access for each word.
953 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
954 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
955 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
956 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
+ i
,
967 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
968 * @hw: pointer to hardware structure
969 * @offset: offset within the EEPROM to be written to
970 * @words: number of word(s)
971 * @data: 16 bit word(s) to be written to the EEPROM
973 * If ixgbe_eeprom_update_checksum is not called after this function, the
974 * EEPROM will most likely contain an invalid checksum.
976 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
977 u16 words
, u16
*data
)
983 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
985 /* Prepare the EEPROM for writing */
986 status
= ixgbe_acquire_eeprom(hw
);
990 if (ixgbe_ready_eeprom(hw
) != 0) {
991 ixgbe_release_eeprom(hw
);
992 return IXGBE_ERR_EEPROM
;
995 for (i
= 0; i
< words
; i
++) {
996 ixgbe_standby_eeprom(hw
);
998 /* Send the WRITE ENABLE command (8 bit opcode) */
999 ixgbe_shift_out_eeprom_bits(hw
,
1000 IXGBE_EEPROM_WREN_OPCODE_SPI
,
1001 IXGBE_EEPROM_OPCODE_BITS
);
1003 ixgbe_standby_eeprom(hw
);
1005 /* Some SPI eeproms use the 8th address bit embedded
1008 if ((hw
->eeprom
.address_bits
== 8) &&
1009 ((offset
+ i
) >= 128))
1010 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
1012 /* Send the Write command (8-bit opcode + addr) */
1013 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
1014 IXGBE_EEPROM_OPCODE_BITS
);
1015 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
1016 hw
->eeprom
.address_bits
);
1018 page_size
= hw
->eeprom
.word_page_size
;
1020 /* Send the data in burst via SPI */
1023 word
= (word
>> 8) | (word
<< 8);
1024 ixgbe_shift_out_eeprom_bits(hw
, word
, 16);
1029 /* do not wrap around page */
1030 if (((offset
+ i
) & (page_size
- 1)) ==
1033 } while (++i
< words
);
1035 ixgbe_standby_eeprom(hw
);
1036 usleep_range(10000, 20000);
1038 /* Done with writing - release the EEPROM */
1039 ixgbe_release_eeprom(hw
);
1045 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1046 * @hw: pointer to hardware structure
1047 * @offset: offset within the EEPROM to be written to
1048 * @data: 16 bit word to be written to the EEPROM
1050 * If ixgbe_eeprom_update_checksum is not called after this function, the
1051 * EEPROM will most likely contain an invalid checksum.
1053 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1055 hw
->eeprom
.ops
.init_params(hw
);
1057 if (offset
>= hw
->eeprom
.word_size
)
1058 return IXGBE_ERR_EEPROM
;
1060 return ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
, 1, &data
);
1064 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1065 * @hw: pointer to hardware structure
1066 * @offset: offset within the EEPROM to be read
1067 * @words: number of word(s)
1068 * @data: read 16 bit words(s) from EEPROM
1070 * Reads 16 bit word(s) from EEPROM through bit-bang method
1072 s32
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
1073 u16 words
, u16
*data
)
1078 hw
->eeprom
.ops
.init_params(hw
);
1081 return IXGBE_ERR_INVALID_ARGUMENT
;
1083 if (offset
+ words
> hw
->eeprom
.word_size
)
1084 return IXGBE_ERR_EEPROM
;
1087 * We cannot hold synchronization semaphores for too long
1088 * to avoid other entity starvation. However it is more efficient
1089 * to read in bursts than synchronizing access for each word.
1091 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
1092 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
1093 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
1095 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
+ i
,
1106 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1107 * @hw: pointer to hardware structure
1108 * @offset: offset within the EEPROM to be read
1109 * @words: number of word(s)
1110 * @data: read 16 bit word(s) from EEPROM
1112 * Reads 16 bit word(s) from EEPROM through bit-bang method
1114 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
1115 u16 words
, u16
*data
)
1119 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
1122 /* Prepare the EEPROM for reading */
1123 status
= ixgbe_acquire_eeprom(hw
);
1127 if (ixgbe_ready_eeprom(hw
) != 0) {
1128 ixgbe_release_eeprom(hw
);
1129 return IXGBE_ERR_EEPROM
;
1132 for (i
= 0; i
< words
; i
++) {
1133 ixgbe_standby_eeprom(hw
);
1134 /* Some SPI eeproms use the 8th address bit embedded
1137 if ((hw
->eeprom
.address_bits
== 8) &&
1138 ((offset
+ i
) >= 128))
1139 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
1141 /* Send the READ command (opcode + addr) */
1142 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
1143 IXGBE_EEPROM_OPCODE_BITS
);
1144 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
1145 hw
->eeprom
.address_bits
);
1147 /* Read the data. */
1148 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
1149 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
1152 /* End this read operation */
1153 ixgbe_release_eeprom(hw
);
1159 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1160 * @hw: pointer to hardware structure
1161 * @offset: offset within the EEPROM to be read
1162 * @data: read 16 bit value from EEPROM
1164 * Reads 16 bit value from EEPROM through bit-bang method
1166 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
1169 hw
->eeprom
.ops
.init_params(hw
);
1171 if (offset
>= hw
->eeprom
.word_size
)
1172 return IXGBE_ERR_EEPROM
;
1174 return ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1178 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1179 * @hw: pointer to hardware structure
1180 * @offset: offset of word in the EEPROM to read
1181 * @words: number of word(s)
1182 * @data: 16 bit word(s) from the EEPROM
1184 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1186 s32
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1187 u16 words
, u16
*data
)
1193 hw
->eeprom
.ops
.init_params(hw
);
1196 return IXGBE_ERR_INVALID_ARGUMENT
;
1198 if (offset
>= hw
->eeprom
.word_size
)
1199 return IXGBE_ERR_EEPROM
;
1201 for (i
= 0; i
< words
; i
++) {
1202 eerd
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1203 IXGBE_EEPROM_RW_REG_START
;
1205 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
1206 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
1209 data
[i
] = (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
1210 IXGBE_EEPROM_RW_REG_DATA
);
1212 hw_dbg(hw
, "Eeprom read timed out\n");
1221 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1222 * @hw: pointer to hardware structure
1223 * @offset: offset within the EEPROM to be used as a scratch pad
1225 * Discover EEPROM page size by writing marching data at given offset.
1226 * This function is called only when we are writing a new large buffer
1227 * at given offset so the data would be overwritten anyway.
1229 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
1232 u16 data
[IXGBE_EEPROM_PAGE_SIZE_MAX
];
1236 for (i
= 0; i
< IXGBE_EEPROM_PAGE_SIZE_MAX
; i
++)
1239 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
;
1240 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
,
1241 IXGBE_EEPROM_PAGE_SIZE_MAX
, data
);
1242 hw
->eeprom
.word_page_size
= 0;
1246 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1251 * When writing in burst more than the actual page size
1252 * EEPROM address wraps around current page.
1254 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
- data
[0];
1256 hw_dbg(hw
, "Detected EEPROM page size = %d words.\n",
1257 hw
->eeprom
.word_page_size
);
1262 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1263 * @hw: pointer to hardware structure
1264 * @offset: offset of word in the EEPROM to read
1265 * @data: word read from the EEPROM
1267 * Reads a 16 bit word from the EEPROM using the EERD register.
1269 s32
ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
1271 return ixgbe_read_eerd_buffer_generic(hw
, offset
, 1, data
);
1275 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1276 * @hw: pointer to hardware structure
1277 * @offset: offset of word in the EEPROM to write
1278 * @words: number of words
1279 * @data: word(s) write to the EEPROM
1281 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1283 s32
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1284 u16 words
, u16
*data
)
1290 hw
->eeprom
.ops
.init_params(hw
);
1293 return IXGBE_ERR_INVALID_ARGUMENT
;
1295 if (offset
>= hw
->eeprom
.word_size
)
1296 return IXGBE_ERR_EEPROM
;
1298 for (i
= 0; i
< words
; i
++) {
1299 eewr
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1300 (data
[i
] << IXGBE_EEPROM_RW_REG_DATA
) |
1301 IXGBE_EEPROM_RW_REG_START
;
1303 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1305 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1309 IXGBE_WRITE_REG(hw
, IXGBE_EEWR
, eewr
);
1311 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1313 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1322 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1323 * @hw: pointer to hardware structure
1324 * @offset: offset of word in the EEPROM to write
1325 * @data: word write to the EEPROM
1327 * Write a 16 bit word to the EEPROM using the EEWR register.
1329 s32
ixgbe_write_eewr_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1331 return ixgbe_write_eewr_buffer_generic(hw
, offset
, 1, &data
);
1335 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1336 * @hw: pointer to hardware structure
1337 * @ee_reg: EEPROM flag for polling
1339 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1340 * read or write is done respectively.
1342 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
1347 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
1348 if (ee_reg
== IXGBE_NVM_POLL_READ
)
1349 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
1351 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
1353 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
1358 return IXGBE_ERR_EEPROM
;
1362 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1363 * @hw: pointer to hardware structure
1365 * Prepares EEPROM for access using bit-bang method. This function should
1366 * be called before issuing a command to the EEPROM.
1368 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
1373 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
1374 return IXGBE_ERR_SWFW_SYNC
;
1376 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1378 /* Request EEPROM Access */
1379 eec
|= IXGBE_EEC_REQ
;
1380 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1382 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
1383 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1384 if (eec
& IXGBE_EEC_GNT
)
1389 /* Release if grant not acquired */
1390 if (!(eec
& IXGBE_EEC_GNT
)) {
1391 eec
&= ~IXGBE_EEC_REQ
;
1392 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1393 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
1395 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1396 return IXGBE_ERR_EEPROM
;
1399 /* Setup EEPROM for Read/Write */
1400 /* Clear CS and SK */
1401 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
1402 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1403 IXGBE_WRITE_FLUSH(hw
);
1409 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1410 * @hw: pointer to hardware structure
1412 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1414 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
1420 /* Get SMBI software semaphore between device drivers first */
1421 for (i
= 0; i
< timeout
; i
++) {
1423 * If the SMBI bit is 0 when we read it, then the bit will be
1424 * set and we have the semaphore
1426 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1427 if (!(swsm
& IXGBE_SWSM_SMBI
))
1429 usleep_range(50, 100);
1433 hw_dbg(hw
, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1434 /* this release is particularly important because our attempts
1435 * above to get the semaphore may have succeeded, and if there
1436 * was a timeout, we should unconditionally clear the semaphore
1437 * bits to free the driver to make progress
1439 ixgbe_release_eeprom_semaphore(hw
);
1441 usleep_range(50, 100);
1443 * If the SMBI bit is 0 when we read it, then the bit will be
1444 * set and we have the semaphore
1446 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1447 if (swsm
& IXGBE_SWSM_SMBI
) {
1448 hw_dbg(hw
, "Software semaphore SMBI between device drivers not granted.\n");
1449 return IXGBE_ERR_EEPROM
;
1453 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1454 for (i
= 0; i
< timeout
; i
++) {
1455 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1457 /* Set the SW EEPROM semaphore bit to request access */
1458 swsm
|= IXGBE_SWSM_SWESMBI
;
1459 IXGBE_WRITE_REG(hw
, IXGBE_SWSM(hw
), swsm
);
1461 /* If we set the bit successfully then we got the
1464 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1465 if (swsm
& IXGBE_SWSM_SWESMBI
)
1468 usleep_range(50, 100);
1471 /* Release semaphores and return error if SW EEPROM semaphore
1472 * was not granted because we don't have access to the EEPROM
1475 hw_dbg(hw
, "SWESMBI Software EEPROM semaphore not granted.\n");
1476 ixgbe_release_eeprom_semaphore(hw
);
1477 return IXGBE_ERR_EEPROM
;
1484 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1485 * @hw: pointer to hardware structure
1487 * This function clears hardware semaphore bits.
1489 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
1493 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1495 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1496 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
1497 IXGBE_WRITE_REG(hw
, IXGBE_SWSM(hw
), swsm
);
1498 IXGBE_WRITE_FLUSH(hw
);
1502 * ixgbe_ready_eeprom - Polls for EEPROM ready
1503 * @hw: pointer to hardware structure
1505 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
1511 * Read "Status Register" repeatedly until the LSB is cleared. The
1512 * EEPROM will signal that the command has been completed by clearing
1513 * bit 0 of the internal status register. If it's not cleared within
1514 * 5 milliseconds, then error out.
1516 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
1517 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
1518 IXGBE_EEPROM_OPCODE_BITS
);
1519 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
1520 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
1524 ixgbe_standby_eeprom(hw
);
1528 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1529 * devices (and only 0-5mSec on 5V devices)
1531 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
1532 hw_dbg(hw
, "SPI EEPROM Status error\n");
1533 return IXGBE_ERR_EEPROM
;
1540 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1541 * @hw: pointer to hardware structure
1543 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
1547 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1549 /* Toggle CS to flush commands */
1550 eec
|= IXGBE_EEC_CS
;
1551 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1552 IXGBE_WRITE_FLUSH(hw
);
1554 eec
&= ~IXGBE_EEC_CS
;
1555 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1556 IXGBE_WRITE_FLUSH(hw
);
1561 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1562 * @hw: pointer to hardware structure
1563 * @data: data to send to the EEPROM
1564 * @count: number of bits to shift out
1566 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
1573 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1576 * Mask is used to shift "count" bits of "data" out to the EEPROM
1577 * one bit at a time. Determine the starting bit based on count
1579 mask
= BIT(count
- 1);
1581 for (i
= 0; i
< count
; i
++) {
1583 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1584 * "1", and then raising and then lowering the clock (the SK
1585 * bit controls the clock input to the EEPROM). A "0" is
1586 * shifted out to the EEPROM by setting "DI" to "0" and then
1587 * raising and then lowering the clock.
1590 eec
|= IXGBE_EEC_DI
;
1592 eec
&= ~IXGBE_EEC_DI
;
1594 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1595 IXGBE_WRITE_FLUSH(hw
);
1599 ixgbe_raise_eeprom_clk(hw
, &eec
);
1600 ixgbe_lower_eeprom_clk(hw
, &eec
);
1603 * Shift mask to signify next bit of data to shift in to the
1609 /* We leave the "DI" bit set to "0" when we leave this routine. */
1610 eec
&= ~IXGBE_EEC_DI
;
1611 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1612 IXGBE_WRITE_FLUSH(hw
);
1616 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1617 * @hw: pointer to hardware structure
1619 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
1626 * In order to read a register from the EEPROM, we need to shift
1627 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1628 * the clock input to the EEPROM (setting the SK bit), and then reading
1629 * the value of the "DO" bit. During this "shifting in" process the
1630 * "DI" bit should always be clear.
1632 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1634 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
1636 for (i
= 0; i
< count
; i
++) {
1638 ixgbe_raise_eeprom_clk(hw
, &eec
);
1640 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1642 eec
&= ~(IXGBE_EEC_DI
);
1643 if (eec
& IXGBE_EEC_DO
)
1646 ixgbe_lower_eeprom_clk(hw
, &eec
);
1653 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1654 * @hw: pointer to hardware structure
1655 * @eec: EEC register's current value
1657 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1660 * Raise the clock input to the EEPROM
1661 * (setting the SK bit), then delay
1663 *eec
= *eec
| IXGBE_EEC_SK
;
1664 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), *eec
);
1665 IXGBE_WRITE_FLUSH(hw
);
1670 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1671 * @hw: pointer to hardware structure
1672 * @eecd: EECD's current value
1674 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1677 * Lower the clock input to the EEPROM (clearing the SK bit), then
1680 *eec
= *eec
& ~IXGBE_EEC_SK
;
1681 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), *eec
);
1682 IXGBE_WRITE_FLUSH(hw
);
1687 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1688 * @hw: pointer to hardware structure
1690 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
1694 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1696 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
1697 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
1699 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1700 IXGBE_WRITE_FLUSH(hw
);
1704 /* Stop requesting EEPROM access */
1705 eec
&= ~IXGBE_EEC_REQ
;
1706 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1708 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1711 * Delay before attempt to obtain semaphore again to allow FW
1712 * access. semaphore_delay is in ms we need us for usleep_range
1714 usleep_range(hw
->eeprom
.semaphore_delay
* 1000,
1715 hw
->eeprom
.semaphore_delay
* 2000);
1719 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1720 * @hw: pointer to hardware structure
1722 s32
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1731 /* Include 0x0-0x3F in the checksum */
1732 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1733 if (hw
->eeprom
.ops
.read(hw
, i
, &word
)) {
1734 hw_dbg(hw
, "EEPROM read failed\n");
1740 /* Include all data from pointers except for the fw pointer */
1741 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1742 if (hw
->eeprom
.ops
.read(hw
, i
, &pointer
)) {
1743 hw_dbg(hw
, "EEPROM read failed\n");
1744 return IXGBE_ERR_EEPROM
;
1747 /* If the pointer seems invalid */
1748 if (pointer
== 0xFFFF || pointer
== 0)
1751 if (hw
->eeprom
.ops
.read(hw
, pointer
, &length
)) {
1752 hw_dbg(hw
, "EEPROM read failed\n");
1753 return IXGBE_ERR_EEPROM
;
1756 if (length
== 0xFFFF || length
== 0)
1759 for (j
= pointer
+ 1; j
<= pointer
+ length
; j
++) {
1760 if (hw
->eeprom
.ops
.read(hw
, j
, &word
)) {
1761 hw_dbg(hw
, "EEPROM read failed\n");
1762 return IXGBE_ERR_EEPROM
;
1768 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1770 return (s32
)checksum
;
1774 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1775 * @hw: pointer to hardware structure
1776 * @checksum_val: calculated checksum
1778 * Performs checksum calculation and validates the EEPROM checksum. If the
1779 * caller does not need checksum_val, the value can be NULL.
1781 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1786 u16 read_checksum
= 0;
1789 * Read the first word from the EEPROM. If this times out or fails, do
1790 * not continue or we could be in for a very long wait while every
1793 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1795 hw_dbg(hw
, "EEPROM read failed\n");
1799 status
= hw
->eeprom
.ops
.calc_checksum(hw
);
1803 checksum
= (u16
)(status
& 0xffff);
1805 status
= hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1807 hw_dbg(hw
, "EEPROM read failed\n");
1811 /* Verify read checksum from EEPROM is the same as
1812 * calculated checksum
1814 if (read_checksum
!= checksum
)
1815 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1817 /* If the user cares, return the calculated checksum */
1819 *checksum_val
= checksum
;
1825 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1826 * @hw: pointer to hardware structure
1828 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1834 * Read the first word from the EEPROM. If this times out or fails, do
1835 * not continue or we could be in for a very long wait while every
1838 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1840 hw_dbg(hw
, "EEPROM read failed\n");
1844 status
= hw
->eeprom
.ops
.calc_checksum(hw
);
1848 checksum
= (u16
)(status
& 0xffff);
1850 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
, checksum
);
1856 * ixgbe_set_rar_generic - Set Rx address register
1857 * @hw: pointer to hardware structure
1858 * @index: Receive address register to write
1859 * @addr: Address to put into receive address register
1860 * @vmdq: VMDq "set" or "pool" index
1861 * @enable_addr: set flag that address is active
1863 * Puts an ethernet address into a receive address register.
1865 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1868 u32 rar_low
, rar_high
;
1869 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1871 /* Make sure we are using a valid rar index range */
1872 if (index
>= rar_entries
) {
1873 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1874 return IXGBE_ERR_INVALID_ARGUMENT
;
1877 /* setup VMDq pool selection before this RAR gets enabled */
1878 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1881 * HW expects these in little endian so we reverse the byte
1882 * order from network order (big endian) to little endian
1884 rar_low
= ((u32
)addr
[0] |
1885 ((u32
)addr
[1] << 8) |
1886 ((u32
)addr
[2] << 16) |
1887 ((u32
)addr
[3] << 24));
1889 * Some parts put the VMDq setting in the extra RAH bits,
1890 * so save everything except the lower 16 bits that hold part
1891 * of the address and the address valid bit.
1893 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1894 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1895 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1897 if (enable_addr
!= 0)
1898 rar_high
|= IXGBE_RAH_AV
;
1900 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1901 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1907 * ixgbe_clear_rar_generic - Remove Rx address register
1908 * @hw: pointer to hardware structure
1909 * @index: Receive address register to write
1911 * Clears an ethernet address from a receive address register.
1913 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1916 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1918 /* Make sure we are using a valid rar index range */
1919 if (index
>= rar_entries
) {
1920 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1921 return IXGBE_ERR_INVALID_ARGUMENT
;
1925 * Some parts put the VMDq setting in the extra RAH bits,
1926 * so save everything except the lower 16 bits that hold part
1927 * of the address and the address valid bit.
1929 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1930 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1932 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1933 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1935 /* clear VMDq pool/queue selection for this RAR */
1936 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1942 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1943 * @hw: pointer to hardware structure
1945 * Places the MAC address in receive address register 0 and clears the rest
1946 * of the receive address registers. Clears the multicast table. Assumes
1947 * the receiver is in reset when the routine is called.
1949 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1952 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1955 * If the current mac address is valid, assume it is a software override
1956 * to the permanent address.
1957 * Otherwise, use the permanent address from the eeprom.
1959 if (!is_valid_ether_addr(hw
->mac
.addr
)) {
1960 /* Get the MAC address from the RAR0 for later reference */
1961 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1963 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1965 /* Setup the receive address. */
1966 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1967 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1969 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1972 /* clear VMDq pool/queue selection for RAR 0 */
1973 hw
->mac
.ops
.clear_vmdq(hw
, 0, IXGBE_CLEAR_VMDQ_ALL
);
1975 hw
->addr_ctrl
.overflow_promisc
= 0;
1977 hw
->addr_ctrl
.rar_used_count
= 1;
1979 /* Zero out the other receive addresses. */
1980 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1981 for (i
= 1; i
< rar_entries
; i
++) {
1982 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1983 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1987 hw
->addr_ctrl
.mta_in_use
= 0;
1988 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1990 hw_dbg(hw
, " Clearing MTA\n");
1991 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1992 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1994 if (hw
->mac
.ops
.init_uta_tables
)
1995 hw
->mac
.ops
.init_uta_tables(hw
);
2001 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2002 * @hw: pointer to hardware structure
2003 * @mc_addr: the multicast address
2005 * Extracts the 12 bits, from a multicast address, to determine which
2006 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2007 * incoming rx multicast addresses, to determine the bit-vector to check in
2008 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2009 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2010 * to mc_filter_type.
2012 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
2016 switch (hw
->mac
.mc_filter_type
) {
2017 case 0: /* use bits [47:36] of the address */
2018 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
2020 case 1: /* use bits [46:35] of the address */
2021 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
2023 case 2: /* use bits [45:34] of the address */
2024 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
2026 case 3: /* use bits [43:32] of the address */
2027 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
2029 default: /* Invalid mc_filter_type */
2030 hw_dbg(hw
, "MC filter type param set incorrectly\n");
2034 /* vector can only be 12-bits or boundary will be exceeded */
2040 * ixgbe_set_mta - Set bit-vector in multicast table
2041 * @hw: pointer to hardware structure
2042 * @hash_value: Multicast address hash value
2044 * Sets the bit-vector in the multicast table.
2046 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
2052 hw
->addr_ctrl
.mta_in_use
++;
2054 vector
= ixgbe_mta_vector(hw
, mc_addr
);
2055 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
2058 * The MTA is a register array of 128 32-bit registers. It is treated
2059 * like an array of 4096 bits. We want to set bit
2060 * BitArray[vector_value]. So we figure out what register the bit is
2061 * in, read it, OR in the new bit, then write back the new value. The
2062 * register is determined by the upper 7 bits of the vector value and
2063 * the bit within that register are determined by the lower 5 bits of
2066 vector_reg
= (vector
>> 5) & 0x7F;
2067 vector_bit
= vector
& 0x1F;
2068 hw
->mac
.mta_shadow
[vector_reg
] |= BIT(vector_bit
);
2072 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2073 * @hw: pointer to hardware structure
2074 * @netdev: pointer to net device structure
2076 * The given list replaces any existing list. Clears the MC addrs from receive
2077 * address registers and the multicast table. Uses unused receive address
2078 * registers for the first multicast addresses, and hashes the rest into the
2081 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
2082 struct net_device
*netdev
)
2084 struct netdev_hw_addr
*ha
;
2088 * Set the new number of MC addresses that we are being requested to
2091 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
2092 hw
->addr_ctrl
.mta_in_use
= 0;
2094 /* Clear mta_shadow */
2095 hw_dbg(hw
, " Clearing MTA\n");
2096 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
2098 /* Update mta shadow */
2099 netdev_for_each_mc_addr(ha
, netdev
) {
2100 hw_dbg(hw
, " Adding the multicast addresses:\n");
2101 ixgbe_set_mta(hw
, ha
->addr
);
2105 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
2106 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_MTA(0), i
,
2107 hw
->mac
.mta_shadow
[i
]);
2109 if (hw
->addr_ctrl
.mta_in_use
> 0)
2110 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
2111 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
2113 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
2118 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2119 * @hw: pointer to hardware structure
2121 * Enables multicast address in RAR and the use of the multicast hash table.
2123 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
2125 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2127 if (a
->mta_in_use
> 0)
2128 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
2129 hw
->mac
.mc_filter_type
);
2135 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2136 * @hw: pointer to hardware structure
2138 * Disables multicast address in RAR and the use of the multicast hash table.
2140 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
2142 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2144 if (a
->mta_in_use
> 0)
2145 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
2151 * ixgbe_fc_enable_generic - Enable flow control
2152 * @hw: pointer to hardware structure
2154 * Enable flow control according to the current settings.
2156 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
)
2158 u32 mflcn_reg
, fccfg_reg
;
2163 /* Validate the water mark configuration. */
2164 if (!hw
->fc
.pause_time
)
2165 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
2167 /* Low water mark of zero causes XOFF floods */
2168 for (i
= 0; i
< MAX_TRAFFIC_CLASS
; i
++) {
2169 if ((hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) &&
2170 hw
->fc
.high_water
[i
]) {
2171 if (!hw
->fc
.low_water
[i
] ||
2172 hw
->fc
.low_water
[i
] >= hw
->fc
.high_water
[i
]) {
2173 hw_dbg(hw
, "Invalid water mark configuration\n");
2174 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
2179 /* Negotiate the fc mode to use */
2180 hw
->mac
.ops
.fc_autoneg(hw
);
2182 /* Disable any previous flow control settings */
2183 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
2184 mflcn_reg
&= ~(IXGBE_MFLCN_RPFCE_MASK
| IXGBE_MFLCN_RFCE
);
2186 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
2187 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
2190 * The possible values of fc.current_mode are:
2191 * 0: Flow control is completely disabled
2192 * 1: Rx flow control is enabled (we can receive pause frames,
2193 * but not send pause frames).
2194 * 2: Tx flow control is enabled (we can send pause frames but
2195 * we do not support receiving pause frames).
2196 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2199 switch (hw
->fc
.current_mode
) {
2202 * Flow control is disabled by software override or autoneg.
2203 * The code below will actually disable it in the HW.
2206 case ixgbe_fc_rx_pause
:
2208 * Rx Flow control is enabled and Tx Flow control is
2209 * disabled by software override. Since there really
2210 * isn't a way to advertise that we are capable of RX
2211 * Pause ONLY, we will advertise that we support both
2212 * symmetric and asymmetric Rx PAUSE. Later, we will
2213 * disable the adapter's ability to send PAUSE frames.
2215 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2217 case ixgbe_fc_tx_pause
:
2219 * Tx Flow control is enabled, and Rx Flow control is
2220 * disabled by software override.
2222 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2225 /* Flow control (both Rx and Tx) is enabled by SW override. */
2226 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2227 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2230 hw_dbg(hw
, "Flow control param set incorrectly\n");
2231 return IXGBE_ERR_CONFIG
;
2234 /* Set 802.3x based flow control settings. */
2235 mflcn_reg
|= IXGBE_MFLCN_DPF
;
2236 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
2237 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
2239 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2240 for (i
= 0; i
< MAX_TRAFFIC_CLASS
; i
++) {
2241 if ((hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) &&
2242 hw
->fc
.high_water
[i
]) {
2243 fcrtl
= (hw
->fc
.low_water
[i
] << 10) | IXGBE_FCRTL_XONE
;
2244 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), fcrtl
);
2245 fcrth
= (hw
->fc
.high_water
[i
] << 10) | IXGBE_FCRTH_FCEN
;
2247 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), 0);
2249 * In order to prevent Tx hangs when the internal Tx
2250 * switch is enabled we must set the high water mark
2251 * to the Rx packet buffer size - 24KB. This allows
2252 * the Tx switch to function even under heavy Rx
2255 fcrth
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(i
)) - 24576;
2258 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(i
), fcrth
);
2261 /* Configure pause time (2 TCs per register) */
2262 reg
= hw
->fc
.pause_time
* 0x00010001;
2263 for (i
= 0; i
< (MAX_TRAFFIC_CLASS
/ 2); i
++)
2264 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(i
), reg
);
2266 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, hw
->fc
.pause_time
/ 2);
2272 * ixgbe_negotiate_fc - Negotiate flow control
2273 * @hw: pointer to hardware structure
2274 * @adv_reg: flow control advertised settings
2275 * @lp_reg: link partner's flow control settings
2276 * @adv_sym: symmetric pause bit in advertisement
2277 * @adv_asm: asymmetric pause bit in advertisement
2278 * @lp_sym: symmetric pause bit in link partner advertisement
2279 * @lp_asm: asymmetric pause bit in link partner advertisement
2281 * Find the intersection between advertised settings and link partner's
2282 * advertised settings
2284 s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
2285 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
)
2287 if ((!(adv_reg
)) || (!(lp_reg
)))
2288 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2290 if ((adv_reg
& adv_sym
) && (lp_reg
& lp_sym
)) {
2292 * Now we need to check if the user selected Rx ONLY
2293 * of pause frames. In this case, we had to advertise
2294 * FULL flow control because we could not advertise RX
2295 * ONLY. Hence, we must now check to see if we need to
2296 * turn OFF the TRANSMISSION of PAUSE frames.
2298 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
2299 hw
->fc
.current_mode
= ixgbe_fc_full
;
2300 hw_dbg(hw
, "Flow Control = FULL.\n");
2302 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2303 hw_dbg(hw
, "Flow Control=RX PAUSE frames only\n");
2305 } else if (!(adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2306 (lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2307 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
2308 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
2309 } else if ((adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2310 !(lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2311 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2312 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
2314 hw
->fc
.current_mode
= ixgbe_fc_none
;
2315 hw_dbg(hw
, "Flow Control = NONE.\n");
2321 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2322 * @hw: pointer to hardware structure
2324 * Enable flow control according on 1 gig fiber.
2326 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
)
2328 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
2332 * On multispeed fiber at 1g, bail out if
2333 * - link is up but AN did not complete, or if
2334 * - link is up and AN completed but timed out
2337 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
2338 if ((!!(linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
2339 (!!(linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1))
2340 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2342 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
2343 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
2345 ret_val
= ixgbe_negotiate_fc(hw
, pcs_anadv_reg
,
2346 pcs_lpab_reg
, IXGBE_PCS1GANA_SYM_PAUSE
,
2347 IXGBE_PCS1GANA_ASM_PAUSE
,
2348 IXGBE_PCS1GANA_SYM_PAUSE
,
2349 IXGBE_PCS1GANA_ASM_PAUSE
);
2355 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2356 * @hw: pointer to hardware structure
2358 * Enable flow control according to IEEE clause 37.
2360 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
)
2362 u32 links2
, anlp1_reg
, autoc_reg
, links
;
2366 * On backplane, bail out if
2367 * - backplane autoneg was not completed, or if
2368 * - we are 82599 and link partner is not AN enabled
2370 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2371 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0)
2372 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2374 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
2375 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
2376 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0)
2377 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2380 * Read the 10g AN autoc and LP ability registers and resolve
2381 * local flow control settings accordingly
2383 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2384 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
2386 ret_val
= ixgbe_negotiate_fc(hw
, autoc_reg
,
2387 anlp1_reg
, IXGBE_AUTOC_SYM_PAUSE
, IXGBE_AUTOC_ASM_PAUSE
,
2388 IXGBE_ANLP1_SYM_PAUSE
, IXGBE_ANLP1_ASM_PAUSE
);
2394 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2395 * @hw: pointer to hardware structure
2397 * Enable flow control according to IEEE clause 37.
2399 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
)
2401 u16 technology_ability_reg
= 0;
2402 u16 lp_technology_ability_reg
= 0;
2404 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
2406 &technology_ability_reg
);
2407 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_LPA
,
2409 &lp_technology_ability_reg
);
2411 return ixgbe_negotiate_fc(hw
, (u32
)technology_ability_reg
,
2412 (u32
)lp_technology_ability_reg
,
2413 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
,
2414 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
);
2418 * ixgbe_fc_autoneg - Configure flow control
2419 * @hw: pointer to hardware structure
2421 * Compares our advertised flow control capabilities to those advertised by
2422 * our link partner, and determines the proper flow control mode to use.
2424 void ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
2426 s32 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2427 ixgbe_link_speed speed
;
2431 * AN should have completed when the cable was plugged in.
2432 * Look for reasons to bail out. Bail out if:
2433 * - FC autoneg is disabled, or if
2436 * Since we're being called from an LSC, link is already known to be up.
2437 * So use link_up_wait_to_complete=false.
2439 if (hw
->fc
.disable_fc_autoneg
)
2442 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2446 switch (hw
->phy
.media_type
) {
2447 /* Autoneg flow control on fiber adapters */
2448 case ixgbe_media_type_fiber
:
2449 if (speed
== IXGBE_LINK_SPEED_1GB_FULL
)
2450 ret_val
= ixgbe_fc_autoneg_fiber(hw
);
2453 /* Autoneg flow control on backplane adapters */
2454 case ixgbe_media_type_backplane
:
2455 ret_val
= ixgbe_fc_autoneg_backplane(hw
);
2458 /* Autoneg flow control on copper adapters */
2459 case ixgbe_media_type_copper
:
2460 if (ixgbe_device_supports_autoneg_fc(hw
))
2461 ret_val
= ixgbe_fc_autoneg_copper(hw
);
2470 hw
->fc
.fc_was_autonegged
= true;
2472 hw
->fc
.fc_was_autonegged
= false;
2473 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2478 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2479 * @hw: pointer to hardware structure
2481 * System-wide timeout range is encoded in PCIe Device Control2 register.
2483 * Add 10% to specified maximum and return the number of times to poll for
2484 * completion timeout, in units of 100 microsec. Never return less than
2485 * 800 = 80 millisec.
2487 static u32
ixgbe_pcie_timeout_poll(struct ixgbe_hw
*hw
)
2492 devctl2
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_CONTROL2
);
2493 devctl2
&= IXGBE_PCIDEVCTRL2_TIMEO_MASK
;
2496 case IXGBE_PCIDEVCTRL2_65_130ms
:
2497 pollcnt
= 1300; /* 130 millisec */
2499 case IXGBE_PCIDEVCTRL2_260_520ms
:
2500 pollcnt
= 5200; /* 520 millisec */
2502 case IXGBE_PCIDEVCTRL2_1_2s
:
2503 pollcnt
= 20000; /* 2 sec */
2505 case IXGBE_PCIDEVCTRL2_4_8s
:
2506 pollcnt
= 80000; /* 8 sec */
2508 case IXGBE_PCIDEVCTRL2_17_34s
:
2509 pollcnt
= 34000; /* 34 sec */
2511 case IXGBE_PCIDEVCTRL2_50_100us
: /* 100 microsecs */
2512 case IXGBE_PCIDEVCTRL2_1_2ms
: /* 2 millisecs */
2513 case IXGBE_PCIDEVCTRL2_16_32ms
: /* 32 millisec */
2514 case IXGBE_PCIDEVCTRL2_16_32ms_def
: /* 32 millisec default */
2516 pollcnt
= 800; /* 80 millisec minimum */
2520 /* add 10% to spec maximum */
2521 return (pollcnt
* 11) / 10;
2525 * ixgbe_disable_pcie_master - Disable PCI-express master access
2526 * @hw: pointer to hardware structure
2528 * Disables PCI-Express master access and verifies there are no pending
2529 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2530 * bit hasn't caused the master requests to be disabled, else 0
2531 * is returned signifying master requests disabled.
2533 static s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
2538 /* Always set this bit to ensure any future transactions are blocked */
2539 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, IXGBE_CTRL_GIO_DIS
);
2541 /* Poll for bit to read as set */
2542 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2543 if (IXGBE_READ_REG(hw
, IXGBE_CTRL
) & IXGBE_CTRL_GIO_DIS
)
2545 usleep_range(100, 120);
2547 if (i
>= IXGBE_PCI_MASTER_DISABLE_TIMEOUT
) {
2548 hw_dbg(hw
, "GIO disable did not set - requesting resets\n");
2549 goto gio_disable_fail
;
2552 /* Exit if master requests are blocked */
2553 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
) ||
2554 ixgbe_removed(hw
->hw_addr
))
2557 /* Poll for master request bit to clear */
2558 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2560 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2565 * Two consecutive resets are required via CTRL.RST per datasheet
2566 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2567 * of this need. The first reset prevents new master requests from
2568 * being issued by our device. We then must wait 1usec or more for any
2569 * remaining completions from the PCIe bus to trickle in, and then reset
2570 * again to clear out any effects they may have had on our device.
2572 hw_dbg(hw
, "GIO Master Disable bit didn't clear - requesting resets\n");
2574 hw
->mac
.flags
|= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
;
2576 if (hw
->mac
.type
>= ixgbe_mac_X550
)
2580 * Before proceeding, make sure that the PCIe block does not have
2581 * transactions pending.
2583 poll
= ixgbe_pcie_timeout_poll(hw
);
2584 for (i
= 0; i
< poll
; i
++) {
2586 value
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_STATUS
);
2587 if (ixgbe_removed(hw
->hw_addr
))
2589 if (!(value
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
2593 hw_dbg(hw
, "PCIe transaction pending bit also did not clear.\n");
2594 return IXGBE_ERR_MASTER_REQUESTS_PENDING
;
2598 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2599 * @hw: pointer to hardware structure
2600 * @mask: Mask to specify which semaphore to acquire
2602 * Acquires the SWFW semaphore through the GSSR register for the specified
2603 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2605 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u32 mask
)
2609 u32 fwmask
= mask
<< 5;
2613 for (i
= 0; i
< timeout
; i
++) {
2615 * SW NVM semaphore bit is used for access to all
2616 * SW_FW_SYNC bits (not just NVM)
2618 if (ixgbe_get_eeprom_semaphore(hw
))
2619 return IXGBE_ERR_SWFW_SYNC
;
2621 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2622 if (!(gssr
& (fwmask
| swmask
))) {
2624 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2625 ixgbe_release_eeprom_semaphore(hw
);
2628 /* Resource is currently in use by FW or SW */
2629 ixgbe_release_eeprom_semaphore(hw
);
2630 usleep_range(5000, 10000);
2634 /* If time expired clear the bits holding the lock and retry */
2635 if (gssr
& (fwmask
| swmask
))
2636 ixgbe_release_swfw_sync(hw
, gssr
& (fwmask
| swmask
));
2638 usleep_range(5000, 10000);
2639 return IXGBE_ERR_SWFW_SYNC
;
2643 * ixgbe_release_swfw_sync - Release SWFW semaphore
2644 * @hw: pointer to hardware structure
2645 * @mask: Mask to specify which semaphore to release
2647 * Releases the SWFW semaphore through the GSSR register for the specified
2648 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2650 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u32 mask
)
2655 ixgbe_get_eeprom_semaphore(hw
);
2657 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2659 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2661 ixgbe_release_eeprom_semaphore(hw
);
2665 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2666 * @hw: pointer to hardware structure
2667 * @reg_val: Value we read from AUTOC
2668 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2669 * true in this the generic case.
2671 * The default case requires no protection so just to the register read.
2673 s32
prot_autoc_read_generic(struct ixgbe_hw
*hw
, bool *locked
, u32
*reg_val
)
2676 *reg_val
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2681 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2682 * @hw: pointer to hardware structure
2683 * @reg_val: value to write to AUTOC
2684 * @locked: bool to indicate whether the SW/FW lock was already taken by
2687 s32
prot_autoc_write_generic(struct ixgbe_hw
*hw
, u32 reg_val
, bool locked
)
2689 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg_val
);
2694 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2695 * @hw: pointer to hardware structure
2697 * Stops the receive data path and waits for the HW to internally
2698 * empty the Rx security block.
2700 s32
ixgbe_disable_rx_buff_generic(struct ixgbe_hw
*hw
)
2702 #define IXGBE_MAX_SECRX_POLL 40
2706 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2707 secrxreg
|= IXGBE_SECRXCTRL_RX_DIS
;
2708 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2709 for (i
= 0; i
< IXGBE_MAX_SECRX_POLL
; i
++) {
2710 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXSTAT
);
2711 if (secrxreg
& IXGBE_SECRXSTAT_SECRX_RDY
)
2714 /* Use interrupt-safe sleep just in case */
2718 /* For informational purposes only */
2719 if (i
>= IXGBE_MAX_SECRX_POLL
)
2720 hw_dbg(hw
, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2727 * ixgbe_enable_rx_buff - Enables the receive data path
2728 * @hw: pointer to hardware structure
2730 * Enables the receive data path
2732 s32
ixgbe_enable_rx_buff_generic(struct ixgbe_hw
*hw
)
2736 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2737 secrxreg
&= ~IXGBE_SECRXCTRL_RX_DIS
;
2738 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2739 IXGBE_WRITE_FLUSH(hw
);
2745 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2746 * @hw: pointer to hardware structure
2747 * @regval: register value to write to RXCTRL
2749 * Enables the Rx DMA unit
2751 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2753 if (regval
& IXGBE_RXCTRL_RXEN
)
2754 hw
->mac
.ops
.enable_rx(hw
);
2756 hw
->mac
.ops
.disable_rx(hw
);
2762 * ixgbe_blink_led_start_generic - Blink LED based on index.
2763 * @hw: pointer to hardware structure
2764 * @index: led number to blink
2766 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2768 ixgbe_link_speed speed
= 0;
2769 bool link_up
= false;
2770 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2771 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2772 bool locked
= false;
2776 return IXGBE_ERR_PARAM
;
2779 * Link must be up to auto-blink the LEDs;
2780 * Force it if link is down.
2782 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2785 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, &autoc_reg
);
2789 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2790 autoc_reg
|= IXGBE_AUTOC_FLU
;
2792 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, autoc_reg
, locked
);
2796 IXGBE_WRITE_FLUSH(hw
);
2798 usleep_range(10000, 20000);
2801 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2802 led_reg
|= IXGBE_LED_BLINK(index
);
2803 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2804 IXGBE_WRITE_FLUSH(hw
);
2810 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2811 * @hw: pointer to hardware structure
2812 * @index: led number to stop blinking
2814 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2817 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2818 bool locked
= false;
2822 return IXGBE_ERR_PARAM
;
2824 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, &autoc_reg
);
2828 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2829 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2831 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, autoc_reg
, locked
);
2835 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2836 led_reg
&= ~IXGBE_LED_BLINK(index
);
2837 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2838 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2839 IXGBE_WRITE_FLUSH(hw
);
2845 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2846 * @hw: pointer to hardware structure
2847 * @san_mac_offset: SAN MAC address offset
2849 * This function will read the EEPROM location for the SAN MAC address
2850 * pointer, and returns the value at that location. This is used in both
2851 * get and set mac_addr routines.
2853 static s32
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2854 u16
*san_mac_offset
)
2859 * First read the EEPROM pointer to see if the MAC addresses are
2862 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
,
2865 hw_err(hw
, "eeprom read at offset %d failed\n",
2866 IXGBE_SAN_MAC_ADDR_PTR
);
2872 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2873 * @hw: pointer to hardware structure
2874 * @san_mac_addr: SAN MAC address
2876 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2877 * per-port, so set_lan_id() must be called before reading the addresses.
2878 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2879 * upon for non-SFP connections, so we must call it here.
2881 s32
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2883 u16 san_mac_data
, san_mac_offset
;
2888 * First read the EEPROM pointer to see if the MAC addresses are
2889 * available. If they're not, no point in calling set_lan_id() here.
2891 ret_val
= ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2892 if (ret_val
|| san_mac_offset
== 0 || san_mac_offset
== 0xFFFF)
2894 goto san_mac_addr_clr
;
2896 /* make sure we know which port we need to program */
2897 hw
->mac
.ops
.set_lan_id(hw
);
2898 /* apply the port offset to the address offset */
2899 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2900 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2901 for (i
= 0; i
< 3; i
++) {
2902 ret_val
= hw
->eeprom
.ops
.read(hw
, san_mac_offset
,
2905 hw_err(hw
, "eeprom read at offset %d failed\n",
2907 goto san_mac_addr_clr
;
2909 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2910 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2916 /* No addresses available in this EEPROM. It's not necessarily an
2917 * error though, so just wipe the local address and return.
2919 for (i
= 0; i
< 6; i
++)
2920 san_mac_addr
[i
] = 0xFF;
2925 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2926 * @hw: pointer to hardware structure
2928 * Read PCIe configuration space, and get the MSI-X vector count from
2929 * the capabilities table.
2931 u16
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2937 switch (hw
->mac
.type
) {
2938 case ixgbe_mac_82598EB
:
2939 pcie_offset
= IXGBE_PCIE_MSIX_82598_CAPS
;
2940 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82598
;
2942 case ixgbe_mac_82599EB
:
2943 case ixgbe_mac_X540
:
2944 case ixgbe_mac_X550
:
2945 case ixgbe_mac_X550EM_x
:
2946 case ixgbe_mac_x550em_a
:
2947 pcie_offset
= IXGBE_PCIE_MSIX_82599_CAPS
;
2948 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82599
;
2954 msix_count
= ixgbe_read_pci_cfg_word(hw
, pcie_offset
);
2955 if (ixgbe_removed(hw
->hw_addr
))
2957 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2959 /* MSI-X count is zero-based in HW */
2962 if (msix_count
> max_msix_count
)
2963 msix_count
= max_msix_count
;
2969 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2970 * @hw: pointer to hardware struct
2971 * @rar: receive address register index to disassociate
2972 * @vmdq: VMDq pool index to remove from the rar
2974 s32
ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2976 u32 mpsar_lo
, mpsar_hi
;
2977 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2979 /* Make sure we are using a valid rar index range */
2980 if (rar
>= rar_entries
) {
2981 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2982 return IXGBE_ERR_INVALID_ARGUMENT
;
2985 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2986 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2988 if (ixgbe_removed(hw
->hw_addr
))
2991 if (!mpsar_lo
&& !mpsar_hi
)
2994 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2996 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
3000 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
3003 } else if (vmdq
< 32) {
3004 mpsar_lo
&= ~BIT(vmdq
);
3005 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
3007 mpsar_hi
&= ~BIT(vmdq
- 32);
3008 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
3011 /* was that the last pool using this rar? */
3012 if (mpsar_lo
== 0 && mpsar_hi
== 0 &&
3013 rar
!= 0 && rar
!= hw
->mac
.san_mac_rar_index
)
3014 hw
->mac
.ops
.clear_rar(hw
, rar
);
3020 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3021 * @hw: pointer to hardware struct
3022 * @rar: receive address register index to associate with a VMDq index
3023 * @vmdq: VMDq pool index
3025 s32
ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
3028 u32 rar_entries
= hw
->mac
.num_rar_entries
;
3030 /* Make sure we are using a valid rar index range */
3031 if (rar
>= rar_entries
) {
3032 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
3033 return IXGBE_ERR_INVALID_ARGUMENT
;
3037 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
3039 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
3041 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
3042 mpsar
|= BIT(vmdq
- 32);
3043 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
3049 * This function should only be involved in the IOV mode.
3050 * In IOV mode, Default pool is next pool after the number of
3051 * VFs advertized and not 0.
3052 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3054 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3055 * @hw: pointer to hardware struct
3056 * @vmdq: VMDq pool index
3058 s32
ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw
*hw
, u32 vmdq
)
3060 u32 rar
= hw
->mac
.san_mac_rar_index
;
3063 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), BIT(vmdq
));
3064 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
3066 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
3067 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), BIT(vmdq
- 32));
3074 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3075 * @hw: pointer to hardware structure
3077 s32
ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
3081 for (i
= 0; i
< 128; i
++)
3082 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
3088 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3089 * @hw: pointer to hardware structure
3090 * @vlan: VLAN id to write to VLAN filter
3092 * return the VLVF index where this VLAN id should be placed
3095 static s32
ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
, bool vlvf_bypass
)
3097 s32 regindex
, first_empty_slot
;
3100 /* short cut the special case */
3104 /* if vlvf_bypass is set we don't want to use an empty slot, we
3105 * will simply bypass the VLVF if there are no entries present in the
3106 * VLVF that contain our VLAN
3108 first_empty_slot
= vlvf_bypass
? IXGBE_ERR_NO_SPACE
: 0;
3110 /* add VLAN enable bit for comparison */
3111 vlan
|= IXGBE_VLVF_VIEN
;
3113 /* Search for the vlan id in the VLVF entries. Save off the first empty
3114 * slot found along the way.
3116 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3118 for (regindex
= IXGBE_VLVF_ENTRIES
; --regindex
;) {
3119 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
3122 if (!first_empty_slot
&& !bits
)
3123 first_empty_slot
= regindex
;
3126 /* If we are here then we didn't find the VLAN. Return first empty
3127 * slot we found during our search, else error.
3129 if (!first_empty_slot
)
3130 hw_dbg(hw
, "No space in VLVF.\n");
3132 return first_empty_slot
? : IXGBE_ERR_NO_SPACE
;
3136 * ixgbe_set_vfta_generic - Set VLAN filter table
3137 * @hw: pointer to hardware structure
3138 * @vlan: VLAN id to write to VLAN filter
3139 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3140 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3141 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3143 * Turn on/off specified VLAN in the VLAN filter table.
3145 s32
ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
3146 bool vlan_on
, bool vlvf_bypass
)
3148 u32 regidx
, vfta_delta
, vfta
, bits
;
3151 if ((vlan
> 4095) || (vind
> 63))
3152 return IXGBE_ERR_PARAM
;
3155 * this is a 2 part operation - first the VFTA, then the
3156 * VLVF and VLVFB if VT Mode is set
3157 * We don't write the VFTA until we know the VLVF part succeeded.
3161 * The VFTA is a bitstring made up of 128 32-bit registers
3162 * that enable the particular VLAN id, much like the MTA:
3163 * bits[11-5]: which register
3164 * bits[4-0]: which bit in the register
3167 vfta_delta
= BIT(vlan
% 32);
3168 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regidx
));
3170 /* vfta_delta represents the difference between the current value
3171 * of vfta and the value we want in the register. Since the diff
3172 * is an XOR mask we can just update vfta using an XOR.
3174 vfta_delta
&= vlan_on
? ~vfta
: vfta
;
3180 * make sure the vlan is in VLVF
3181 * set the vind bit in the matching VLVFB
3183 * clear the pool bit and possibly the vind
3185 if (!(IXGBE_READ_REG(hw
, IXGBE_VT_CTL
) & IXGBE_VT_CTL_VT_ENABLE
))
3188 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
, vlvf_bypass
);
3189 if (vlvf_index
< 0) {
3195 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32));
3197 /* set the pool bit */
3198 bits
|= BIT(vind
% 32);
3202 /* clear the pool bit */
3203 bits
^= BIT(vind
% 32);
3206 !IXGBE_READ_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + 1 - vind
/ 32))) {
3207 /* Clear VFTA first, then disable VLVF. Otherwise
3208 * we run the risk of stray packets leaking into
3209 * the PF via the default pool
3212 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regidx
), vfta
);
3214 /* disable VLVF and clear remaining bit from pool */
3215 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
3216 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32), 0);
3221 /* If there are still bits set in the VLVFB registers
3222 * for the VLAN ID indicated we need to see if the
3223 * caller is requesting that we clear the VFTA entry bit.
3224 * If the caller has requested that we clear the VFTA
3225 * entry bit but there are still pools/VFs using this VLAN
3226 * ID entry then ignore the request. We're not worried
3227 * about the case where we're turning the VFTA VLAN ID
3228 * entry bit on, only when requested to turn it off as
3229 * there may be multiple pools and/or VFs using the
3230 * VLAN ID entry. In that case we cannot clear the
3231 * VFTA bit until all pools/VFs using that VLAN ID have also
3232 * been cleared. This will be indicated by "bits" being
3238 /* record pool change and enable VLAN ID if not already enabled */
3239 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32), bits
);
3240 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), IXGBE_VLVF_VIEN
| vlan
);
3243 /* Update VFTA now that we are ready for traffic */
3245 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regidx
), vfta
);
3251 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3252 * @hw: pointer to hardware structure
3254 * Clears the VLAN filer table, and the VMDq index associated with the filter
3256 s32
ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
3260 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
3261 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
3263 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
3264 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
3265 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
* 2), 0);
3266 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
* 2 + 1), 0);
3273 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3274 * @hw: pointer to hardware structure
3276 * Contains the logic to identify if we need to verify link for the
3279 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw
*hw
)
3281 /* Does FW say we need the fix */
3282 if (!hw
->need_crosstalk_fix
)
3285 /* Only consider SFP+ PHYs i.e. media type fiber */
3286 switch (hw
->mac
.ops
.get_media_type(hw
)) {
3287 case ixgbe_media_type_fiber
:
3288 case ixgbe_media_type_fiber_qsfp
:
3298 * ixgbe_check_mac_link_generic - Determine link and speed status
3299 * @hw: pointer to hardware structure
3300 * @speed: pointer to link speed
3301 * @link_up: true when link is up
3302 * @link_up_wait_to_complete: bool used to wait for link up or not
3304 * Reads the links register to determine if link is up and the current speed
3306 s32
ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
3307 bool *link_up
, bool link_up_wait_to_complete
)
3309 u32 links_reg
, links_orig
;
3312 /* If Crosstalk fix enabled do the sanity check of making sure
3313 * the SFP+ cage is full.
3315 if (ixgbe_need_crosstalk_fix(hw
)) {
3318 switch (hw
->mac
.type
) {
3319 case ixgbe_mac_82599EB
:
3320 sfp_cage_full
= IXGBE_READ_REG(hw
, IXGBE_ESDP
) &
3323 case ixgbe_mac_X550EM_x
:
3324 case ixgbe_mac_x550em_a
:
3325 sfp_cage_full
= IXGBE_READ_REG(hw
, IXGBE_ESDP
) &
3329 /* sanity check - No SFP+ devices here */
3330 sfp_cage_full
= false;
3334 if (!sfp_cage_full
) {
3336 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3341 /* clear the old state */
3342 links_orig
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3344 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3346 if (links_orig
!= links_reg
) {
3347 hw_dbg(hw
, "LINKS changed from %08X to %08X\n",
3348 links_orig
, links_reg
);
3351 if (link_up_wait_to_complete
) {
3352 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
3353 if (links_reg
& IXGBE_LINKS_UP
) {
3360 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3363 if (links_reg
& IXGBE_LINKS_UP
)
3369 switch (links_reg
& IXGBE_LINKS_SPEED_82599
) {
3370 case IXGBE_LINKS_SPEED_10G_82599
:
3371 if ((hw
->mac
.type
>= ixgbe_mac_X550
) &&
3372 (links_reg
& IXGBE_LINKS_SPEED_NON_STD
))
3373 *speed
= IXGBE_LINK_SPEED_2_5GB_FULL
;
3375 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
3377 case IXGBE_LINKS_SPEED_1G_82599
:
3378 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
3380 case IXGBE_LINKS_SPEED_100_82599
:
3381 if ((hw
->mac
.type
>= ixgbe_mac_X550
) &&
3382 (links_reg
& IXGBE_LINKS_SPEED_NON_STD
))
3383 *speed
= IXGBE_LINK_SPEED_5GB_FULL
;
3385 *speed
= IXGBE_LINK_SPEED_100_FULL
;
3387 case IXGBE_LINKS_SPEED_10_X550EM_A
:
3388 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3389 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_A_1G_T
||
3390 hw
->device_id
== IXGBE_DEV_ID_X550EM_A_1G_T_L
) {
3391 *speed
= IXGBE_LINK_SPEED_10_FULL
;
3395 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3402 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3404 * @hw: pointer to hardware structure
3405 * @wwnn_prefix: the alternative WWNN prefix
3406 * @wwpn_prefix: the alternative WWPN prefix
3408 * This function will read the EEPROM from the alternative SAN MAC address
3409 * block to check the support for the alternative WWNN/WWPN prefix support.
3411 s32
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
3415 u16 alt_san_mac_blk_offset
;
3417 /* clear output first */
3418 *wwnn_prefix
= 0xFFFF;
3419 *wwpn_prefix
= 0xFFFF;
3421 /* check if alternative SAN MAC is supported */
3422 offset
= IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
;
3423 if (hw
->eeprom
.ops
.read(hw
, offset
, &alt_san_mac_blk_offset
))
3424 goto wwn_prefix_err
;
3426 if ((alt_san_mac_blk_offset
== 0) ||
3427 (alt_san_mac_blk_offset
== 0xFFFF))
3430 /* check capability in alternative san mac address block */
3431 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
3432 if (hw
->eeprom
.ops
.read(hw
, offset
, &caps
))
3433 goto wwn_prefix_err
;
3434 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
3437 /* get the corresponding prefix for WWNN/WWPN */
3438 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
3439 if (hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
))
3440 hw_err(hw
, "eeprom read at offset %d failed\n", offset
);
3442 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
3443 if (hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
))
3444 goto wwn_prefix_err
;
3449 hw_err(hw
, "eeprom read at offset %d failed\n", offset
);
3454 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3455 * @hw: pointer to hardware structure
3456 * @enable: enable or disable switch for MAC anti-spoofing
3457 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3460 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3462 int vf_target_reg
= vf
>> 3;
3463 int vf_target_shift
= vf
% 8;
3466 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3469 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3471 pfvfspoof
|= BIT(vf_target_shift
);
3473 pfvfspoof
&= ~BIT(vf_target_shift
);
3474 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3478 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3479 * @hw: pointer to hardware structure
3480 * @enable: enable or disable switch for VLAN anti-spoofing
3481 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3484 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3486 int vf_target_reg
= vf
>> 3;
3487 int vf_target_shift
= vf
% 8 + IXGBE_SPOOF_VLANAS_SHIFT
;
3490 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3493 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3495 pfvfspoof
|= BIT(vf_target_shift
);
3497 pfvfspoof
&= ~BIT(vf_target_shift
);
3498 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3502 * ixgbe_get_device_caps_generic - Get additional device capabilities
3503 * @hw: pointer to hardware structure
3504 * @device_caps: the EEPROM word with the extra device capabilities
3506 * This function will read the EEPROM location for the device capabilities,
3507 * and return the word through device_caps.
3509 s32
ixgbe_get_device_caps_generic(struct ixgbe_hw
*hw
, u16
*device_caps
)
3511 hw
->eeprom
.ops
.read(hw
, IXGBE_DEVICE_CAPS
, device_caps
);
3517 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3518 * @hw: pointer to hardware structure
3519 * @num_pb: number of packet buffers to allocate
3520 * @headroom: reserve n KB of headroom
3521 * @strategy: packet buffer allocation strategy
3523 void ixgbe_set_rxpba_generic(struct ixgbe_hw
*hw
,
3528 u32 pbsize
= hw
->mac
.rx_pb_size
;
3530 u32 rxpktsize
, txpktsize
, txpbthresh
;
3532 /* Reserve headroom */
3538 /* Divide remaining packet buffer space amongst the number
3539 * of packet buffers requested using supplied strategy.
3542 case (PBA_STRATEGY_WEIGHTED
):
3543 /* pba_80_48 strategy weight first half of packet buffer with
3544 * 5/8 of the packet buffer space.
3546 rxpktsize
= ((pbsize
* 5 * 2) / (num_pb
* 8));
3547 pbsize
-= rxpktsize
* (num_pb
/ 2);
3548 rxpktsize
<<= IXGBE_RXPBSIZE_SHIFT
;
3549 for (; i
< (num_pb
/ 2); i
++)
3550 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3551 /* Fall through to configure remaining packet buffers */
3552 case (PBA_STRATEGY_EQUAL
):
3553 /* Divide the remaining Rx packet buffer evenly among the TCs */
3554 rxpktsize
= (pbsize
/ (num_pb
- i
)) << IXGBE_RXPBSIZE_SHIFT
;
3555 for (; i
< num_pb
; i
++)
3556 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3563 * Setup Tx packet buffer and threshold equally for all TCs
3564 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3565 * 10 since the largest packet we support is just over 9K.
3567 txpktsize
= IXGBE_TXPBSIZE_MAX
/ num_pb
;
3568 txpbthresh
= (txpktsize
/ 1024) - IXGBE_TXPKT_SIZE_MAX
;
3569 for (i
= 0; i
< num_pb
; i
++) {
3570 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), txpktsize
);
3571 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), txpbthresh
);
3574 /* Clear unused TCs, if any, to zero buffer size*/
3575 for (; i
< IXGBE_MAX_PB
; i
++) {
3576 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), 0);
3577 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), 0);
3578 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), 0);
3583 * ixgbe_calculate_checksum - Calculate checksum for buffer
3584 * @buffer: pointer to EEPROM
3585 * @length: size of EEPROM to calculate a checksum for
3587 * Calculates the checksum for some buffer on a specified length. The
3588 * checksum calculated is returned.
3590 u8
ixgbe_calculate_checksum(u8
*buffer
, u32 length
)
3598 for (i
= 0; i
< length
; i
++)
3601 return (u8
) (0 - sum
);
3605 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3606 * @hw: pointer to the HW structure
3607 * @buffer: command to write and where the return status will be placed
3608 * @length: length of buffer, must be multiple of 4 bytes
3609 * @timeout: time in ms to wait for command completion
3611 * Communicates with the manageability block. On success return 0
3612 * else returns semaphore error when encountering an error acquiring
3613 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3615 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3618 s32
ixgbe_hic_unlocked(struct ixgbe_hw
*hw
, u32
*buffer
, u32 length
,
3624 if (!length
|| length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3625 hw_dbg(hw
, "Buffer length failure buffersize-%d.\n", length
);
3626 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3629 /* Set bit 9 of FWSTS clearing FW reset indication */
3630 fwsts
= IXGBE_READ_REG(hw
, IXGBE_FWSTS
);
3631 IXGBE_WRITE_REG(hw
, IXGBE_FWSTS
, fwsts
| IXGBE_FWSTS_FWRI
);
3633 /* Check that the host interface is enabled. */
3634 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3635 if (!(hicr
& IXGBE_HICR_EN
)) {
3636 hw_dbg(hw
, "IXGBE_HOST_EN bit disabled.\n");
3637 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3640 /* Calculate length in DWORDs. We must be DWORD aligned */
3641 if (length
% sizeof(u32
)) {
3642 hw_dbg(hw
, "Buffer length failure, not aligned to dword");
3643 return IXGBE_ERR_INVALID_ARGUMENT
;
3646 dword_len
= length
>> 2;
3648 /* The device driver writes the relevant command block
3649 * into the ram area.
3651 for (i
= 0; i
< dword_len
; i
++)
3652 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_FLEX_MNG
,
3653 i
, cpu_to_le32(buffer
[i
]));
3655 /* Setting this bit tells the ARC that a new command is pending. */
3656 IXGBE_WRITE_REG(hw
, IXGBE_HICR
, hicr
| IXGBE_HICR_C
);
3658 for (i
= 0; i
< timeout
; i
++) {
3659 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3660 if (!(hicr
& IXGBE_HICR_C
))
3662 usleep_range(1000, 2000);
3665 /* Check command successful completion. */
3666 if ((timeout
&& i
== timeout
) ||
3667 !(IXGBE_READ_REG(hw
, IXGBE_HICR
) & IXGBE_HICR_SV
))
3668 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3674 * ixgbe_host_interface_command - Issue command to manageability block
3675 * @hw: pointer to the HW structure
3676 * @buffer: contains the command to write and where the return status will
3678 * @length: length of buffer, must be multiple of 4 bytes
3679 * @timeout: time in ms to wait for command completion
3680 * @return_data: read and return data from the buffer (true) or not (false)
3681 * Needed because FW structures are big endian and decoding of
3682 * these fields can be 8 bit or 16 bit based on command. Decoding
3683 * is not easily understood without making a table of commands.
3684 * So we will leave this up to the caller to read back the data
3687 * Communicates with the manageability block. On success return 0
3688 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3690 s32
ixgbe_host_interface_command(struct ixgbe_hw
*hw
, void *buffer
,
3691 u32 length
, u32 timeout
,
3694 u32 hdr_size
= sizeof(struct ixgbe_hic_hdr
);
3696 struct ixgbe_hic_hdr hdr
;
3699 u16 buf_len
, dword_len
;
3703 if (!length
|| length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3704 hw_dbg(hw
, "Buffer length failure buffersize-%d.\n", length
);
3705 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3707 /* Take management host interface semaphore */
3708 status
= hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);
3712 status
= ixgbe_hic_unlocked(hw
, buffer
, length
, timeout
);
3719 /* Calculate length in DWORDs */
3720 dword_len
= hdr_size
>> 2;
3722 /* first pull in the header so we know the buffer length */
3723 for (bi
= 0; bi
< dword_len
; bi
++) {
3724 bp
->u32arr
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3725 le32_to_cpus(&bp
->u32arr
[bi
]);
3728 /* If there is any thing in data position pull it in */
3729 buf_len
= bp
->hdr
.buf_len
;
3733 if (length
< round_up(buf_len
, 4) + hdr_size
) {
3734 hw_dbg(hw
, "Buffer not large enough for reply message.\n");
3735 status
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3739 /* Calculate length in DWORDs, add 3 for odd lengths */
3740 dword_len
= (buf_len
+ 3) >> 2;
3742 /* Pull in the rest of the buffer (bi is where we left off) */
3743 for (; bi
<= dword_len
; bi
++) {
3744 bp
->u32arr
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3745 le32_to_cpus(&bp
->u32arr
[bi
]);
3749 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);
3755 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3756 * @hw: pointer to the HW structure
3757 * @maj: driver version major number
3758 * @min: driver version minor number
3759 * @build: driver version build number
3760 * @sub: driver version sub build number
3761 * @len: length of driver_ver string
3762 * @driver_ver: driver string
3764 * Sends driver version number to firmware through the manageability
3765 * block. On success return 0
3766 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3767 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3769 s32
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw
*hw
, u8 maj
, u8 min
,
3770 u8 build
, u8 sub
, __always_unused u16 len
,
3771 __always_unused
const char *driver_ver
)
3773 struct ixgbe_hic_drv_info fw_cmd
;
3777 fw_cmd
.hdr
.cmd
= FW_CEM_CMD_DRIVER_INFO
;
3778 fw_cmd
.hdr
.buf_len
= FW_CEM_CMD_DRIVER_INFO_LEN
;
3779 fw_cmd
.hdr
.cmd_or_resp
.cmd_resv
= FW_CEM_CMD_RESERVED
;
3780 fw_cmd
.port_num
= hw
->bus
.func
;
3781 fw_cmd
.ver_maj
= maj
;
3782 fw_cmd
.ver_min
= min
;
3783 fw_cmd
.ver_build
= build
;
3784 fw_cmd
.ver_sub
= sub
;
3785 fw_cmd
.hdr
.checksum
= 0;
3786 fw_cmd
.hdr
.checksum
= ixgbe_calculate_checksum((u8
*)&fw_cmd
,
3787 (FW_CEM_HDR_LEN
+ fw_cmd
.hdr
.buf_len
));
3791 for (i
= 0; i
<= FW_CEM_MAX_RETRIES
; i
++) {
3792 ret_val
= ixgbe_host_interface_command(hw
, &fw_cmd
,
3794 IXGBE_HI_COMMAND_TIMEOUT
,
3799 if (fw_cmd
.hdr
.cmd_or_resp
.ret_status
==
3800 FW_CEM_RESP_STATUS_SUCCESS
)
3803 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3812 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3813 * @hw: pointer to the hardware structure
3815 * The 82599 and x540 MACs can experience issues if TX work is still pending
3816 * when a reset occurs. This function prevents this by flushing the PCIe
3817 * buffers on the system.
3819 void ixgbe_clear_tx_pending(struct ixgbe_hw
*hw
)
3821 u32 gcr_ext
, hlreg0
, i
, poll
;
3825 * If double reset is not requested then all transactions should
3826 * already be clear and as such there is no work to do
3828 if (!(hw
->mac
.flags
& IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
))
3832 * Set loopback enable to prevent any transmits from being sent
3833 * should the link come up. This assumes that the RXCTRL.RXEN bit
3834 * has already been cleared.
3836 hlreg0
= IXGBE_READ_REG(hw
, IXGBE_HLREG0
);
3837 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
| IXGBE_HLREG0_LPBK
);
3839 /* wait for a last completion before clearing buffers */
3840 IXGBE_WRITE_FLUSH(hw
);
3841 usleep_range(3000, 6000);
3843 /* Before proceeding, make sure that the PCIe block does not have
3844 * transactions pending.
3846 poll
= ixgbe_pcie_timeout_poll(hw
);
3847 for (i
= 0; i
< poll
; i
++) {
3848 usleep_range(100, 200);
3849 value
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_STATUS
);
3850 if (ixgbe_removed(hw
->hw_addr
))
3852 if (!(value
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
3856 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3857 gcr_ext
= IXGBE_READ_REG(hw
, IXGBE_GCR_EXT
);
3858 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
,
3859 gcr_ext
| IXGBE_GCR_EXT_BUFFERS_CLEAR
);
3861 /* Flush all writes and allow 20usec for all transactions to clear */
3862 IXGBE_WRITE_FLUSH(hw
);
3865 /* restore previous register values */
3866 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
, gcr_ext
);
3867 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
);
3870 static const u8 ixgbe_emc_temp_data
[4] = {
3871 IXGBE_EMC_INTERNAL_DATA
,
3872 IXGBE_EMC_DIODE1_DATA
,
3873 IXGBE_EMC_DIODE2_DATA
,
3874 IXGBE_EMC_DIODE3_DATA
3876 static const u8 ixgbe_emc_therm_limit
[4] = {
3877 IXGBE_EMC_INTERNAL_THERM_LIMIT
,
3878 IXGBE_EMC_DIODE1_THERM_LIMIT
,
3879 IXGBE_EMC_DIODE2_THERM_LIMIT
,
3880 IXGBE_EMC_DIODE3_THERM_LIMIT
3884 * ixgbe_get_ets_data - Extracts the ETS bit data
3885 * @hw: pointer to hardware structure
3886 * @ets_cfg: extected ETS data
3887 * @ets_offset: offset of ETS data
3889 * Returns error code.
3891 static s32
ixgbe_get_ets_data(struct ixgbe_hw
*hw
, u16
*ets_cfg
,
3896 status
= hw
->eeprom
.ops
.read(hw
, IXGBE_ETS_CFG
, ets_offset
);
3900 if ((*ets_offset
== 0x0000) || (*ets_offset
== 0xFFFF))
3901 return IXGBE_NOT_IMPLEMENTED
;
3903 status
= hw
->eeprom
.ops
.read(hw
, *ets_offset
, ets_cfg
);
3907 if ((*ets_cfg
& IXGBE_ETS_TYPE_MASK
) != IXGBE_ETS_TYPE_EMC_SHIFTED
)
3908 return IXGBE_NOT_IMPLEMENTED
;
3914 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3915 * @hw: pointer to hardware structure
3917 * Returns the thermal sensor data structure
3919 s32
ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw
*hw
)
3927 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3929 /* Only support thermal sensors attached to physical port 0 */
3930 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
))
3931 return IXGBE_NOT_IMPLEMENTED
;
3933 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3937 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
3938 if (num_sensors
> IXGBE_MAX_SENSORS
)
3939 num_sensors
= IXGBE_MAX_SENSORS
;
3941 for (i
= 0; i
< num_sensors
; i
++) {
3945 status
= hw
->eeprom
.ops
.read(hw
, (ets_offset
+ 1 + i
),
3950 sensor_index
= ((ets_sensor
& IXGBE_ETS_DATA_INDEX_MASK
) >>
3951 IXGBE_ETS_DATA_INDEX_SHIFT
);
3952 sensor_location
= ((ets_sensor
& IXGBE_ETS_DATA_LOC_MASK
) >>
3953 IXGBE_ETS_DATA_LOC_SHIFT
);
3955 if (sensor_location
!= 0) {
3956 status
= hw
->phy
.ops
.read_i2c_byte(hw
,
3957 ixgbe_emc_temp_data
[sensor_index
],
3958 IXGBE_I2C_THERMAL_SENSOR_ADDR
,
3959 &data
->sensor
[i
].temp
);
3969 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3970 * @hw: pointer to hardware structure
3972 * Inits the thermal sensor thresholds according to the NVM map
3973 * and save off the threshold and location values into mac.thermal_sensor_data
3975 s32
ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw
*hw
)
3981 u8 low_thresh_delta
;
3985 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3987 memset(data
, 0, sizeof(struct ixgbe_thermal_sensor_data
));
3989 /* Only support thermal sensors attached to physical port 0 */
3990 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
))
3991 return IXGBE_NOT_IMPLEMENTED
;
3993 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3997 low_thresh_delta
= ((ets_cfg
& IXGBE_ETS_LTHRES_DELTA_MASK
) >>
3998 IXGBE_ETS_LTHRES_DELTA_SHIFT
);
3999 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
4000 if (num_sensors
> IXGBE_MAX_SENSORS
)
4001 num_sensors
= IXGBE_MAX_SENSORS
;
4003 for (i
= 0; i
< num_sensors
; i
++) {
4007 if (hw
->eeprom
.ops
.read(hw
, ets_offset
+ 1 + i
, &ets_sensor
)) {
4008 hw_err(hw
, "eeprom read at offset %d failed\n",
4009 ets_offset
+ 1 + i
);
4012 sensor_index
= ((ets_sensor
& IXGBE_ETS_DATA_INDEX_MASK
) >>
4013 IXGBE_ETS_DATA_INDEX_SHIFT
);
4014 sensor_location
= ((ets_sensor
& IXGBE_ETS_DATA_LOC_MASK
) >>
4015 IXGBE_ETS_DATA_LOC_SHIFT
);
4016 therm_limit
= ets_sensor
& IXGBE_ETS_DATA_HTHRESH_MASK
;
4018 hw
->phy
.ops
.write_i2c_byte(hw
,
4019 ixgbe_emc_therm_limit
[sensor_index
],
4020 IXGBE_I2C_THERMAL_SENSOR_ADDR
, therm_limit
);
4022 if (sensor_location
== 0)
4025 data
->sensor
[i
].location
= sensor_location
;
4026 data
->sensor
[i
].caution_thresh
= therm_limit
;
4027 data
->sensor
[i
].max_op_thresh
= therm_limit
- low_thresh_delta
;
4033 void ixgbe_disable_rx_generic(struct ixgbe_hw
*hw
)
4037 rxctrl
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
4038 if (rxctrl
& IXGBE_RXCTRL_RXEN
) {
4039 if (hw
->mac
.type
!= ixgbe_mac_82598EB
) {
4042 pfdtxgswc
= IXGBE_READ_REG(hw
, IXGBE_PFDTXGSWC
);
4043 if (pfdtxgswc
& IXGBE_PFDTXGSWC_VT_LBEN
) {
4044 pfdtxgswc
&= ~IXGBE_PFDTXGSWC_VT_LBEN
;
4045 IXGBE_WRITE_REG(hw
, IXGBE_PFDTXGSWC
, pfdtxgswc
);
4046 hw
->mac
.set_lben
= true;
4048 hw
->mac
.set_lben
= false;
4051 rxctrl
&= ~IXGBE_RXCTRL_RXEN
;
4052 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, rxctrl
);
4056 void ixgbe_enable_rx_generic(struct ixgbe_hw
*hw
)
4060 rxctrl
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
4061 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, (rxctrl
| IXGBE_RXCTRL_RXEN
));
4063 if (hw
->mac
.type
!= ixgbe_mac_82598EB
) {
4064 if (hw
->mac
.set_lben
) {
4067 pfdtxgswc
= IXGBE_READ_REG(hw
, IXGBE_PFDTXGSWC
);
4068 pfdtxgswc
|= IXGBE_PFDTXGSWC_VT_LBEN
;
4069 IXGBE_WRITE_REG(hw
, IXGBE_PFDTXGSWC
, pfdtxgswc
);
4070 hw
->mac
.set_lben
= false;
4075 /** ixgbe_mng_present - returns true when management capability is present
4076 * @hw: pointer to hardware structure
4078 bool ixgbe_mng_present(struct ixgbe_hw
*hw
)
4082 if (hw
->mac
.type
< ixgbe_mac_82599EB
)
4085 fwsm
= IXGBE_READ_REG(hw
, IXGBE_FWSM(hw
));
4086 fwsm
&= IXGBE_FWSM_MODE_MASK
;
4087 return fwsm
== IXGBE_FWSM_FW_MODE_PT
;
4091 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4092 * @hw: pointer to hardware structure
4093 * @speed: new link speed
4094 * @autoneg_wait_to_complete: true when waiting for completion is needed
4096 * Set the link speed in the MAC and/or PHY register and restarts link.
4098 s32
ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw
*hw
,
4099 ixgbe_link_speed speed
,
4100 bool autoneg_wait_to_complete
)
4102 ixgbe_link_speed link_speed
= IXGBE_LINK_SPEED_UNKNOWN
;
4103 ixgbe_link_speed highest_link_speed
= IXGBE_LINK_SPEED_UNKNOWN
;
4107 bool autoneg
, link_up
= false;
4109 /* Mask off requested but non-supported speeds */
4110 status
= hw
->mac
.ops
.get_link_capabilities(hw
, &link_speed
, &autoneg
);
4114 speed
&= link_speed
;
4116 /* Try each speed one by one, highest priority first. We do this in
4117 * software because 10Gb fiber doesn't support speed autonegotiation.
4119 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
) {
4121 highest_link_speed
= IXGBE_LINK_SPEED_10GB_FULL
;
4123 /* If we already have link at this speed, just jump out */
4124 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
, &link_up
,
4129 if (link_speed
== IXGBE_LINK_SPEED_10GB_FULL
&& link_up
)
4132 /* Set the module link speed */
4133 switch (hw
->phy
.media_type
) {
4134 case ixgbe_media_type_fiber
:
4135 hw
->mac
.ops
.set_rate_select_speed(hw
,
4136 IXGBE_LINK_SPEED_10GB_FULL
);
4138 case ixgbe_media_type_fiber_qsfp
:
4139 /* QSFP module automatically detects MAC link speed */
4142 hw_dbg(hw
, "Unexpected media type\n");
4146 /* Allow module to change analog characteristics (1G->10G) */
4149 status
= hw
->mac
.ops
.setup_mac_link(hw
,
4150 IXGBE_LINK_SPEED_10GB_FULL
,
4151 autoneg_wait_to_complete
);
4155 /* Flap the Tx laser if it has not already been done */
4156 if (hw
->mac
.ops
.flap_tx_laser
)
4157 hw
->mac
.ops
.flap_tx_laser(hw
);
4159 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4160 * Section 73.10.2, we may have to wait up to 500ms if KR is
4161 * attempted. 82599 uses the same timing for 10g SFI.
4163 for (i
= 0; i
< 5; i
++) {
4164 /* Wait for the link partner to also set speed */
4167 /* If we have link, just jump out */
4168 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
,
4178 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
) {
4180 if (highest_link_speed
== IXGBE_LINK_SPEED_UNKNOWN
)
4181 highest_link_speed
= IXGBE_LINK_SPEED_1GB_FULL
;
4183 /* If we already have link at this speed, just jump out */
4184 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
, &link_up
,
4189 if (link_speed
== IXGBE_LINK_SPEED_1GB_FULL
&& link_up
)
4192 /* Set the module link speed */
4193 switch (hw
->phy
.media_type
) {
4194 case ixgbe_media_type_fiber
:
4195 hw
->mac
.ops
.set_rate_select_speed(hw
,
4196 IXGBE_LINK_SPEED_1GB_FULL
);
4198 case ixgbe_media_type_fiber_qsfp
:
4199 /* QSFP module automatically detects link speed */
4202 hw_dbg(hw
, "Unexpected media type\n");
4206 /* Allow module to change analog characteristics (10G->1G) */
4209 status
= hw
->mac
.ops
.setup_mac_link(hw
,
4210 IXGBE_LINK_SPEED_1GB_FULL
,
4211 autoneg_wait_to_complete
);
4215 /* Flap the Tx laser if it has not already been done */
4216 if (hw
->mac
.ops
.flap_tx_laser
)
4217 hw
->mac
.ops
.flap_tx_laser(hw
);
4219 /* Wait for the link partner to also set speed */
4222 /* If we have link, just jump out */
4223 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
, &link_up
,
4232 /* We didn't get link. Configure back to the highest speed we tried,
4233 * (if there was more than one). We call ourselves back with just the
4234 * single highest speed that the user requested.
4237 status
= ixgbe_setup_mac_link_multispeed_fiber(hw
,
4239 autoneg_wait_to_complete
);
4242 /* Set autoneg_advertised value based on input link speed */
4243 hw
->phy
.autoneg_advertised
= 0;
4245 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
)
4246 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_10GB_FULL
;
4248 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
)
4249 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_1GB_FULL
;
4255 * ixgbe_set_soft_rate_select_speed - Set module link speed
4256 * @hw: pointer to hardware structure
4257 * @speed: link speed to set
4259 * Set module link speed via the soft rate select.
4261 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw
*hw
,
4262 ixgbe_link_speed speed
)
4268 case IXGBE_LINK_SPEED_10GB_FULL
:
4269 /* one bit mask same as setting on */
4270 rs
= IXGBE_SFF_SOFT_RS_SELECT_10G
;
4272 case IXGBE_LINK_SPEED_1GB_FULL
:
4273 rs
= IXGBE_SFF_SOFT_RS_SELECT_1G
;
4276 hw_dbg(hw
, "Invalid fixed module speed\n");
4281 status
= hw
->phy
.ops
.read_i2c_byte(hw
, IXGBE_SFF_SFF_8472_OSCB
,
4282 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4285 hw_dbg(hw
, "Failed to read Rx Rate Select RS0\n");
4289 eeprom_data
= (eeprom_data
& ~IXGBE_SFF_SOFT_RS_SELECT_MASK
) | rs
;
4291 status
= hw
->phy
.ops
.write_i2c_byte(hw
, IXGBE_SFF_SFF_8472_OSCB
,
4292 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4295 hw_dbg(hw
, "Failed to write Rx Rate Select RS0\n");