x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
blobc38d50c1fcf783fdd83782c3380c14cdb0c4dd9d
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2016 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 IXGBE_MVALS_INIT(8259X)
65 /**
66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67 * control
68 * @hw: pointer to hardware structure
70 * There are several phys that do not support autoneg flow control. This
71 * function check the device id to see if the associated phy supports
72 * autoneg flow control.
73 **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
76 bool supported = false;
77 ixgbe_link_speed speed;
78 bool link_up;
80 switch (hw->phy.media_type) {
81 case ixgbe_media_type_fiber:
82 hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 /* if link is down, assume supported */
84 if (link_up)
85 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 true : false;
87 else
88 supported = true;
89 break;
90 case ixgbe_media_type_backplane:
91 supported = true;
92 break;
93 case ixgbe_media_type_copper:
94 /* only some copper devices support flow control autoneg */
95 switch (hw->device_id) {
96 case IXGBE_DEV_ID_82599_T3_LOM:
97 case IXGBE_DEV_ID_X540T:
98 case IXGBE_DEV_ID_X540T1:
99 case IXGBE_DEV_ID_X550T:
100 case IXGBE_DEV_ID_X550T1:
101 case IXGBE_DEV_ID_X550EM_X_10G_T:
102 case IXGBE_DEV_ID_X550EM_A_10G_T:
103 case IXGBE_DEV_ID_X550EM_A_1G_T:
104 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
105 supported = true;
106 break;
107 default:
108 break;
110 default:
111 break;
114 return supported;
118 * ixgbe_setup_fc_generic - Set up flow control
119 * @hw: pointer to hardware structure
121 * Called at init time to set up flow control.
123 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
125 s32 ret_val = 0;
126 u32 reg = 0, reg_bp = 0;
127 u16 reg_cu = 0;
128 bool locked = false;
131 * Validate the requested mode. Strict IEEE mode does not allow
132 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
134 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
135 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
136 return IXGBE_ERR_INVALID_LINK_SETTINGS;
140 * 10gig parts do not have a word in the EEPROM to determine the
141 * default flow control setting, so we explicitly set it to full.
143 if (hw->fc.requested_mode == ixgbe_fc_default)
144 hw->fc.requested_mode = ixgbe_fc_full;
147 * Set up the 1G and 10G flow control advertisement registers so the
148 * HW will be able to do fc autoneg once the cable is plugged in. If
149 * we link at 10G, the 1G advertisement is harmless and vice versa.
151 switch (hw->phy.media_type) {
152 case ixgbe_media_type_backplane:
153 /* some MAC's need RMW protection on AUTOC */
154 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
155 if (ret_val)
156 return ret_val;
158 /* only backplane uses autoc so fall though */
159 case ixgbe_media_type_fiber:
160 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
162 break;
163 case ixgbe_media_type_copper:
164 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
165 MDIO_MMD_AN, &reg_cu);
166 break;
167 default:
168 break;
172 * The possible values of fc.requested_mode are:
173 * 0: Flow control is completely disabled
174 * 1: Rx flow control is enabled (we can receive pause frames,
175 * but not send pause frames).
176 * 2: Tx flow control is enabled (we can send pause frames but
177 * we do not support receiving pause frames).
178 * 3: Both Rx and Tx flow control (symmetric) are enabled.
179 * other: Invalid.
181 switch (hw->fc.requested_mode) {
182 case ixgbe_fc_none:
183 /* Flow control completely disabled by software override. */
184 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
185 if (hw->phy.media_type == ixgbe_media_type_backplane)
186 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
187 IXGBE_AUTOC_ASM_PAUSE);
188 else if (hw->phy.media_type == ixgbe_media_type_copper)
189 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
190 break;
191 case ixgbe_fc_tx_pause:
193 * Tx Flow control is enabled, and Rx Flow control is
194 * disabled by software override.
196 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
197 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
198 if (hw->phy.media_type == ixgbe_media_type_backplane) {
199 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
200 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
201 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
202 reg_cu |= IXGBE_TAF_ASM_PAUSE;
203 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
205 break;
206 case ixgbe_fc_rx_pause:
208 * Rx Flow control is enabled and Tx Flow control is
209 * disabled by software override. Since there really
210 * isn't a way to advertise that we are capable of RX
211 * Pause ONLY, we will advertise that we support both
212 * symmetric and asymmetric Rx PAUSE, as such we fall
213 * through to the fc_full statement. Later, we will
214 * disable the adapter's ability to send PAUSE frames.
216 case ixgbe_fc_full:
217 /* Flow control (both Rx and Tx) is enabled by SW override. */
218 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
219 if (hw->phy.media_type == ixgbe_media_type_backplane)
220 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
221 IXGBE_AUTOC_ASM_PAUSE;
222 else if (hw->phy.media_type == ixgbe_media_type_copper)
223 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
224 break;
225 default:
226 hw_dbg(hw, "Flow control param set incorrectly\n");
227 return IXGBE_ERR_CONFIG;
230 if (hw->mac.type != ixgbe_mac_X540) {
232 * Enable auto-negotiation between the MAC & PHY;
233 * the MAC will advertise clause 37 flow control.
235 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
236 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
238 /* Disable AN timeout */
239 if (hw->fc.strict_ieee)
240 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
242 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
243 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
247 * AUTOC restart handles negotiation of 1G and 10G on backplane
248 * and copper. There is no need to set the PCS1GCTL register.
251 if (hw->phy.media_type == ixgbe_media_type_backplane) {
252 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
253 * LESM is on, likewise reset_pipeline requries the lock as
254 * it also writes AUTOC.
256 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
257 if (ret_val)
258 return ret_val;
260 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
261 ixgbe_device_supports_autoneg_fc(hw)) {
262 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
263 MDIO_MMD_AN, reg_cu);
266 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
267 return ret_val;
271 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
272 * @hw: pointer to hardware structure
274 * Starts the hardware by filling the bus info structure and media type, clears
275 * all on chip counters, initializes receive address registers, multicast
276 * table, VLAN filter table, calls routine to set up link and flow control
277 * settings, and leaves transmit and receive units disabled and uninitialized
279 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
281 s32 ret_val;
282 u32 ctrl_ext;
283 u16 device_caps;
285 /* Set the media type */
286 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
288 /* Identify the PHY */
289 hw->phy.ops.identify(hw);
291 /* Clear the VLAN filter table */
292 hw->mac.ops.clear_vfta(hw);
294 /* Clear statistics registers */
295 hw->mac.ops.clear_hw_cntrs(hw);
297 /* Set No Snoop Disable */
298 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
299 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
300 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
301 IXGBE_WRITE_FLUSH(hw);
303 /* Setup flow control if method for doing so */
304 if (hw->mac.ops.setup_fc) {
305 ret_val = hw->mac.ops.setup_fc(hw);
306 if (ret_val)
307 return ret_val;
310 /* Cashe bit indicating need for crosstalk fix */
311 switch (hw->mac.type) {
312 case ixgbe_mac_82599EB:
313 case ixgbe_mac_X550EM_x:
314 case ixgbe_mac_x550em_a:
315 hw->mac.ops.get_device_caps(hw, &device_caps);
316 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
317 hw->need_crosstalk_fix = false;
318 else
319 hw->need_crosstalk_fix = true;
320 break;
321 default:
322 hw->need_crosstalk_fix = false;
323 break;
326 /* Clear adapter stopped flag */
327 hw->adapter_stopped = false;
329 return 0;
333 * ixgbe_start_hw_gen2 - Init sequence for common device family
334 * @hw: pointer to hw structure
336 * Performs the init sequence common to the second generation
337 * of 10 GbE devices.
338 * Devices in the second generation:
339 * 82599
340 * X540
342 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
344 u32 i;
346 /* Clear the rate limiters */
347 for (i = 0; i < hw->mac.max_tx_queues; i++) {
348 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
349 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
351 IXGBE_WRITE_FLUSH(hw);
353 #ifndef CONFIG_ARCH_WANT_RELAX_ORDER
354 /* Disable relaxed ordering */
355 for (i = 0; i < hw->mac.max_tx_queues; i++) {
356 u32 regval;
358 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
359 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
360 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
363 for (i = 0; i < hw->mac.max_rx_queues; i++) {
364 u32 regval;
366 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
367 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
368 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
369 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
371 #endif
372 return 0;
376 * ixgbe_init_hw_generic - Generic hardware initialization
377 * @hw: pointer to hardware structure
379 * Initialize the hardware by resetting the hardware, filling the bus info
380 * structure and media type, clears all on chip counters, initializes receive
381 * address registers, multicast table, VLAN filter table, calls routine to set
382 * up link and flow control settings, and leaves transmit and receive units
383 * disabled and uninitialized
385 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
387 s32 status;
389 /* Reset the hardware */
390 status = hw->mac.ops.reset_hw(hw);
392 if (status == 0) {
393 /* Start the HW */
394 status = hw->mac.ops.start_hw(hw);
397 /* Initialize the LED link active for LED blink support */
398 hw->mac.ops.init_led_link_act(hw);
400 return status;
404 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
405 * @hw: pointer to hardware structure
407 * Clears all hardware statistics counters by reading them from the hardware
408 * Statistics counters are clear on read.
410 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
412 u16 i = 0;
414 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
415 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
416 IXGBE_READ_REG(hw, IXGBE_ERRBC);
417 IXGBE_READ_REG(hw, IXGBE_MSPDC);
418 for (i = 0; i < 8; i++)
419 IXGBE_READ_REG(hw, IXGBE_MPC(i));
421 IXGBE_READ_REG(hw, IXGBE_MLFC);
422 IXGBE_READ_REG(hw, IXGBE_MRFC);
423 IXGBE_READ_REG(hw, IXGBE_RLEC);
424 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
425 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
426 if (hw->mac.type >= ixgbe_mac_82599EB) {
427 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
428 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
429 } else {
430 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
431 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
434 for (i = 0; i < 8; i++) {
435 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
436 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
437 if (hw->mac.type >= ixgbe_mac_82599EB) {
438 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
439 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
440 } else {
441 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
442 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
445 if (hw->mac.type >= ixgbe_mac_82599EB)
446 for (i = 0; i < 8; i++)
447 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
448 IXGBE_READ_REG(hw, IXGBE_PRC64);
449 IXGBE_READ_REG(hw, IXGBE_PRC127);
450 IXGBE_READ_REG(hw, IXGBE_PRC255);
451 IXGBE_READ_REG(hw, IXGBE_PRC511);
452 IXGBE_READ_REG(hw, IXGBE_PRC1023);
453 IXGBE_READ_REG(hw, IXGBE_PRC1522);
454 IXGBE_READ_REG(hw, IXGBE_GPRC);
455 IXGBE_READ_REG(hw, IXGBE_BPRC);
456 IXGBE_READ_REG(hw, IXGBE_MPRC);
457 IXGBE_READ_REG(hw, IXGBE_GPTC);
458 IXGBE_READ_REG(hw, IXGBE_GORCL);
459 IXGBE_READ_REG(hw, IXGBE_GORCH);
460 IXGBE_READ_REG(hw, IXGBE_GOTCL);
461 IXGBE_READ_REG(hw, IXGBE_GOTCH);
462 if (hw->mac.type == ixgbe_mac_82598EB)
463 for (i = 0; i < 8; i++)
464 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
465 IXGBE_READ_REG(hw, IXGBE_RUC);
466 IXGBE_READ_REG(hw, IXGBE_RFC);
467 IXGBE_READ_REG(hw, IXGBE_ROC);
468 IXGBE_READ_REG(hw, IXGBE_RJC);
469 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
470 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
471 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
472 IXGBE_READ_REG(hw, IXGBE_TORL);
473 IXGBE_READ_REG(hw, IXGBE_TORH);
474 IXGBE_READ_REG(hw, IXGBE_TPR);
475 IXGBE_READ_REG(hw, IXGBE_TPT);
476 IXGBE_READ_REG(hw, IXGBE_PTC64);
477 IXGBE_READ_REG(hw, IXGBE_PTC127);
478 IXGBE_READ_REG(hw, IXGBE_PTC255);
479 IXGBE_READ_REG(hw, IXGBE_PTC511);
480 IXGBE_READ_REG(hw, IXGBE_PTC1023);
481 IXGBE_READ_REG(hw, IXGBE_PTC1522);
482 IXGBE_READ_REG(hw, IXGBE_MPTC);
483 IXGBE_READ_REG(hw, IXGBE_BPTC);
484 for (i = 0; i < 16; i++) {
485 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
486 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
487 if (hw->mac.type >= ixgbe_mac_82599EB) {
488 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
489 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
490 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
491 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
492 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
493 } else {
494 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
495 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
499 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
500 if (hw->phy.id == 0)
501 hw->phy.ops.identify(hw);
502 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
503 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
504 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
505 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
508 return 0;
512 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
513 * @hw: pointer to hardware structure
514 * @pba_num: stores the part number string from the EEPROM
515 * @pba_num_size: part number string buffer length
517 * Reads the part number string from the EEPROM.
519 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
520 u32 pba_num_size)
522 s32 ret_val;
523 u16 data;
524 u16 pba_ptr;
525 u16 offset;
526 u16 length;
528 if (pba_num == NULL) {
529 hw_dbg(hw, "PBA string buffer was null\n");
530 return IXGBE_ERR_INVALID_ARGUMENT;
533 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
534 if (ret_val) {
535 hw_dbg(hw, "NVM Read Error\n");
536 return ret_val;
539 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
540 if (ret_val) {
541 hw_dbg(hw, "NVM Read Error\n");
542 return ret_val;
546 * if data is not ptr guard the PBA must be in legacy format which
547 * means pba_ptr is actually our second data word for the PBA number
548 * and we can decode it into an ascii string
550 if (data != IXGBE_PBANUM_PTR_GUARD) {
551 hw_dbg(hw, "NVM PBA number is not stored as string\n");
553 /* we will need 11 characters to store the PBA */
554 if (pba_num_size < 11) {
555 hw_dbg(hw, "PBA string buffer too small\n");
556 return IXGBE_ERR_NO_SPACE;
559 /* extract hex string from data and pba_ptr */
560 pba_num[0] = (data >> 12) & 0xF;
561 pba_num[1] = (data >> 8) & 0xF;
562 pba_num[2] = (data >> 4) & 0xF;
563 pba_num[3] = data & 0xF;
564 pba_num[4] = (pba_ptr >> 12) & 0xF;
565 pba_num[5] = (pba_ptr >> 8) & 0xF;
566 pba_num[6] = '-';
567 pba_num[7] = 0;
568 pba_num[8] = (pba_ptr >> 4) & 0xF;
569 pba_num[9] = pba_ptr & 0xF;
571 /* put a null character on the end of our string */
572 pba_num[10] = '\0';
574 /* switch all the data but the '-' to hex char */
575 for (offset = 0; offset < 10; offset++) {
576 if (pba_num[offset] < 0xA)
577 pba_num[offset] += '0';
578 else if (pba_num[offset] < 0x10)
579 pba_num[offset] += 'A' - 0xA;
582 return 0;
585 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
586 if (ret_val) {
587 hw_dbg(hw, "NVM Read Error\n");
588 return ret_val;
591 if (length == 0xFFFF || length == 0) {
592 hw_dbg(hw, "NVM PBA number section invalid length\n");
593 return IXGBE_ERR_PBA_SECTION;
596 /* check if pba_num buffer is big enough */
597 if (pba_num_size < (((u32)length * 2) - 1)) {
598 hw_dbg(hw, "PBA string buffer too small\n");
599 return IXGBE_ERR_NO_SPACE;
602 /* trim pba length from start of string */
603 pba_ptr++;
604 length--;
606 for (offset = 0; offset < length; offset++) {
607 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
608 if (ret_val) {
609 hw_dbg(hw, "NVM Read Error\n");
610 return ret_val;
612 pba_num[offset * 2] = (u8)(data >> 8);
613 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
615 pba_num[offset * 2] = '\0';
617 return 0;
621 * ixgbe_get_mac_addr_generic - Generic get MAC address
622 * @hw: pointer to hardware structure
623 * @mac_addr: Adapter MAC address
625 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
626 * A reset of the adapter must be performed prior to calling this function
627 * in order for the MAC address to have been loaded from the EEPROM into RAR0
629 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
631 u32 rar_high;
632 u32 rar_low;
633 u16 i;
635 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
636 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
638 for (i = 0; i < 4; i++)
639 mac_addr[i] = (u8)(rar_low >> (i*8));
641 for (i = 0; i < 2; i++)
642 mac_addr[i+4] = (u8)(rar_high >> (i*8));
644 return 0;
647 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
649 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
650 case IXGBE_PCI_LINK_WIDTH_1:
651 return ixgbe_bus_width_pcie_x1;
652 case IXGBE_PCI_LINK_WIDTH_2:
653 return ixgbe_bus_width_pcie_x2;
654 case IXGBE_PCI_LINK_WIDTH_4:
655 return ixgbe_bus_width_pcie_x4;
656 case IXGBE_PCI_LINK_WIDTH_8:
657 return ixgbe_bus_width_pcie_x8;
658 default:
659 return ixgbe_bus_width_unknown;
663 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
665 switch (link_status & IXGBE_PCI_LINK_SPEED) {
666 case IXGBE_PCI_LINK_SPEED_2500:
667 return ixgbe_bus_speed_2500;
668 case IXGBE_PCI_LINK_SPEED_5000:
669 return ixgbe_bus_speed_5000;
670 case IXGBE_PCI_LINK_SPEED_8000:
671 return ixgbe_bus_speed_8000;
672 default:
673 return ixgbe_bus_speed_unknown;
678 * ixgbe_get_bus_info_generic - Generic set PCI bus info
679 * @hw: pointer to hardware structure
681 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
683 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
685 u16 link_status;
687 hw->bus.type = ixgbe_bus_type_pci_express;
689 /* Get the negotiated link width and speed from PCI config space */
690 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
692 hw->bus.width = ixgbe_convert_bus_width(link_status);
693 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
695 hw->mac.ops.set_lan_id(hw);
697 return 0;
701 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
702 * @hw: pointer to the HW structure
704 * Determines the LAN function id by reading memory-mapped registers
705 * and swaps the port value if requested.
707 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
709 struct ixgbe_bus_info *bus = &hw->bus;
710 u16 ee_ctrl_4;
711 u32 reg;
713 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
714 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
715 bus->lan_id = bus->func;
717 /* check for a port swap */
718 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
719 if (reg & IXGBE_FACTPS_LFS)
720 bus->func ^= 0x1;
722 /* Get MAC instance from EEPROM for configuring CS4227 */
723 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
724 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
725 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
726 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
731 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
732 * @hw: pointer to hardware structure
734 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
735 * disables transmit and receive units. The adapter_stopped flag is used by
736 * the shared code and drivers to determine if the adapter is in a stopped
737 * state and should not touch the hardware.
739 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
741 u32 reg_val;
742 u16 i;
745 * Set the adapter_stopped flag so other driver functions stop touching
746 * the hardware
748 hw->adapter_stopped = true;
750 /* Disable the receive unit */
751 hw->mac.ops.disable_rx(hw);
753 /* Clear interrupt mask to stop interrupts from being generated */
754 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
756 /* Clear any pending interrupts, flush previous writes */
757 IXGBE_READ_REG(hw, IXGBE_EICR);
759 /* Disable the transmit unit. Each queue must be disabled. */
760 for (i = 0; i < hw->mac.max_tx_queues; i++)
761 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
763 /* Disable the receive unit by stopping each queue */
764 for (i = 0; i < hw->mac.max_rx_queues; i++) {
765 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
766 reg_val &= ~IXGBE_RXDCTL_ENABLE;
767 reg_val |= IXGBE_RXDCTL_SWFLSH;
768 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
771 /* flush all queues disables */
772 IXGBE_WRITE_FLUSH(hw);
773 usleep_range(1000, 2000);
776 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
777 * access and verify no pending requests
779 return ixgbe_disable_pcie_master(hw);
783 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
784 * @hw: pointer to hardware structure
786 * Store the index for the link active LED. This will be used to support
787 * blinking the LED.
789 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
791 struct ixgbe_mac_info *mac = &hw->mac;
792 u32 led_reg, led_mode;
793 u16 i;
795 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
797 /* Get LED link active from the LEDCTL register */
798 for (i = 0; i < 4; i++) {
799 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
801 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
802 IXGBE_LED_LINK_ACTIVE) {
803 mac->led_link_act = i;
804 return 0;
808 /* If LEDCTL register does not have the LED link active set, then use
809 * known MAC defaults.
811 switch (hw->mac.type) {
812 case ixgbe_mac_x550em_a:
813 mac->led_link_act = 0;
814 break;
815 case ixgbe_mac_X550EM_x:
816 mac->led_link_act = 1;
817 break;
818 default:
819 mac->led_link_act = 2;
822 return 0;
826 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
827 * @hw: pointer to hardware structure
828 * @index: led number to turn on
830 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
832 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
834 if (index > 3)
835 return IXGBE_ERR_PARAM;
837 /* To turn on the LED, set mode to ON. */
838 led_reg &= ~IXGBE_LED_MODE_MASK(index);
839 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
840 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
841 IXGBE_WRITE_FLUSH(hw);
843 return 0;
847 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
848 * @hw: pointer to hardware structure
849 * @index: led number to turn off
851 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
853 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
855 if (index > 3)
856 return IXGBE_ERR_PARAM;
858 /* To turn off the LED, set mode to OFF. */
859 led_reg &= ~IXGBE_LED_MODE_MASK(index);
860 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
861 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
862 IXGBE_WRITE_FLUSH(hw);
864 return 0;
868 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
869 * @hw: pointer to hardware structure
871 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
872 * ixgbe_hw struct in order to set up EEPROM access.
874 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
876 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
877 u32 eec;
878 u16 eeprom_size;
880 if (eeprom->type == ixgbe_eeprom_uninitialized) {
881 eeprom->type = ixgbe_eeprom_none;
882 /* Set default semaphore delay to 10ms which is a well
883 * tested value */
884 eeprom->semaphore_delay = 10;
885 /* Clear EEPROM page size, it will be initialized as needed */
886 eeprom->word_page_size = 0;
889 * Check for EEPROM present first.
890 * If not present leave as none
892 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
893 if (eec & IXGBE_EEC_PRES) {
894 eeprom->type = ixgbe_eeprom_spi;
897 * SPI EEPROM is assumed here. This code would need to
898 * change if a future EEPROM is not SPI.
900 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
901 IXGBE_EEC_SIZE_SHIFT);
902 eeprom->word_size = BIT(eeprom_size +
903 IXGBE_EEPROM_WORD_SIZE_SHIFT);
906 if (eec & IXGBE_EEC_ADDR_SIZE)
907 eeprom->address_bits = 16;
908 else
909 eeprom->address_bits = 8;
910 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
911 eeprom->type, eeprom->word_size, eeprom->address_bits);
914 return 0;
918 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
919 * @hw: pointer to hardware structure
920 * @offset: offset within the EEPROM to write
921 * @words: number of words
922 * @data: 16 bit word(s) to write to EEPROM
924 * Reads 16 bit word(s) from EEPROM through bit-bang method
926 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
927 u16 words, u16 *data)
929 s32 status;
930 u16 i, count;
932 hw->eeprom.ops.init_params(hw);
934 if (words == 0)
935 return IXGBE_ERR_INVALID_ARGUMENT;
937 if (offset + words > hw->eeprom.word_size)
938 return IXGBE_ERR_EEPROM;
941 * The EEPROM page size cannot be queried from the chip. We do lazy
942 * initialization. It is worth to do that when we write large buffer.
944 if ((hw->eeprom.word_page_size == 0) &&
945 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
946 ixgbe_detect_eeprom_page_size_generic(hw, offset);
949 * We cannot hold synchronization semaphores for too long
950 * to avoid other entity starvation. However it is more efficient
951 * to read in bursts than synchronizing access for each word.
953 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
954 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
955 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
956 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
957 count, &data[i]);
959 if (status != 0)
960 break;
963 return status;
967 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
968 * @hw: pointer to hardware structure
969 * @offset: offset within the EEPROM to be written to
970 * @words: number of word(s)
971 * @data: 16 bit word(s) to be written to the EEPROM
973 * If ixgbe_eeprom_update_checksum is not called after this function, the
974 * EEPROM will most likely contain an invalid checksum.
976 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
977 u16 words, u16 *data)
979 s32 status;
980 u16 word;
981 u16 page_size;
982 u16 i;
983 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
985 /* Prepare the EEPROM for writing */
986 status = ixgbe_acquire_eeprom(hw);
987 if (status)
988 return status;
990 if (ixgbe_ready_eeprom(hw) != 0) {
991 ixgbe_release_eeprom(hw);
992 return IXGBE_ERR_EEPROM;
995 for (i = 0; i < words; i++) {
996 ixgbe_standby_eeprom(hw);
998 /* Send the WRITE ENABLE command (8 bit opcode) */
999 ixgbe_shift_out_eeprom_bits(hw,
1000 IXGBE_EEPROM_WREN_OPCODE_SPI,
1001 IXGBE_EEPROM_OPCODE_BITS);
1003 ixgbe_standby_eeprom(hw);
1005 /* Some SPI eeproms use the 8th address bit embedded
1006 * in the opcode
1008 if ((hw->eeprom.address_bits == 8) &&
1009 ((offset + i) >= 128))
1010 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1012 /* Send the Write command (8-bit opcode + addr) */
1013 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1014 IXGBE_EEPROM_OPCODE_BITS);
1015 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1016 hw->eeprom.address_bits);
1018 page_size = hw->eeprom.word_page_size;
1020 /* Send the data in burst via SPI */
1021 do {
1022 word = data[i];
1023 word = (word >> 8) | (word << 8);
1024 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1026 if (page_size == 0)
1027 break;
1029 /* do not wrap around page */
1030 if (((offset + i) & (page_size - 1)) ==
1031 (page_size - 1))
1032 break;
1033 } while (++i < words);
1035 ixgbe_standby_eeprom(hw);
1036 usleep_range(10000, 20000);
1038 /* Done with writing - release the EEPROM */
1039 ixgbe_release_eeprom(hw);
1041 return 0;
1045 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1046 * @hw: pointer to hardware structure
1047 * @offset: offset within the EEPROM to be written to
1048 * @data: 16 bit word to be written to the EEPROM
1050 * If ixgbe_eeprom_update_checksum is not called after this function, the
1051 * EEPROM will most likely contain an invalid checksum.
1053 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1055 hw->eeprom.ops.init_params(hw);
1057 if (offset >= hw->eeprom.word_size)
1058 return IXGBE_ERR_EEPROM;
1060 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1064 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1065 * @hw: pointer to hardware structure
1066 * @offset: offset within the EEPROM to be read
1067 * @words: number of word(s)
1068 * @data: read 16 bit words(s) from EEPROM
1070 * Reads 16 bit word(s) from EEPROM through bit-bang method
1072 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1073 u16 words, u16 *data)
1075 s32 status;
1076 u16 i, count;
1078 hw->eeprom.ops.init_params(hw);
1080 if (words == 0)
1081 return IXGBE_ERR_INVALID_ARGUMENT;
1083 if (offset + words > hw->eeprom.word_size)
1084 return IXGBE_ERR_EEPROM;
1087 * We cannot hold synchronization semaphores for too long
1088 * to avoid other entity starvation. However it is more efficient
1089 * to read in bursts than synchronizing access for each word.
1091 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1092 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1093 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1095 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1096 count, &data[i]);
1098 if (status)
1099 return status;
1102 return 0;
1106 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1107 * @hw: pointer to hardware structure
1108 * @offset: offset within the EEPROM to be read
1109 * @words: number of word(s)
1110 * @data: read 16 bit word(s) from EEPROM
1112 * Reads 16 bit word(s) from EEPROM through bit-bang method
1114 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1115 u16 words, u16 *data)
1117 s32 status;
1118 u16 word_in;
1119 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1120 u16 i;
1122 /* Prepare the EEPROM for reading */
1123 status = ixgbe_acquire_eeprom(hw);
1124 if (status)
1125 return status;
1127 if (ixgbe_ready_eeprom(hw) != 0) {
1128 ixgbe_release_eeprom(hw);
1129 return IXGBE_ERR_EEPROM;
1132 for (i = 0; i < words; i++) {
1133 ixgbe_standby_eeprom(hw);
1134 /* Some SPI eeproms use the 8th address bit embedded
1135 * in the opcode
1137 if ((hw->eeprom.address_bits == 8) &&
1138 ((offset + i) >= 128))
1139 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1141 /* Send the READ command (opcode + addr) */
1142 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1143 IXGBE_EEPROM_OPCODE_BITS);
1144 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1145 hw->eeprom.address_bits);
1147 /* Read the data. */
1148 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1149 data[i] = (word_in >> 8) | (word_in << 8);
1152 /* End this read operation */
1153 ixgbe_release_eeprom(hw);
1155 return 0;
1159 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1160 * @hw: pointer to hardware structure
1161 * @offset: offset within the EEPROM to be read
1162 * @data: read 16 bit value from EEPROM
1164 * Reads 16 bit value from EEPROM through bit-bang method
1166 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1167 u16 *data)
1169 hw->eeprom.ops.init_params(hw);
1171 if (offset >= hw->eeprom.word_size)
1172 return IXGBE_ERR_EEPROM;
1174 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1178 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1179 * @hw: pointer to hardware structure
1180 * @offset: offset of word in the EEPROM to read
1181 * @words: number of word(s)
1182 * @data: 16 bit word(s) from the EEPROM
1184 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1186 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1187 u16 words, u16 *data)
1189 u32 eerd;
1190 s32 status;
1191 u32 i;
1193 hw->eeprom.ops.init_params(hw);
1195 if (words == 0)
1196 return IXGBE_ERR_INVALID_ARGUMENT;
1198 if (offset >= hw->eeprom.word_size)
1199 return IXGBE_ERR_EEPROM;
1201 for (i = 0; i < words; i++) {
1202 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1203 IXGBE_EEPROM_RW_REG_START;
1205 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1206 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1208 if (status == 0) {
1209 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1210 IXGBE_EEPROM_RW_REG_DATA);
1211 } else {
1212 hw_dbg(hw, "Eeprom read timed out\n");
1213 return status;
1217 return 0;
1221 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1222 * @hw: pointer to hardware structure
1223 * @offset: offset within the EEPROM to be used as a scratch pad
1225 * Discover EEPROM page size by writing marching data at given offset.
1226 * This function is called only when we are writing a new large buffer
1227 * at given offset so the data would be overwritten anyway.
1229 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1230 u16 offset)
1232 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1233 s32 status;
1234 u16 i;
1236 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1237 data[i] = i;
1239 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1240 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1241 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1242 hw->eeprom.word_page_size = 0;
1243 if (status)
1244 return status;
1246 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1247 if (status)
1248 return status;
1251 * When writing in burst more than the actual page size
1252 * EEPROM address wraps around current page.
1254 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1256 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1257 hw->eeprom.word_page_size);
1258 return 0;
1262 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1263 * @hw: pointer to hardware structure
1264 * @offset: offset of word in the EEPROM to read
1265 * @data: word read from the EEPROM
1267 * Reads a 16 bit word from the EEPROM using the EERD register.
1269 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1271 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1275 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1276 * @hw: pointer to hardware structure
1277 * @offset: offset of word in the EEPROM to write
1278 * @words: number of words
1279 * @data: word(s) write to the EEPROM
1281 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1283 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1284 u16 words, u16 *data)
1286 u32 eewr;
1287 s32 status;
1288 u16 i;
1290 hw->eeprom.ops.init_params(hw);
1292 if (words == 0)
1293 return IXGBE_ERR_INVALID_ARGUMENT;
1295 if (offset >= hw->eeprom.word_size)
1296 return IXGBE_ERR_EEPROM;
1298 for (i = 0; i < words; i++) {
1299 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1300 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1301 IXGBE_EEPROM_RW_REG_START;
1303 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1304 if (status) {
1305 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1306 return status;
1309 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1311 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1312 if (status) {
1313 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1314 return status;
1318 return 0;
1322 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1323 * @hw: pointer to hardware structure
1324 * @offset: offset of word in the EEPROM to write
1325 * @data: word write to the EEPROM
1327 * Write a 16 bit word to the EEPROM using the EEWR register.
1329 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1331 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1335 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1336 * @hw: pointer to hardware structure
1337 * @ee_reg: EEPROM flag for polling
1339 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1340 * read or write is done respectively.
1342 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1344 u32 i;
1345 u32 reg;
1347 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1348 if (ee_reg == IXGBE_NVM_POLL_READ)
1349 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1350 else
1351 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1353 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1354 return 0;
1356 udelay(5);
1358 return IXGBE_ERR_EEPROM;
1362 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1363 * @hw: pointer to hardware structure
1365 * Prepares EEPROM for access using bit-bang method. This function should
1366 * be called before issuing a command to the EEPROM.
1368 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1370 u32 eec;
1371 u32 i;
1373 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1374 return IXGBE_ERR_SWFW_SYNC;
1376 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1378 /* Request EEPROM Access */
1379 eec |= IXGBE_EEC_REQ;
1380 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1382 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1383 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1384 if (eec & IXGBE_EEC_GNT)
1385 break;
1386 udelay(5);
1389 /* Release if grant not acquired */
1390 if (!(eec & IXGBE_EEC_GNT)) {
1391 eec &= ~IXGBE_EEC_REQ;
1392 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1393 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1395 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1396 return IXGBE_ERR_EEPROM;
1399 /* Setup EEPROM for Read/Write */
1400 /* Clear CS and SK */
1401 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1402 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1403 IXGBE_WRITE_FLUSH(hw);
1404 udelay(1);
1405 return 0;
1409 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1410 * @hw: pointer to hardware structure
1412 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1414 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1416 u32 timeout = 2000;
1417 u32 i;
1418 u32 swsm;
1420 /* Get SMBI software semaphore between device drivers first */
1421 for (i = 0; i < timeout; i++) {
1423 * If the SMBI bit is 0 when we read it, then the bit will be
1424 * set and we have the semaphore
1426 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1427 if (!(swsm & IXGBE_SWSM_SMBI))
1428 break;
1429 usleep_range(50, 100);
1432 if (i == timeout) {
1433 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1434 /* this release is particularly important because our attempts
1435 * above to get the semaphore may have succeeded, and if there
1436 * was a timeout, we should unconditionally clear the semaphore
1437 * bits to free the driver to make progress
1439 ixgbe_release_eeprom_semaphore(hw);
1441 usleep_range(50, 100);
1442 /* one last try
1443 * If the SMBI bit is 0 when we read it, then the bit will be
1444 * set and we have the semaphore
1446 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1447 if (swsm & IXGBE_SWSM_SMBI) {
1448 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1449 return IXGBE_ERR_EEPROM;
1453 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1454 for (i = 0; i < timeout; i++) {
1455 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1457 /* Set the SW EEPROM semaphore bit to request access */
1458 swsm |= IXGBE_SWSM_SWESMBI;
1459 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1461 /* If we set the bit successfully then we got the
1462 * semaphore.
1464 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1465 if (swsm & IXGBE_SWSM_SWESMBI)
1466 break;
1468 usleep_range(50, 100);
1471 /* Release semaphores and return error if SW EEPROM semaphore
1472 * was not granted because we don't have access to the EEPROM
1474 if (i >= timeout) {
1475 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1476 ixgbe_release_eeprom_semaphore(hw);
1477 return IXGBE_ERR_EEPROM;
1480 return 0;
1484 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1485 * @hw: pointer to hardware structure
1487 * This function clears hardware semaphore bits.
1489 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1491 u32 swsm;
1493 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1495 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1496 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1497 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1498 IXGBE_WRITE_FLUSH(hw);
1502 * ixgbe_ready_eeprom - Polls for EEPROM ready
1503 * @hw: pointer to hardware structure
1505 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1507 u16 i;
1508 u8 spi_stat_reg;
1511 * Read "Status Register" repeatedly until the LSB is cleared. The
1512 * EEPROM will signal that the command has been completed by clearing
1513 * bit 0 of the internal status register. If it's not cleared within
1514 * 5 milliseconds, then error out.
1516 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1517 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1518 IXGBE_EEPROM_OPCODE_BITS);
1519 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1520 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1521 break;
1523 udelay(5);
1524 ixgbe_standby_eeprom(hw);
1528 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1529 * devices (and only 0-5mSec on 5V devices)
1531 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1532 hw_dbg(hw, "SPI EEPROM Status error\n");
1533 return IXGBE_ERR_EEPROM;
1536 return 0;
1540 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1541 * @hw: pointer to hardware structure
1543 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1545 u32 eec;
1547 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1549 /* Toggle CS to flush commands */
1550 eec |= IXGBE_EEC_CS;
1551 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1552 IXGBE_WRITE_FLUSH(hw);
1553 udelay(1);
1554 eec &= ~IXGBE_EEC_CS;
1555 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1556 IXGBE_WRITE_FLUSH(hw);
1557 udelay(1);
1561 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1562 * @hw: pointer to hardware structure
1563 * @data: data to send to the EEPROM
1564 * @count: number of bits to shift out
1566 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1567 u16 count)
1569 u32 eec;
1570 u32 mask;
1571 u32 i;
1573 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1576 * Mask is used to shift "count" bits of "data" out to the EEPROM
1577 * one bit at a time. Determine the starting bit based on count
1579 mask = BIT(count - 1);
1581 for (i = 0; i < count; i++) {
1583 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1584 * "1", and then raising and then lowering the clock (the SK
1585 * bit controls the clock input to the EEPROM). A "0" is
1586 * shifted out to the EEPROM by setting "DI" to "0" and then
1587 * raising and then lowering the clock.
1589 if (data & mask)
1590 eec |= IXGBE_EEC_DI;
1591 else
1592 eec &= ~IXGBE_EEC_DI;
1594 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1595 IXGBE_WRITE_FLUSH(hw);
1597 udelay(1);
1599 ixgbe_raise_eeprom_clk(hw, &eec);
1600 ixgbe_lower_eeprom_clk(hw, &eec);
1603 * Shift mask to signify next bit of data to shift in to the
1604 * EEPROM
1606 mask = mask >> 1;
1609 /* We leave the "DI" bit set to "0" when we leave this routine. */
1610 eec &= ~IXGBE_EEC_DI;
1611 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1612 IXGBE_WRITE_FLUSH(hw);
1616 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1617 * @hw: pointer to hardware structure
1619 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1621 u32 eec;
1622 u32 i;
1623 u16 data = 0;
1626 * In order to read a register from the EEPROM, we need to shift
1627 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1628 * the clock input to the EEPROM (setting the SK bit), and then reading
1629 * the value of the "DO" bit. During this "shifting in" process the
1630 * "DI" bit should always be clear.
1632 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1634 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1636 for (i = 0; i < count; i++) {
1637 data = data << 1;
1638 ixgbe_raise_eeprom_clk(hw, &eec);
1640 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1642 eec &= ~(IXGBE_EEC_DI);
1643 if (eec & IXGBE_EEC_DO)
1644 data |= 1;
1646 ixgbe_lower_eeprom_clk(hw, &eec);
1649 return data;
1653 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1654 * @hw: pointer to hardware structure
1655 * @eec: EEC register's current value
1657 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1660 * Raise the clock input to the EEPROM
1661 * (setting the SK bit), then delay
1663 *eec = *eec | IXGBE_EEC_SK;
1664 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1665 IXGBE_WRITE_FLUSH(hw);
1666 udelay(1);
1670 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1671 * @hw: pointer to hardware structure
1672 * @eecd: EECD's current value
1674 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1677 * Lower the clock input to the EEPROM (clearing the SK bit), then
1678 * delay
1680 *eec = *eec & ~IXGBE_EEC_SK;
1681 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1682 IXGBE_WRITE_FLUSH(hw);
1683 udelay(1);
1687 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1688 * @hw: pointer to hardware structure
1690 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1692 u32 eec;
1694 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1696 eec |= IXGBE_EEC_CS; /* Pull CS high */
1697 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1699 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1700 IXGBE_WRITE_FLUSH(hw);
1702 udelay(1);
1704 /* Stop requesting EEPROM access */
1705 eec &= ~IXGBE_EEC_REQ;
1706 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1708 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1711 * Delay before attempt to obtain semaphore again to allow FW
1712 * access. semaphore_delay is in ms we need us for usleep_range
1714 usleep_range(hw->eeprom.semaphore_delay * 1000,
1715 hw->eeprom.semaphore_delay * 2000);
1719 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1720 * @hw: pointer to hardware structure
1722 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1724 u16 i;
1725 u16 j;
1726 u16 checksum = 0;
1727 u16 length = 0;
1728 u16 pointer = 0;
1729 u16 word = 0;
1731 /* Include 0x0-0x3F in the checksum */
1732 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1733 if (hw->eeprom.ops.read(hw, i, &word)) {
1734 hw_dbg(hw, "EEPROM read failed\n");
1735 break;
1737 checksum += word;
1740 /* Include all data from pointers except for the fw pointer */
1741 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1742 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1743 hw_dbg(hw, "EEPROM read failed\n");
1744 return IXGBE_ERR_EEPROM;
1747 /* If the pointer seems invalid */
1748 if (pointer == 0xFFFF || pointer == 0)
1749 continue;
1751 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1752 hw_dbg(hw, "EEPROM read failed\n");
1753 return IXGBE_ERR_EEPROM;
1756 if (length == 0xFFFF || length == 0)
1757 continue;
1759 for (j = pointer + 1; j <= pointer + length; j++) {
1760 if (hw->eeprom.ops.read(hw, j, &word)) {
1761 hw_dbg(hw, "EEPROM read failed\n");
1762 return IXGBE_ERR_EEPROM;
1764 checksum += word;
1768 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1770 return (s32)checksum;
1774 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1775 * @hw: pointer to hardware structure
1776 * @checksum_val: calculated checksum
1778 * Performs checksum calculation and validates the EEPROM checksum. If the
1779 * caller does not need checksum_val, the value can be NULL.
1781 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1782 u16 *checksum_val)
1784 s32 status;
1785 u16 checksum;
1786 u16 read_checksum = 0;
1789 * Read the first word from the EEPROM. If this times out or fails, do
1790 * not continue or we could be in for a very long wait while every
1791 * EEPROM read fails
1793 status = hw->eeprom.ops.read(hw, 0, &checksum);
1794 if (status) {
1795 hw_dbg(hw, "EEPROM read failed\n");
1796 return status;
1799 status = hw->eeprom.ops.calc_checksum(hw);
1800 if (status < 0)
1801 return status;
1803 checksum = (u16)(status & 0xffff);
1805 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1806 if (status) {
1807 hw_dbg(hw, "EEPROM read failed\n");
1808 return status;
1811 /* Verify read checksum from EEPROM is the same as
1812 * calculated checksum
1814 if (read_checksum != checksum)
1815 status = IXGBE_ERR_EEPROM_CHECKSUM;
1817 /* If the user cares, return the calculated checksum */
1818 if (checksum_val)
1819 *checksum_val = checksum;
1821 return status;
1825 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1826 * @hw: pointer to hardware structure
1828 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1830 s32 status;
1831 u16 checksum;
1834 * Read the first word from the EEPROM. If this times out or fails, do
1835 * not continue or we could be in for a very long wait while every
1836 * EEPROM read fails
1838 status = hw->eeprom.ops.read(hw, 0, &checksum);
1839 if (status) {
1840 hw_dbg(hw, "EEPROM read failed\n");
1841 return status;
1844 status = hw->eeprom.ops.calc_checksum(hw);
1845 if (status < 0)
1846 return status;
1848 checksum = (u16)(status & 0xffff);
1850 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1852 return status;
1856 * ixgbe_set_rar_generic - Set Rx address register
1857 * @hw: pointer to hardware structure
1858 * @index: Receive address register to write
1859 * @addr: Address to put into receive address register
1860 * @vmdq: VMDq "set" or "pool" index
1861 * @enable_addr: set flag that address is active
1863 * Puts an ethernet address into a receive address register.
1865 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1866 u32 enable_addr)
1868 u32 rar_low, rar_high;
1869 u32 rar_entries = hw->mac.num_rar_entries;
1871 /* Make sure we are using a valid rar index range */
1872 if (index >= rar_entries) {
1873 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1874 return IXGBE_ERR_INVALID_ARGUMENT;
1877 /* setup VMDq pool selection before this RAR gets enabled */
1878 hw->mac.ops.set_vmdq(hw, index, vmdq);
1881 * HW expects these in little endian so we reverse the byte
1882 * order from network order (big endian) to little endian
1884 rar_low = ((u32)addr[0] |
1885 ((u32)addr[1] << 8) |
1886 ((u32)addr[2] << 16) |
1887 ((u32)addr[3] << 24));
1889 * Some parts put the VMDq setting in the extra RAH bits,
1890 * so save everything except the lower 16 bits that hold part
1891 * of the address and the address valid bit.
1893 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1894 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1895 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1897 if (enable_addr != 0)
1898 rar_high |= IXGBE_RAH_AV;
1900 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1901 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903 return 0;
1907 * ixgbe_clear_rar_generic - Remove Rx address register
1908 * @hw: pointer to hardware structure
1909 * @index: Receive address register to write
1911 * Clears an ethernet address from a receive address register.
1913 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1915 u32 rar_high;
1916 u32 rar_entries = hw->mac.num_rar_entries;
1918 /* Make sure we are using a valid rar index range */
1919 if (index >= rar_entries) {
1920 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1921 return IXGBE_ERR_INVALID_ARGUMENT;
1925 * Some parts put the VMDq setting in the extra RAH bits,
1926 * so save everything except the lower 16 bits that hold part
1927 * of the address and the address valid bit.
1929 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1930 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1932 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1933 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1935 /* clear VMDq pool/queue selection for this RAR */
1936 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1938 return 0;
1942 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1943 * @hw: pointer to hardware structure
1945 * Places the MAC address in receive address register 0 and clears the rest
1946 * of the receive address registers. Clears the multicast table. Assumes
1947 * the receiver is in reset when the routine is called.
1949 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1951 u32 i;
1952 u32 rar_entries = hw->mac.num_rar_entries;
1955 * If the current mac address is valid, assume it is a software override
1956 * to the permanent address.
1957 * Otherwise, use the permanent address from the eeprom.
1959 if (!is_valid_ether_addr(hw->mac.addr)) {
1960 /* Get the MAC address from the RAR0 for later reference */
1961 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1963 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1964 } else {
1965 /* Setup the receive address. */
1966 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1967 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1969 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1972 /* clear VMDq pool/queue selection for RAR 0 */
1973 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1975 hw->addr_ctrl.overflow_promisc = 0;
1977 hw->addr_ctrl.rar_used_count = 1;
1979 /* Zero out the other receive addresses. */
1980 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1981 for (i = 1; i < rar_entries; i++) {
1982 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1983 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1986 /* Clear the MTA */
1987 hw->addr_ctrl.mta_in_use = 0;
1988 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1990 hw_dbg(hw, " Clearing MTA\n");
1991 for (i = 0; i < hw->mac.mcft_size; i++)
1992 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1994 if (hw->mac.ops.init_uta_tables)
1995 hw->mac.ops.init_uta_tables(hw);
1997 return 0;
2001 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2002 * @hw: pointer to hardware structure
2003 * @mc_addr: the multicast address
2005 * Extracts the 12 bits, from a multicast address, to determine which
2006 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2007 * incoming rx multicast addresses, to determine the bit-vector to check in
2008 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2009 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2010 * to mc_filter_type.
2012 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2014 u32 vector = 0;
2016 switch (hw->mac.mc_filter_type) {
2017 case 0: /* use bits [47:36] of the address */
2018 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2019 break;
2020 case 1: /* use bits [46:35] of the address */
2021 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2022 break;
2023 case 2: /* use bits [45:34] of the address */
2024 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2025 break;
2026 case 3: /* use bits [43:32] of the address */
2027 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2028 break;
2029 default: /* Invalid mc_filter_type */
2030 hw_dbg(hw, "MC filter type param set incorrectly\n");
2031 break;
2034 /* vector can only be 12-bits or boundary will be exceeded */
2035 vector &= 0xFFF;
2036 return vector;
2040 * ixgbe_set_mta - Set bit-vector in multicast table
2041 * @hw: pointer to hardware structure
2042 * @hash_value: Multicast address hash value
2044 * Sets the bit-vector in the multicast table.
2046 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2048 u32 vector;
2049 u32 vector_bit;
2050 u32 vector_reg;
2052 hw->addr_ctrl.mta_in_use++;
2054 vector = ixgbe_mta_vector(hw, mc_addr);
2055 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2058 * The MTA is a register array of 128 32-bit registers. It is treated
2059 * like an array of 4096 bits. We want to set bit
2060 * BitArray[vector_value]. So we figure out what register the bit is
2061 * in, read it, OR in the new bit, then write back the new value. The
2062 * register is determined by the upper 7 bits of the vector value and
2063 * the bit within that register are determined by the lower 5 bits of
2064 * the value.
2066 vector_reg = (vector >> 5) & 0x7F;
2067 vector_bit = vector & 0x1F;
2068 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2072 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2073 * @hw: pointer to hardware structure
2074 * @netdev: pointer to net device structure
2076 * The given list replaces any existing list. Clears the MC addrs from receive
2077 * address registers and the multicast table. Uses unused receive address
2078 * registers for the first multicast addresses, and hashes the rest into the
2079 * multicast table.
2081 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2082 struct net_device *netdev)
2084 struct netdev_hw_addr *ha;
2085 u32 i;
2088 * Set the new number of MC addresses that we are being requested to
2089 * use.
2091 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2092 hw->addr_ctrl.mta_in_use = 0;
2094 /* Clear mta_shadow */
2095 hw_dbg(hw, " Clearing MTA\n");
2096 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2098 /* Update mta shadow */
2099 netdev_for_each_mc_addr(ha, netdev) {
2100 hw_dbg(hw, " Adding the multicast addresses:\n");
2101 ixgbe_set_mta(hw, ha->addr);
2104 /* Enable mta */
2105 for (i = 0; i < hw->mac.mcft_size; i++)
2106 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2107 hw->mac.mta_shadow[i]);
2109 if (hw->addr_ctrl.mta_in_use > 0)
2110 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2111 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2113 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2114 return 0;
2118 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2119 * @hw: pointer to hardware structure
2121 * Enables multicast address in RAR and the use of the multicast hash table.
2123 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2125 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2127 if (a->mta_in_use > 0)
2128 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2129 hw->mac.mc_filter_type);
2131 return 0;
2135 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2136 * @hw: pointer to hardware structure
2138 * Disables multicast address in RAR and the use of the multicast hash table.
2140 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2142 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2144 if (a->mta_in_use > 0)
2145 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2147 return 0;
2151 * ixgbe_fc_enable_generic - Enable flow control
2152 * @hw: pointer to hardware structure
2154 * Enable flow control according to the current settings.
2156 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2158 u32 mflcn_reg, fccfg_reg;
2159 u32 reg;
2160 u32 fcrtl, fcrth;
2161 int i;
2163 /* Validate the water mark configuration. */
2164 if (!hw->fc.pause_time)
2165 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2167 /* Low water mark of zero causes XOFF floods */
2168 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2169 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2170 hw->fc.high_water[i]) {
2171 if (!hw->fc.low_water[i] ||
2172 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2173 hw_dbg(hw, "Invalid water mark configuration\n");
2174 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2179 /* Negotiate the fc mode to use */
2180 hw->mac.ops.fc_autoneg(hw);
2182 /* Disable any previous flow control settings */
2183 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2184 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2186 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2187 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2190 * The possible values of fc.current_mode are:
2191 * 0: Flow control is completely disabled
2192 * 1: Rx flow control is enabled (we can receive pause frames,
2193 * but not send pause frames).
2194 * 2: Tx flow control is enabled (we can send pause frames but
2195 * we do not support receiving pause frames).
2196 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2197 * other: Invalid.
2199 switch (hw->fc.current_mode) {
2200 case ixgbe_fc_none:
2202 * Flow control is disabled by software override or autoneg.
2203 * The code below will actually disable it in the HW.
2205 break;
2206 case ixgbe_fc_rx_pause:
2208 * Rx Flow control is enabled and Tx Flow control is
2209 * disabled by software override. Since there really
2210 * isn't a way to advertise that we are capable of RX
2211 * Pause ONLY, we will advertise that we support both
2212 * symmetric and asymmetric Rx PAUSE. Later, we will
2213 * disable the adapter's ability to send PAUSE frames.
2215 mflcn_reg |= IXGBE_MFLCN_RFCE;
2216 break;
2217 case ixgbe_fc_tx_pause:
2219 * Tx Flow control is enabled, and Rx Flow control is
2220 * disabled by software override.
2222 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2223 break;
2224 case ixgbe_fc_full:
2225 /* Flow control (both Rx and Tx) is enabled by SW override. */
2226 mflcn_reg |= IXGBE_MFLCN_RFCE;
2227 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2228 break;
2229 default:
2230 hw_dbg(hw, "Flow control param set incorrectly\n");
2231 return IXGBE_ERR_CONFIG;
2234 /* Set 802.3x based flow control settings. */
2235 mflcn_reg |= IXGBE_MFLCN_DPF;
2236 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2237 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2239 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2240 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2241 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2242 hw->fc.high_water[i]) {
2243 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2244 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2245 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2246 } else {
2247 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2249 * In order to prevent Tx hangs when the internal Tx
2250 * switch is enabled we must set the high water mark
2251 * to the Rx packet buffer size - 24KB. This allows
2252 * the Tx switch to function even under heavy Rx
2253 * workloads.
2255 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2258 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2261 /* Configure pause time (2 TCs per register) */
2262 reg = hw->fc.pause_time * 0x00010001;
2263 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2264 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2266 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2268 return 0;
2272 * ixgbe_negotiate_fc - Negotiate flow control
2273 * @hw: pointer to hardware structure
2274 * @adv_reg: flow control advertised settings
2275 * @lp_reg: link partner's flow control settings
2276 * @adv_sym: symmetric pause bit in advertisement
2277 * @adv_asm: asymmetric pause bit in advertisement
2278 * @lp_sym: symmetric pause bit in link partner advertisement
2279 * @lp_asm: asymmetric pause bit in link partner advertisement
2281 * Find the intersection between advertised settings and link partner's
2282 * advertised settings
2284 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2285 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2287 if ((!(adv_reg)) || (!(lp_reg)))
2288 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2292 * Now we need to check if the user selected Rx ONLY
2293 * of pause frames. In this case, we had to advertise
2294 * FULL flow control because we could not advertise RX
2295 * ONLY. Hence, we must now check to see if we need to
2296 * turn OFF the TRANSMISSION of PAUSE frames.
2298 if (hw->fc.requested_mode == ixgbe_fc_full) {
2299 hw->fc.current_mode = ixgbe_fc_full;
2300 hw_dbg(hw, "Flow Control = FULL.\n");
2301 } else {
2302 hw->fc.current_mode = ixgbe_fc_rx_pause;
2303 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2305 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2306 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2307 hw->fc.current_mode = ixgbe_fc_tx_pause;
2308 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2309 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2310 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2311 hw->fc.current_mode = ixgbe_fc_rx_pause;
2312 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2313 } else {
2314 hw->fc.current_mode = ixgbe_fc_none;
2315 hw_dbg(hw, "Flow Control = NONE.\n");
2317 return 0;
2321 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2322 * @hw: pointer to hardware structure
2324 * Enable flow control according on 1 gig fiber.
2326 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2328 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2329 s32 ret_val;
2332 * On multispeed fiber at 1g, bail out if
2333 * - link is up but AN did not complete, or if
2334 * - link is up and AN completed but timed out
2337 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2338 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2339 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2340 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2342 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2343 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2345 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2346 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2347 IXGBE_PCS1GANA_ASM_PAUSE,
2348 IXGBE_PCS1GANA_SYM_PAUSE,
2349 IXGBE_PCS1GANA_ASM_PAUSE);
2351 return ret_val;
2355 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2356 * @hw: pointer to hardware structure
2358 * Enable flow control according to IEEE clause 37.
2360 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2362 u32 links2, anlp1_reg, autoc_reg, links;
2363 s32 ret_val;
2366 * On backplane, bail out if
2367 * - backplane autoneg was not completed, or if
2368 * - we are 82599 and link partner is not AN enabled
2370 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2371 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2372 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2374 if (hw->mac.type == ixgbe_mac_82599EB) {
2375 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2376 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2377 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2380 * Read the 10g AN autoc and LP ability registers and resolve
2381 * local flow control settings accordingly
2383 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2384 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2386 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2387 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2388 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2390 return ret_val;
2394 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2395 * @hw: pointer to hardware structure
2397 * Enable flow control according to IEEE clause 37.
2399 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2401 u16 technology_ability_reg = 0;
2402 u16 lp_technology_ability_reg = 0;
2404 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2405 MDIO_MMD_AN,
2406 &technology_ability_reg);
2407 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2408 MDIO_MMD_AN,
2409 &lp_technology_ability_reg);
2411 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2412 (u32)lp_technology_ability_reg,
2413 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2414 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2418 * ixgbe_fc_autoneg - Configure flow control
2419 * @hw: pointer to hardware structure
2421 * Compares our advertised flow control capabilities to those advertised by
2422 * our link partner, and determines the proper flow control mode to use.
2424 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2426 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2427 ixgbe_link_speed speed;
2428 bool link_up;
2431 * AN should have completed when the cable was plugged in.
2432 * Look for reasons to bail out. Bail out if:
2433 * - FC autoneg is disabled, or if
2434 * - link is not up.
2436 * Since we're being called from an LSC, link is already known to be up.
2437 * So use link_up_wait_to_complete=false.
2439 if (hw->fc.disable_fc_autoneg)
2440 goto out;
2442 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2443 if (!link_up)
2444 goto out;
2446 switch (hw->phy.media_type) {
2447 /* Autoneg flow control on fiber adapters */
2448 case ixgbe_media_type_fiber:
2449 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2450 ret_val = ixgbe_fc_autoneg_fiber(hw);
2451 break;
2453 /* Autoneg flow control on backplane adapters */
2454 case ixgbe_media_type_backplane:
2455 ret_val = ixgbe_fc_autoneg_backplane(hw);
2456 break;
2458 /* Autoneg flow control on copper adapters */
2459 case ixgbe_media_type_copper:
2460 if (ixgbe_device_supports_autoneg_fc(hw))
2461 ret_val = ixgbe_fc_autoneg_copper(hw);
2462 break;
2464 default:
2465 break;
2468 out:
2469 if (ret_val == 0) {
2470 hw->fc.fc_was_autonegged = true;
2471 } else {
2472 hw->fc.fc_was_autonegged = false;
2473 hw->fc.current_mode = hw->fc.requested_mode;
2478 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2479 * @hw: pointer to hardware structure
2481 * System-wide timeout range is encoded in PCIe Device Control2 register.
2483 * Add 10% to specified maximum and return the number of times to poll for
2484 * completion timeout, in units of 100 microsec. Never return less than
2485 * 800 = 80 millisec.
2487 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2489 s16 devctl2;
2490 u32 pollcnt;
2492 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2493 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2495 switch (devctl2) {
2496 case IXGBE_PCIDEVCTRL2_65_130ms:
2497 pollcnt = 1300; /* 130 millisec */
2498 break;
2499 case IXGBE_PCIDEVCTRL2_260_520ms:
2500 pollcnt = 5200; /* 520 millisec */
2501 break;
2502 case IXGBE_PCIDEVCTRL2_1_2s:
2503 pollcnt = 20000; /* 2 sec */
2504 break;
2505 case IXGBE_PCIDEVCTRL2_4_8s:
2506 pollcnt = 80000; /* 8 sec */
2507 break;
2508 case IXGBE_PCIDEVCTRL2_17_34s:
2509 pollcnt = 34000; /* 34 sec */
2510 break;
2511 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2512 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2513 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2514 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2515 default:
2516 pollcnt = 800; /* 80 millisec minimum */
2517 break;
2520 /* add 10% to spec maximum */
2521 return (pollcnt * 11) / 10;
2525 * ixgbe_disable_pcie_master - Disable PCI-express master access
2526 * @hw: pointer to hardware structure
2528 * Disables PCI-Express master access and verifies there are no pending
2529 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2530 * bit hasn't caused the master requests to be disabled, else 0
2531 * is returned signifying master requests disabled.
2533 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2535 u32 i, poll;
2536 u16 value;
2538 /* Always set this bit to ensure any future transactions are blocked */
2539 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2541 /* Poll for bit to read as set */
2542 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2543 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2544 break;
2545 usleep_range(100, 120);
2547 if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2548 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2549 goto gio_disable_fail;
2552 /* Exit if master requests are blocked */
2553 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2554 ixgbe_removed(hw->hw_addr))
2555 return 0;
2557 /* Poll for master request bit to clear */
2558 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2559 udelay(100);
2560 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2561 return 0;
2565 * Two consecutive resets are required via CTRL.RST per datasheet
2566 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2567 * of this need. The first reset prevents new master requests from
2568 * being issued by our device. We then must wait 1usec or more for any
2569 * remaining completions from the PCIe bus to trickle in, and then reset
2570 * again to clear out any effects they may have had on our device.
2572 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2573 gio_disable_fail:
2574 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2576 if (hw->mac.type >= ixgbe_mac_X550)
2577 return 0;
2580 * Before proceeding, make sure that the PCIe block does not have
2581 * transactions pending.
2583 poll = ixgbe_pcie_timeout_poll(hw);
2584 for (i = 0; i < poll; i++) {
2585 udelay(100);
2586 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2587 if (ixgbe_removed(hw->hw_addr))
2588 return 0;
2589 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2590 return 0;
2593 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2594 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2598 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2599 * @hw: pointer to hardware structure
2600 * @mask: Mask to specify which semaphore to acquire
2602 * Acquires the SWFW semaphore through the GSSR register for the specified
2603 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2605 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2607 u32 gssr = 0;
2608 u32 swmask = mask;
2609 u32 fwmask = mask << 5;
2610 u32 timeout = 200;
2611 u32 i;
2613 for (i = 0; i < timeout; i++) {
2615 * SW NVM semaphore bit is used for access to all
2616 * SW_FW_SYNC bits (not just NVM)
2618 if (ixgbe_get_eeprom_semaphore(hw))
2619 return IXGBE_ERR_SWFW_SYNC;
2621 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2622 if (!(gssr & (fwmask | swmask))) {
2623 gssr |= swmask;
2624 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2625 ixgbe_release_eeprom_semaphore(hw);
2626 return 0;
2627 } else {
2628 /* Resource is currently in use by FW or SW */
2629 ixgbe_release_eeprom_semaphore(hw);
2630 usleep_range(5000, 10000);
2634 /* If time expired clear the bits holding the lock and retry */
2635 if (gssr & (fwmask | swmask))
2636 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2638 usleep_range(5000, 10000);
2639 return IXGBE_ERR_SWFW_SYNC;
2643 * ixgbe_release_swfw_sync - Release SWFW semaphore
2644 * @hw: pointer to hardware structure
2645 * @mask: Mask to specify which semaphore to release
2647 * Releases the SWFW semaphore through the GSSR register for the specified
2648 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2650 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2652 u32 gssr;
2653 u32 swmask = mask;
2655 ixgbe_get_eeprom_semaphore(hw);
2657 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2658 gssr &= ~swmask;
2659 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2661 ixgbe_release_eeprom_semaphore(hw);
2665 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2666 * @hw: pointer to hardware structure
2667 * @reg_val: Value we read from AUTOC
2668 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2669 * true in this the generic case.
2671 * The default case requires no protection so just to the register read.
2673 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2675 *locked = false;
2676 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2677 return 0;
2681 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2682 * @hw: pointer to hardware structure
2683 * @reg_val: value to write to AUTOC
2684 * @locked: bool to indicate whether the SW/FW lock was already taken by
2685 * previous read.
2687 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2689 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2690 return 0;
2694 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2695 * @hw: pointer to hardware structure
2697 * Stops the receive data path and waits for the HW to internally
2698 * empty the Rx security block.
2700 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2702 #define IXGBE_MAX_SECRX_POLL 40
2703 int i;
2704 int secrxreg;
2706 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2707 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2708 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2709 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2710 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2711 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2712 break;
2713 else
2714 /* Use interrupt-safe sleep just in case */
2715 udelay(1000);
2718 /* For informational purposes only */
2719 if (i >= IXGBE_MAX_SECRX_POLL)
2720 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2722 return 0;
2727 * ixgbe_enable_rx_buff - Enables the receive data path
2728 * @hw: pointer to hardware structure
2730 * Enables the receive data path
2732 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2734 u32 secrxreg;
2736 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2737 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2738 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2739 IXGBE_WRITE_FLUSH(hw);
2741 return 0;
2745 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2746 * @hw: pointer to hardware structure
2747 * @regval: register value to write to RXCTRL
2749 * Enables the Rx DMA unit
2751 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2753 if (regval & IXGBE_RXCTRL_RXEN)
2754 hw->mac.ops.enable_rx(hw);
2755 else
2756 hw->mac.ops.disable_rx(hw);
2758 return 0;
2762 * ixgbe_blink_led_start_generic - Blink LED based on index.
2763 * @hw: pointer to hardware structure
2764 * @index: led number to blink
2766 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2768 ixgbe_link_speed speed = 0;
2769 bool link_up = false;
2770 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2771 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2772 bool locked = false;
2773 s32 ret_val;
2775 if (index > 3)
2776 return IXGBE_ERR_PARAM;
2779 * Link must be up to auto-blink the LEDs;
2780 * Force it if link is down.
2782 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2784 if (!link_up) {
2785 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2786 if (ret_val)
2787 return ret_val;
2789 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2790 autoc_reg |= IXGBE_AUTOC_FLU;
2792 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2793 if (ret_val)
2794 return ret_val;
2796 IXGBE_WRITE_FLUSH(hw);
2798 usleep_range(10000, 20000);
2801 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2802 led_reg |= IXGBE_LED_BLINK(index);
2803 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2804 IXGBE_WRITE_FLUSH(hw);
2806 return 0;
2810 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2811 * @hw: pointer to hardware structure
2812 * @index: led number to stop blinking
2814 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2816 u32 autoc_reg = 0;
2817 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2818 bool locked = false;
2819 s32 ret_val;
2821 if (index > 3)
2822 return IXGBE_ERR_PARAM;
2824 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2825 if (ret_val)
2826 return ret_val;
2828 autoc_reg &= ~IXGBE_AUTOC_FLU;
2829 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2831 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2832 if (ret_val)
2833 return ret_val;
2835 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2836 led_reg &= ~IXGBE_LED_BLINK(index);
2837 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2838 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2839 IXGBE_WRITE_FLUSH(hw);
2841 return 0;
2845 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2846 * @hw: pointer to hardware structure
2847 * @san_mac_offset: SAN MAC address offset
2849 * This function will read the EEPROM location for the SAN MAC address
2850 * pointer, and returns the value at that location. This is used in both
2851 * get and set mac_addr routines.
2853 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2854 u16 *san_mac_offset)
2856 s32 ret_val;
2859 * First read the EEPROM pointer to see if the MAC addresses are
2860 * available.
2862 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2863 san_mac_offset);
2864 if (ret_val)
2865 hw_err(hw, "eeprom read at offset %d failed\n",
2866 IXGBE_SAN_MAC_ADDR_PTR);
2868 return ret_val;
2872 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2873 * @hw: pointer to hardware structure
2874 * @san_mac_addr: SAN MAC address
2876 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2877 * per-port, so set_lan_id() must be called before reading the addresses.
2878 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2879 * upon for non-SFP connections, so we must call it here.
2881 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2883 u16 san_mac_data, san_mac_offset;
2884 u8 i;
2885 s32 ret_val;
2888 * First read the EEPROM pointer to see if the MAC addresses are
2889 * available. If they're not, no point in calling set_lan_id() here.
2891 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2892 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2894 goto san_mac_addr_clr;
2896 /* make sure we know which port we need to program */
2897 hw->mac.ops.set_lan_id(hw);
2898 /* apply the port offset to the address offset */
2899 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2900 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2901 for (i = 0; i < 3; i++) {
2902 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2903 &san_mac_data);
2904 if (ret_val) {
2905 hw_err(hw, "eeprom read at offset %d failed\n",
2906 san_mac_offset);
2907 goto san_mac_addr_clr;
2909 san_mac_addr[i * 2] = (u8)(san_mac_data);
2910 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2911 san_mac_offset++;
2913 return 0;
2915 san_mac_addr_clr:
2916 /* No addresses available in this EEPROM. It's not necessarily an
2917 * error though, so just wipe the local address and return.
2919 for (i = 0; i < 6; i++)
2920 san_mac_addr[i] = 0xFF;
2921 return ret_val;
2925 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2926 * @hw: pointer to hardware structure
2928 * Read PCIe configuration space, and get the MSI-X vector count from
2929 * the capabilities table.
2931 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2933 u16 msix_count;
2934 u16 max_msix_count;
2935 u16 pcie_offset;
2937 switch (hw->mac.type) {
2938 case ixgbe_mac_82598EB:
2939 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2940 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2941 break;
2942 case ixgbe_mac_82599EB:
2943 case ixgbe_mac_X540:
2944 case ixgbe_mac_X550:
2945 case ixgbe_mac_X550EM_x:
2946 case ixgbe_mac_x550em_a:
2947 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2948 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2949 break;
2950 default:
2951 return 1;
2954 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2955 if (ixgbe_removed(hw->hw_addr))
2956 msix_count = 0;
2957 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2959 /* MSI-X count is zero-based in HW */
2960 msix_count++;
2962 if (msix_count > max_msix_count)
2963 msix_count = max_msix_count;
2965 return msix_count;
2969 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2970 * @hw: pointer to hardware struct
2971 * @rar: receive address register index to disassociate
2972 * @vmdq: VMDq pool index to remove from the rar
2974 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2976 u32 mpsar_lo, mpsar_hi;
2977 u32 rar_entries = hw->mac.num_rar_entries;
2979 /* Make sure we are using a valid rar index range */
2980 if (rar >= rar_entries) {
2981 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2982 return IXGBE_ERR_INVALID_ARGUMENT;
2985 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2986 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2988 if (ixgbe_removed(hw->hw_addr))
2989 return 0;
2991 if (!mpsar_lo && !mpsar_hi)
2992 return 0;
2994 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2995 if (mpsar_lo) {
2996 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2997 mpsar_lo = 0;
2999 if (mpsar_hi) {
3000 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3001 mpsar_hi = 0;
3003 } else if (vmdq < 32) {
3004 mpsar_lo &= ~BIT(vmdq);
3005 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3006 } else {
3007 mpsar_hi &= ~BIT(vmdq - 32);
3008 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3011 /* was that the last pool using this rar? */
3012 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3013 rar != 0 && rar != hw->mac.san_mac_rar_index)
3014 hw->mac.ops.clear_rar(hw, rar);
3016 return 0;
3020 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3021 * @hw: pointer to hardware struct
3022 * @rar: receive address register index to associate with a VMDq index
3023 * @vmdq: VMDq pool index
3025 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3027 u32 mpsar;
3028 u32 rar_entries = hw->mac.num_rar_entries;
3030 /* Make sure we are using a valid rar index range */
3031 if (rar >= rar_entries) {
3032 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3033 return IXGBE_ERR_INVALID_ARGUMENT;
3036 if (vmdq < 32) {
3037 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3038 mpsar |= BIT(vmdq);
3039 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3040 } else {
3041 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3042 mpsar |= BIT(vmdq - 32);
3043 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3045 return 0;
3049 * This function should only be involved in the IOV mode.
3050 * In IOV mode, Default pool is next pool after the number of
3051 * VFs advertized and not 0.
3052 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3054 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3055 * @hw: pointer to hardware struct
3056 * @vmdq: VMDq pool index
3058 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3060 u32 rar = hw->mac.san_mac_rar_index;
3062 if (vmdq < 32) {
3063 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3064 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3065 } else {
3066 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3067 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3070 return 0;
3074 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3075 * @hw: pointer to hardware structure
3077 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3079 int i;
3081 for (i = 0; i < 128; i++)
3082 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3084 return 0;
3088 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3089 * @hw: pointer to hardware structure
3090 * @vlan: VLAN id to write to VLAN filter
3092 * return the VLVF index where this VLAN id should be placed
3095 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3097 s32 regindex, first_empty_slot;
3098 u32 bits;
3100 /* short cut the special case */
3101 if (vlan == 0)
3102 return 0;
3104 /* if vlvf_bypass is set we don't want to use an empty slot, we
3105 * will simply bypass the VLVF if there are no entries present in the
3106 * VLVF that contain our VLAN
3108 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3110 /* add VLAN enable bit for comparison */
3111 vlan |= IXGBE_VLVF_VIEN;
3113 /* Search for the vlan id in the VLVF entries. Save off the first empty
3114 * slot found along the way.
3116 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3118 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3119 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3120 if (bits == vlan)
3121 return regindex;
3122 if (!first_empty_slot && !bits)
3123 first_empty_slot = regindex;
3126 /* If we are here then we didn't find the VLAN. Return first empty
3127 * slot we found during our search, else error.
3129 if (!first_empty_slot)
3130 hw_dbg(hw, "No space in VLVF.\n");
3132 return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3136 * ixgbe_set_vfta_generic - Set VLAN filter table
3137 * @hw: pointer to hardware structure
3138 * @vlan: VLAN id to write to VLAN filter
3139 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3140 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3141 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3143 * Turn on/off specified VLAN in the VLAN filter table.
3145 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3146 bool vlan_on, bool vlvf_bypass)
3148 u32 regidx, vfta_delta, vfta, bits;
3149 s32 vlvf_index;
3151 if ((vlan > 4095) || (vind > 63))
3152 return IXGBE_ERR_PARAM;
3155 * this is a 2 part operation - first the VFTA, then the
3156 * VLVF and VLVFB if VT Mode is set
3157 * We don't write the VFTA until we know the VLVF part succeeded.
3160 /* Part 1
3161 * The VFTA is a bitstring made up of 128 32-bit registers
3162 * that enable the particular VLAN id, much like the MTA:
3163 * bits[11-5]: which register
3164 * bits[4-0]: which bit in the register
3166 regidx = vlan / 32;
3167 vfta_delta = BIT(vlan % 32);
3168 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3170 /* vfta_delta represents the difference between the current value
3171 * of vfta and the value we want in the register. Since the diff
3172 * is an XOR mask we can just update vfta using an XOR.
3174 vfta_delta &= vlan_on ? ~vfta : vfta;
3175 vfta ^= vfta_delta;
3177 /* Part 2
3178 * If VT Mode is set
3179 * Either vlan_on
3180 * make sure the vlan is in VLVF
3181 * set the vind bit in the matching VLVFB
3182 * Or !vlan_on
3183 * clear the pool bit and possibly the vind
3185 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3186 goto vfta_update;
3188 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3189 if (vlvf_index < 0) {
3190 if (vlvf_bypass)
3191 goto vfta_update;
3192 return vlvf_index;
3195 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3197 /* set the pool bit */
3198 bits |= BIT(vind % 32);
3199 if (vlan_on)
3200 goto vlvf_update;
3202 /* clear the pool bit */
3203 bits ^= BIT(vind % 32);
3205 if (!bits &&
3206 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3207 /* Clear VFTA first, then disable VLVF. Otherwise
3208 * we run the risk of stray packets leaking into
3209 * the PF via the default pool
3211 if (vfta_delta)
3212 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3214 /* disable VLVF and clear remaining bit from pool */
3215 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3216 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3218 return 0;
3221 /* If there are still bits set in the VLVFB registers
3222 * for the VLAN ID indicated we need to see if the
3223 * caller is requesting that we clear the VFTA entry bit.
3224 * If the caller has requested that we clear the VFTA
3225 * entry bit but there are still pools/VFs using this VLAN
3226 * ID entry then ignore the request. We're not worried
3227 * about the case where we're turning the VFTA VLAN ID
3228 * entry bit on, only when requested to turn it off as
3229 * there may be multiple pools and/or VFs using the
3230 * VLAN ID entry. In that case we cannot clear the
3231 * VFTA bit until all pools/VFs using that VLAN ID have also
3232 * been cleared. This will be indicated by "bits" being
3233 * zero.
3235 vfta_delta = 0;
3237 vlvf_update:
3238 /* record pool change and enable VLAN ID if not already enabled */
3239 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3240 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3242 vfta_update:
3243 /* Update VFTA now that we are ready for traffic */
3244 if (vfta_delta)
3245 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3247 return 0;
3251 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3252 * @hw: pointer to hardware structure
3254 * Clears the VLAN filer table, and the VMDq index associated with the filter
3256 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3258 u32 offset;
3260 for (offset = 0; offset < hw->mac.vft_size; offset++)
3261 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3263 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3264 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3265 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3266 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3269 return 0;
3273 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3274 * @hw: pointer to hardware structure
3276 * Contains the logic to identify if we need to verify link for the
3277 * crosstalk fix
3279 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3281 /* Does FW say we need the fix */
3282 if (!hw->need_crosstalk_fix)
3283 return false;
3285 /* Only consider SFP+ PHYs i.e. media type fiber */
3286 switch (hw->mac.ops.get_media_type(hw)) {
3287 case ixgbe_media_type_fiber:
3288 case ixgbe_media_type_fiber_qsfp:
3289 break;
3290 default:
3291 return false;
3294 return true;
3298 * ixgbe_check_mac_link_generic - Determine link and speed status
3299 * @hw: pointer to hardware structure
3300 * @speed: pointer to link speed
3301 * @link_up: true when link is up
3302 * @link_up_wait_to_complete: bool used to wait for link up or not
3304 * Reads the links register to determine if link is up and the current speed
3306 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3307 bool *link_up, bool link_up_wait_to_complete)
3309 u32 links_reg, links_orig;
3310 u32 i;
3312 /* If Crosstalk fix enabled do the sanity check of making sure
3313 * the SFP+ cage is full.
3315 if (ixgbe_need_crosstalk_fix(hw)) {
3316 u32 sfp_cage_full;
3318 switch (hw->mac.type) {
3319 case ixgbe_mac_82599EB:
3320 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3321 IXGBE_ESDP_SDP2;
3322 break;
3323 case ixgbe_mac_X550EM_x:
3324 case ixgbe_mac_x550em_a:
3325 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3326 IXGBE_ESDP_SDP0;
3327 break;
3328 default:
3329 /* sanity check - No SFP+ devices here */
3330 sfp_cage_full = false;
3331 break;
3334 if (!sfp_cage_full) {
3335 *link_up = false;
3336 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3337 return 0;
3341 /* clear the old state */
3342 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3344 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3346 if (links_orig != links_reg) {
3347 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3348 links_orig, links_reg);
3351 if (link_up_wait_to_complete) {
3352 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3353 if (links_reg & IXGBE_LINKS_UP) {
3354 *link_up = true;
3355 break;
3356 } else {
3357 *link_up = false;
3359 msleep(100);
3360 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3362 } else {
3363 if (links_reg & IXGBE_LINKS_UP)
3364 *link_up = true;
3365 else
3366 *link_up = false;
3369 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3370 case IXGBE_LINKS_SPEED_10G_82599:
3371 if ((hw->mac.type >= ixgbe_mac_X550) &&
3372 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3373 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3374 else
3375 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3376 break;
3377 case IXGBE_LINKS_SPEED_1G_82599:
3378 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3379 break;
3380 case IXGBE_LINKS_SPEED_100_82599:
3381 if ((hw->mac.type >= ixgbe_mac_X550) &&
3382 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3383 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3384 else
3385 *speed = IXGBE_LINK_SPEED_100_FULL;
3386 break;
3387 case IXGBE_LINKS_SPEED_10_X550EM_A:
3388 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3389 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3390 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3391 *speed = IXGBE_LINK_SPEED_10_FULL;
3393 break;
3394 default:
3395 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3398 return 0;
3402 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3403 * the EEPROM
3404 * @hw: pointer to hardware structure
3405 * @wwnn_prefix: the alternative WWNN prefix
3406 * @wwpn_prefix: the alternative WWPN prefix
3408 * This function will read the EEPROM from the alternative SAN MAC address
3409 * block to check the support for the alternative WWNN/WWPN prefix support.
3411 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3412 u16 *wwpn_prefix)
3414 u16 offset, caps;
3415 u16 alt_san_mac_blk_offset;
3417 /* clear output first */
3418 *wwnn_prefix = 0xFFFF;
3419 *wwpn_prefix = 0xFFFF;
3421 /* check if alternative SAN MAC is supported */
3422 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3423 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3424 goto wwn_prefix_err;
3426 if ((alt_san_mac_blk_offset == 0) ||
3427 (alt_san_mac_blk_offset == 0xFFFF))
3428 return 0;
3430 /* check capability in alternative san mac address block */
3431 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3432 if (hw->eeprom.ops.read(hw, offset, &caps))
3433 goto wwn_prefix_err;
3434 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3435 return 0;
3437 /* get the corresponding prefix for WWNN/WWPN */
3438 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3439 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3440 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3442 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3443 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3444 goto wwn_prefix_err;
3446 return 0;
3448 wwn_prefix_err:
3449 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3450 return 0;
3454 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3455 * @hw: pointer to hardware structure
3456 * @enable: enable or disable switch for MAC anti-spoofing
3457 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3460 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3462 int vf_target_reg = vf >> 3;
3463 int vf_target_shift = vf % 8;
3464 u32 pfvfspoof;
3466 if (hw->mac.type == ixgbe_mac_82598EB)
3467 return;
3469 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3470 if (enable)
3471 pfvfspoof |= BIT(vf_target_shift);
3472 else
3473 pfvfspoof &= ~BIT(vf_target_shift);
3474 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3478 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3479 * @hw: pointer to hardware structure
3480 * @enable: enable or disable switch for VLAN anti-spoofing
3481 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3484 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3486 int vf_target_reg = vf >> 3;
3487 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3488 u32 pfvfspoof;
3490 if (hw->mac.type == ixgbe_mac_82598EB)
3491 return;
3493 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3494 if (enable)
3495 pfvfspoof |= BIT(vf_target_shift);
3496 else
3497 pfvfspoof &= ~BIT(vf_target_shift);
3498 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3502 * ixgbe_get_device_caps_generic - Get additional device capabilities
3503 * @hw: pointer to hardware structure
3504 * @device_caps: the EEPROM word with the extra device capabilities
3506 * This function will read the EEPROM location for the device capabilities,
3507 * and return the word through device_caps.
3509 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3511 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3513 return 0;
3517 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3518 * @hw: pointer to hardware structure
3519 * @num_pb: number of packet buffers to allocate
3520 * @headroom: reserve n KB of headroom
3521 * @strategy: packet buffer allocation strategy
3523 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3524 int num_pb,
3525 u32 headroom,
3526 int strategy)
3528 u32 pbsize = hw->mac.rx_pb_size;
3529 int i = 0;
3530 u32 rxpktsize, txpktsize, txpbthresh;
3532 /* Reserve headroom */
3533 pbsize -= headroom;
3535 if (!num_pb)
3536 num_pb = 1;
3538 /* Divide remaining packet buffer space amongst the number
3539 * of packet buffers requested using supplied strategy.
3541 switch (strategy) {
3542 case (PBA_STRATEGY_WEIGHTED):
3543 /* pba_80_48 strategy weight first half of packet buffer with
3544 * 5/8 of the packet buffer space.
3546 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3547 pbsize -= rxpktsize * (num_pb / 2);
3548 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3549 for (; i < (num_pb / 2); i++)
3550 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3551 /* Fall through to configure remaining packet buffers */
3552 case (PBA_STRATEGY_EQUAL):
3553 /* Divide the remaining Rx packet buffer evenly among the TCs */
3554 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3555 for (; i < num_pb; i++)
3556 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3557 break;
3558 default:
3559 break;
3563 * Setup Tx packet buffer and threshold equally for all TCs
3564 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3565 * 10 since the largest packet we support is just over 9K.
3567 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3568 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3569 for (i = 0; i < num_pb; i++) {
3570 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3571 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3574 /* Clear unused TCs, if any, to zero buffer size*/
3575 for (; i < IXGBE_MAX_PB; i++) {
3576 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3577 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3578 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3583 * ixgbe_calculate_checksum - Calculate checksum for buffer
3584 * @buffer: pointer to EEPROM
3585 * @length: size of EEPROM to calculate a checksum for
3587 * Calculates the checksum for some buffer on a specified length. The
3588 * checksum calculated is returned.
3590 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3592 u32 i;
3593 u8 sum = 0;
3595 if (!buffer)
3596 return 0;
3598 for (i = 0; i < length; i++)
3599 sum += buffer[i];
3601 return (u8) (0 - sum);
3605 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3606 * @hw: pointer to the HW structure
3607 * @buffer: command to write and where the return status will be placed
3608 * @length: length of buffer, must be multiple of 4 bytes
3609 * @timeout: time in ms to wait for command completion
3611 * Communicates with the manageability block. On success return 0
3612 * else returns semaphore error when encountering an error acquiring
3613 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3615 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3616 * by the caller.
3618 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3619 u32 timeout)
3621 u32 hicr, i, fwsts;
3622 u16 dword_len;
3624 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3625 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3626 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3629 /* Set bit 9 of FWSTS clearing FW reset indication */
3630 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3631 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3633 /* Check that the host interface is enabled. */
3634 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3635 if (!(hicr & IXGBE_HICR_EN)) {
3636 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3637 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3640 /* Calculate length in DWORDs. We must be DWORD aligned */
3641 if (length % sizeof(u32)) {
3642 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3643 return IXGBE_ERR_INVALID_ARGUMENT;
3646 dword_len = length >> 2;
3648 /* The device driver writes the relevant command block
3649 * into the ram area.
3651 for (i = 0; i < dword_len; i++)
3652 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3653 i, cpu_to_le32(buffer[i]));
3655 /* Setting this bit tells the ARC that a new command is pending. */
3656 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3658 for (i = 0; i < timeout; i++) {
3659 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3660 if (!(hicr & IXGBE_HICR_C))
3661 break;
3662 usleep_range(1000, 2000);
3665 /* Check command successful completion. */
3666 if ((timeout && i == timeout) ||
3667 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3668 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3670 return 0;
3674 * ixgbe_host_interface_command - Issue command to manageability block
3675 * @hw: pointer to the HW structure
3676 * @buffer: contains the command to write and where the return status will
3677 * be placed
3678 * @length: length of buffer, must be multiple of 4 bytes
3679 * @timeout: time in ms to wait for command completion
3680 * @return_data: read and return data from the buffer (true) or not (false)
3681 * Needed because FW structures are big endian and decoding of
3682 * these fields can be 8 bit or 16 bit based on command. Decoding
3683 * is not easily understood without making a table of commands.
3684 * So we will leave this up to the caller to read back the data
3685 * in these cases.
3687 * Communicates with the manageability block. On success return 0
3688 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3690 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3691 u32 length, u32 timeout,
3692 bool return_data)
3694 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3695 union {
3696 struct ixgbe_hic_hdr hdr;
3697 u32 u32arr[1];
3698 } *bp = buffer;
3699 u16 buf_len, dword_len;
3700 s32 status;
3701 u32 bi;
3703 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3704 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3705 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3707 /* Take management host interface semaphore */
3708 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3709 if (status)
3710 return status;
3712 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3713 if (status)
3714 goto rel_out;
3716 if (!return_data)
3717 goto rel_out;
3719 /* Calculate length in DWORDs */
3720 dword_len = hdr_size >> 2;
3722 /* first pull in the header so we know the buffer length */
3723 for (bi = 0; bi < dword_len; bi++) {
3724 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3725 le32_to_cpus(&bp->u32arr[bi]);
3728 /* If there is any thing in data position pull it in */
3729 buf_len = bp->hdr.buf_len;
3730 if (!buf_len)
3731 goto rel_out;
3733 if (length < round_up(buf_len, 4) + hdr_size) {
3734 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3735 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3736 goto rel_out;
3739 /* Calculate length in DWORDs, add 3 for odd lengths */
3740 dword_len = (buf_len + 3) >> 2;
3742 /* Pull in the rest of the buffer (bi is where we left off) */
3743 for (; bi <= dword_len; bi++) {
3744 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3745 le32_to_cpus(&bp->u32arr[bi]);
3748 rel_out:
3749 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3751 return status;
3755 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3756 * @hw: pointer to the HW structure
3757 * @maj: driver version major number
3758 * @min: driver version minor number
3759 * @build: driver version build number
3760 * @sub: driver version sub build number
3761 * @len: length of driver_ver string
3762 * @driver_ver: driver string
3764 * Sends driver version number to firmware through the manageability
3765 * block. On success return 0
3766 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3767 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3769 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3770 u8 build, u8 sub, __always_unused u16 len,
3771 __always_unused const char *driver_ver)
3773 struct ixgbe_hic_drv_info fw_cmd;
3774 int i;
3775 s32 ret_val;
3777 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3778 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3779 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3780 fw_cmd.port_num = hw->bus.func;
3781 fw_cmd.ver_maj = maj;
3782 fw_cmd.ver_min = min;
3783 fw_cmd.ver_build = build;
3784 fw_cmd.ver_sub = sub;
3785 fw_cmd.hdr.checksum = 0;
3786 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3787 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3788 fw_cmd.pad = 0;
3789 fw_cmd.pad2 = 0;
3791 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3792 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3793 sizeof(fw_cmd),
3794 IXGBE_HI_COMMAND_TIMEOUT,
3795 true);
3796 if (ret_val != 0)
3797 continue;
3799 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3800 FW_CEM_RESP_STATUS_SUCCESS)
3801 ret_val = 0;
3802 else
3803 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3805 break;
3808 return ret_val;
3812 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3813 * @hw: pointer to the hardware structure
3815 * The 82599 and x540 MACs can experience issues if TX work is still pending
3816 * when a reset occurs. This function prevents this by flushing the PCIe
3817 * buffers on the system.
3819 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3821 u32 gcr_ext, hlreg0, i, poll;
3822 u16 value;
3825 * If double reset is not requested then all transactions should
3826 * already be clear and as such there is no work to do
3828 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3829 return;
3832 * Set loopback enable to prevent any transmits from being sent
3833 * should the link come up. This assumes that the RXCTRL.RXEN bit
3834 * has already been cleared.
3836 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3837 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3839 /* wait for a last completion before clearing buffers */
3840 IXGBE_WRITE_FLUSH(hw);
3841 usleep_range(3000, 6000);
3843 /* Before proceeding, make sure that the PCIe block does not have
3844 * transactions pending.
3846 poll = ixgbe_pcie_timeout_poll(hw);
3847 for (i = 0; i < poll; i++) {
3848 usleep_range(100, 200);
3849 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3850 if (ixgbe_removed(hw->hw_addr))
3851 break;
3852 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3853 break;
3856 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3857 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3858 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3859 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3861 /* Flush all writes and allow 20usec for all transactions to clear */
3862 IXGBE_WRITE_FLUSH(hw);
3863 udelay(20);
3865 /* restore previous register values */
3866 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3867 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3870 static const u8 ixgbe_emc_temp_data[4] = {
3871 IXGBE_EMC_INTERNAL_DATA,
3872 IXGBE_EMC_DIODE1_DATA,
3873 IXGBE_EMC_DIODE2_DATA,
3874 IXGBE_EMC_DIODE3_DATA
3876 static const u8 ixgbe_emc_therm_limit[4] = {
3877 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3878 IXGBE_EMC_DIODE1_THERM_LIMIT,
3879 IXGBE_EMC_DIODE2_THERM_LIMIT,
3880 IXGBE_EMC_DIODE3_THERM_LIMIT
3884 * ixgbe_get_ets_data - Extracts the ETS bit data
3885 * @hw: pointer to hardware structure
3886 * @ets_cfg: extected ETS data
3887 * @ets_offset: offset of ETS data
3889 * Returns error code.
3891 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3892 u16 *ets_offset)
3894 s32 status;
3896 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3897 if (status)
3898 return status;
3900 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3901 return IXGBE_NOT_IMPLEMENTED;
3903 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3904 if (status)
3905 return status;
3907 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3908 return IXGBE_NOT_IMPLEMENTED;
3910 return 0;
3914 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3915 * @hw: pointer to hardware structure
3917 * Returns the thermal sensor data structure
3919 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3921 s32 status;
3922 u16 ets_offset;
3923 u16 ets_cfg;
3924 u16 ets_sensor;
3925 u8 num_sensors;
3926 u8 i;
3927 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3929 /* Only support thermal sensors attached to physical port 0 */
3930 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3931 return IXGBE_NOT_IMPLEMENTED;
3933 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3934 if (status)
3935 return status;
3937 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3938 if (num_sensors > IXGBE_MAX_SENSORS)
3939 num_sensors = IXGBE_MAX_SENSORS;
3941 for (i = 0; i < num_sensors; i++) {
3942 u8 sensor_index;
3943 u8 sensor_location;
3945 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3946 &ets_sensor);
3947 if (status)
3948 return status;
3950 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3951 IXGBE_ETS_DATA_INDEX_SHIFT);
3952 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3953 IXGBE_ETS_DATA_LOC_SHIFT);
3955 if (sensor_location != 0) {
3956 status = hw->phy.ops.read_i2c_byte(hw,
3957 ixgbe_emc_temp_data[sensor_index],
3958 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3959 &data->sensor[i].temp);
3960 if (status)
3961 return status;
3965 return 0;
3969 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3970 * @hw: pointer to hardware structure
3972 * Inits the thermal sensor thresholds according to the NVM map
3973 * and save off the threshold and location values into mac.thermal_sensor_data
3975 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3977 s32 status;
3978 u16 ets_offset;
3979 u16 ets_cfg;
3980 u16 ets_sensor;
3981 u8 low_thresh_delta;
3982 u8 num_sensors;
3983 u8 therm_limit;
3984 u8 i;
3985 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3987 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3989 /* Only support thermal sensors attached to physical port 0 */
3990 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3991 return IXGBE_NOT_IMPLEMENTED;
3993 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3994 if (status)
3995 return status;
3997 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3998 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3999 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4000 if (num_sensors > IXGBE_MAX_SENSORS)
4001 num_sensors = IXGBE_MAX_SENSORS;
4003 for (i = 0; i < num_sensors; i++) {
4004 u8 sensor_index;
4005 u8 sensor_location;
4007 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4008 hw_err(hw, "eeprom read at offset %d failed\n",
4009 ets_offset + 1 + i);
4010 continue;
4012 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4013 IXGBE_ETS_DATA_INDEX_SHIFT);
4014 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4015 IXGBE_ETS_DATA_LOC_SHIFT);
4016 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4018 hw->phy.ops.write_i2c_byte(hw,
4019 ixgbe_emc_therm_limit[sensor_index],
4020 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4022 if (sensor_location == 0)
4023 continue;
4025 data->sensor[i].location = sensor_location;
4026 data->sensor[i].caution_thresh = therm_limit;
4027 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4030 return 0;
4033 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4035 u32 rxctrl;
4037 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4038 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4039 if (hw->mac.type != ixgbe_mac_82598EB) {
4040 u32 pfdtxgswc;
4042 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4043 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4044 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4045 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4046 hw->mac.set_lben = true;
4047 } else {
4048 hw->mac.set_lben = false;
4051 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4052 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4056 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4058 u32 rxctrl;
4060 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4061 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4063 if (hw->mac.type != ixgbe_mac_82598EB) {
4064 if (hw->mac.set_lben) {
4065 u32 pfdtxgswc;
4067 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4068 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4069 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4070 hw->mac.set_lben = false;
4075 /** ixgbe_mng_present - returns true when management capability is present
4076 * @hw: pointer to hardware structure
4078 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4080 u32 fwsm;
4082 if (hw->mac.type < ixgbe_mac_82599EB)
4083 return false;
4085 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4086 fwsm &= IXGBE_FWSM_MODE_MASK;
4087 return fwsm == IXGBE_FWSM_FW_MODE_PT;
4091 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4092 * @hw: pointer to hardware structure
4093 * @speed: new link speed
4094 * @autoneg_wait_to_complete: true when waiting for completion is needed
4096 * Set the link speed in the MAC and/or PHY register and restarts link.
4098 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4099 ixgbe_link_speed speed,
4100 bool autoneg_wait_to_complete)
4102 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4103 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4104 s32 status = 0;
4105 u32 speedcnt = 0;
4106 u32 i = 0;
4107 bool autoneg, link_up = false;
4109 /* Mask off requested but non-supported speeds */
4110 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4111 if (status)
4112 return status;
4114 speed &= link_speed;
4116 /* Try each speed one by one, highest priority first. We do this in
4117 * software because 10Gb fiber doesn't support speed autonegotiation.
4119 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4120 speedcnt++;
4121 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4123 /* If we already have link at this speed, just jump out */
4124 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4125 false);
4126 if (status)
4127 return status;
4129 if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
4130 goto out;
4132 /* Set the module link speed */
4133 switch (hw->phy.media_type) {
4134 case ixgbe_media_type_fiber:
4135 hw->mac.ops.set_rate_select_speed(hw,
4136 IXGBE_LINK_SPEED_10GB_FULL);
4137 break;
4138 case ixgbe_media_type_fiber_qsfp:
4139 /* QSFP module automatically detects MAC link speed */
4140 break;
4141 default:
4142 hw_dbg(hw, "Unexpected media type\n");
4143 break;
4146 /* Allow module to change analog characteristics (1G->10G) */
4147 msleep(40);
4149 status = hw->mac.ops.setup_mac_link(hw,
4150 IXGBE_LINK_SPEED_10GB_FULL,
4151 autoneg_wait_to_complete);
4152 if (status)
4153 return status;
4155 /* Flap the Tx laser if it has not already been done */
4156 if (hw->mac.ops.flap_tx_laser)
4157 hw->mac.ops.flap_tx_laser(hw);
4159 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4160 * Section 73.10.2, we may have to wait up to 500ms if KR is
4161 * attempted. 82599 uses the same timing for 10g SFI.
4163 for (i = 0; i < 5; i++) {
4164 /* Wait for the link partner to also set speed */
4165 msleep(100);
4167 /* If we have link, just jump out */
4168 status = hw->mac.ops.check_link(hw, &link_speed,
4169 &link_up, false);
4170 if (status)
4171 return status;
4173 if (link_up)
4174 goto out;
4178 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4179 speedcnt++;
4180 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4181 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4183 /* If we already have link at this speed, just jump out */
4184 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4185 false);
4186 if (status)
4187 return status;
4189 if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4190 goto out;
4192 /* Set the module link speed */
4193 switch (hw->phy.media_type) {
4194 case ixgbe_media_type_fiber:
4195 hw->mac.ops.set_rate_select_speed(hw,
4196 IXGBE_LINK_SPEED_1GB_FULL);
4197 break;
4198 case ixgbe_media_type_fiber_qsfp:
4199 /* QSFP module automatically detects link speed */
4200 break;
4201 default:
4202 hw_dbg(hw, "Unexpected media type\n");
4203 break;
4206 /* Allow module to change analog characteristics (10G->1G) */
4207 msleep(40);
4209 status = hw->mac.ops.setup_mac_link(hw,
4210 IXGBE_LINK_SPEED_1GB_FULL,
4211 autoneg_wait_to_complete);
4212 if (status)
4213 return status;
4215 /* Flap the Tx laser if it has not already been done */
4216 if (hw->mac.ops.flap_tx_laser)
4217 hw->mac.ops.flap_tx_laser(hw);
4219 /* Wait for the link partner to also set speed */
4220 msleep(100);
4222 /* If we have link, just jump out */
4223 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4224 false);
4225 if (status)
4226 return status;
4228 if (link_up)
4229 goto out;
4232 /* We didn't get link. Configure back to the highest speed we tried,
4233 * (if there was more than one). We call ourselves back with just the
4234 * single highest speed that the user requested.
4236 if (speedcnt > 1)
4237 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4238 highest_link_speed,
4239 autoneg_wait_to_complete);
4241 out:
4242 /* Set autoneg_advertised value based on input link speed */
4243 hw->phy.autoneg_advertised = 0;
4245 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4246 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4248 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4249 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4251 return status;
4255 * ixgbe_set_soft_rate_select_speed - Set module link speed
4256 * @hw: pointer to hardware structure
4257 * @speed: link speed to set
4259 * Set module link speed via the soft rate select.
4261 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4262 ixgbe_link_speed speed)
4264 s32 status;
4265 u8 rs, eeprom_data;
4267 switch (speed) {
4268 case IXGBE_LINK_SPEED_10GB_FULL:
4269 /* one bit mask same as setting on */
4270 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4271 break;
4272 case IXGBE_LINK_SPEED_1GB_FULL:
4273 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4274 break;
4275 default:
4276 hw_dbg(hw, "Invalid fixed module speed\n");
4277 return;
4280 /* Set RS0 */
4281 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4282 IXGBE_I2C_EEPROM_DEV_ADDR2,
4283 &eeprom_data);
4284 if (status) {
4285 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4286 return;
4289 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4291 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4292 IXGBE_I2C_EEPROM_DEV_ADDR2,
4293 eeprom_data);
4294 if (status) {
4295 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4296 return;