2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 * Copyright (C) 2012 Marvell
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
35 #include "mvneta_bm.h"
41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
63 #define MVNETA_PORT_RX_RESET 0x1cc0
64 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
65 #define MVNETA_PHY_ADDR 0x2000
66 #define MVNETA_PHY_ADDR_MASK 0x1f
67 #define MVNETA_MBUS_RETRY 0x2010
68 #define MVNETA_UNIT_INTR_CAUSE 0x2080
69 #define MVNETA_UNIT_CONTROL 0x20B0
70 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
76 #define MVNETA_PORT_CONFIG 0x2400
77 #define MVNETA_UNI_PROMISC_MODE BIT(0)
78 #define MVNETA_DEF_RXQ(q) ((q) << 1)
79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
86 MVNETA_DEF_RXQ_ARP(q) | \
87 MVNETA_DEF_RXQ_TCP(q) | \
88 MVNETA_DEF_RXQ_UDP(q) | \
89 MVNETA_DEF_RXQ_BPDU(q) | \
90 MVNETA_TX_UNSET_ERR_SUM | \
91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
93 #define MVNETA_MAC_ADDR_LOW 0x2414
94 #define MVNETA_MAC_ADDR_HIGH 0x2418
95 #define MVNETA_SDMA_CONFIG 0x241c
96 #define MVNETA_SDMA_BRST_SIZE_16 4
97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
98 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
99 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
100 #define MVNETA_DESC_SWAP BIT(6)
101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
102 #define MVNETA_PORT_STATUS 0x2444
103 #define MVNETA_TX_IN_PRGRS BIT(1)
104 #define MVNETA_TX_FIFO_EMPTY BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
106 #define MVNETA_SERDES_CFG 0x24A0
107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
109 #define MVNETA_TYPE_PRIO 0x24bc
110 #define MVNETA_FORCE_UNI BIT(21)
111 #define MVNETA_TXQ_CMD_1 0x24e4
112 #define MVNETA_TXQ_CMD 0x2448
113 #define MVNETA_TXQ_DISABLE_SHIFT 8
114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
119 #define MVNETA_ACC_MODE 0x2500
120 #define MVNETA_BM_ADDRESS 0x2504
121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
128 /* Exception Interrupt Port/Queue Cause register
130 * Their behavior depend of the mapping done using the PCPX2Q
131 * registers. For a given CPU if the bit associated to a queue is not
132 * set, then for the register a read from this CPU will always return
133 * 0 and a write won't do anything
136 #define MVNETA_INTR_NEW_CAUSE 0x25a0
137 #define MVNETA_INTR_NEW_MASK 0x25a4
139 /* bits 0..7 = TXQ SENT, one bit per queue.
140 * bits 8..15 = RXQ OCCUP, one bit per queue.
141 * bits 16..23 = RXQ FREE, one bit per queue.
142 * bit 29 = OLD_REG_SUM, see old reg ?
143 * bit 30 = TX_ERR_SUM, one bit for 4 ports
144 * bit 31 = MISC_SUM, one bit for 4 ports
146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
150 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
152 #define MVNETA_INTR_OLD_CAUSE 0x25a8
153 #define MVNETA_INTR_OLD_MASK 0x25ac
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE 0x25b0
157 #define MVNETA_INTR_MISC_MASK 0x25b4
159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
161 #define MVNETA_CAUSE_PTP BIT(4)
163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
168 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
180 #define MVNETA_INTR_ENABLE 0x25b8
181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
184 #define MVNETA_RXQ_CMD 0x2680
185 #define MVNETA_RXQ_DISABLE_SHIFT 8
186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0 0x2c00
190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
192 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
193 #define MVNETA_GMAC_CTRL_2 0x2c08
194 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
195 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
196 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
197 #define MVNETA_GMAC2_PORT_RESET BIT(6)
198 #define MVNETA_GMAC_STATUS 0x2c10
199 #define MVNETA_GMAC_LINK_UP BIT(0)
200 #define MVNETA_GMAC_SPEED_1000 BIT(1)
201 #define MVNETA_GMAC_SPEED_100 BIT(2)
202 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
203 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
204 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
205 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
206 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
207 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
208 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
209 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
210 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
211 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
212 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
213 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
214 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
215 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
216 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
217 #define MVNETA_MIB_COUNTERS_BASE 0x3000
218 #define MVNETA_MIB_LATE_COLLISION 0x7c
219 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
220 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
221 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
222 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
223 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
224 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
225 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
226 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
227 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
228 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
229 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
230 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
231 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
232 #define MVNETA_PORT_TX_RESET 0x3cf0
233 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
234 #define MVNETA_TX_MTU 0x3e0c
235 #define MVNETA_TX_TOKEN_SIZE 0x3e14
236 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
237 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
238 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
240 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
242 /* Descriptor ring Macros */
243 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
244 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
246 /* Various constants */
249 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
250 #define MVNETA_RX_COAL_PKTS 32
251 #define MVNETA_RX_COAL_USEC 100
253 /* The two bytes Marvell header. Either contains a special value used
254 * by Marvell switches when a specific hardware mode is enabled (not
255 * supported by this driver) or is filled automatically by zeroes on
256 * the RX side. Those two bytes being at the front of the Ethernet
257 * header, they allow to have the IP header aligned on a 4 bytes
258 * boundary automatically: the hardware skips those two bytes on its
261 #define MVNETA_MH_SIZE 2
263 #define MVNETA_VLAN_TAG_LEN 4
265 #define MVNETA_TX_CSUM_DEF_SIZE 1600
266 #define MVNETA_TX_CSUM_MAX_SIZE 9800
267 #define MVNETA_ACC_MODE_EXT1 1
268 #define MVNETA_ACC_MODE_EXT2 2
270 #define MVNETA_MAX_DECODE_WIN 6
272 /* Timeout constants */
273 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
274 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
275 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
277 #define MVNETA_TX_MTU_MAX 0x3ffff
279 /* The RSS lookup table actually has 256 entries but we do not use
282 #define MVNETA_RSS_LU_TABLE_SIZE 1
284 /* TSO header size */
285 #define TSO_HEADER_SIZE 128
287 /* Max number of Rx descriptors */
288 #define MVNETA_MAX_RXD 128
290 /* Max number of Tx descriptors */
291 #define MVNETA_MAX_TXD 532
293 /* Max number of allowed TCP segments for software TSO */
294 #define MVNETA_MAX_TSO_SEGS 100
296 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
298 /* descriptor aligned size */
299 #define MVNETA_DESC_ALIGNED_SIZE 32
301 /* Number of bytes to be taken into account by HW when putting incoming data
302 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
303 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
305 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
307 #define MVNETA_RX_PKT_SIZE(mtu) \
308 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
309 ETH_HLEN + ETH_FCS_LEN, \
312 #define IS_TSO_HEADER(txq, addr) \
313 ((addr >= txq->tso_hdrs_phys) && \
314 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
316 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
317 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
319 struct mvneta_statistic
{
320 unsigned short offset
;
322 const char name
[ETH_GSTRING_LEN
];
328 static const struct mvneta_statistic mvneta_statistics
[] = {
329 { 0x3000, T_REG_64
, "good_octets_received", },
330 { 0x3010, T_REG_32
, "good_frames_received", },
331 { 0x3008, T_REG_32
, "bad_octets_received", },
332 { 0x3014, T_REG_32
, "bad_frames_received", },
333 { 0x3018, T_REG_32
, "broadcast_frames_received", },
334 { 0x301c, T_REG_32
, "multicast_frames_received", },
335 { 0x3050, T_REG_32
, "unrec_mac_control_received", },
336 { 0x3058, T_REG_32
, "good_fc_received", },
337 { 0x305c, T_REG_32
, "bad_fc_received", },
338 { 0x3060, T_REG_32
, "undersize_received", },
339 { 0x3064, T_REG_32
, "fragments_received", },
340 { 0x3068, T_REG_32
, "oversize_received", },
341 { 0x306c, T_REG_32
, "jabber_received", },
342 { 0x3070, T_REG_32
, "mac_receive_error", },
343 { 0x3074, T_REG_32
, "bad_crc_event", },
344 { 0x3078, T_REG_32
, "collision", },
345 { 0x307c, T_REG_32
, "late_collision", },
346 { 0x2484, T_REG_32
, "rx_discard", },
347 { 0x2488, T_REG_32
, "rx_overrun", },
348 { 0x3020, T_REG_32
, "frames_64_octets", },
349 { 0x3024, T_REG_32
, "frames_65_to_127_octets", },
350 { 0x3028, T_REG_32
, "frames_128_to_255_octets", },
351 { 0x302c, T_REG_32
, "frames_256_to_511_octets", },
352 { 0x3030, T_REG_32
, "frames_512_to_1023_octets", },
353 { 0x3034, T_REG_32
, "frames_1024_to_max_octets", },
354 { 0x3038, T_REG_64
, "good_octets_sent", },
355 { 0x3040, T_REG_32
, "good_frames_sent", },
356 { 0x3044, T_REG_32
, "excessive_collision", },
357 { 0x3048, T_REG_32
, "multicast_frames_sent", },
358 { 0x304c, T_REG_32
, "broadcast_frames_sent", },
359 { 0x3054, T_REG_32
, "fc_sent", },
360 { 0x300c, T_REG_32
, "internal_mac_transmit_err", },
363 struct mvneta_pcpu_stats
{
364 struct u64_stats_sync syncp
;
371 struct mvneta_pcpu_port
{
372 /* Pointer to the shared port */
373 struct mvneta_port
*pp
;
375 /* Pointer to the CPU-local NAPI struct */
376 struct napi_struct napi
;
378 /* Cause of the previous interrupt */
384 struct mvneta_pcpu_port __percpu
*ports
;
385 struct mvneta_pcpu_stats __percpu
*stats
;
388 unsigned int frag_size
;
390 struct mvneta_rx_queue
*rxqs
;
391 struct mvneta_tx_queue
*txqs
;
392 struct net_device
*dev
;
393 struct hlist_node node_online
;
394 struct hlist_node node_dead
;
396 /* Protect the access to the percpu interrupt registers,
397 * ensuring that the configuration remains coherent.
403 struct napi_struct napi
;
413 struct mii_bus
*mii_bus
;
414 phy_interface_t phy_interface
;
415 struct device_node
*phy_node
;
419 unsigned int tx_csum_limit
;
420 unsigned int use_inband_status
:1;
422 struct mvneta_bm
*bm_priv
;
423 struct mvneta_bm_pool
*pool_long
;
424 struct mvneta_bm_pool
*pool_short
;
427 u64 ethtool_stats
[ARRAY_SIZE(mvneta_statistics
)];
429 u32 indir
[MVNETA_RSS_LU_TABLE_SIZE
];
431 /* Flags for special SoC configurations */
432 bool neta_armada3700
;
433 u16 rx_offset_correction
;
436 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
437 * layout of the transmit and reception DMA descriptors, and their
438 * layout is therefore defined by the hardware design
441 #define MVNETA_TX_L3_OFF_SHIFT 0
442 #define MVNETA_TX_IP_HLEN_SHIFT 8
443 #define MVNETA_TX_L4_UDP BIT(16)
444 #define MVNETA_TX_L3_IP6 BIT(17)
445 #define MVNETA_TXD_IP_CSUM BIT(18)
446 #define MVNETA_TXD_Z_PAD BIT(19)
447 #define MVNETA_TXD_L_DESC BIT(20)
448 #define MVNETA_TXD_F_DESC BIT(21)
449 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
450 MVNETA_TXD_L_DESC | \
452 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
453 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
455 #define MVNETA_RXD_ERR_CRC 0x0
456 #define MVNETA_RXD_BM_POOL_SHIFT 13
457 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
458 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
459 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
460 #define MVNETA_RXD_ERR_LEN BIT(18)
461 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
462 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
463 #define MVNETA_RXD_L3_IP4 BIT(25)
464 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
465 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
467 #if defined(__LITTLE_ENDIAN)
468 struct mvneta_tx_desc
{
469 u32 command
; /* Options used by HW for packet transmitting.*/
470 u16 reserverd1
; /* csum_l4 (for future use) */
471 u16 data_size
; /* Data size of transmitted packet in bytes */
472 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
473 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
474 u32 reserved3
[4]; /* Reserved - (for future use) */
477 struct mvneta_rx_desc
{
478 u32 status
; /* Info about received packet */
479 u16 reserved1
; /* pnc_info - (for future use, PnC) */
480 u16 data_size
; /* Size of received packet in bytes */
482 u32 buf_phys_addr
; /* Physical address of the buffer */
483 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
485 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
486 u16 reserved3
; /* prefetch_cmd, for future use */
487 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
489 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
490 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
493 struct mvneta_tx_desc
{
494 u16 data_size
; /* Data size of transmitted packet in bytes */
495 u16 reserverd1
; /* csum_l4 (for future use) */
496 u32 command
; /* Options used by HW for packet transmitting.*/
497 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
498 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
499 u32 reserved3
[4]; /* Reserved - (for future use) */
502 struct mvneta_rx_desc
{
503 u16 data_size
; /* Size of received packet in bytes */
504 u16 reserved1
; /* pnc_info - (for future use, PnC) */
505 u32 status
; /* Info about received packet */
507 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
508 u32 buf_phys_addr
; /* Physical address of the buffer */
510 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
511 u16 reserved3
; /* prefetch_cmd, for future use */
512 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
514 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
515 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
519 struct mvneta_tx_queue
{
520 /* Number of this TX queue, in the range 0-7 */
523 /* Number of TX DMA descriptors in the descriptor ring */
526 /* Number of currently used TX DMA descriptor in the
531 int tx_stop_threshold
;
532 int tx_wake_threshold
;
534 /* Array of transmitted skb */
535 struct sk_buff
**tx_skb
;
537 /* Index of last TX DMA descriptor that was inserted */
540 /* Index of the TX DMA descriptor to be cleaned up */
545 /* Virtual address of the TX DMA descriptors array */
546 struct mvneta_tx_desc
*descs
;
548 /* DMA address of the TX DMA descriptors array */
549 dma_addr_t descs_phys
;
551 /* Index of the last TX DMA descriptor */
554 /* Index of the next TX DMA descriptor to process */
555 int next_desc_to_proc
;
557 /* DMA buffers for TSO headers */
560 /* DMA address of TSO headers */
561 dma_addr_t tso_hdrs_phys
;
563 /* Affinity mask for CPUs*/
564 cpumask_t affinity_mask
;
567 struct mvneta_rx_queue
{
568 /* rx queue number, in the range 0-7 */
571 /* num of rx descriptors in the rx descriptor ring */
574 /* counter of times when mvneta_refill() failed */
580 /* Virtual address of the RX buffer */
581 void **buf_virt_addr
;
583 /* Virtual address of the RX DMA descriptors array */
584 struct mvneta_rx_desc
*descs
;
586 /* DMA address of the RX DMA descriptors array */
587 dma_addr_t descs_phys
;
589 /* Index of the last RX DMA descriptor */
592 /* Index of the next RX DMA descriptor to process */
593 int next_desc_to_proc
;
596 static enum cpuhp_state online_hpstate
;
597 /* The hardware supports eight (8) rx queues, but we are only allowing
598 * the first one to be used. Therefore, let's just allocate one queue.
600 static int rxq_number
= 8;
601 static int txq_number
= 8;
605 static int rx_copybreak __read_mostly
= 256;
607 /* HW BM need that each port be identify by a unique ID */
608 static int global_port_id
;
610 #define MVNETA_DRIVER_NAME "mvneta"
611 #define MVNETA_DRIVER_VERSION "1.0"
613 /* Utility/helper methods */
615 /* Write helper method */
616 static void mvreg_write(struct mvneta_port
*pp
, u32 offset
, u32 data
)
618 writel(data
, pp
->base
+ offset
);
621 /* Read helper method */
622 static u32
mvreg_read(struct mvneta_port
*pp
, u32 offset
)
624 return readl(pp
->base
+ offset
);
627 /* Increment txq get counter */
628 static void mvneta_txq_inc_get(struct mvneta_tx_queue
*txq
)
630 txq
->txq_get_index
++;
631 if (txq
->txq_get_index
== txq
->size
)
632 txq
->txq_get_index
= 0;
635 /* Increment txq put counter */
636 static void mvneta_txq_inc_put(struct mvneta_tx_queue
*txq
)
638 txq
->txq_put_index
++;
639 if (txq
->txq_put_index
== txq
->size
)
640 txq
->txq_put_index
= 0;
644 /* Clear all MIB counters */
645 static void mvneta_mib_counters_clear(struct mvneta_port
*pp
)
650 /* Perform dummy reads from MIB counters */
651 for (i
= 0; i
< MVNETA_MIB_LATE_COLLISION
; i
+= 4)
652 dummy
= mvreg_read(pp
, (MVNETA_MIB_COUNTERS_BASE
+ i
));
653 dummy
= mvreg_read(pp
, MVNETA_RX_DISCARD_FRAME_COUNT
);
654 dummy
= mvreg_read(pp
, MVNETA_OVERRUN_FRAME_COUNT
);
657 /* Get System Network Statistics */
659 mvneta_get_stats64(struct net_device
*dev
,
660 struct rtnl_link_stats64
*stats
)
662 struct mvneta_port
*pp
= netdev_priv(dev
);
666 for_each_possible_cpu(cpu
) {
667 struct mvneta_pcpu_stats
*cpu_stats
;
673 cpu_stats
= per_cpu_ptr(pp
->stats
, cpu
);
675 start
= u64_stats_fetch_begin_irq(&cpu_stats
->syncp
);
676 rx_packets
= cpu_stats
->rx_packets
;
677 rx_bytes
= cpu_stats
->rx_bytes
;
678 tx_packets
= cpu_stats
->tx_packets
;
679 tx_bytes
= cpu_stats
->tx_bytes
;
680 } while (u64_stats_fetch_retry_irq(&cpu_stats
->syncp
, start
));
682 stats
->rx_packets
+= rx_packets
;
683 stats
->rx_bytes
+= rx_bytes
;
684 stats
->tx_packets
+= tx_packets
;
685 stats
->tx_bytes
+= tx_bytes
;
688 stats
->rx_errors
= dev
->stats
.rx_errors
;
689 stats
->rx_dropped
= dev
->stats
.rx_dropped
;
691 stats
->tx_dropped
= dev
->stats
.tx_dropped
;
694 /* Rx descriptors helper methods */
696 /* Checks whether the RX descriptor having this status is both the first
697 * and the last descriptor for the RX packet. Each RX packet is currently
698 * received through a single RX descriptor, so not having each RX
699 * descriptor with its first and last bits set is an error
701 static int mvneta_rxq_desc_is_first_last(u32 status
)
703 return (status
& MVNETA_RXD_FIRST_LAST_DESC
) ==
704 MVNETA_RXD_FIRST_LAST_DESC
;
707 /* Add number of descriptors ready to receive new packets */
708 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port
*pp
,
709 struct mvneta_rx_queue
*rxq
,
712 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
715 while (ndescs
> MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
) {
716 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
717 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
<<
718 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
719 ndescs
-= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
;
722 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
723 (ndescs
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
726 /* Get number of RX descriptors occupied by received packets */
727 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port
*pp
,
728 struct mvneta_rx_queue
*rxq
)
732 val
= mvreg_read(pp
, MVNETA_RXQ_STATUS_REG(rxq
->id
));
733 return val
& MVNETA_RXQ_OCCUPIED_ALL_MASK
;
736 /* Update num of rx desc called upon return from rx path or
737 * from mvneta_rxq_drop_pkts().
739 static void mvneta_rxq_desc_num_update(struct mvneta_port
*pp
,
740 struct mvneta_rx_queue
*rxq
,
741 int rx_done
, int rx_filled
)
745 if ((rx_done
<= 0xff) && (rx_filled
<= 0xff)) {
747 (rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
);
748 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
752 /* Only 255 descriptors can be added at once */
753 while ((rx_done
> 0) || (rx_filled
> 0)) {
754 if (rx_done
<= 0xff) {
761 if (rx_filled
<= 0xff) {
762 val
|= rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
765 val
|= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
768 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
772 /* Get pointer to next RX descriptor to be processed by SW */
773 static struct mvneta_rx_desc
*
774 mvneta_rxq_next_desc_get(struct mvneta_rx_queue
*rxq
)
776 int rx_desc
= rxq
->next_desc_to_proc
;
778 rxq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(rxq
, rx_desc
);
779 prefetch(rxq
->descs
+ rxq
->next_desc_to_proc
);
780 return rxq
->descs
+ rx_desc
;
783 /* Change maximum receive size of the port. */
784 static void mvneta_max_rx_size_set(struct mvneta_port
*pp
, int max_rx_size
)
788 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
789 val
&= ~MVNETA_GMAC_MAX_RX_SIZE_MASK
;
790 val
|= ((max_rx_size
- MVNETA_MH_SIZE
) / 2) <<
791 MVNETA_GMAC_MAX_RX_SIZE_SHIFT
;
792 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
796 /* Set rx queue offset */
797 static void mvneta_rxq_offset_set(struct mvneta_port
*pp
,
798 struct mvneta_rx_queue
*rxq
,
803 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
804 val
&= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK
;
807 val
|= MVNETA_RXQ_PKT_OFFSET_MASK(offset
>> 3);
808 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
812 /* Tx descriptors helper methods */
814 /* Update HW with number of TX descriptors to be sent */
815 static void mvneta_txq_pend_desc_add(struct mvneta_port
*pp
,
816 struct mvneta_tx_queue
*txq
,
821 /* Only 255 descriptors can be added at once ; Assume caller
822 * process TX desriptors in quanta less than 256
824 val
= pend_desc
+ txq
->pending
;
825 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
829 /* Get pointer to next TX descriptor to be processed (send) by HW */
830 static struct mvneta_tx_desc
*
831 mvneta_txq_next_desc_get(struct mvneta_tx_queue
*txq
)
833 int tx_desc
= txq
->next_desc_to_proc
;
835 txq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(txq
, tx_desc
);
836 return txq
->descs
+ tx_desc
;
839 /* Release the last allocated TX descriptor. Useful to handle DMA
840 * mapping failures in the TX path.
842 static void mvneta_txq_desc_put(struct mvneta_tx_queue
*txq
)
844 if (txq
->next_desc_to_proc
== 0)
845 txq
->next_desc_to_proc
= txq
->last_desc
- 1;
847 txq
->next_desc_to_proc
--;
850 /* Set rxq buf size */
851 static void mvneta_rxq_buf_size_set(struct mvneta_port
*pp
,
852 struct mvneta_rx_queue
*rxq
,
857 val
= mvreg_read(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
));
859 val
&= ~MVNETA_RXQ_BUF_SIZE_MASK
;
860 val
|= ((buf_size
>> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT
);
862 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), val
);
865 /* Disable buffer management (BM) */
866 static void mvneta_rxq_bm_disable(struct mvneta_port
*pp
,
867 struct mvneta_rx_queue
*rxq
)
871 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
872 val
&= ~MVNETA_RXQ_HW_BUF_ALLOC
;
873 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
876 /* Enable buffer management (BM) */
877 static void mvneta_rxq_bm_enable(struct mvneta_port
*pp
,
878 struct mvneta_rx_queue
*rxq
)
882 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
883 val
|= MVNETA_RXQ_HW_BUF_ALLOC
;
884 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
887 /* Notify HW about port's assignment of pool for bigger packets */
888 static void mvneta_rxq_long_pool_set(struct mvneta_port
*pp
,
889 struct mvneta_rx_queue
*rxq
)
893 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
894 val
&= ~MVNETA_RXQ_LONG_POOL_ID_MASK
;
895 val
|= (pp
->pool_long
->id
<< MVNETA_RXQ_LONG_POOL_ID_SHIFT
);
897 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
900 /* Notify HW about port's assignment of pool for smaller packets */
901 static void mvneta_rxq_short_pool_set(struct mvneta_port
*pp
,
902 struct mvneta_rx_queue
*rxq
)
906 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
907 val
&= ~MVNETA_RXQ_SHORT_POOL_ID_MASK
;
908 val
|= (pp
->pool_short
->id
<< MVNETA_RXQ_SHORT_POOL_ID_SHIFT
);
910 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
913 /* Set port's receive buffer size for assigned BM pool */
914 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port
*pp
,
920 if (!IS_ALIGNED(buf_size
, 8)) {
921 dev_warn(pp
->dev
->dev
.parent
,
922 "illegal buf_size value %d, round to %d\n",
923 buf_size
, ALIGN(buf_size
, 8));
924 buf_size
= ALIGN(buf_size
, 8);
927 val
= mvreg_read(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
));
928 val
|= buf_size
& MVNETA_PORT_POOL_BUFFER_SZ_MASK
;
929 mvreg_write(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
), val
);
932 /* Configure MBUS window in order to enable access BM internal SRAM */
933 static int mvneta_mbus_io_win_set(struct mvneta_port
*pp
, u32 base
, u32 wsize
,
936 u32 win_enable
, win_protect
;
939 win_enable
= mvreg_read(pp
, MVNETA_BASE_ADDR_ENABLE
);
941 if (pp
->bm_win_id
< 0) {
942 /* Find first not occupied window */
943 for (i
= 0; i
< MVNETA_MAX_DECODE_WIN
; i
++) {
944 if (win_enable
& (1 << i
)) {
949 if (i
== MVNETA_MAX_DECODE_WIN
)
955 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
956 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
959 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
961 mvreg_write(pp
, MVNETA_WIN_BASE(i
), (base
& 0xffff0000) |
962 (attr
<< 8) | target
);
964 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), (wsize
- 1) & 0xffff0000);
966 win_protect
= mvreg_read(pp
, MVNETA_ACCESS_PROTECT_ENABLE
);
967 win_protect
|= 3 << (2 * i
);
968 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
970 win_enable
&= ~(1 << i
);
971 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
976 static int mvneta_bm_port_mbus_init(struct mvneta_port
*pp
)
982 /* Get BM window information */
983 err
= mvebu_mbus_get_io_win_info(pp
->bm_priv
->bppi_phys_addr
, &wsize
,
990 /* Open NETA -> BM window */
991 err
= mvneta_mbus_io_win_set(pp
, pp
->bm_priv
->bppi_phys_addr
, wsize
,
994 netdev_info(pp
->dev
, "fail to configure mbus window to BM\n");
1000 /* Assign and initialize pools for port. In case of fail
1001 * buffer manager will remain disabled for current port.
1003 static int mvneta_bm_port_init(struct platform_device
*pdev
,
1004 struct mvneta_port
*pp
)
1006 struct device_node
*dn
= pdev
->dev
.of_node
;
1007 u32 long_pool_id
, short_pool_id
;
1009 if (!pp
->neta_armada3700
) {
1012 ret
= mvneta_bm_port_mbus_init(pp
);
1017 if (of_property_read_u32(dn
, "bm,pool-long", &long_pool_id
)) {
1018 netdev_info(pp
->dev
, "missing long pool id\n");
1022 /* Create port's long pool depending on mtu */
1023 pp
->pool_long
= mvneta_bm_pool_use(pp
->bm_priv
, long_pool_id
,
1024 MVNETA_BM_LONG
, pp
->id
,
1025 MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
));
1026 if (!pp
->pool_long
) {
1027 netdev_info(pp
->dev
, "fail to obtain long pool for port\n");
1031 pp
->pool_long
->port_map
|= 1 << pp
->id
;
1033 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_long
->buf_size
,
1036 /* If short pool id is not defined, assume using single pool */
1037 if (of_property_read_u32(dn
, "bm,pool-short", &short_pool_id
))
1038 short_pool_id
= long_pool_id
;
1040 /* Create port's short pool */
1041 pp
->pool_short
= mvneta_bm_pool_use(pp
->bm_priv
, short_pool_id
,
1042 MVNETA_BM_SHORT
, pp
->id
,
1043 MVNETA_BM_SHORT_PKT_SIZE
);
1044 if (!pp
->pool_short
) {
1045 netdev_info(pp
->dev
, "fail to obtain short pool for port\n");
1046 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1050 if (short_pool_id
!= long_pool_id
) {
1051 pp
->pool_short
->port_map
|= 1 << pp
->id
;
1052 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_short
->buf_size
,
1053 pp
->pool_short
->id
);
1059 /* Update settings of a pool for bigger packets */
1060 static void mvneta_bm_update_mtu(struct mvneta_port
*pp
, int mtu
)
1062 struct mvneta_bm_pool
*bm_pool
= pp
->pool_long
;
1063 struct hwbm_pool
*hwbm_pool
= &bm_pool
->hwbm_pool
;
1066 /* Release all buffers from long pool */
1067 mvneta_bm_bufs_free(pp
->bm_priv
, bm_pool
, 1 << pp
->id
);
1068 if (hwbm_pool
->buf_num
) {
1069 WARN(1, "cannot free all buffers in pool %d\n",
1074 bm_pool
->pkt_size
= MVNETA_RX_PKT_SIZE(mtu
);
1075 bm_pool
->buf_size
= MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
);
1076 hwbm_pool
->frag_size
= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) +
1077 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
));
1079 /* Fill entire long pool */
1080 num
= hwbm_pool_add(hwbm_pool
, hwbm_pool
->size
, GFP_ATOMIC
);
1081 if (num
!= hwbm_pool
->size
) {
1082 WARN(1, "pool %d: %d of %d allocated\n",
1083 bm_pool
->id
, num
, hwbm_pool
->size
);
1086 mvneta_bm_pool_bufsize_set(pp
, bm_pool
->buf_size
, bm_pool
->id
);
1091 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1092 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
, 1 << pp
->id
);
1095 mvreg_write(pp
, MVNETA_ACC_MODE
, MVNETA_ACC_MODE_EXT1
);
1096 netdev_info(pp
->dev
, "fail to update MTU, fall back to software BM\n");
1099 /* Start the Ethernet port RX and TX activity */
1100 static void mvneta_port_up(struct mvneta_port
*pp
)
1105 /* Enable all initialized TXs. */
1107 for (queue
= 0; queue
< txq_number
; queue
++) {
1108 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
1109 if (txq
->descs
!= NULL
)
1110 q_map
|= (1 << queue
);
1112 mvreg_write(pp
, MVNETA_TXQ_CMD
, q_map
);
1114 /* Enable all initialized RXQs. */
1115 for (queue
= 0; queue
< rxq_number
; queue
++) {
1116 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
1118 if (rxq
->descs
!= NULL
)
1119 q_map
|= (1 << queue
);
1121 mvreg_write(pp
, MVNETA_RXQ_CMD
, q_map
);
1124 /* Stop the Ethernet port activity */
1125 static void mvneta_port_down(struct mvneta_port
*pp
)
1130 /* Stop Rx port activity. Check port Rx activity. */
1131 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
) & MVNETA_RXQ_ENABLE_MASK
;
1133 /* Issue stop command for active channels only */
1135 mvreg_write(pp
, MVNETA_RXQ_CMD
,
1136 val
<< MVNETA_RXQ_DISABLE_SHIFT
);
1138 /* Wait for all Rx activity to terminate. */
1141 if (count
++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC
) {
1142 netdev_warn(pp
->dev
,
1143 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1149 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
);
1150 } while (val
& MVNETA_RXQ_ENABLE_MASK
);
1152 /* Stop Tx port activity. Check port Tx activity. Issue stop
1153 * command for active channels only
1155 val
= (mvreg_read(pp
, MVNETA_TXQ_CMD
)) & MVNETA_TXQ_ENABLE_MASK
;
1158 mvreg_write(pp
, MVNETA_TXQ_CMD
,
1159 (val
<< MVNETA_TXQ_DISABLE_SHIFT
));
1161 /* Wait for all Tx activity to terminate. */
1164 if (count
++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC
) {
1165 netdev_warn(pp
->dev
,
1166 "TIMEOUT for TX stopped status=0x%08x\n",
1172 /* Check TX Command reg that all Txqs are stopped */
1173 val
= mvreg_read(pp
, MVNETA_TXQ_CMD
);
1175 } while (val
& MVNETA_TXQ_ENABLE_MASK
);
1177 /* Double check to verify that TX FIFO is empty */
1180 if (count
++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT
) {
1181 netdev_warn(pp
->dev
,
1182 "TX FIFO empty timeout status=0x%08x\n",
1188 val
= mvreg_read(pp
, MVNETA_PORT_STATUS
);
1189 } while (!(val
& MVNETA_TX_FIFO_EMPTY
) &&
1190 (val
& MVNETA_TX_IN_PRGRS
));
1195 /* Enable the port by setting the port enable bit of the MAC control register */
1196 static void mvneta_port_enable(struct mvneta_port
*pp
)
1201 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1202 val
|= MVNETA_GMAC0_PORT_ENABLE
;
1203 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1206 /* Disable the port and wait for about 200 usec before retuning */
1207 static void mvneta_port_disable(struct mvneta_port
*pp
)
1211 /* Reset the Enable bit in the Serial Control Register */
1212 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1213 val
&= ~MVNETA_GMAC0_PORT_ENABLE
;
1214 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1219 /* Multicast tables methods */
1221 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1222 static void mvneta_set_ucast_table(struct mvneta_port
*pp
, int queue
)
1230 val
= 0x1 | (queue
<< 1);
1231 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1234 for (offset
= 0; offset
<= 0xc; offset
+= 4)
1235 mvreg_write(pp
, MVNETA_DA_FILT_UCAST_BASE
+ offset
, val
);
1238 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1239 static void mvneta_set_special_mcast_table(struct mvneta_port
*pp
, int queue
)
1247 val
= 0x1 | (queue
<< 1);
1248 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1251 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1252 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ offset
, val
);
1256 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1257 static void mvneta_set_other_mcast_table(struct mvneta_port
*pp
, int queue
)
1263 memset(pp
->mcast_count
, 0, sizeof(pp
->mcast_count
));
1266 memset(pp
->mcast_count
, 1, sizeof(pp
->mcast_count
));
1267 val
= 0x1 | (queue
<< 1);
1268 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1271 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1272 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ offset
, val
);
1275 static void mvneta_set_autoneg(struct mvneta_port
*pp
, int enable
)
1280 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
1281 val
&= ~(MVNETA_GMAC_FORCE_LINK_PASS
|
1282 MVNETA_GMAC_FORCE_LINK_DOWN
|
1283 MVNETA_GMAC_AN_FLOW_CTRL_EN
);
1284 val
|= MVNETA_GMAC_INBAND_AN_ENABLE
|
1285 MVNETA_GMAC_AN_SPEED_EN
|
1286 MVNETA_GMAC_AN_DUPLEX_EN
;
1287 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
1289 val
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
1290 val
|= MVNETA_GMAC_1MS_CLOCK_ENABLE
;
1291 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, val
);
1293 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
1294 val
|= MVNETA_GMAC2_INBAND_AN_ENABLE
;
1295 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, val
);
1297 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
1298 val
&= ~(MVNETA_GMAC_INBAND_AN_ENABLE
|
1299 MVNETA_GMAC_AN_SPEED_EN
|
1300 MVNETA_GMAC_AN_DUPLEX_EN
);
1301 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
1303 val
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
1304 val
&= ~MVNETA_GMAC_1MS_CLOCK_ENABLE
;
1305 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, val
);
1307 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
1308 val
&= ~MVNETA_GMAC2_INBAND_AN_ENABLE
;
1309 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, val
);
1313 static void mvneta_percpu_unmask_interrupt(void *arg
)
1315 struct mvneta_port
*pp
= arg
;
1317 /* All the queue are unmasked, but actually only the ones
1318 * mapped to this CPU will be unmasked
1320 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
1321 MVNETA_RX_INTR_MASK_ALL
|
1322 MVNETA_TX_INTR_MASK_ALL
|
1323 MVNETA_MISCINTR_INTR_MASK
);
1326 static void mvneta_percpu_mask_interrupt(void *arg
)
1328 struct mvneta_port
*pp
= arg
;
1330 /* All the queue are masked, but actually only the ones
1331 * mapped to this CPU will be masked
1333 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
1334 mvreg_write(pp
, MVNETA_INTR_OLD_MASK
, 0);
1335 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
, 0);
1338 static void mvneta_percpu_clear_intr_cause(void *arg
)
1340 struct mvneta_port
*pp
= arg
;
1342 /* All the queue are cleared, but actually only the ones
1343 * mapped to this CPU will be cleared
1345 mvreg_write(pp
, MVNETA_INTR_NEW_CAUSE
, 0);
1346 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
1347 mvreg_write(pp
, MVNETA_INTR_OLD_CAUSE
, 0);
1350 /* This method sets defaults to the NETA port:
1351 * Clears interrupt Cause and Mask registers.
1352 * Clears all MAC tables.
1353 * Sets defaults to all registers.
1354 * Resets RX and TX descriptor rings.
1356 * This method can be called after mvneta_port_down() to return the port
1357 * settings to defaults.
1359 static void mvneta_defaults_set(struct mvneta_port
*pp
)
1364 int max_cpu
= num_present_cpus();
1366 /* Clear all Cause registers */
1367 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
1369 /* Mask all interrupts */
1370 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
1371 mvreg_write(pp
, MVNETA_INTR_ENABLE
, 0);
1373 /* Enable MBUS Retry bit16 */
1374 mvreg_write(pp
, MVNETA_MBUS_RETRY
, 0x20);
1376 /* Set CPU queue access map. CPUs are assigned to the RX and
1377 * TX queues modulo their number. If there is only one TX
1378 * queue then it is assigned to the CPU associated to the
1381 for_each_present_cpu(cpu
) {
1382 int rxq_map
= 0, txq_map
= 0;
1384 if (!pp
->neta_armada3700
) {
1385 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
1386 if ((rxq
% max_cpu
) == cpu
)
1387 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
1389 for (txq
= 0; txq
< txq_number
; txq
++)
1390 if ((txq
% max_cpu
) == cpu
)
1391 txq_map
|= MVNETA_CPU_TXQ_ACCESS(txq
);
1393 /* With only one TX queue we configure a special case
1394 * which will allow to get all the irq on a single
1397 if (txq_number
== 1)
1398 txq_map
= (cpu
== pp
->rxq_def
) ?
1399 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1402 txq_map
= MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
1403 rxq_map
= MVNETA_CPU_RXQ_ACCESS_ALL_MASK
;
1406 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
1409 /* Reset RX and TX DMAs */
1410 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
1411 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
1413 /* Disable Legacy WRR, Disable EJP, Release from reset */
1414 mvreg_write(pp
, MVNETA_TXQ_CMD_1
, 0);
1415 for (queue
= 0; queue
< txq_number
; queue
++) {
1416 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(queue
), 0);
1417 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(queue
), 0);
1420 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
1421 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
1423 /* Set Port Acceleration Mode */
1425 /* HW buffer management + legacy parser */
1426 val
= MVNETA_ACC_MODE_EXT2
;
1428 /* SW buffer management + legacy parser */
1429 val
= MVNETA_ACC_MODE_EXT1
;
1430 mvreg_write(pp
, MVNETA_ACC_MODE
, val
);
1433 mvreg_write(pp
, MVNETA_BM_ADDRESS
, pp
->bm_priv
->bppi_phys_addr
);
1435 /* Update val of portCfg register accordingly with all RxQueue types */
1436 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
1437 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
1440 mvreg_write(pp
, MVNETA_PORT_CONFIG_EXTEND
, val
);
1441 mvreg_write(pp
, MVNETA_RX_MIN_FRAME_SIZE
, 64);
1443 /* Build PORT_SDMA_CONFIG_REG */
1446 /* Default burst size */
1447 val
|= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1448 val
|= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1449 val
|= MVNETA_RX_NO_DATA_SWAP
| MVNETA_TX_NO_DATA_SWAP
;
1451 #if defined(__BIG_ENDIAN)
1452 val
|= MVNETA_DESC_SWAP
;
1455 /* Assign port SDMA configuration */
1456 mvreg_write(pp
, MVNETA_SDMA_CONFIG
, val
);
1458 /* Disable PHY polling in hardware, since we're using the
1459 * kernel phylib to do this.
1461 val
= mvreg_read(pp
, MVNETA_UNIT_CONTROL
);
1462 val
&= ~MVNETA_PHY_POLLING_ENABLE
;
1463 mvreg_write(pp
, MVNETA_UNIT_CONTROL
, val
);
1465 mvneta_set_autoneg(pp
, pp
->use_inband_status
);
1466 mvneta_set_ucast_table(pp
, -1);
1467 mvneta_set_special_mcast_table(pp
, -1);
1468 mvneta_set_other_mcast_table(pp
, -1);
1470 /* Set port interrupt enable register - default enable all */
1471 mvreg_write(pp
, MVNETA_INTR_ENABLE
,
1472 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1473 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK
));
1475 mvneta_mib_counters_clear(pp
);
1478 /* Set max sizes for tx queues */
1479 static void mvneta_txq_max_tx_size_set(struct mvneta_port
*pp
, int max_tx_size
)
1485 mtu
= max_tx_size
* 8;
1486 if (mtu
> MVNETA_TX_MTU_MAX
)
1487 mtu
= MVNETA_TX_MTU_MAX
;
1490 val
= mvreg_read(pp
, MVNETA_TX_MTU
);
1491 val
&= ~MVNETA_TX_MTU_MAX
;
1493 mvreg_write(pp
, MVNETA_TX_MTU
, val
);
1495 /* TX token size and all TXQs token size must be larger that MTU */
1496 val
= mvreg_read(pp
, MVNETA_TX_TOKEN_SIZE
);
1498 size
= val
& MVNETA_TX_TOKEN_SIZE_MAX
;
1501 val
&= ~MVNETA_TX_TOKEN_SIZE_MAX
;
1503 mvreg_write(pp
, MVNETA_TX_TOKEN_SIZE
, val
);
1505 for (queue
= 0; queue
< txq_number
; queue
++) {
1506 val
= mvreg_read(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
));
1508 size
= val
& MVNETA_TXQ_TOKEN_SIZE_MAX
;
1511 val
&= ~MVNETA_TXQ_TOKEN_SIZE_MAX
;
1513 mvreg_write(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
), val
);
1518 /* Set unicast address */
1519 static void mvneta_set_ucast_addr(struct mvneta_port
*pp
, u8 last_nibble
,
1522 unsigned int unicast_reg
;
1523 unsigned int tbl_offset
;
1524 unsigned int reg_offset
;
1526 /* Locate the Unicast table entry */
1527 last_nibble
= (0xf & last_nibble
);
1529 /* offset from unicast tbl base */
1530 tbl_offset
= (last_nibble
/ 4) * 4;
1532 /* offset within the above reg */
1533 reg_offset
= last_nibble
% 4;
1535 unicast_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
));
1538 /* Clear accepts frame bit at specified unicast DA tbl entry */
1539 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1541 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1542 unicast_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
1545 mvreg_write(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
), unicast_reg
);
1548 /* Set mac address */
1549 static void mvneta_mac_addr_set(struct mvneta_port
*pp
, unsigned char *addr
,
1556 mac_l
= (addr
[4] << 8) | (addr
[5]);
1557 mac_h
= (addr
[0] << 24) | (addr
[1] << 16) |
1558 (addr
[2] << 8) | (addr
[3] << 0);
1560 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, mac_l
);
1561 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, mac_h
);
1564 /* Accept frames of this address */
1565 mvneta_set_ucast_addr(pp
, addr
[5], queue
);
1568 /* Set the number of packets that will be received before RX interrupt
1569 * will be generated by HW.
1571 static void mvneta_rx_pkts_coal_set(struct mvneta_port
*pp
,
1572 struct mvneta_rx_queue
*rxq
, u32 value
)
1574 mvreg_write(pp
, MVNETA_RXQ_THRESHOLD_REG(rxq
->id
),
1575 value
| MVNETA_RXQ_NON_OCCUPIED(0));
1576 rxq
->pkts_coal
= value
;
1579 /* Set the time delay in usec before RX interrupt will be generated by
1582 static void mvneta_rx_time_coal_set(struct mvneta_port
*pp
,
1583 struct mvneta_rx_queue
*rxq
, u32 value
)
1586 unsigned long clk_rate
;
1588 clk_rate
= clk_get_rate(pp
->clk
);
1589 val
= (clk_rate
/ 1000000) * value
;
1591 mvreg_write(pp
, MVNETA_RXQ_TIME_COAL_REG(rxq
->id
), val
);
1592 rxq
->time_coal
= value
;
1595 /* Set threshold for TX_DONE pkts coalescing */
1596 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port
*pp
,
1597 struct mvneta_tx_queue
*txq
, u32 value
)
1601 val
= mvreg_read(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
));
1603 val
&= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK
;
1604 val
|= MVNETA_TXQ_SENT_THRESH_MASK(value
);
1606 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), val
);
1608 txq
->done_pkts_coal
= value
;
1611 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1612 static void mvneta_rx_desc_fill(struct mvneta_rx_desc
*rx_desc
,
1613 u32 phys_addr
, void *virt_addr
,
1614 struct mvneta_rx_queue
*rxq
)
1618 rx_desc
->buf_phys_addr
= phys_addr
;
1619 i
= rx_desc
- rxq
->descs
;
1620 rxq
->buf_virt_addr
[i
] = virt_addr
;
1623 /* Decrement sent descriptors counter */
1624 static void mvneta_txq_sent_desc_dec(struct mvneta_port
*pp
,
1625 struct mvneta_tx_queue
*txq
,
1630 /* Only 255 TX descriptors can be updated at once */
1631 while (sent_desc
> 0xff) {
1632 val
= 0xff << MVNETA_TXQ_DEC_SENT_SHIFT
;
1633 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1634 sent_desc
= sent_desc
- 0xff;
1637 val
= sent_desc
<< MVNETA_TXQ_DEC_SENT_SHIFT
;
1638 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1641 /* Get number of TX descriptors already sent by HW */
1642 static int mvneta_txq_sent_desc_num_get(struct mvneta_port
*pp
,
1643 struct mvneta_tx_queue
*txq
)
1648 val
= mvreg_read(pp
, MVNETA_TXQ_STATUS_REG(txq
->id
));
1649 sent_desc
= (val
& MVNETA_TXQ_SENT_DESC_MASK
) >>
1650 MVNETA_TXQ_SENT_DESC_SHIFT
;
1655 /* Get number of sent descriptors and decrement counter.
1656 * The number of sent descriptors is returned.
1658 static int mvneta_txq_sent_desc_proc(struct mvneta_port
*pp
,
1659 struct mvneta_tx_queue
*txq
)
1663 /* Get number of sent descriptors */
1664 sent_desc
= mvneta_txq_sent_desc_num_get(pp
, txq
);
1666 /* Decrement sent descriptors counter */
1668 mvneta_txq_sent_desc_dec(pp
, txq
, sent_desc
);
1673 /* Set TXQ descriptors fields relevant for CSUM calculation */
1674 static u32
mvneta_txq_desc_csum(int l3_offs
, int l3_proto
,
1675 int ip_hdr_len
, int l4_proto
)
1679 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1680 * G_L4_chk, L4_type; required only for checksum
1683 command
= l3_offs
<< MVNETA_TX_L3_OFF_SHIFT
;
1684 command
|= ip_hdr_len
<< MVNETA_TX_IP_HLEN_SHIFT
;
1686 if (l3_proto
== htons(ETH_P_IP
))
1687 command
|= MVNETA_TXD_IP_CSUM
;
1689 command
|= MVNETA_TX_L3_IP6
;
1691 if (l4_proto
== IPPROTO_TCP
)
1692 command
|= MVNETA_TX_L4_CSUM_FULL
;
1693 else if (l4_proto
== IPPROTO_UDP
)
1694 command
|= MVNETA_TX_L4_UDP
| MVNETA_TX_L4_CSUM_FULL
;
1696 command
|= MVNETA_TX_L4_CSUM_NOT
;
1702 /* Display more error info */
1703 static void mvneta_rx_error(struct mvneta_port
*pp
,
1704 struct mvneta_rx_desc
*rx_desc
)
1706 u32 status
= rx_desc
->status
;
1708 if (!mvneta_rxq_desc_is_first_last(status
)) {
1710 "bad rx status %08x (buffer oversize), size=%d\n",
1711 status
, rx_desc
->data_size
);
1715 switch (status
& MVNETA_RXD_ERR_CODE_MASK
) {
1716 case MVNETA_RXD_ERR_CRC
:
1717 netdev_err(pp
->dev
, "bad rx status %08x (crc error), size=%d\n",
1718 status
, rx_desc
->data_size
);
1720 case MVNETA_RXD_ERR_OVERRUN
:
1721 netdev_err(pp
->dev
, "bad rx status %08x (overrun error), size=%d\n",
1722 status
, rx_desc
->data_size
);
1724 case MVNETA_RXD_ERR_LEN
:
1725 netdev_err(pp
->dev
, "bad rx status %08x (max frame length error), size=%d\n",
1726 status
, rx_desc
->data_size
);
1728 case MVNETA_RXD_ERR_RESOURCE
:
1729 netdev_err(pp
->dev
, "bad rx status %08x (resource error), size=%d\n",
1730 status
, rx_desc
->data_size
);
1735 /* Handle RX checksum offload based on the descriptor's status */
1736 static void mvneta_rx_csum(struct mvneta_port
*pp
, u32 status
,
1737 struct sk_buff
*skb
)
1739 if ((status
& MVNETA_RXD_L3_IP4
) &&
1740 (status
& MVNETA_RXD_L4_CSUM_OK
)) {
1742 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1746 skb
->ip_summed
= CHECKSUM_NONE
;
1749 /* Return tx queue pointer (find last set bit) according to <cause> returned
1750 * form tx_done reg. <cause> must not be null. The return value is always a
1751 * valid queue for matching the first one found in <cause>.
1753 static struct mvneta_tx_queue
*mvneta_tx_done_policy(struct mvneta_port
*pp
,
1756 int queue
= fls(cause
) - 1;
1758 return &pp
->txqs
[queue
];
1761 /* Free tx queue skbuffs */
1762 static void mvneta_txq_bufs_free(struct mvneta_port
*pp
,
1763 struct mvneta_tx_queue
*txq
, int num
,
1764 struct netdev_queue
*nq
)
1766 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1769 for (i
= 0; i
< num
; i
++) {
1770 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+
1772 struct sk_buff
*skb
= txq
->tx_skb
[txq
->txq_get_index
];
1775 bytes_compl
+= skb
->len
;
1779 mvneta_txq_inc_get(txq
);
1781 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
1782 dma_unmap_single(pp
->dev
->dev
.parent
,
1783 tx_desc
->buf_phys_addr
,
1784 tx_desc
->data_size
, DMA_TO_DEVICE
);
1787 dev_kfree_skb_any(skb
);
1790 netdev_tx_completed_queue(nq
, pkts_compl
, bytes_compl
);
1793 /* Handle end of transmission */
1794 static void mvneta_txq_done(struct mvneta_port
*pp
,
1795 struct mvneta_tx_queue
*txq
)
1797 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
1800 tx_done
= mvneta_txq_sent_desc_proc(pp
, txq
);
1804 mvneta_txq_bufs_free(pp
, txq
, tx_done
, nq
);
1806 txq
->count
-= tx_done
;
1808 if (netif_tx_queue_stopped(nq
)) {
1809 if (txq
->count
<= txq
->tx_wake_threshold
)
1810 netif_tx_wake_queue(nq
);
1814 void *mvneta_frag_alloc(unsigned int frag_size
)
1816 if (likely(frag_size
<= PAGE_SIZE
))
1817 return netdev_alloc_frag(frag_size
);
1819 return kmalloc(frag_size
, GFP_ATOMIC
);
1821 EXPORT_SYMBOL_GPL(mvneta_frag_alloc
);
1823 void mvneta_frag_free(unsigned int frag_size
, void *data
)
1825 if (likely(frag_size
<= PAGE_SIZE
))
1826 skb_free_frag(data
);
1830 EXPORT_SYMBOL_GPL(mvneta_frag_free
);
1832 /* Refill processing for SW buffer management */
1833 static int mvneta_rx_refill(struct mvneta_port
*pp
,
1834 struct mvneta_rx_desc
*rx_desc
,
1835 struct mvneta_rx_queue
*rxq
)
1838 dma_addr_t phys_addr
;
1841 data
= mvneta_frag_alloc(pp
->frag_size
);
1845 phys_addr
= dma_map_single(pp
->dev
->dev
.parent
, data
,
1846 MVNETA_RX_BUF_SIZE(pp
->pkt_size
),
1848 if (unlikely(dma_mapping_error(pp
->dev
->dev
.parent
, phys_addr
))) {
1849 mvneta_frag_free(pp
->frag_size
, data
);
1853 phys_addr
+= pp
->rx_offset_correction
;
1854 mvneta_rx_desc_fill(rx_desc
, phys_addr
, data
, rxq
);
1858 /* Handle tx checksum */
1859 static u32
mvneta_skb_tx_csum(struct mvneta_port
*pp
, struct sk_buff
*skb
)
1861 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1863 __be16 l3_proto
= vlan_get_protocol(skb
);
1866 if (l3_proto
== htons(ETH_P_IP
)) {
1867 struct iphdr
*ip4h
= ip_hdr(skb
);
1869 /* Calculate IPv4 checksum and L4 checksum */
1870 ip_hdr_len
= ip4h
->ihl
;
1871 l4_proto
= ip4h
->protocol
;
1872 } else if (l3_proto
== htons(ETH_P_IPV6
)) {
1873 struct ipv6hdr
*ip6h
= ipv6_hdr(skb
);
1875 /* Read l4_protocol from one of IPv6 extra headers */
1876 if (skb_network_header_len(skb
) > 0)
1877 ip_hdr_len
= (skb_network_header_len(skb
) >> 2);
1878 l4_proto
= ip6h
->nexthdr
;
1880 return MVNETA_TX_L4_CSUM_NOT
;
1882 return mvneta_txq_desc_csum(skb_network_offset(skb
),
1883 l3_proto
, ip_hdr_len
, l4_proto
);
1886 return MVNETA_TX_L4_CSUM_NOT
;
1889 /* Drop packets received by the RXQ and free buffers */
1890 static void mvneta_rxq_drop_pkts(struct mvneta_port
*pp
,
1891 struct mvneta_rx_queue
*rxq
)
1895 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1897 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
1900 for (i
= 0; i
< rx_done
; i
++) {
1901 struct mvneta_rx_desc
*rx_desc
=
1902 mvneta_rxq_next_desc_get(rxq
);
1903 u8 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
1904 struct mvneta_bm_pool
*bm_pool
;
1906 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
1907 /* Return dropped buffer to the pool */
1908 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
1909 rx_desc
->buf_phys_addr
);
1914 for (i
= 0; i
< rxq
->size
; i
++) {
1915 struct mvneta_rx_desc
*rx_desc
= rxq
->descs
+ i
;
1916 void *data
= rxq
->buf_virt_addr
[i
];
1918 dma_unmap_single(pp
->dev
->dev
.parent
, rx_desc
->buf_phys_addr
,
1919 MVNETA_RX_BUF_SIZE(pp
->pkt_size
), DMA_FROM_DEVICE
);
1920 mvneta_frag_free(pp
->frag_size
, data
);
1924 /* Main rx processing when using software buffer management */
1925 static int mvneta_rx_swbm(struct mvneta_port
*pp
, int rx_todo
,
1926 struct mvneta_rx_queue
*rxq
)
1928 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
1929 struct net_device
*dev
= pp
->dev
;
1934 /* Get number of received packets */
1935 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1937 if (rx_todo
> rx_done
)
1942 /* Fairness NAPI loop */
1943 while (rx_done
< rx_todo
) {
1944 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
1945 struct sk_buff
*skb
;
1946 unsigned char *data
;
1947 dma_addr_t phys_addr
;
1948 u32 rx_status
, frag_size
;
1949 int rx_bytes
, err
, index
;
1952 rx_status
= rx_desc
->status
;
1953 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
1954 index
= rx_desc
- rxq
->descs
;
1955 data
= rxq
->buf_virt_addr
[index
];
1956 phys_addr
= rx_desc
->buf_phys_addr
;
1958 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
1959 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
1961 dev
->stats
.rx_errors
++;
1962 mvneta_rx_error(pp
, rx_desc
);
1963 /* leave the descriptor untouched */
1967 if (rx_bytes
<= rx_copybreak
) {
1968 /* better copy a small frame and not unmap the DMA region */
1969 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
1971 goto err_drop_frame
;
1973 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
1975 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1978 memcpy(skb_put(skb
, rx_bytes
),
1979 data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1982 skb
->protocol
= eth_type_trans(skb
, dev
);
1983 mvneta_rx_csum(pp
, rx_status
, skb
);
1984 napi_gro_receive(&port
->napi
, skb
);
1987 rcvd_bytes
+= rx_bytes
;
1989 /* leave the descriptor and buffer untouched */
1993 /* Refill processing */
1994 err
= mvneta_rx_refill(pp
, rx_desc
, rxq
);
1996 netdev_err(dev
, "Linux processing - Can't refill\n");
1998 goto err_drop_frame
;
2001 frag_size
= pp
->frag_size
;
2003 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
2005 /* After refill old buffer has to be unmapped regardless
2006 * the skb is successfully built or not.
2008 dma_unmap_single(dev
->dev
.parent
, phys_addr
,
2009 MVNETA_RX_BUF_SIZE(pp
->pkt_size
),
2013 goto err_drop_frame
;
2016 rcvd_bytes
+= rx_bytes
;
2018 /* Linux processing */
2019 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
2020 skb_put(skb
, rx_bytes
);
2022 skb
->protocol
= eth_type_trans(skb
, dev
);
2024 mvneta_rx_csum(pp
, rx_status
, skb
);
2026 napi_gro_receive(&port
->napi
, skb
);
2030 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2032 u64_stats_update_begin(&stats
->syncp
);
2033 stats
->rx_packets
+= rcvd_pkts
;
2034 stats
->rx_bytes
+= rcvd_bytes
;
2035 u64_stats_update_end(&stats
->syncp
);
2038 /* Update rxq management counters */
2039 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
2044 /* Main rx processing when using hardware buffer management */
2045 static int mvneta_rx_hwbm(struct mvneta_port
*pp
, int rx_todo
,
2046 struct mvneta_rx_queue
*rxq
)
2048 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
2049 struct net_device
*dev
= pp
->dev
;
2054 /* Get number of received packets */
2055 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
2057 if (rx_todo
> rx_done
)
2062 /* Fairness NAPI loop */
2063 while (rx_done
< rx_todo
) {
2064 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
2065 struct mvneta_bm_pool
*bm_pool
= NULL
;
2066 struct sk_buff
*skb
;
2067 unsigned char *data
;
2068 dma_addr_t phys_addr
;
2069 u32 rx_status
, frag_size
;
2074 rx_status
= rx_desc
->status
;
2075 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
2076 data
= (u8
*)(uintptr_t)rx_desc
->buf_cookie
;
2077 phys_addr
= rx_desc
->buf_phys_addr
;
2078 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
2079 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
2081 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
2082 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
2083 err_drop_frame_ret_pool
:
2084 /* Return the buffer to the pool */
2085 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2086 rx_desc
->buf_phys_addr
);
2088 dev
->stats
.rx_errors
++;
2089 mvneta_rx_error(pp
, rx_desc
);
2090 /* leave the descriptor untouched */
2094 if (rx_bytes
<= rx_copybreak
) {
2095 /* better copy a small frame and not unmap the DMA region */
2096 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
2098 goto err_drop_frame_ret_pool
;
2100 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
2101 rx_desc
->buf_phys_addr
,
2102 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2105 memcpy(skb_put(skb
, rx_bytes
),
2106 data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2109 skb
->protocol
= eth_type_trans(skb
, dev
);
2110 mvneta_rx_csum(pp
, rx_status
, skb
);
2111 napi_gro_receive(&port
->napi
, skb
);
2114 rcvd_bytes
+= rx_bytes
;
2116 /* Return the buffer to the pool */
2117 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2118 rx_desc
->buf_phys_addr
);
2120 /* leave the descriptor and buffer untouched */
2124 /* Refill processing */
2125 err
= hwbm_pool_refill(&bm_pool
->hwbm_pool
, GFP_ATOMIC
);
2127 netdev_err(dev
, "Linux processing - Can't refill\n");
2129 goto err_drop_frame_ret_pool
;
2132 frag_size
= bm_pool
->hwbm_pool
.frag_size
;
2134 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
2136 /* After refill old buffer has to be unmapped regardless
2137 * the skb is successfully built or not.
2139 dma_unmap_single(&pp
->bm_priv
->pdev
->dev
, phys_addr
,
2140 bm_pool
->buf_size
, DMA_FROM_DEVICE
);
2142 goto err_drop_frame
;
2145 rcvd_bytes
+= rx_bytes
;
2147 /* Linux processing */
2148 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
2149 skb_put(skb
, rx_bytes
);
2151 skb
->protocol
= eth_type_trans(skb
, dev
);
2153 mvneta_rx_csum(pp
, rx_status
, skb
);
2155 napi_gro_receive(&port
->napi
, skb
);
2159 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2161 u64_stats_update_begin(&stats
->syncp
);
2162 stats
->rx_packets
+= rcvd_pkts
;
2163 stats
->rx_bytes
+= rcvd_bytes
;
2164 u64_stats_update_end(&stats
->syncp
);
2167 /* Update rxq management counters */
2168 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
2174 mvneta_tso_put_hdr(struct sk_buff
*skb
,
2175 struct mvneta_port
*pp
, struct mvneta_tx_queue
*txq
)
2177 struct mvneta_tx_desc
*tx_desc
;
2178 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2180 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2181 tx_desc
= mvneta_txq_next_desc_get(txq
);
2182 tx_desc
->data_size
= hdr_len
;
2183 tx_desc
->command
= mvneta_skb_tx_csum(pp
, skb
);
2184 tx_desc
->command
|= MVNETA_TXD_F_DESC
;
2185 tx_desc
->buf_phys_addr
= txq
->tso_hdrs_phys
+
2186 txq
->txq_put_index
* TSO_HEADER_SIZE
;
2187 mvneta_txq_inc_put(txq
);
2191 mvneta_tso_put_data(struct net_device
*dev
, struct mvneta_tx_queue
*txq
,
2192 struct sk_buff
*skb
, char *data
, int size
,
2193 bool last_tcp
, bool is_last
)
2195 struct mvneta_tx_desc
*tx_desc
;
2197 tx_desc
= mvneta_txq_next_desc_get(txq
);
2198 tx_desc
->data_size
= size
;
2199 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, data
,
2200 size
, DMA_TO_DEVICE
);
2201 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2202 tx_desc
->buf_phys_addr
))) {
2203 mvneta_txq_desc_put(txq
);
2207 tx_desc
->command
= 0;
2208 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2211 /* last descriptor in the TCP packet */
2212 tx_desc
->command
= MVNETA_TXD_L_DESC
;
2214 /* last descriptor in SKB */
2216 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2218 mvneta_txq_inc_put(txq
);
2222 static int mvneta_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
,
2223 struct mvneta_tx_queue
*txq
)
2225 int total_len
, data_left
;
2227 struct mvneta_port
*pp
= netdev_priv(dev
);
2229 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2232 /* Count needed descriptors */
2233 if ((txq
->count
+ tso_count_descs(skb
)) >= txq
->size
)
2236 if (skb_headlen(skb
) < (skb_transport_offset(skb
) + tcp_hdrlen(skb
))) {
2237 pr_info("*** Is this even possible???!?!?\n");
2241 /* Initialize the TSO handler, and prepare the first payload */
2242 tso_start(skb
, &tso
);
2244 total_len
= skb
->len
- hdr_len
;
2245 while (total_len
> 0) {
2248 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
2249 total_len
-= data_left
;
2252 /* prepare packet headers: MAC + IP + TCP */
2253 hdr
= txq
->tso_hdrs
+ txq
->txq_put_index
* TSO_HEADER_SIZE
;
2254 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
2256 mvneta_tso_put_hdr(skb
, pp
, txq
);
2258 while (data_left
> 0) {
2262 size
= min_t(int, tso
.size
, data_left
);
2264 if (mvneta_tso_put_data(dev
, txq
, skb
,
2271 tso_build_data(skb
, &tso
, size
);
2278 /* Release all used data descriptors; header descriptors must not
2281 for (i
= desc_count
- 1; i
>= 0; i
--) {
2282 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+ i
;
2283 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
2284 dma_unmap_single(pp
->dev
->dev
.parent
,
2285 tx_desc
->buf_phys_addr
,
2288 mvneta_txq_desc_put(txq
);
2293 /* Handle tx fragmentation processing */
2294 static int mvneta_tx_frag_process(struct mvneta_port
*pp
, struct sk_buff
*skb
,
2295 struct mvneta_tx_queue
*txq
)
2297 struct mvneta_tx_desc
*tx_desc
;
2298 int i
, nr_frags
= skb_shinfo(skb
)->nr_frags
;
2300 for (i
= 0; i
< nr_frags
; i
++) {
2301 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2302 void *addr
= page_address(frag
->page
.p
) + frag
->page_offset
;
2304 tx_desc
= mvneta_txq_next_desc_get(txq
);
2305 tx_desc
->data_size
= frag
->size
;
2307 tx_desc
->buf_phys_addr
=
2308 dma_map_single(pp
->dev
->dev
.parent
, addr
,
2309 tx_desc
->data_size
, DMA_TO_DEVICE
);
2311 if (dma_mapping_error(pp
->dev
->dev
.parent
,
2312 tx_desc
->buf_phys_addr
)) {
2313 mvneta_txq_desc_put(txq
);
2317 if (i
== nr_frags
- 1) {
2318 /* Last descriptor */
2319 tx_desc
->command
= MVNETA_TXD_L_DESC
| MVNETA_TXD_Z_PAD
;
2320 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2322 /* Descriptor in the middle: Not First, Not Last */
2323 tx_desc
->command
= 0;
2324 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2326 mvneta_txq_inc_put(txq
);
2332 /* Release all descriptors that were used to map fragments of
2333 * this packet, as well as the corresponding DMA mappings
2335 for (i
= i
- 1; i
>= 0; i
--) {
2336 tx_desc
= txq
->descs
+ i
;
2337 dma_unmap_single(pp
->dev
->dev
.parent
,
2338 tx_desc
->buf_phys_addr
,
2341 mvneta_txq_desc_put(txq
);
2347 /* Main tx processing */
2348 static int mvneta_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2350 struct mvneta_port
*pp
= netdev_priv(dev
);
2351 u16 txq_id
= skb_get_queue_mapping(skb
);
2352 struct mvneta_tx_queue
*txq
= &pp
->txqs
[txq_id
];
2353 struct mvneta_tx_desc
*tx_desc
;
2358 if (!netif_running(dev
))
2361 if (skb_is_gso(skb
)) {
2362 frags
= mvneta_tx_tso(skb
, dev
, txq
);
2366 frags
= skb_shinfo(skb
)->nr_frags
+ 1;
2368 /* Get a descriptor for the first part of the packet */
2369 tx_desc
= mvneta_txq_next_desc_get(txq
);
2371 tx_cmd
= mvneta_skb_tx_csum(pp
, skb
);
2373 tx_desc
->data_size
= skb_headlen(skb
);
2375 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, skb
->data
,
2378 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2379 tx_desc
->buf_phys_addr
))) {
2380 mvneta_txq_desc_put(txq
);
2386 /* First and Last descriptor */
2387 tx_cmd
|= MVNETA_TXD_FLZ_DESC
;
2388 tx_desc
->command
= tx_cmd
;
2389 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2390 mvneta_txq_inc_put(txq
);
2392 /* First but not Last */
2393 tx_cmd
|= MVNETA_TXD_F_DESC
;
2394 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2395 mvneta_txq_inc_put(txq
);
2396 tx_desc
->command
= tx_cmd
;
2397 /* Continue with other skb fragments */
2398 if (mvneta_tx_frag_process(pp
, skb
, txq
)) {
2399 dma_unmap_single(dev
->dev
.parent
,
2400 tx_desc
->buf_phys_addr
,
2403 mvneta_txq_desc_put(txq
);
2411 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2412 struct netdev_queue
*nq
= netdev_get_tx_queue(dev
, txq_id
);
2414 netdev_tx_sent_queue(nq
, len
);
2416 txq
->count
+= frags
;
2417 if (txq
->count
>= txq
->tx_stop_threshold
)
2418 netif_tx_stop_queue(nq
);
2420 if (!skb
->xmit_more
|| netif_xmit_stopped(nq
) ||
2421 txq
->pending
+ frags
> MVNETA_TXQ_DEC_SENT_MASK
)
2422 mvneta_txq_pend_desc_add(pp
, txq
, frags
);
2424 txq
->pending
+= frags
;
2426 u64_stats_update_begin(&stats
->syncp
);
2427 stats
->tx_packets
++;
2428 stats
->tx_bytes
+= len
;
2429 u64_stats_update_end(&stats
->syncp
);
2431 dev
->stats
.tx_dropped
++;
2432 dev_kfree_skb_any(skb
);
2435 return NETDEV_TX_OK
;
2439 /* Free tx resources, when resetting a port */
2440 static void mvneta_txq_done_force(struct mvneta_port
*pp
,
2441 struct mvneta_tx_queue
*txq
)
2444 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2445 int tx_done
= txq
->count
;
2447 mvneta_txq_bufs_free(pp
, txq
, tx_done
, nq
);
2451 txq
->txq_put_index
= 0;
2452 txq
->txq_get_index
= 0;
2455 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2456 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2458 static void mvneta_tx_done_gbe(struct mvneta_port
*pp
, u32 cause_tx_done
)
2460 struct mvneta_tx_queue
*txq
;
2461 struct netdev_queue
*nq
;
2463 while (cause_tx_done
) {
2464 txq
= mvneta_tx_done_policy(pp
, cause_tx_done
);
2466 nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2467 __netif_tx_lock(nq
, smp_processor_id());
2470 mvneta_txq_done(pp
, txq
);
2472 __netif_tx_unlock(nq
);
2473 cause_tx_done
&= ~((1 << txq
->id
));
2477 /* Compute crc8 of the specified address, using a unique algorithm ,
2478 * according to hw spec, different than generic crc8 algorithm
2480 static int mvneta_addr_crc(unsigned char *addr
)
2485 for (i
= 0; i
< ETH_ALEN
; i
++) {
2488 crc
= (crc
^ addr
[i
]) << 8;
2489 for (j
= 7; j
>= 0; j
--) {
2490 if (crc
& (0x100 << j
))
2498 /* This method controls the net device special MAC multicast support.
2499 * The Special Multicast Table for MAC addresses supports MAC of the form
2500 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2501 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2502 * Table entries in the DA-Filter table. This method set the Special
2503 * Multicast Table appropriate entry.
2505 static void mvneta_set_special_mcast_addr(struct mvneta_port
*pp
,
2506 unsigned char last_byte
,
2509 unsigned int smc_table_reg
;
2510 unsigned int tbl_offset
;
2511 unsigned int reg_offset
;
2513 /* Register offset from SMC table base */
2514 tbl_offset
= (last_byte
/ 4);
2515 /* Entry offset within the above reg */
2516 reg_offset
= last_byte
% 4;
2518 smc_table_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_SPEC_MCAST
2522 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2524 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2525 smc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2528 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ tbl_offset
* 4,
2532 /* This method controls the network device Other MAC multicast support.
2533 * The Other Multicast Table is used for multicast of another type.
2534 * A CRC-8 is used as an index to the Other Multicast Table entries
2535 * in the DA-Filter table.
2536 * The method gets the CRC-8 value from the calling routine and
2537 * sets the Other Multicast Table appropriate entry according to the
2540 static void mvneta_set_other_mcast_addr(struct mvneta_port
*pp
,
2544 unsigned int omc_table_reg
;
2545 unsigned int tbl_offset
;
2546 unsigned int reg_offset
;
2548 tbl_offset
= (crc8
/ 4) * 4; /* Register offset from OMC table base */
2549 reg_offset
= crc8
% 4; /* Entry offset within the above reg */
2551 omc_table_reg
= mvreg_read(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
);
2554 /* Clear accepts frame bit at specified Other DA table entry */
2555 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2557 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2558 omc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2561 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
, omc_table_reg
);
2564 /* The network device supports multicast using two tables:
2565 * 1) Special Multicast Table for MAC addresses of the form
2566 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2567 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2568 * Table entries in the DA-Filter table.
2569 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2570 * is used as an index to the Other Multicast Table entries in the
2573 static int mvneta_mcast_addr_set(struct mvneta_port
*pp
, unsigned char *p_addr
,
2576 unsigned char crc_result
= 0;
2578 if (memcmp(p_addr
, "\x01\x00\x5e\x00\x00", 5) == 0) {
2579 mvneta_set_special_mcast_addr(pp
, p_addr
[5], queue
);
2583 crc_result
= mvneta_addr_crc(p_addr
);
2585 if (pp
->mcast_count
[crc_result
] == 0) {
2586 netdev_info(pp
->dev
, "No valid Mcast for crc8=0x%02x\n",
2591 pp
->mcast_count
[crc_result
]--;
2592 if (pp
->mcast_count
[crc_result
] != 0) {
2593 netdev_info(pp
->dev
,
2594 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2595 pp
->mcast_count
[crc_result
], crc_result
);
2599 pp
->mcast_count
[crc_result
]++;
2601 mvneta_set_other_mcast_addr(pp
, crc_result
, queue
);
2606 /* Configure Fitering mode of Ethernet port */
2607 static void mvneta_rx_unicast_promisc_set(struct mvneta_port
*pp
,
2610 u32 port_cfg_reg
, val
;
2612 port_cfg_reg
= mvreg_read(pp
, MVNETA_PORT_CONFIG
);
2614 val
= mvreg_read(pp
, MVNETA_TYPE_PRIO
);
2616 /* Set / Clear UPM bit in port configuration register */
2618 /* Accept all Unicast addresses */
2619 port_cfg_reg
|= MVNETA_UNI_PROMISC_MODE
;
2620 val
|= MVNETA_FORCE_UNI
;
2621 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, 0xffff);
2622 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, 0xffffffff);
2624 /* Reject all Unicast addresses */
2625 port_cfg_reg
&= ~MVNETA_UNI_PROMISC_MODE
;
2626 val
&= ~MVNETA_FORCE_UNI
;
2629 mvreg_write(pp
, MVNETA_PORT_CONFIG
, port_cfg_reg
);
2630 mvreg_write(pp
, MVNETA_TYPE_PRIO
, val
);
2633 /* register unicast and multicast addresses */
2634 static void mvneta_set_rx_mode(struct net_device
*dev
)
2636 struct mvneta_port
*pp
= netdev_priv(dev
);
2637 struct netdev_hw_addr
*ha
;
2639 if (dev
->flags
& IFF_PROMISC
) {
2640 /* Accept all: Multicast + Unicast */
2641 mvneta_rx_unicast_promisc_set(pp
, 1);
2642 mvneta_set_ucast_table(pp
, pp
->rxq_def
);
2643 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2644 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2646 /* Accept single Unicast */
2647 mvneta_rx_unicast_promisc_set(pp
, 0);
2648 mvneta_set_ucast_table(pp
, -1);
2649 mvneta_mac_addr_set(pp
, dev
->dev_addr
, pp
->rxq_def
);
2651 if (dev
->flags
& IFF_ALLMULTI
) {
2652 /* Accept all multicast */
2653 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2654 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2656 /* Accept only initialized multicast */
2657 mvneta_set_special_mcast_table(pp
, -1);
2658 mvneta_set_other_mcast_table(pp
, -1);
2660 if (!netdev_mc_empty(dev
)) {
2661 netdev_for_each_mc_addr(ha
, dev
) {
2662 mvneta_mcast_addr_set(pp
, ha
->addr
,
2670 /* Interrupt handling - the callback for request_irq() */
2671 static irqreturn_t
mvneta_isr(int irq
, void *dev_id
)
2673 struct mvneta_port
*pp
= (struct mvneta_port
*)dev_id
;
2675 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
2676 napi_schedule(&pp
->napi
);
2681 /* Interrupt handling - the callback for request_percpu_irq() */
2682 static irqreturn_t
mvneta_percpu_isr(int irq
, void *dev_id
)
2684 struct mvneta_pcpu_port
*port
= (struct mvneta_pcpu_port
*)dev_id
;
2686 disable_percpu_irq(port
->pp
->dev
->irq
);
2687 napi_schedule(&port
->napi
);
2692 static int mvneta_fixed_link_update(struct mvneta_port
*pp
,
2693 struct phy_device
*phy
)
2695 struct fixed_phy_status status
;
2696 struct fixed_phy_status changed
= {};
2697 u32 gmac_stat
= mvreg_read(pp
, MVNETA_GMAC_STATUS
);
2699 status
.link
= !!(gmac_stat
& MVNETA_GMAC_LINK_UP
);
2700 if (gmac_stat
& MVNETA_GMAC_SPEED_1000
)
2701 status
.speed
= SPEED_1000
;
2702 else if (gmac_stat
& MVNETA_GMAC_SPEED_100
)
2703 status
.speed
= SPEED_100
;
2705 status
.speed
= SPEED_10
;
2706 status
.duplex
= !!(gmac_stat
& MVNETA_GMAC_FULL_DUPLEX
);
2710 fixed_phy_update_state(phy
, &status
, &changed
);
2715 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2716 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2717 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2718 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2719 * Each CPU has its own causeRxTx register
2721 static int mvneta_poll(struct napi_struct
*napi
, int budget
)
2726 struct mvneta_port
*pp
= netdev_priv(napi
->dev
);
2727 struct net_device
*ndev
= pp
->dev
;
2728 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
2730 if (!netif_running(pp
->dev
)) {
2731 napi_complete(napi
);
2735 /* Read cause register */
2736 cause_rx_tx
= mvreg_read(pp
, MVNETA_INTR_NEW_CAUSE
);
2737 if (cause_rx_tx
& MVNETA_MISCINTR_INTR_MASK
) {
2738 u32 cause_misc
= mvreg_read(pp
, MVNETA_INTR_MISC_CAUSE
);
2740 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
2741 if (pp
->use_inband_status
&& (cause_misc
&
2742 (MVNETA_CAUSE_PHY_STATUS_CHANGE
|
2743 MVNETA_CAUSE_LINK_CHANGE
|
2744 MVNETA_CAUSE_PSC_SYNC_CHANGE
))) {
2745 mvneta_fixed_link_update(pp
, ndev
->phydev
);
2749 /* Release Tx descriptors */
2750 if (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
) {
2751 mvneta_tx_done_gbe(pp
, (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
));
2752 cause_rx_tx
&= ~MVNETA_TX_INTR_MASK_ALL
;
2755 /* For the case where the last mvneta_poll did not process all
2758 rx_queue
= fls(((cause_rx_tx
>> 8) & 0xff));
2760 cause_rx_tx
|= pp
->neta_armada3700
? pp
->cause_rx_tx
:
2764 rx_queue
= rx_queue
- 1;
2766 rx_done
= mvneta_rx_hwbm(pp
, budget
, &pp
->rxqs
[rx_queue
]);
2768 rx_done
= mvneta_rx_swbm(pp
, budget
, &pp
->rxqs
[rx_queue
]);
2771 if (rx_done
< budget
) {
2773 napi_complete_done(napi
, rx_done
);
2775 if (pp
->neta_armada3700
) {
2776 unsigned long flags
;
2778 local_irq_save(flags
);
2779 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
2780 MVNETA_RX_INTR_MASK(rxq_number
) |
2781 MVNETA_TX_INTR_MASK(txq_number
) |
2782 MVNETA_MISCINTR_INTR_MASK
);
2783 local_irq_restore(flags
);
2785 enable_percpu_irq(pp
->dev
->irq
, 0);
2789 if (pp
->neta_armada3700
)
2790 pp
->cause_rx_tx
= cause_rx_tx
;
2792 port
->cause_rx_tx
= cause_rx_tx
;
2797 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2798 static int mvneta_rxq_fill(struct mvneta_port
*pp
, struct mvneta_rx_queue
*rxq
,
2803 for (i
= 0; i
< num
; i
++) {
2804 memset(rxq
->descs
+ i
, 0, sizeof(struct mvneta_rx_desc
));
2805 if (mvneta_rx_refill(pp
, rxq
->descs
+ i
, rxq
) != 0) {
2806 netdev_err(pp
->dev
, "%s:rxq %d, %d of %d buffs filled\n",
2807 __func__
, rxq
->id
, i
, num
);
2812 /* Add this number of RX descriptors as non occupied (ready to
2815 mvneta_rxq_non_occup_desc_add(pp
, rxq
, i
);
2820 /* Free all packets pending transmit from all TXQs and reset TX port */
2821 static void mvneta_tx_reset(struct mvneta_port
*pp
)
2825 /* free the skb's in the tx ring */
2826 for (queue
= 0; queue
< txq_number
; queue
++)
2827 mvneta_txq_done_force(pp
, &pp
->txqs
[queue
]);
2829 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
2830 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
2833 static void mvneta_rx_reset(struct mvneta_port
*pp
)
2835 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
2836 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
2839 /* Rx/Tx queue initialization/cleanup methods */
2841 /* Create a specified RX queue */
2842 static int mvneta_rxq_init(struct mvneta_port
*pp
,
2843 struct mvneta_rx_queue
*rxq
)
2846 rxq
->size
= pp
->rx_ring_size
;
2848 /* Allocate memory for RX descriptors */
2849 rxq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2850 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2851 &rxq
->descs_phys
, GFP_KERNEL
);
2852 if (rxq
->descs
== NULL
)
2855 rxq
->last_desc
= rxq
->size
- 1;
2857 /* Set Rx descriptors queue starting address */
2858 mvreg_write(pp
, MVNETA_RXQ_BASE_ADDR_REG(rxq
->id
), rxq
->descs_phys
);
2859 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), rxq
->size
);
2862 mvneta_rxq_offset_set(pp
, rxq
, NET_SKB_PAD
- pp
->rx_offset_correction
);
2864 /* Set coalescing pkts and time */
2865 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
2866 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
2869 /* Fill RXQ with buffers from RX pool */
2870 mvneta_rxq_buf_size_set(pp
, rxq
,
2871 MVNETA_RX_BUF_SIZE(pp
->pkt_size
));
2872 mvneta_rxq_bm_disable(pp
, rxq
);
2873 mvneta_rxq_fill(pp
, rxq
, rxq
->size
);
2875 mvneta_rxq_bm_enable(pp
, rxq
);
2876 mvneta_rxq_long_pool_set(pp
, rxq
);
2877 mvneta_rxq_short_pool_set(pp
, rxq
);
2878 mvneta_rxq_non_occup_desc_add(pp
, rxq
, rxq
->size
);
2884 /* Cleanup Rx queue */
2885 static void mvneta_rxq_deinit(struct mvneta_port
*pp
,
2886 struct mvneta_rx_queue
*rxq
)
2888 mvneta_rxq_drop_pkts(pp
, rxq
);
2891 dma_free_coherent(pp
->dev
->dev
.parent
,
2892 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2898 rxq
->next_desc_to_proc
= 0;
2899 rxq
->descs_phys
= 0;
2902 /* Create and initialize a tx queue */
2903 static int mvneta_txq_init(struct mvneta_port
*pp
,
2904 struct mvneta_tx_queue
*txq
)
2908 txq
->size
= pp
->tx_ring_size
;
2910 /* A queue must always have room for at least one skb.
2911 * Therefore, stop the queue when the free entries reaches
2912 * the maximum number of descriptors per skb.
2914 txq
->tx_stop_threshold
= txq
->size
- MVNETA_MAX_SKB_DESCS
;
2915 txq
->tx_wake_threshold
= txq
->tx_stop_threshold
/ 2;
2918 /* Allocate memory for TX descriptors */
2919 txq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2920 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2921 &txq
->descs_phys
, GFP_KERNEL
);
2922 if (txq
->descs
== NULL
)
2925 txq
->last_desc
= txq
->size
- 1;
2927 /* Set maximum bandwidth for enabled TXQs */
2928 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0x03ffffff);
2929 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0x3fffffff);
2931 /* Set Tx descriptors queue starting address */
2932 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), txq
->descs_phys
);
2933 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), txq
->size
);
2935 txq
->tx_skb
= kmalloc(txq
->size
* sizeof(*txq
->tx_skb
), GFP_KERNEL
);
2936 if (txq
->tx_skb
== NULL
) {
2937 dma_free_coherent(pp
->dev
->dev
.parent
,
2938 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2939 txq
->descs
, txq
->descs_phys
);
2943 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2944 txq
->tso_hdrs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2945 txq
->size
* TSO_HEADER_SIZE
,
2946 &txq
->tso_hdrs_phys
, GFP_KERNEL
);
2947 if (txq
->tso_hdrs
== NULL
) {
2949 dma_free_coherent(pp
->dev
->dev
.parent
,
2950 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2951 txq
->descs
, txq
->descs_phys
);
2954 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
2956 /* Setup XPS mapping */
2958 cpu
= txq
->id
% num_present_cpus();
2960 cpu
= pp
->rxq_def
% num_present_cpus();
2961 cpumask_set_cpu(cpu
, &txq
->affinity_mask
);
2962 netif_set_xps_queue(pp
->dev
, &txq
->affinity_mask
, txq
->id
);
2967 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2968 static void mvneta_txq_deinit(struct mvneta_port
*pp
,
2969 struct mvneta_tx_queue
*txq
)
2971 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2976 dma_free_coherent(pp
->dev
->dev
.parent
,
2977 txq
->size
* TSO_HEADER_SIZE
,
2978 txq
->tso_hdrs
, txq
->tso_hdrs_phys
);
2980 dma_free_coherent(pp
->dev
->dev
.parent
,
2981 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2982 txq
->descs
, txq
->descs_phys
);
2984 netdev_tx_reset_queue(nq
);
2988 txq
->next_desc_to_proc
= 0;
2989 txq
->descs_phys
= 0;
2991 /* Set minimum bandwidth for disabled TXQs */
2992 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0);
2993 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0);
2995 /* Set Tx descriptors queue starting address and size */
2996 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), 0);
2997 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), 0);
3000 /* Cleanup all Tx queues */
3001 static void mvneta_cleanup_txqs(struct mvneta_port
*pp
)
3005 for (queue
= 0; queue
< txq_number
; queue
++)
3006 mvneta_txq_deinit(pp
, &pp
->txqs
[queue
]);
3009 /* Cleanup all Rx queues */
3010 static void mvneta_cleanup_rxqs(struct mvneta_port
*pp
)
3014 for (queue
= 0; queue
< txq_number
; queue
++)
3015 mvneta_rxq_deinit(pp
, &pp
->rxqs
[queue
]);
3019 /* Init all Rx queues */
3020 static int mvneta_setup_rxqs(struct mvneta_port
*pp
)
3024 for (queue
= 0; queue
< rxq_number
; queue
++) {
3025 int err
= mvneta_rxq_init(pp
, &pp
->rxqs
[queue
]);
3028 netdev_err(pp
->dev
, "%s: can't create rxq=%d\n",
3030 mvneta_cleanup_rxqs(pp
);
3038 /* Init all tx queues */
3039 static int mvneta_setup_txqs(struct mvneta_port
*pp
)
3043 for (queue
= 0; queue
< txq_number
; queue
++) {
3044 int err
= mvneta_txq_init(pp
, &pp
->txqs
[queue
]);
3046 netdev_err(pp
->dev
, "%s: can't create txq=%d\n",
3048 mvneta_cleanup_txqs(pp
);
3056 static void mvneta_start_dev(struct mvneta_port
*pp
)
3059 struct net_device
*ndev
= pp
->dev
;
3061 mvneta_max_rx_size_set(pp
, pp
->pkt_size
);
3062 mvneta_txq_max_tx_size_set(pp
, pp
->pkt_size
);
3064 /* start the Rx/Tx activity */
3065 mvneta_port_enable(pp
);
3067 if (!pp
->neta_armada3700
) {
3068 /* Enable polling on the port */
3069 for_each_online_cpu(cpu
) {
3070 struct mvneta_pcpu_port
*port
=
3071 per_cpu_ptr(pp
->ports
, cpu
);
3073 napi_enable(&port
->napi
);
3076 napi_enable(&pp
->napi
);
3079 /* Unmask interrupts. It has to be done from each CPU */
3080 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3082 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3083 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3084 MVNETA_CAUSE_LINK_CHANGE
|
3085 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3087 phy_start(ndev
->phydev
);
3088 netif_tx_start_all_queues(pp
->dev
);
3091 static void mvneta_stop_dev(struct mvneta_port
*pp
)
3094 struct net_device
*ndev
= pp
->dev
;
3096 phy_stop(ndev
->phydev
);
3098 if (!pp
->neta_armada3700
) {
3099 for_each_online_cpu(cpu
) {
3100 struct mvneta_pcpu_port
*port
=
3101 per_cpu_ptr(pp
->ports
, cpu
);
3103 napi_disable(&port
->napi
);
3106 napi_disable(&pp
->napi
);
3109 netif_carrier_off(pp
->dev
);
3111 mvneta_port_down(pp
);
3112 netif_tx_stop_all_queues(pp
->dev
);
3114 /* Stop the port activity */
3115 mvneta_port_disable(pp
);
3117 /* Clear all ethernet port interrupts */
3118 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
3120 /* Mask all ethernet port interrupts */
3121 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3123 mvneta_tx_reset(pp
);
3124 mvneta_rx_reset(pp
);
3127 static void mvneta_percpu_enable(void *arg
)
3129 struct mvneta_port
*pp
= arg
;
3131 enable_percpu_irq(pp
->dev
->irq
, IRQ_TYPE_NONE
);
3134 static void mvneta_percpu_disable(void *arg
)
3136 struct mvneta_port
*pp
= arg
;
3138 disable_percpu_irq(pp
->dev
->irq
);
3141 /* Change the device mtu */
3142 static int mvneta_change_mtu(struct net_device
*dev
, int mtu
)
3144 struct mvneta_port
*pp
= netdev_priv(dev
);
3147 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu
), 8)) {
3148 netdev_info(dev
, "Illegal MTU value %d, rounding to %d\n",
3149 mtu
, ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8));
3150 mtu
= ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8);
3155 if (!netif_running(dev
)) {
3157 mvneta_bm_update_mtu(pp
, mtu
);
3159 netdev_update_features(dev
);
3163 /* The interface is running, so we have to force a
3164 * reallocation of the queues
3166 mvneta_stop_dev(pp
);
3167 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3169 mvneta_cleanup_txqs(pp
);
3170 mvneta_cleanup_rxqs(pp
);
3173 mvneta_bm_update_mtu(pp
, mtu
);
3175 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(dev
->mtu
);
3176 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
3177 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
3179 ret
= mvneta_setup_rxqs(pp
);
3181 netdev_err(dev
, "unable to setup rxqs after MTU change\n");
3185 ret
= mvneta_setup_txqs(pp
);
3187 netdev_err(dev
, "unable to setup txqs after MTU change\n");
3191 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3192 mvneta_start_dev(pp
);
3195 netdev_update_features(dev
);
3200 static netdev_features_t
mvneta_fix_features(struct net_device
*dev
,
3201 netdev_features_t features
)
3203 struct mvneta_port
*pp
= netdev_priv(dev
);
3205 if (pp
->tx_csum_limit
&& dev
->mtu
> pp
->tx_csum_limit
) {
3206 features
&= ~(NETIF_F_IP_CSUM
| NETIF_F_TSO
);
3208 "Disable IP checksum for MTU greater than %dB\n",
3215 /* Get mac address */
3216 static void mvneta_get_mac_addr(struct mvneta_port
*pp
, unsigned char *addr
)
3218 u32 mac_addr_l
, mac_addr_h
;
3220 mac_addr_l
= mvreg_read(pp
, MVNETA_MAC_ADDR_LOW
);
3221 mac_addr_h
= mvreg_read(pp
, MVNETA_MAC_ADDR_HIGH
);
3222 addr
[0] = (mac_addr_h
>> 24) & 0xFF;
3223 addr
[1] = (mac_addr_h
>> 16) & 0xFF;
3224 addr
[2] = (mac_addr_h
>> 8) & 0xFF;
3225 addr
[3] = mac_addr_h
& 0xFF;
3226 addr
[4] = (mac_addr_l
>> 8) & 0xFF;
3227 addr
[5] = mac_addr_l
& 0xFF;
3230 /* Handle setting mac address */
3231 static int mvneta_set_mac_addr(struct net_device
*dev
, void *addr
)
3233 struct mvneta_port
*pp
= netdev_priv(dev
);
3234 struct sockaddr
*sockaddr
= addr
;
3237 ret
= eth_prepare_mac_addr_change(dev
, addr
);
3240 /* Remove previous address table entry */
3241 mvneta_mac_addr_set(pp
, dev
->dev_addr
, -1);
3243 /* Set new addr in hw */
3244 mvneta_mac_addr_set(pp
, sockaddr
->sa_data
, pp
->rxq_def
);
3246 eth_commit_mac_addr_change(dev
, addr
);
3250 static void mvneta_adjust_link(struct net_device
*ndev
)
3252 struct mvneta_port
*pp
= netdev_priv(ndev
);
3253 struct phy_device
*phydev
= ndev
->phydev
;
3254 int status_change
= 0;
3257 if ((pp
->speed
!= phydev
->speed
) ||
3258 (pp
->duplex
!= phydev
->duplex
)) {
3261 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3262 val
&= ~(MVNETA_GMAC_CONFIG_MII_SPEED
|
3263 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3264 MVNETA_GMAC_CONFIG_FULL_DUPLEX
);
3267 val
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3269 if (phydev
->speed
== SPEED_1000
)
3270 val
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3271 else if (phydev
->speed
== SPEED_100
)
3272 val
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3274 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3276 pp
->duplex
= phydev
->duplex
;
3277 pp
->speed
= phydev
->speed
;
3281 if (phydev
->link
!= pp
->link
) {
3282 if (!phydev
->link
) {
3287 pp
->link
= phydev
->link
;
3291 if (status_change
) {
3293 if (!pp
->use_inband_status
) {
3294 u32 val
= mvreg_read(pp
,
3295 MVNETA_GMAC_AUTONEG_CONFIG
);
3296 val
&= ~MVNETA_GMAC_FORCE_LINK_DOWN
;
3297 val
|= MVNETA_GMAC_FORCE_LINK_PASS
;
3298 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3303 if (!pp
->use_inband_status
) {
3304 u32 val
= mvreg_read(pp
,
3305 MVNETA_GMAC_AUTONEG_CONFIG
);
3306 val
&= ~MVNETA_GMAC_FORCE_LINK_PASS
;
3307 val
|= MVNETA_GMAC_FORCE_LINK_DOWN
;
3308 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3311 mvneta_port_down(pp
);
3313 phy_print_status(phydev
);
3317 static int mvneta_mdio_probe(struct mvneta_port
*pp
)
3319 struct phy_device
*phy_dev
;
3321 phy_dev
= of_phy_connect(pp
->dev
, pp
->phy_node
, mvneta_adjust_link
, 0,
3324 netdev_err(pp
->dev
, "could not find the PHY\n");
3328 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
3329 phy_dev
->advertising
= phy_dev
->supported
;
3338 static void mvneta_mdio_remove(struct mvneta_port
*pp
)
3340 struct net_device
*ndev
= pp
->dev
;
3342 phy_disconnect(ndev
->phydev
);
3345 /* Electing a CPU must be done in an atomic way: it should be done
3346 * after or before the removal/insertion of a CPU and this function is
3349 static void mvneta_percpu_elect(struct mvneta_port
*pp
)
3351 int elected_cpu
= 0, max_cpu
, cpu
, i
= 0;
3353 /* Use the cpu associated to the rxq when it is online, in all
3354 * the other cases, use the cpu 0 which can't be offline.
3356 if (cpu_online(pp
->rxq_def
))
3357 elected_cpu
= pp
->rxq_def
;
3359 max_cpu
= num_present_cpus();
3361 for_each_online_cpu(cpu
) {
3362 int rxq_map
= 0, txq_map
= 0;
3365 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
3366 if ((rxq
% max_cpu
) == cpu
)
3367 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
3369 if (cpu
== elected_cpu
)
3370 /* Map the default receive queue queue to the
3373 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(pp
->rxq_def
);
3375 /* We update the TX queue map only if we have one
3376 * queue. In this case we associate the TX queue to
3377 * the CPU bound to the default RX queue
3379 if (txq_number
== 1)
3380 txq_map
= (cpu
== elected_cpu
) ?
3381 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3383 txq_map
= mvreg_read(pp
, MVNETA_CPU_MAP(cpu
)) &
3384 MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
3386 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
3388 /* Update the interrupt mask on each CPU according the
3391 smp_call_function_single(cpu
, mvneta_percpu_unmask_interrupt
,
3398 static int mvneta_cpu_online(unsigned int cpu
, struct hlist_node
*node
)
3401 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3403 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3406 spin_lock(&pp
->lock
);
3408 * Configuring the driver for a new CPU while the driver is
3409 * stopping is racy, so just avoid it.
3411 if (pp
->is_stopped
) {
3412 spin_unlock(&pp
->lock
);
3415 netif_tx_stop_all_queues(pp
->dev
);
3418 * We have to synchronise on tha napi of each CPU except the one
3419 * just being woken up
3421 for_each_online_cpu(other_cpu
) {
3422 if (other_cpu
!= cpu
) {
3423 struct mvneta_pcpu_port
*other_port
=
3424 per_cpu_ptr(pp
->ports
, other_cpu
);
3426 napi_synchronize(&other_port
->napi
);
3430 /* Mask all ethernet port interrupts */
3431 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3432 napi_enable(&port
->napi
);
3435 * Enable per-CPU interrupts on the CPU that is
3438 mvneta_percpu_enable(pp
);
3441 * Enable per-CPU interrupt on the one CPU we care
3444 mvneta_percpu_elect(pp
);
3446 /* Unmask all ethernet port interrupts */
3447 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3448 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3449 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3450 MVNETA_CAUSE_LINK_CHANGE
|
3451 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3452 netif_tx_start_all_queues(pp
->dev
);
3453 spin_unlock(&pp
->lock
);
3457 static int mvneta_cpu_down_prepare(unsigned int cpu
, struct hlist_node
*node
)
3459 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3461 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3464 * Thanks to this lock we are sure that any pending cpu election is
3467 spin_lock(&pp
->lock
);
3468 /* Mask all ethernet port interrupts */
3469 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3470 spin_unlock(&pp
->lock
);
3472 napi_synchronize(&port
->napi
);
3473 napi_disable(&port
->napi
);
3474 /* Disable per-CPU interrupts on the CPU that is brought down. */
3475 mvneta_percpu_disable(pp
);
3479 static int mvneta_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
3481 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3484 /* Check if a new CPU must be elected now this on is down */
3485 spin_lock(&pp
->lock
);
3486 mvneta_percpu_elect(pp
);
3487 spin_unlock(&pp
->lock
);
3488 /* Unmask all ethernet port interrupts */
3489 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3490 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3491 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3492 MVNETA_CAUSE_LINK_CHANGE
|
3493 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3494 netif_tx_start_all_queues(pp
->dev
);
3498 static int mvneta_open(struct net_device
*dev
)
3500 struct mvneta_port
*pp
= netdev_priv(dev
);
3503 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
);
3504 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
3505 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
3507 ret
= mvneta_setup_rxqs(pp
);
3511 ret
= mvneta_setup_txqs(pp
);
3513 goto err_cleanup_rxqs
;
3515 /* Connect to port interrupt line */
3516 if (pp
->neta_armada3700
)
3517 ret
= request_irq(pp
->dev
->irq
, mvneta_isr
, 0,
3520 ret
= request_percpu_irq(pp
->dev
->irq
, mvneta_percpu_isr
,
3521 dev
->name
, pp
->ports
);
3523 netdev_err(pp
->dev
, "cannot request irq %d\n", pp
->dev
->irq
);
3524 goto err_cleanup_txqs
;
3527 if (!pp
->neta_armada3700
) {
3528 /* Enable per-CPU interrupt on all the CPU to handle our RX
3531 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3533 pp
->is_stopped
= false;
3534 /* Register a CPU notifier to handle the case where our CPU
3535 * might be taken offline.
3537 ret
= cpuhp_state_add_instance_nocalls(online_hpstate
,
3542 ret
= cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3545 goto err_free_online_hp
;
3548 /* In default link is down */
3549 netif_carrier_off(pp
->dev
);
3551 ret
= mvneta_mdio_probe(pp
);
3553 netdev_err(dev
, "cannot probe MDIO bus\n");
3554 goto err_free_dead_hp
;
3557 mvneta_start_dev(pp
);
3562 if (!pp
->neta_armada3700
)
3563 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3566 if (!pp
->neta_armada3700
)
3567 cpuhp_state_remove_instance_nocalls(online_hpstate
,
3570 if (pp
->neta_armada3700
) {
3571 free_irq(pp
->dev
->irq
, pp
);
3573 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3574 free_percpu_irq(pp
->dev
->irq
, pp
->ports
);
3577 mvneta_cleanup_txqs(pp
);
3579 mvneta_cleanup_rxqs(pp
);
3583 /* Stop the port, free port interrupt line */
3584 static int mvneta_stop(struct net_device
*dev
)
3586 struct mvneta_port
*pp
= netdev_priv(dev
);
3588 if (!pp
->neta_armada3700
) {
3589 /* Inform that we are stopping so we don't want to setup the
3590 * driver for new CPUs in the notifiers. The code of the
3591 * notifier for CPU online is protected by the same spinlock,
3592 * so when we get the lock, the notifer work is done.
3594 spin_lock(&pp
->lock
);
3595 pp
->is_stopped
= true;
3596 spin_unlock(&pp
->lock
);
3598 mvneta_stop_dev(pp
);
3599 mvneta_mdio_remove(pp
);
3601 cpuhp_state_remove_instance_nocalls(online_hpstate
,
3603 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3605 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3606 free_percpu_irq(dev
->irq
, pp
->ports
);
3608 mvneta_stop_dev(pp
);
3609 mvneta_mdio_remove(pp
);
3610 free_irq(dev
->irq
, pp
);
3613 mvneta_cleanup_rxqs(pp
);
3614 mvneta_cleanup_txqs(pp
);
3619 static int mvneta_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
3624 return phy_mii_ioctl(dev
->phydev
, ifr
, cmd
);
3627 /* Ethtool methods */
3629 /* Set link ksettings (phy address, speed) for ethtools */
3631 mvneta_ethtool_set_link_ksettings(struct net_device
*ndev
,
3632 const struct ethtool_link_ksettings
*cmd
)
3634 struct mvneta_port
*pp
= netdev_priv(ndev
);
3635 struct phy_device
*phydev
= ndev
->phydev
;
3640 if ((cmd
->base
.autoneg
== AUTONEG_ENABLE
) != pp
->use_inband_status
) {
3643 mvneta_set_autoneg(pp
, cmd
->base
.autoneg
== AUTONEG_ENABLE
);
3645 if (cmd
->base
.autoneg
== AUTONEG_DISABLE
) {
3646 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3647 val
&= ~(MVNETA_GMAC_CONFIG_MII_SPEED
|
3648 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3649 MVNETA_GMAC_CONFIG_FULL_DUPLEX
);
3652 val
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3654 if (phydev
->speed
== SPEED_1000
)
3655 val
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3656 else if (phydev
->speed
== SPEED_100
)
3657 val
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3659 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3662 pp
->use_inband_status
= (cmd
->base
.autoneg
== AUTONEG_ENABLE
);
3663 netdev_info(pp
->dev
, "autoneg status set to %i\n",
3664 pp
->use_inband_status
);
3666 if (netif_running(ndev
)) {
3667 mvneta_port_down(pp
);
3672 return phy_ethtool_ksettings_set(ndev
->phydev
, cmd
);
3675 /* Set interrupt coalescing for ethtools */
3676 static int mvneta_ethtool_set_coalesce(struct net_device
*dev
,
3677 struct ethtool_coalesce
*c
)
3679 struct mvneta_port
*pp
= netdev_priv(dev
);
3682 for (queue
= 0; queue
< rxq_number
; queue
++) {
3683 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
3684 rxq
->time_coal
= c
->rx_coalesce_usecs
;
3685 rxq
->pkts_coal
= c
->rx_max_coalesced_frames
;
3686 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
3687 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
3690 for (queue
= 0; queue
< txq_number
; queue
++) {
3691 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
3692 txq
->done_pkts_coal
= c
->tx_max_coalesced_frames
;
3693 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
3699 /* get coalescing for ethtools */
3700 static int mvneta_ethtool_get_coalesce(struct net_device
*dev
,
3701 struct ethtool_coalesce
*c
)
3703 struct mvneta_port
*pp
= netdev_priv(dev
);
3705 c
->rx_coalesce_usecs
= pp
->rxqs
[0].time_coal
;
3706 c
->rx_max_coalesced_frames
= pp
->rxqs
[0].pkts_coal
;
3708 c
->tx_max_coalesced_frames
= pp
->txqs
[0].done_pkts_coal
;
3713 static void mvneta_ethtool_get_drvinfo(struct net_device
*dev
,
3714 struct ethtool_drvinfo
*drvinfo
)
3716 strlcpy(drvinfo
->driver
, MVNETA_DRIVER_NAME
,
3717 sizeof(drvinfo
->driver
));
3718 strlcpy(drvinfo
->version
, MVNETA_DRIVER_VERSION
,
3719 sizeof(drvinfo
->version
));
3720 strlcpy(drvinfo
->bus_info
, dev_name(&dev
->dev
),
3721 sizeof(drvinfo
->bus_info
));
3725 static void mvneta_ethtool_get_ringparam(struct net_device
*netdev
,
3726 struct ethtool_ringparam
*ring
)
3728 struct mvneta_port
*pp
= netdev_priv(netdev
);
3730 ring
->rx_max_pending
= MVNETA_MAX_RXD
;
3731 ring
->tx_max_pending
= MVNETA_MAX_TXD
;
3732 ring
->rx_pending
= pp
->rx_ring_size
;
3733 ring
->tx_pending
= pp
->tx_ring_size
;
3736 static int mvneta_ethtool_set_ringparam(struct net_device
*dev
,
3737 struct ethtool_ringparam
*ring
)
3739 struct mvneta_port
*pp
= netdev_priv(dev
);
3741 if ((ring
->rx_pending
== 0) || (ring
->tx_pending
== 0))
3743 pp
->rx_ring_size
= ring
->rx_pending
< MVNETA_MAX_RXD
?
3744 ring
->rx_pending
: MVNETA_MAX_RXD
;
3746 pp
->tx_ring_size
= clamp_t(u16
, ring
->tx_pending
,
3747 MVNETA_MAX_SKB_DESCS
* 2, MVNETA_MAX_TXD
);
3748 if (pp
->tx_ring_size
!= ring
->tx_pending
)
3749 netdev_warn(dev
, "TX queue size set to %u (requested %u)\n",
3750 pp
->tx_ring_size
, ring
->tx_pending
);
3752 if (netif_running(dev
)) {
3754 if (mvneta_open(dev
)) {
3756 "error on opening device after ring param change\n");
3764 static void mvneta_ethtool_get_strings(struct net_device
*netdev
, u32 sset
,
3767 if (sset
== ETH_SS_STATS
) {
3770 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
3771 memcpy(data
+ i
* ETH_GSTRING_LEN
,
3772 mvneta_statistics
[i
].name
, ETH_GSTRING_LEN
);
3776 static void mvneta_ethtool_update_stats(struct mvneta_port
*pp
)
3778 const struct mvneta_statistic
*s
;
3779 void __iomem
*base
= pp
->base
;
3784 for (i
= 0, s
= mvneta_statistics
;
3785 s
< mvneta_statistics
+ ARRAY_SIZE(mvneta_statistics
);
3789 val
= readl_relaxed(base
+ s
->offset
);
3790 pp
->ethtool_stats
[i
] += val
;
3793 /* Docs say to read low 32-bit then high */
3794 low
= readl_relaxed(base
+ s
->offset
);
3795 high
= readl_relaxed(base
+ s
->offset
+ 4);
3796 val64
= (u64
)high
<< 32 | low
;
3797 pp
->ethtool_stats
[i
] += val64
;
3803 static void mvneta_ethtool_get_stats(struct net_device
*dev
,
3804 struct ethtool_stats
*stats
, u64
*data
)
3806 struct mvneta_port
*pp
= netdev_priv(dev
);
3809 mvneta_ethtool_update_stats(pp
);
3811 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
3812 *data
++ = pp
->ethtool_stats
[i
];
3815 static int mvneta_ethtool_get_sset_count(struct net_device
*dev
, int sset
)
3817 if (sset
== ETH_SS_STATS
)
3818 return ARRAY_SIZE(mvneta_statistics
);
3822 static u32
mvneta_ethtool_get_rxfh_indir_size(struct net_device
*dev
)
3824 return MVNETA_RSS_LU_TABLE_SIZE
;
3827 static int mvneta_ethtool_get_rxnfc(struct net_device
*dev
,
3828 struct ethtool_rxnfc
*info
,
3829 u32
*rules __always_unused
)
3831 switch (info
->cmd
) {
3832 case ETHTOOL_GRXRINGS
:
3833 info
->data
= rxq_number
;
3842 static int mvneta_config_rss(struct mvneta_port
*pp
)
3847 netif_tx_stop_all_queues(pp
->dev
);
3849 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3851 /* We have to synchronise on the napi of each CPU */
3852 for_each_online_cpu(cpu
) {
3853 struct mvneta_pcpu_port
*pcpu_port
=
3854 per_cpu_ptr(pp
->ports
, cpu
);
3856 napi_synchronize(&pcpu_port
->napi
);
3857 napi_disable(&pcpu_port
->napi
);
3860 pp
->rxq_def
= pp
->indir
[0];
3862 /* Update unicast mapping */
3863 mvneta_set_rx_mode(pp
->dev
);
3865 /* Update val of portCfg register accordingly with all RxQueue types */
3866 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
3867 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
3869 /* Update the elected CPU matching the new rxq_def */
3870 spin_lock(&pp
->lock
);
3871 mvneta_percpu_elect(pp
);
3872 spin_unlock(&pp
->lock
);
3874 /* We have to synchronise on the napi of each CPU */
3875 for_each_online_cpu(cpu
) {
3876 struct mvneta_pcpu_port
*pcpu_port
=
3877 per_cpu_ptr(pp
->ports
, cpu
);
3879 napi_enable(&pcpu_port
->napi
);
3882 netif_tx_start_all_queues(pp
->dev
);
3887 static int mvneta_ethtool_set_rxfh(struct net_device
*dev
, const u32
*indir
,
3888 const u8
*key
, const u8 hfunc
)
3890 struct mvneta_port
*pp
= netdev_priv(dev
);
3892 /* Current code for Armada 3700 doesn't support RSS features yet */
3893 if (pp
->neta_armada3700
)
3896 /* We require at least one supported parameter to be changed
3897 * and no change in any of the unsupported parameters
3900 (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
))
3906 memcpy(pp
->indir
, indir
, MVNETA_RSS_LU_TABLE_SIZE
);
3908 return mvneta_config_rss(pp
);
3911 static int mvneta_ethtool_get_rxfh(struct net_device
*dev
, u32
*indir
, u8
*key
,
3914 struct mvneta_port
*pp
= netdev_priv(dev
);
3916 /* Current code for Armada 3700 doesn't support RSS features yet */
3917 if (pp
->neta_armada3700
)
3921 *hfunc
= ETH_RSS_HASH_TOP
;
3926 memcpy(indir
, pp
->indir
, MVNETA_RSS_LU_TABLE_SIZE
);
3931 static void mvneta_ethtool_get_wol(struct net_device
*dev
,
3932 struct ethtool_wolinfo
*wol
)
3938 phy_ethtool_get_wol(dev
->phydev
, wol
);
3941 static int mvneta_ethtool_set_wol(struct net_device
*dev
,
3942 struct ethtool_wolinfo
*wol
)
3947 return phy_ethtool_set_wol(dev
->phydev
, wol
);
3950 static const struct net_device_ops mvneta_netdev_ops
= {
3951 .ndo_open
= mvneta_open
,
3952 .ndo_stop
= mvneta_stop
,
3953 .ndo_start_xmit
= mvneta_tx
,
3954 .ndo_set_rx_mode
= mvneta_set_rx_mode
,
3955 .ndo_set_mac_address
= mvneta_set_mac_addr
,
3956 .ndo_change_mtu
= mvneta_change_mtu
,
3957 .ndo_fix_features
= mvneta_fix_features
,
3958 .ndo_get_stats64
= mvneta_get_stats64
,
3959 .ndo_do_ioctl
= mvneta_ioctl
,
3962 static const struct ethtool_ops mvneta_eth_tool_ops
= {
3963 .nway_reset
= phy_ethtool_nway_reset
,
3964 .get_link
= ethtool_op_get_link
,
3965 .set_coalesce
= mvneta_ethtool_set_coalesce
,
3966 .get_coalesce
= mvneta_ethtool_get_coalesce
,
3967 .get_drvinfo
= mvneta_ethtool_get_drvinfo
,
3968 .get_ringparam
= mvneta_ethtool_get_ringparam
,
3969 .set_ringparam
= mvneta_ethtool_set_ringparam
,
3970 .get_strings
= mvneta_ethtool_get_strings
,
3971 .get_ethtool_stats
= mvneta_ethtool_get_stats
,
3972 .get_sset_count
= mvneta_ethtool_get_sset_count
,
3973 .get_rxfh_indir_size
= mvneta_ethtool_get_rxfh_indir_size
,
3974 .get_rxnfc
= mvneta_ethtool_get_rxnfc
,
3975 .get_rxfh
= mvneta_ethtool_get_rxfh
,
3976 .set_rxfh
= mvneta_ethtool_set_rxfh
,
3977 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
3978 .set_link_ksettings
= mvneta_ethtool_set_link_ksettings
,
3979 .get_wol
= mvneta_ethtool_get_wol
,
3980 .set_wol
= mvneta_ethtool_set_wol
,
3984 static int mvneta_init(struct device
*dev
, struct mvneta_port
*pp
)
3989 mvneta_port_disable(pp
);
3991 /* Set port default values */
3992 mvneta_defaults_set(pp
);
3994 pp
->txqs
= devm_kcalloc(dev
, txq_number
, sizeof(struct mvneta_tx_queue
),
3999 /* Initialize TX descriptor rings */
4000 for (queue
= 0; queue
< txq_number
; queue
++) {
4001 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
4003 txq
->size
= pp
->tx_ring_size
;
4004 txq
->done_pkts_coal
= MVNETA_TXDONE_COAL_PKTS
;
4007 pp
->rxqs
= devm_kcalloc(dev
, rxq_number
, sizeof(struct mvneta_rx_queue
),
4012 /* Create Rx descriptor rings */
4013 for (queue
= 0; queue
< rxq_number
; queue
++) {
4014 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
4016 rxq
->size
= pp
->rx_ring_size
;
4017 rxq
->pkts_coal
= MVNETA_RX_COAL_PKTS
;
4018 rxq
->time_coal
= MVNETA_RX_COAL_USEC
;
4019 rxq
->buf_virt_addr
= devm_kmalloc(pp
->dev
->dev
.parent
,
4020 rxq
->size
* sizeof(void *),
4022 if (!rxq
->buf_virt_addr
)
4029 /* platform glue : initialize decoding windows */
4030 static void mvneta_conf_mbus_windows(struct mvneta_port
*pp
,
4031 const struct mbus_dram_target_info
*dram
)
4037 for (i
= 0; i
< 6; i
++) {
4038 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
4039 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
4042 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
4049 for (i
= 0; i
< dram
->num_cs
; i
++) {
4050 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
4052 mvreg_write(pp
, MVNETA_WIN_BASE(i
),
4053 (cs
->base
& 0xffff0000) |
4054 (cs
->mbus_attr
<< 8) |
4055 dram
->mbus_dram_target_id
);
4057 mvreg_write(pp
, MVNETA_WIN_SIZE(i
),
4058 (cs
->size
- 1) & 0xffff0000);
4060 win_enable
&= ~(1 << i
);
4061 win_protect
|= 3 << (2 * i
);
4064 /* For Armada3700 open default 4GB Mbus window, leaving
4065 * arbitration of target/attribute to a different layer
4068 mvreg_write(pp
, MVNETA_WIN_SIZE(0), 0xffff0000);
4069 win_enable
&= ~BIT(0);
4073 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
4074 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
4077 /* Power up the port */
4078 static int mvneta_port_power_up(struct mvneta_port
*pp
, int phy_mode
)
4082 /* MAC Cause register should be cleared */
4083 mvreg_write(pp
, MVNETA_UNIT_INTR_CAUSE
, 0);
4085 ctrl
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
4087 /* Even though it might look weird, when we're configured in
4088 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4091 case PHY_INTERFACE_MODE_QSGMII
:
4092 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_QSGMII_SERDES_PROTO
);
4093 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
4095 case PHY_INTERFACE_MODE_SGMII
:
4096 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_SGMII_SERDES_PROTO
);
4097 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
4099 case PHY_INTERFACE_MODE_RGMII
:
4100 case PHY_INTERFACE_MODE_RGMII_ID
:
4101 ctrl
|= MVNETA_GMAC2_PORT_RGMII
;
4107 /* Cancel Port Reset */
4108 ctrl
&= ~MVNETA_GMAC2_PORT_RESET
;
4109 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, ctrl
);
4111 while ((mvreg_read(pp
, MVNETA_GMAC_CTRL_2
) &
4112 MVNETA_GMAC2_PORT_RESET
) != 0)
4118 /* Device initialization routine */
4119 static int mvneta_probe(struct platform_device
*pdev
)
4121 const struct mbus_dram_target_info
*dram_target_info
;
4122 struct resource
*res
;
4123 struct device_node
*dn
= pdev
->dev
.of_node
;
4124 struct device_node
*phy_node
;
4125 struct device_node
*bm_node
;
4126 struct mvneta_port
*pp
;
4127 struct net_device
*dev
;
4128 const char *dt_mac_addr
;
4129 char hw_mac_addr
[ETH_ALEN
];
4130 const char *mac_from
;
4131 const char *managed
;
4137 dev
= alloc_etherdev_mqs(sizeof(struct mvneta_port
), txq_number
, rxq_number
);
4141 dev
->irq
= irq_of_parse_and_map(dn
, 0);
4142 if (dev
->irq
== 0) {
4144 goto err_free_netdev
;
4147 phy_node
= of_parse_phandle(dn
, "phy", 0);
4149 if (!of_phy_is_fixed_link(dn
)) {
4150 dev_err(&pdev
->dev
, "no PHY specified\n");
4155 err
= of_phy_register_fixed_link(dn
);
4157 dev_err(&pdev
->dev
, "cannot register fixed PHY\n");
4161 /* In the case of a fixed PHY, the DT node associated
4162 * to the PHY is the Ethernet MAC DT node.
4164 phy_node
= of_node_get(dn
);
4167 phy_mode
= of_get_phy_mode(dn
);
4169 dev_err(&pdev
->dev
, "incorrect phy-mode\n");
4171 goto err_put_phy_node
;
4174 dev
->tx_queue_len
= MVNETA_MAX_TXD
;
4175 dev
->watchdog_timeo
= 5 * HZ
;
4176 dev
->netdev_ops
= &mvneta_netdev_ops
;
4178 dev
->ethtool_ops
= &mvneta_eth_tool_ops
;
4180 pp
= netdev_priv(dev
);
4181 spin_lock_init(&pp
->lock
);
4182 pp
->phy_node
= phy_node
;
4183 pp
->phy_interface
= phy_mode
;
4185 err
= of_property_read_string(dn
, "managed", &managed
);
4186 pp
->use_inband_status
= (err
== 0 &&
4187 strcmp(managed
, "in-band-status") == 0);
4189 pp
->rxq_def
= rxq_def
;
4191 /* Set RX packet offset correction for platforms, whose
4192 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4193 * platforms and 0B for 32-bit ones.
4195 pp
->rx_offset_correction
=
4196 max(0, NET_SKB_PAD
- MVNETA_RX_PKT_OFFSET_CORRECTION
);
4198 pp
->indir
[0] = rxq_def
;
4200 /* Get special SoC configurations */
4201 if (of_device_is_compatible(dn
, "marvell,armada-3700-neta"))
4202 pp
->neta_armada3700
= true;
4204 pp
->clk
= devm_clk_get(&pdev
->dev
, "core");
4205 if (IS_ERR(pp
->clk
))
4206 pp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
4207 if (IS_ERR(pp
->clk
)) {
4208 err
= PTR_ERR(pp
->clk
);
4209 goto err_put_phy_node
;
4212 clk_prepare_enable(pp
->clk
);
4214 pp
->clk_bus
= devm_clk_get(&pdev
->dev
, "bus");
4215 if (!IS_ERR(pp
->clk_bus
))
4216 clk_prepare_enable(pp
->clk_bus
);
4218 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4219 pp
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
4220 if (IS_ERR(pp
->base
)) {
4221 err
= PTR_ERR(pp
->base
);
4225 /* Alloc per-cpu port structure */
4226 pp
->ports
= alloc_percpu(struct mvneta_pcpu_port
);
4232 /* Alloc per-cpu stats */
4233 pp
->stats
= netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats
);
4236 goto err_free_ports
;
4239 dt_mac_addr
= of_get_mac_address(dn
);
4241 mac_from
= "device tree";
4242 memcpy(dev
->dev_addr
, dt_mac_addr
, ETH_ALEN
);
4244 mvneta_get_mac_addr(pp
, hw_mac_addr
);
4245 if (is_valid_ether_addr(hw_mac_addr
)) {
4246 mac_from
= "hardware";
4247 memcpy(dev
->dev_addr
, hw_mac_addr
, ETH_ALEN
);
4249 mac_from
= "random";
4250 eth_hw_addr_random(dev
);
4254 if (!of_property_read_u32(dn
, "tx-csum-limit", &tx_csum_limit
)) {
4255 if (tx_csum_limit
< 0 ||
4256 tx_csum_limit
> MVNETA_TX_CSUM_MAX_SIZE
) {
4257 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4258 dev_info(&pdev
->dev
,
4259 "Wrong TX csum limit in DT, set to %dB\n",
4260 MVNETA_TX_CSUM_DEF_SIZE
);
4262 } else if (of_device_is_compatible(dn
, "marvell,armada-370-neta")) {
4263 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4265 tx_csum_limit
= MVNETA_TX_CSUM_MAX_SIZE
;
4268 pp
->tx_csum_limit
= tx_csum_limit
;
4270 dram_target_info
= mv_mbus_dram_info();
4271 /* Armada3700 requires setting default configuration of Mbus
4272 * windows, however without using filled mbus_dram_target_info
4275 if (dram_target_info
|| pp
->neta_armada3700
)
4276 mvneta_conf_mbus_windows(pp
, dram_target_info
);
4278 pp
->tx_ring_size
= MVNETA_MAX_TXD
;
4279 pp
->rx_ring_size
= MVNETA_MAX_RXD
;
4282 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4284 pp
->id
= global_port_id
++;
4286 /* Obtain access to BM resources if enabled and already initialized */
4287 bm_node
= of_parse_phandle(dn
, "buffer-manager", 0);
4288 if (bm_node
&& bm_node
->data
) {
4289 pp
->bm_priv
= bm_node
->data
;
4290 err
= mvneta_bm_port_init(pdev
, pp
);
4292 dev_info(&pdev
->dev
, "use SW buffer management\n");
4296 of_node_put(bm_node
);
4298 err
= mvneta_init(&pdev
->dev
, pp
);
4302 err
= mvneta_port_power_up(pp
, phy_mode
);
4304 dev_err(&pdev
->dev
, "can't power up port\n");
4308 /* Armada3700 network controller does not support per-cpu
4309 * operation, so only single NAPI should be initialized.
4311 if (pp
->neta_armada3700
) {
4312 netif_napi_add(dev
, &pp
->napi
, mvneta_poll
, NAPI_POLL_WEIGHT
);
4314 for_each_present_cpu(cpu
) {
4315 struct mvneta_pcpu_port
*port
=
4316 per_cpu_ptr(pp
->ports
, cpu
);
4318 netif_napi_add(dev
, &port
->napi
, mvneta_poll
,
4324 dev
->features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
;
4325 dev
->hw_features
|= dev
->features
;
4326 dev
->vlan_features
|= dev
->features
;
4327 dev
->priv_flags
|= IFF_LIVE_ADDR_CHANGE
;
4328 dev
->gso_max_segs
= MVNETA_MAX_TSO_SEGS
;
4330 /* MTU range: 68 - 9676 */
4331 dev
->min_mtu
= ETH_MIN_MTU
;
4332 /* 9676 == 9700 - 20 and rounding to 8 */
4333 dev
->max_mtu
= 9676;
4335 err
= register_netdev(dev
);
4337 dev_err(&pdev
->dev
, "failed to register\n");
4338 goto err_free_stats
;
4341 netdev_info(dev
, "Using %s mac address %pM\n", mac_from
,
4344 platform_set_drvdata(pdev
, pp
->dev
);
4346 if (pp
->use_inband_status
) {
4347 struct phy_device
*phy
= of_phy_find_device(dn
);
4349 mvneta_fixed_link_update(pp
, phy
);
4351 put_device(&phy
->mdio
.dev
);
4357 unregister_netdev(dev
);
4359 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4360 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4364 free_percpu(pp
->stats
);
4366 free_percpu(pp
->ports
);
4368 clk_disable_unprepare(pp
->clk_bus
);
4369 clk_disable_unprepare(pp
->clk
);
4371 of_node_put(phy_node
);
4372 if (of_phy_is_fixed_link(dn
))
4373 of_phy_deregister_fixed_link(dn
);
4375 irq_dispose_mapping(dev
->irq
);
4381 /* Device removal routine */
4382 static int mvneta_remove(struct platform_device
*pdev
)
4384 struct net_device
*dev
= platform_get_drvdata(pdev
);
4385 struct device_node
*dn
= pdev
->dev
.of_node
;
4386 struct mvneta_port
*pp
= netdev_priv(dev
);
4388 unregister_netdev(dev
);
4389 clk_disable_unprepare(pp
->clk_bus
);
4390 clk_disable_unprepare(pp
->clk
);
4391 free_percpu(pp
->ports
);
4392 free_percpu(pp
->stats
);
4393 if (of_phy_is_fixed_link(dn
))
4394 of_phy_deregister_fixed_link(dn
);
4395 irq_dispose_mapping(dev
->irq
);
4396 of_node_put(pp
->phy_node
);
4400 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4401 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4408 static const struct of_device_id mvneta_match
[] = {
4409 { .compatible
= "marvell,armada-370-neta" },
4410 { .compatible
= "marvell,armada-xp-neta" },
4411 { .compatible
= "marvell,armada-3700-neta" },
4414 MODULE_DEVICE_TABLE(of
, mvneta_match
);
4416 static struct platform_driver mvneta_driver
= {
4417 .probe
= mvneta_probe
,
4418 .remove
= mvneta_remove
,
4420 .name
= MVNETA_DRIVER_NAME
,
4421 .of_match_table
= mvneta_match
,
4425 static int __init
mvneta_driver_init(void)
4429 ret
= cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN
, "net/mvmeta:online",
4431 mvneta_cpu_down_prepare
);
4434 online_hpstate
= ret
;
4435 ret
= cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD
, "net/mvneta:dead",
4436 NULL
, mvneta_cpu_dead
);
4440 ret
= platform_driver_register(&mvneta_driver
);
4446 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4448 cpuhp_remove_multi_state(online_hpstate
);
4452 module_init(mvneta_driver_init
);
4454 static void __exit
mvneta_driver_exit(void)
4456 platform_driver_unregister(&mvneta_driver
);
4457 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4458 cpuhp_remove_multi_state(online_hpstate
);
4460 module_exit(mvneta_driver_exit
);
4462 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4463 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4464 MODULE_LICENSE("GPL");
4466 module_param(rxq_number
, int, S_IRUGO
);
4467 module_param(txq_number
, int, S_IRUGO
);
4469 module_param(rxq_def
, int, S_IRUGO
);
4470 module_param(rx_copybreak
, int, S_IRUGO
| S_IWUSR
);