x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / net / ethernet / micrel / ks8851.c
blob279ee4612981b0af8d482674c6f1f5525988a6f7
1 /* drivers/net/ethernet/micrel/ks8851.c
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #define DEBUG
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/cache.h>
23 #include <linux/crc32.h>
24 #include <linux/mii.h>
25 #include <linux/eeprom_93cx6.h>
26 #include <linux/regulator/consumer.h>
28 #include <linux/spi/spi.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
32 #include "ks8851.h"
34 /**
35 * struct ks8851_rxctrl - KS8851 driver rx control
36 * @mchash: Multicast hash-table data.
37 * @rxcr1: KS_RXCR1 register setting
38 * @rxcr2: KS_RXCR2 register setting
40 * Representation of the settings needs to control the receive filtering
41 * such as the multicast hash-filter and the receive register settings. This
42 * is used to make the job of working out if the receive settings change and
43 * then issuing the new settings to the worker that will send the necessary
44 * commands.
46 struct ks8851_rxctrl {
47 u16 mchash[4];
48 u16 rxcr1;
49 u16 rxcr2;
52 /**
53 * union ks8851_tx_hdr - tx header data
54 * @txb: The header as bytes
55 * @txw: The header as 16bit, little-endian words
57 * A dual representation of the tx header data to allow
58 * access to individual bytes, and to allow 16bit accesses
59 * with 16bit alignment.
61 union ks8851_tx_hdr {
62 u8 txb[6];
63 __le16 txw[3];
66 /**
67 * struct ks8851_net - KS8851 driver private data
68 * @netdev: The network device we're bound to
69 * @spidev: The spi device we're bound to.
70 * @lock: Lock to ensure that the device is not accessed when busy.
71 * @statelock: Lock on this structure for tx list.
72 * @mii: The MII state information for the mii calls.
73 * @rxctrl: RX settings for @rxctrl_work.
74 * @tx_work: Work queue for tx packets
75 * @rxctrl_work: Work queue for updating RX mode and multicast lists
76 * @txq: Queue of packets for transmission.
77 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
78 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
79 * @txh: Space for generating packet TX header in DMA-able data
80 * @rxd: Space for receiving SPI data, in DMA-able space.
81 * @txd: Space for transmitting SPI data, in DMA-able space.
82 * @msg_enable: The message flags controlling driver output (see ethtool).
83 * @fid: Incrementing frame id tag.
84 * @rc_ier: Cached copy of KS_IER.
85 * @rc_ccr: Cached copy of KS_CCR.
86 * @rc_rxqcr: Cached copy of KS_RXQCR.
87 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
88 * @vdd_reg: Optional regulator supplying the chip
89 * @vdd_io: Optional digital power supply for IO
90 * @gpio: Optional reset_n gpio
92 * The @lock ensures that the chip is protected when certain operations are
93 * in progress. When the read or write packet transfer is in progress, most
94 * of the chip registers are not ccessible until the transfer is finished and
95 * the DMA has been de-asserted.
97 * The @statelock is used to protect information in the structure which may
98 * need to be accessed via several sources, such as the network driver layer
99 * or one of the work queues.
101 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
102 * wants to DMA map them, it will not have any problems with data the driver
103 * modifies.
105 struct ks8851_net {
106 struct net_device *netdev;
107 struct spi_device *spidev;
108 struct mutex lock;
109 spinlock_t statelock;
111 union ks8851_tx_hdr txh ____cacheline_aligned;
112 u8 rxd[8];
113 u8 txd[8];
115 u32 msg_enable ____cacheline_aligned;
116 u16 tx_space;
117 u8 fid;
119 u16 rc_ier;
120 u16 rc_rxqcr;
121 u16 rc_ccr;
123 struct mii_if_info mii;
124 struct ks8851_rxctrl rxctrl;
126 struct work_struct tx_work;
127 struct work_struct rxctrl_work;
129 struct sk_buff_head txq;
131 struct spi_message spi_msg1;
132 struct spi_message spi_msg2;
133 struct spi_transfer spi_xfer1;
134 struct spi_transfer spi_xfer2[2];
136 struct eeprom_93cx6 eeprom;
137 struct regulator *vdd_reg;
138 struct regulator *vdd_io;
139 int gpio;
142 static int msg_enable;
144 /* shift for byte-enable data */
145 #define BYTE_EN(_x) ((_x) << 2)
147 /* turn register number and byte-enable mask into data for start of packet */
148 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
150 /* SPI register read/write calls.
152 * All these calls issue SPI transactions to access the chip's registers. They
153 * all require that the necessary lock is held to prevent accesses when the
154 * chip is busy transferring packet data (RX/TX FIFO accesses).
158 * ks8851_wrreg16 - write 16bit register value to chip
159 * @ks: The chip state
160 * @reg: The register address
161 * @val: The value to write
163 * Issue a write to put the value @val into the register specified in @reg.
165 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
167 struct spi_transfer *xfer = &ks->spi_xfer1;
168 struct spi_message *msg = &ks->spi_msg1;
169 __le16 txb[2];
170 int ret;
172 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
173 txb[1] = cpu_to_le16(val);
175 xfer->tx_buf = txb;
176 xfer->rx_buf = NULL;
177 xfer->len = 4;
179 ret = spi_sync(ks->spidev, msg);
180 if (ret < 0)
181 netdev_err(ks->netdev, "spi_sync() failed\n");
185 * ks8851_wrreg8 - write 8bit register value to chip
186 * @ks: The chip state
187 * @reg: The register address
188 * @val: The value to write
190 * Issue a write to put the value @val into the register specified in @reg.
192 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
194 struct spi_transfer *xfer = &ks->spi_xfer1;
195 struct spi_message *msg = &ks->spi_msg1;
196 __le16 txb[2];
197 int ret;
198 int bit;
200 bit = 1 << (reg & 3);
202 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
203 txb[1] = val;
205 xfer->tx_buf = txb;
206 xfer->rx_buf = NULL;
207 xfer->len = 3;
209 ret = spi_sync(ks->spidev, msg);
210 if (ret < 0)
211 netdev_err(ks->netdev, "spi_sync() failed\n");
215 * ks8851_rx_1msg - select whether to use one or two messages for spi read
216 * @ks: The device structure
218 * Return whether to generate a single message with a tx and rx buffer
219 * supplied to spi_sync(), or alternatively send the tx and rx buffers
220 * as separate messages.
222 * Depending on the hardware in use, a single message may be more efficient
223 * on interrupts or work done by the driver.
225 * This currently always returns true until we add some per-device data passed
226 * from the platform code to specify which mode is better.
228 static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
230 return true;
234 * ks8851_rdreg - issue read register command and return the data
235 * @ks: The device state
236 * @op: The register address and byte enables in message format.
237 * @rxb: The RX buffer to return the result into
238 * @rxl: The length of data expected.
240 * This is the low level read call that issues the necessary spi message(s)
241 * to read data from the register specified in @op.
243 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
244 u8 *rxb, unsigned rxl)
246 struct spi_transfer *xfer;
247 struct spi_message *msg;
248 __le16 *txb = (__le16 *)ks->txd;
249 u8 *trx = ks->rxd;
250 int ret;
252 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
254 if (ks8851_rx_1msg(ks)) {
255 msg = &ks->spi_msg1;
256 xfer = &ks->spi_xfer1;
258 xfer->tx_buf = txb;
259 xfer->rx_buf = trx;
260 xfer->len = rxl + 2;
261 } else {
262 msg = &ks->spi_msg2;
263 xfer = ks->spi_xfer2;
265 xfer->tx_buf = txb;
266 xfer->rx_buf = NULL;
267 xfer->len = 2;
269 xfer++;
270 xfer->tx_buf = NULL;
271 xfer->rx_buf = trx;
272 xfer->len = rxl;
275 ret = spi_sync(ks->spidev, msg);
276 if (ret < 0)
277 netdev_err(ks->netdev, "read: spi_sync() failed\n");
278 else if (ks8851_rx_1msg(ks))
279 memcpy(rxb, trx + 2, rxl);
280 else
281 memcpy(rxb, trx, rxl);
285 * ks8851_rdreg8 - read 8 bit register from device
286 * @ks: The chip information
287 * @reg: The register address
289 * Read a 8bit register from the chip, returning the result
291 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
293 u8 rxb[1];
295 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
296 return rxb[0];
300 * ks8851_rdreg16 - read 16 bit register from device
301 * @ks: The chip information
302 * @reg: The register address
304 * Read a 16bit register from the chip, returning the result
306 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
308 __le16 rx = 0;
310 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
311 return le16_to_cpu(rx);
315 * ks8851_rdreg32 - read 32 bit register from device
316 * @ks: The chip information
317 * @reg: The register address
319 * Read a 32bit register from the chip.
321 * Note, this read requires the address be aligned to 4 bytes.
323 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
325 __le32 rx = 0;
327 WARN_ON(reg & 3);
329 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
330 return le32_to_cpu(rx);
334 * ks8851_soft_reset - issue one of the soft reset to the device
335 * @ks: The device state.
336 * @op: The bit(s) to set in the GRR
338 * Issue the relevant soft-reset command to the device's GRR register
339 * specified by @op.
341 * Note, the delays are in there as a caution to ensure that the reset
342 * has time to take effect and then complete. Since the datasheet does
343 * not currently specify the exact sequence, we have chosen something
344 * that seems to work with our device.
346 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
348 ks8851_wrreg16(ks, KS_GRR, op);
349 mdelay(1); /* wait a short time to effect reset */
350 ks8851_wrreg16(ks, KS_GRR, 0);
351 mdelay(1); /* wait for condition to clear */
355 * ks8851_set_powermode - set power mode of the device
356 * @ks: The device state
357 * @pwrmode: The power mode value to write to KS_PMECR.
359 * Change the power mode of the chip.
361 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
363 unsigned pmecr;
365 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
367 pmecr = ks8851_rdreg16(ks, KS_PMECR);
368 pmecr &= ~PMECR_PM_MASK;
369 pmecr |= pwrmode;
371 ks8851_wrreg16(ks, KS_PMECR, pmecr);
375 * ks8851_write_mac_addr - write mac address to device registers
376 * @dev: The network device
378 * Update the KS8851 MAC address registers from the address in @dev.
380 * This call assumes that the chip is not running, so there is no need to
381 * shutdown the RXQ process whilst setting this.
383 static int ks8851_write_mac_addr(struct net_device *dev)
385 struct ks8851_net *ks = netdev_priv(dev);
386 int i;
388 mutex_lock(&ks->lock);
391 * Wake up chip in case it was powered off when stopped; otherwise,
392 * the first write to the MAC address does not take effect.
394 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
395 for (i = 0; i < ETH_ALEN; i++)
396 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
397 if (!netif_running(dev))
398 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
400 mutex_unlock(&ks->lock);
402 return 0;
406 * ks8851_read_mac_addr - read mac address from device registers
407 * @dev: The network device
409 * Update our copy of the KS8851 MAC address from the registers of @dev.
411 static void ks8851_read_mac_addr(struct net_device *dev)
413 struct ks8851_net *ks = netdev_priv(dev);
414 int i;
416 mutex_lock(&ks->lock);
418 for (i = 0; i < ETH_ALEN; i++)
419 dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
421 mutex_unlock(&ks->lock);
425 * ks8851_init_mac - initialise the mac address
426 * @ks: The device structure
428 * Get or create the initial mac address for the device and then set that
429 * into the station address register. If there is an EEPROM present, then
430 * we try that. If no valid mac address is found we use eth_random_addr()
431 * to create a new one.
433 static void ks8851_init_mac(struct ks8851_net *ks)
435 struct net_device *dev = ks->netdev;
437 /* first, try reading what we've got already */
438 if (ks->rc_ccr & CCR_EEPROM) {
439 ks8851_read_mac_addr(dev);
440 if (is_valid_ether_addr(dev->dev_addr))
441 return;
443 netdev_err(ks->netdev, "invalid mac address read %pM\n",
444 dev->dev_addr);
447 eth_hw_addr_random(dev);
448 ks8851_write_mac_addr(dev);
452 * ks8851_rdfifo - read data from the receive fifo
453 * @ks: The device state.
454 * @buff: The buffer address
455 * @len: The length of the data to read
457 * Issue an RXQ FIFO read command and read the @len amount of data from
458 * the FIFO into the buffer specified by @buff.
460 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
462 struct spi_transfer *xfer = ks->spi_xfer2;
463 struct spi_message *msg = &ks->spi_msg2;
464 u8 txb[1];
465 int ret;
467 netif_dbg(ks, rx_status, ks->netdev,
468 "%s: %d@%p\n", __func__, len, buff);
470 /* set the operation we're issuing */
471 txb[0] = KS_SPIOP_RXFIFO;
473 xfer->tx_buf = txb;
474 xfer->rx_buf = NULL;
475 xfer->len = 1;
477 xfer++;
478 xfer->rx_buf = buff;
479 xfer->tx_buf = NULL;
480 xfer->len = len;
482 ret = spi_sync(ks->spidev, msg);
483 if (ret < 0)
484 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
488 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
489 * @ks: The device state
490 * @rxpkt: The data for the received packet
492 * Dump the initial data from the packet to dev_dbg().
494 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
496 netdev_dbg(ks->netdev,
497 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
498 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
499 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
500 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
504 * ks8851_rx_pkts - receive packets from the host
505 * @ks: The device information.
507 * This is called from the IRQ work queue when the system detects that there
508 * are packets in the receive queue. Find out how many packets there are and
509 * read them from the FIFO.
511 static void ks8851_rx_pkts(struct ks8851_net *ks)
513 struct sk_buff *skb;
514 unsigned rxfc;
515 unsigned rxlen;
516 unsigned rxstat;
517 u32 rxh;
518 u8 *rxpkt;
520 rxfc = ks8851_rdreg8(ks, KS_RXFC);
522 netif_dbg(ks, rx_status, ks->netdev,
523 "%s: %d packets\n", __func__, rxfc);
525 /* Currently we're issuing a read per packet, but we could possibly
526 * improve the code by issuing a single read, getting the receive
527 * header, allocating the packet and then reading the packet data
528 * out in one go.
530 * This form of operation would require us to hold the SPI bus'
531 * chipselect low during the entie transaction to avoid any
532 * reset to the data stream coming from the chip.
535 for (; rxfc != 0; rxfc--) {
536 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
537 rxstat = rxh & 0xffff;
538 rxlen = (rxh >> 16) & 0xfff;
540 netif_dbg(ks, rx_status, ks->netdev,
541 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
543 /* the length of the packet includes the 32bit CRC */
545 /* set dma read address */
546 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
548 /* start the packet dma process, and set auto-dequeue rx */
549 ks8851_wrreg16(ks, KS_RXQCR,
550 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
552 if (rxlen > 4) {
553 unsigned int rxalign;
555 rxlen -= 4;
556 rxalign = ALIGN(rxlen, 4);
557 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
558 if (skb) {
560 /* 4 bytes of status header + 4 bytes of
561 * garbage: we put them before ethernet
562 * header, so that they are copied,
563 * but ignored.
566 rxpkt = skb_put(skb, rxlen) - 8;
568 ks8851_rdfifo(ks, rxpkt, rxalign + 8);
570 if (netif_msg_pktdata(ks))
571 ks8851_dbg_dumpkkt(ks, rxpkt);
573 skb->protocol = eth_type_trans(skb, ks->netdev);
574 netif_rx_ni(skb);
576 ks->netdev->stats.rx_packets++;
577 ks->netdev->stats.rx_bytes += rxlen;
581 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
586 * ks8851_irq - IRQ handler for dealing with interrupt requests
587 * @irq: IRQ number
588 * @_ks: cookie
590 * This handler is invoked when the IRQ line asserts to find out what happened.
591 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
592 * in thread context.
594 * Read the interrupt status, work out what needs to be done and then clear
595 * any of the interrupts that are not needed.
597 static irqreturn_t ks8851_irq(int irq, void *_ks)
599 struct ks8851_net *ks = _ks;
600 unsigned status;
601 unsigned handled = 0;
603 mutex_lock(&ks->lock);
605 status = ks8851_rdreg16(ks, KS_ISR);
607 netif_dbg(ks, intr, ks->netdev,
608 "%s: status 0x%04x\n", __func__, status);
610 if (status & IRQ_LCI)
611 handled |= IRQ_LCI;
613 if (status & IRQ_LDI) {
614 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
615 pmecr &= ~PMECR_WKEVT_MASK;
616 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
618 handled |= IRQ_LDI;
621 if (status & IRQ_RXPSI)
622 handled |= IRQ_RXPSI;
624 if (status & IRQ_TXI) {
625 handled |= IRQ_TXI;
627 /* no lock here, tx queue should have been stopped */
629 /* update our idea of how much tx space is available to the
630 * system */
631 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
633 netif_dbg(ks, intr, ks->netdev,
634 "%s: txspace %d\n", __func__, ks->tx_space);
637 if (status & IRQ_RXI)
638 handled |= IRQ_RXI;
640 if (status & IRQ_SPIBEI) {
641 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
642 handled |= IRQ_SPIBEI;
645 ks8851_wrreg16(ks, KS_ISR, handled);
647 if (status & IRQ_RXI) {
648 /* the datasheet says to disable the rx interrupt during
649 * packet read-out, however we're masking the interrupt
650 * from the device so do not bother masking just the RX
651 * from the device. */
653 ks8851_rx_pkts(ks);
656 /* if something stopped the rx process, probably due to wanting
657 * to change the rx settings, then do something about restarting
658 * it. */
659 if (status & IRQ_RXPSI) {
660 struct ks8851_rxctrl *rxc = &ks->rxctrl;
662 /* update the multicast hash table */
663 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
664 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
665 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
666 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
668 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
669 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
672 mutex_unlock(&ks->lock);
674 if (status & IRQ_LCI)
675 mii_check_link(&ks->mii);
677 if (status & IRQ_TXI)
678 netif_wake_queue(ks->netdev);
680 return IRQ_HANDLED;
684 * calc_txlen - calculate size of message to send packet
685 * @len: Length of data
687 * Returns the size of the TXFIFO message needed to send
688 * this packet.
690 static inline unsigned calc_txlen(unsigned len)
692 return ALIGN(len + 4, 4);
696 * ks8851_wrpkt - write packet to TX FIFO
697 * @ks: The device state.
698 * @txp: The sk_buff to transmit.
699 * @irq: IRQ on completion of the packet.
701 * Send the @txp to the chip. This means creating the relevant packet header
702 * specifying the length of the packet and the other information the chip
703 * needs, such as IRQ on completion. Send the header and the packet data to
704 * the device.
706 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
708 struct spi_transfer *xfer = ks->spi_xfer2;
709 struct spi_message *msg = &ks->spi_msg2;
710 unsigned fid = 0;
711 int ret;
713 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
714 __func__, txp, txp->len, txp->data, irq);
716 fid = ks->fid++;
717 fid &= TXFR_TXFID_MASK;
719 if (irq)
720 fid |= TXFR_TXIC; /* irq on completion */
722 /* start header at txb[1] to align txw entries */
723 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
724 ks->txh.txw[1] = cpu_to_le16(fid);
725 ks->txh.txw[2] = cpu_to_le16(txp->len);
727 xfer->tx_buf = &ks->txh.txb[1];
728 xfer->rx_buf = NULL;
729 xfer->len = 5;
731 xfer++;
732 xfer->tx_buf = txp->data;
733 xfer->rx_buf = NULL;
734 xfer->len = ALIGN(txp->len, 4);
736 ret = spi_sync(ks->spidev, msg);
737 if (ret < 0)
738 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
742 * ks8851_done_tx - update and then free skbuff after transmitting
743 * @ks: The device state
744 * @txb: The buffer transmitted
746 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
748 struct net_device *dev = ks->netdev;
750 dev->stats.tx_bytes += txb->len;
751 dev->stats.tx_packets++;
753 dev_kfree_skb(txb);
757 * ks8851_tx_work - process tx packet(s)
758 * @work: The work strucutre what was scheduled.
760 * This is called when a number of packets have been scheduled for
761 * transmission and need to be sent to the device.
763 static void ks8851_tx_work(struct work_struct *work)
765 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
766 struct sk_buff *txb;
767 bool last = skb_queue_empty(&ks->txq);
769 mutex_lock(&ks->lock);
771 while (!last) {
772 txb = skb_dequeue(&ks->txq);
773 last = skb_queue_empty(&ks->txq);
775 if (txb != NULL) {
776 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
777 ks8851_wrpkt(ks, txb, last);
778 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
779 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
781 ks8851_done_tx(ks, txb);
785 mutex_unlock(&ks->lock);
789 * ks8851_net_open - open network device
790 * @dev: The network device being opened.
792 * Called when the network device is marked active, such as a user executing
793 * 'ifconfig up' on the device.
795 static int ks8851_net_open(struct net_device *dev)
797 struct ks8851_net *ks = netdev_priv(dev);
799 /* lock the card, even if we may not actually be doing anything
800 * else at the moment */
801 mutex_lock(&ks->lock);
803 netif_dbg(ks, ifup, ks->netdev, "opening\n");
805 /* bring chip out of any power saving mode it was in */
806 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
808 /* issue a soft reset to the RX/TX QMU to put it into a known
809 * state. */
810 ks8851_soft_reset(ks, GRR_QMU);
812 /* setup transmission parameters */
814 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
815 TXCR_TXPE | /* pad to min length */
816 TXCR_TXCRC | /* add CRC */
817 TXCR_TXFCE)); /* enable flow control */
819 /* auto-increment tx data, reset tx pointer */
820 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
822 /* setup receiver control */
824 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
825 RXCR1_RXFCE | /* enable flow control */
826 RXCR1_RXBE | /* broadcast enable */
827 RXCR1_RXUE | /* unicast enable */
828 RXCR1_RXE)); /* enable rx block */
830 /* transfer entire frames out in one go */
831 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
833 /* set receive counter timeouts */
834 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
835 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
836 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
838 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
839 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
840 RXQCR_RXDTTE); /* IRQ on time exceeded */
842 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
844 /* clear then enable interrupts */
846 #define STD_IRQ (IRQ_LCI | /* Link Change */ \
847 IRQ_TXI | /* TX done */ \
848 IRQ_RXI | /* RX done */ \
849 IRQ_SPIBEI | /* SPI bus error */ \
850 IRQ_TXPSI | /* TX process stop */ \
851 IRQ_RXPSI) /* RX process stop */
853 ks->rc_ier = STD_IRQ;
854 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
855 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
857 netif_start_queue(ks->netdev);
859 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
861 mutex_unlock(&ks->lock);
862 return 0;
866 * ks8851_net_stop - close network device
867 * @dev: The device being closed.
869 * Called to close down a network device which has been active. Cancell any
870 * work, shutdown the RX and TX process and then place the chip into a low
871 * power state whilst it is not being used.
873 static int ks8851_net_stop(struct net_device *dev)
875 struct ks8851_net *ks = netdev_priv(dev);
877 netif_info(ks, ifdown, dev, "shutting down\n");
879 netif_stop_queue(dev);
881 mutex_lock(&ks->lock);
882 /* turn off the IRQs and ack any outstanding */
883 ks8851_wrreg16(ks, KS_IER, 0x0000);
884 ks8851_wrreg16(ks, KS_ISR, 0xffff);
885 mutex_unlock(&ks->lock);
887 /* stop any outstanding work */
888 flush_work(&ks->tx_work);
889 flush_work(&ks->rxctrl_work);
891 mutex_lock(&ks->lock);
892 /* shutdown RX process */
893 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
895 /* shutdown TX process */
896 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
898 /* set powermode to soft power down to save power */
899 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
900 mutex_unlock(&ks->lock);
902 /* ensure any queued tx buffers are dumped */
903 while (!skb_queue_empty(&ks->txq)) {
904 struct sk_buff *txb = skb_dequeue(&ks->txq);
906 netif_dbg(ks, ifdown, ks->netdev,
907 "%s: freeing txb %p\n", __func__, txb);
909 dev_kfree_skb(txb);
912 return 0;
916 * ks8851_start_xmit - transmit packet
917 * @skb: The buffer to transmit
918 * @dev: The device used to transmit the packet.
920 * Called by the network layer to transmit the @skb. Queue the packet for
921 * the device and schedule the necessary work to transmit the packet when
922 * it is free.
924 * We do this to firstly avoid sleeping with the network device locked,
925 * and secondly so we can round up more than one packet to transmit which
926 * means we can try and avoid generating too many transmit done interrupts.
928 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
929 struct net_device *dev)
931 struct ks8851_net *ks = netdev_priv(dev);
932 unsigned needed = calc_txlen(skb->len);
933 netdev_tx_t ret = NETDEV_TX_OK;
935 netif_dbg(ks, tx_queued, ks->netdev,
936 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
938 spin_lock(&ks->statelock);
940 if (needed > ks->tx_space) {
941 netif_stop_queue(dev);
942 ret = NETDEV_TX_BUSY;
943 } else {
944 ks->tx_space -= needed;
945 skb_queue_tail(&ks->txq, skb);
948 spin_unlock(&ks->statelock);
949 schedule_work(&ks->tx_work);
951 return ret;
955 * ks8851_rxctrl_work - work handler to change rx mode
956 * @work: The work structure this belongs to.
958 * Lock the device and issue the necessary changes to the receive mode from
959 * the network device layer. This is done so that we can do this without
960 * having to sleep whilst holding the network device lock.
962 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
963 * receive parameters are programmed, we issue a write to disable the RXQ and
964 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
965 * complete. The interrupt handler then writes the new values into the chip.
967 static void ks8851_rxctrl_work(struct work_struct *work)
969 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
971 mutex_lock(&ks->lock);
973 /* need to shutdown RXQ before modifying filter parameters */
974 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
976 mutex_unlock(&ks->lock);
979 static void ks8851_set_rx_mode(struct net_device *dev)
981 struct ks8851_net *ks = netdev_priv(dev);
982 struct ks8851_rxctrl rxctrl;
984 memset(&rxctrl, 0, sizeof(rxctrl));
986 if (dev->flags & IFF_PROMISC) {
987 /* interface to receive everything */
989 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
990 } else if (dev->flags & IFF_ALLMULTI) {
991 /* accept all multicast packets */
993 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
994 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
995 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
996 struct netdev_hw_addr *ha;
997 u32 crc;
999 /* accept some multicast */
1001 netdev_for_each_mc_addr(ha, dev) {
1002 crc = ether_crc(ETH_ALEN, ha->addr);
1003 crc >>= (32 - 6); /* get top six bits */
1005 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1008 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1009 } else {
1010 /* just accept broadcast / unicast */
1011 rxctrl.rxcr1 = RXCR1_RXPAFMA;
1014 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1015 RXCR1_RXBE | /* broadcast enable */
1016 RXCR1_RXE | /* RX process enable */
1017 RXCR1_RXFCE); /* enable flow control */
1019 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1021 /* schedule work to do the actual set of the data if needed */
1023 spin_lock(&ks->statelock);
1025 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1026 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1027 schedule_work(&ks->rxctrl_work);
1030 spin_unlock(&ks->statelock);
1033 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1035 struct sockaddr *sa = addr;
1037 if (netif_running(dev))
1038 return -EBUSY;
1040 if (!is_valid_ether_addr(sa->sa_data))
1041 return -EADDRNOTAVAIL;
1043 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1044 return ks8851_write_mac_addr(dev);
1047 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1049 struct ks8851_net *ks = netdev_priv(dev);
1051 if (!netif_running(dev))
1052 return -EINVAL;
1054 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1057 static const struct net_device_ops ks8851_netdev_ops = {
1058 .ndo_open = ks8851_net_open,
1059 .ndo_stop = ks8851_net_stop,
1060 .ndo_do_ioctl = ks8851_net_ioctl,
1061 .ndo_start_xmit = ks8851_start_xmit,
1062 .ndo_set_mac_address = ks8851_set_mac_address,
1063 .ndo_set_rx_mode = ks8851_set_rx_mode,
1064 .ndo_validate_addr = eth_validate_addr,
1067 /* ethtool support */
1069 static void ks8851_get_drvinfo(struct net_device *dev,
1070 struct ethtool_drvinfo *di)
1072 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1073 strlcpy(di->version, "1.00", sizeof(di->version));
1074 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1077 static u32 ks8851_get_msglevel(struct net_device *dev)
1079 struct ks8851_net *ks = netdev_priv(dev);
1080 return ks->msg_enable;
1083 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1085 struct ks8851_net *ks = netdev_priv(dev);
1086 ks->msg_enable = to;
1089 static int ks8851_get_link_ksettings(struct net_device *dev,
1090 struct ethtool_link_ksettings *cmd)
1092 struct ks8851_net *ks = netdev_priv(dev);
1093 return mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1096 static int ks8851_set_link_ksettings(struct net_device *dev,
1097 const struct ethtool_link_ksettings *cmd)
1099 struct ks8851_net *ks = netdev_priv(dev);
1100 return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1103 static u32 ks8851_get_link(struct net_device *dev)
1105 struct ks8851_net *ks = netdev_priv(dev);
1106 return mii_link_ok(&ks->mii);
1109 static int ks8851_nway_reset(struct net_device *dev)
1111 struct ks8851_net *ks = netdev_priv(dev);
1112 return mii_nway_restart(&ks->mii);
1115 /* EEPROM support */
1117 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1119 struct ks8851_net *ks = ee->data;
1120 unsigned val;
1122 val = ks8851_rdreg16(ks, KS_EEPCR);
1124 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1125 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1126 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1129 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1131 struct ks8851_net *ks = ee->data;
1132 unsigned val = EEPCR_EESA; /* default - eeprom access on */
1134 if (ee->drive_data)
1135 val |= EEPCR_EESRWA;
1136 if (ee->reg_data_in)
1137 val |= EEPCR_EEDO;
1138 if (ee->reg_data_clock)
1139 val |= EEPCR_EESCK;
1140 if (ee->reg_chip_select)
1141 val |= EEPCR_EECS;
1143 ks8851_wrreg16(ks, KS_EEPCR, val);
1147 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1148 * @ks: The network device state.
1150 * Check for the presence of an EEPROM, and then activate software access
1151 * to the device.
1153 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1155 if (!(ks->rc_ccr & CCR_EEPROM))
1156 return -ENOENT;
1158 mutex_lock(&ks->lock);
1160 /* start with clock low, cs high */
1161 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1162 return 0;
1166 * ks8851_eeprom_release - release the EEPROM interface
1167 * @ks: The device state
1169 * Release the software access to the device EEPROM
1171 static void ks8851_eeprom_release(struct ks8851_net *ks)
1173 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1175 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1176 mutex_unlock(&ks->lock);
1179 #define KS_EEPROM_MAGIC (0x00008851)
1181 static int ks8851_set_eeprom(struct net_device *dev,
1182 struct ethtool_eeprom *ee, u8 *data)
1184 struct ks8851_net *ks = netdev_priv(dev);
1185 int offset = ee->offset;
1186 int len = ee->len;
1187 u16 tmp;
1189 /* currently only support byte writing */
1190 if (len != 1)
1191 return -EINVAL;
1193 if (ee->magic != KS_EEPROM_MAGIC)
1194 return -EINVAL;
1196 if (ks8851_eeprom_claim(ks))
1197 return -ENOENT;
1199 eeprom_93cx6_wren(&ks->eeprom, true);
1201 /* ethtool currently only supports writing bytes, which means
1202 * we have to read/modify/write our 16bit EEPROMs */
1204 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1206 if (offset & 1) {
1207 tmp &= 0xff;
1208 tmp |= *data << 8;
1209 } else {
1210 tmp &= 0xff00;
1211 tmp |= *data;
1214 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1215 eeprom_93cx6_wren(&ks->eeprom, false);
1217 ks8851_eeprom_release(ks);
1219 return 0;
1222 static int ks8851_get_eeprom(struct net_device *dev,
1223 struct ethtool_eeprom *ee, u8 *data)
1225 struct ks8851_net *ks = netdev_priv(dev);
1226 int offset = ee->offset;
1227 int len = ee->len;
1229 /* must be 2 byte aligned */
1230 if (len & 1 || offset & 1)
1231 return -EINVAL;
1233 if (ks8851_eeprom_claim(ks))
1234 return -ENOENT;
1236 ee->magic = KS_EEPROM_MAGIC;
1238 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1239 ks8851_eeprom_release(ks);
1241 return 0;
1244 static int ks8851_get_eeprom_len(struct net_device *dev)
1246 struct ks8851_net *ks = netdev_priv(dev);
1248 /* currently, we assume it is an 93C46 attached, so return 128 */
1249 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1252 static const struct ethtool_ops ks8851_ethtool_ops = {
1253 .get_drvinfo = ks8851_get_drvinfo,
1254 .get_msglevel = ks8851_get_msglevel,
1255 .set_msglevel = ks8851_set_msglevel,
1256 .get_link = ks8851_get_link,
1257 .nway_reset = ks8851_nway_reset,
1258 .get_eeprom_len = ks8851_get_eeprom_len,
1259 .get_eeprom = ks8851_get_eeprom,
1260 .set_eeprom = ks8851_set_eeprom,
1261 .get_link_ksettings = ks8851_get_link_ksettings,
1262 .set_link_ksettings = ks8851_set_link_ksettings,
1265 /* MII interface controls */
1268 * ks8851_phy_reg - convert MII register into a KS8851 register
1269 * @reg: MII register number.
1271 * Return the KS8851 register number for the corresponding MII PHY register
1272 * if possible. Return zero if the MII register has no direct mapping to the
1273 * KS8851 register set.
1275 static int ks8851_phy_reg(int reg)
1277 switch (reg) {
1278 case MII_BMCR:
1279 return KS_P1MBCR;
1280 case MII_BMSR:
1281 return KS_P1MBSR;
1282 case MII_PHYSID1:
1283 return KS_PHY1ILR;
1284 case MII_PHYSID2:
1285 return KS_PHY1IHR;
1286 case MII_ADVERTISE:
1287 return KS_P1ANAR;
1288 case MII_LPA:
1289 return KS_P1ANLPR;
1292 return 0x0;
1296 * ks8851_phy_read - MII interface PHY register read.
1297 * @dev: The network device the PHY is on.
1298 * @phy_addr: Address of PHY (ignored as we only have one)
1299 * @reg: The register to read.
1301 * This call reads data from the PHY register specified in @reg. Since the
1302 * device does not support all the MII registers, the non-existent values
1303 * are always returned as zero.
1305 * We return zero for unsupported registers as the MII code does not check
1306 * the value returned for any error status, and simply returns it to the
1307 * caller. The mii-tool that the driver was tested with takes any -ve error
1308 * as real PHY capabilities, thus displaying incorrect data to the user.
1310 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1312 struct ks8851_net *ks = netdev_priv(dev);
1313 int ksreg;
1314 int result;
1316 ksreg = ks8851_phy_reg(reg);
1317 if (!ksreg)
1318 return 0x0; /* no error return allowed, so use zero */
1320 mutex_lock(&ks->lock);
1321 result = ks8851_rdreg16(ks, ksreg);
1322 mutex_unlock(&ks->lock);
1324 return result;
1327 static void ks8851_phy_write(struct net_device *dev,
1328 int phy, int reg, int value)
1330 struct ks8851_net *ks = netdev_priv(dev);
1331 int ksreg;
1333 ksreg = ks8851_phy_reg(reg);
1334 if (ksreg) {
1335 mutex_lock(&ks->lock);
1336 ks8851_wrreg16(ks, ksreg, value);
1337 mutex_unlock(&ks->lock);
1342 * ks8851_read_selftest - read the selftest memory info.
1343 * @ks: The device state
1345 * Read and check the TX/RX memory selftest information.
1347 static int ks8851_read_selftest(struct ks8851_net *ks)
1349 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1350 int ret = 0;
1351 unsigned rd;
1353 rd = ks8851_rdreg16(ks, KS_MBIR);
1355 if ((rd & both_done) != both_done) {
1356 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1357 return 0;
1360 if (rd & MBIR_TXMBFA) {
1361 netdev_err(ks->netdev, "TX memory selftest fail\n");
1362 ret |= 1;
1365 if (rd & MBIR_RXMBFA) {
1366 netdev_err(ks->netdev, "RX memory selftest fail\n");
1367 ret |= 2;
1370 return 0;
1373 /* driver bus management functions */
1375 #ifdef CONFIG_PM_SLEEP
1377 static int ks8851_suspend(struct device *dev)
1379 struct ks8851_net *ks = dev_get_drvdata(dev);
1380 struct net_device *netdev = ks->netdev;
1382 if (netif_running(netdev)) {
1383 netif_device_detach(netdev);
1384 ks8851_net_stop(netdev);
1387 return 0;
1390 static int ks8851_resume(struct device *dev)
1392 struct ks8851_net *ks = dev_get_drvdata(dev);
1393 struct net_device *netdev = ks->netdev;
1395 if (netif_running(netdev)) {
1396 ks8851_net_open(netdev);
1397 netif_device_attach(netdev);
1400 return 0;
1402 #endif
1404 static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1406 static int ks8851_probe(struct spi_device *spi)
1408 struct net_device *ndev;
1409 struct ks8851_net *ks;
1410 int ret;
1411 unsigned cider;
1412 int gpio;
1414 ndev = alloc_etherdev(sizeof(struct ks8851_net));
1415 if (!ndev)
1416 return -ENOMEM;
1418 spi->bits_per_word = 8;
1420 ks = netdev_priv(ndev);
1422 ks->netdev = ndev;
1423 ks->spidev = spi;
1424 ks->tx_space = 6144;
1426 gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1427 0, NULL);
1428 if (gpio == -EPROBE_DEFER) {
1429 ret = gpio;
1430 goto err_gpio;
1433 ks->gpio = gpio;
1434 if (gpio_is_valid(gpio)) {
1435 ret = devm_gpio_request_one(&spi->dev, gpio,
1436 GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1437 if (ret) {
1438 dev_err(&spi->dev, "reset gpio request failed\n");
1439 goto err_gpio;
1443 ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1444 if (IS_ERR(ks->vdd_io)) {
1445 ret = PTR_ERR(ks->vdd_io);
1446 goto err_reg_io;
1449 ret = regulator_enable(ks->vdd_io);
1450 if (ret) {
1451 dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1452 ret);
1453 goto err_reg_io;
1456 ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1457 if (IS_ERR(ks->vdd_reg)) {
1458 ret = PTR_ERR(ks->vdd_reg);
1459 goto err_reg;
1462 ret = regulator_enable(ks->vdd_reg);
1463 if (ret) {
1464 dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1465 ret);
1466 goto err_reg;
1469 if (gpio_is_valid(gpio)) {
1470 usleep_range(10000, 11000);
1471 gpio_set_value(gpio, 1);
1474 mutex_init(&ks->lock);
1475 spin_lock_init(&ks->statelock);
1477 INIT_WORK(&ks->tx_work, ks8851_tx_work);
1478 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1480 /* initialise pre-made spi transfer messages */
1482 spi_message_init(&ks->spi_msg1);
1483 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1485 spi_message_init(&ks->spi_msg2);
1486 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1487 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1489 /* setup EEPROM state */
1491 ks->eeprom.data = ks;
1492 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1493 ks->eeprom.register_read = ks8851_eeprom_regread;
1494 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1496 /* setup mii state */
1497 ks->mii.dev = ndev;
1498 ks->mii.phy_id = 1,
1499 ks->mii.phy_id_mask = 1;
1500 ks->mii.reg_num_mask = 0xf;
1501 ks->mii.mdio_read = ks8851_phy_read;
1502 ks->mii.mdio_write = ks8851_phy_write;
1504 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1506 /* set the default message enable */
1507 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1508 NETIF_MSG_PROBE |
1509 NETIF_MSG_LINK));
1511 skb_queue_head_init(&ks->txq);
1513 ndev->ethtool_ops = &ks8851_ethtool_ops;
1514 SET_NETDEV_DEV(ndev, &spi->dev);
1516 spi_set_drvdata(spi, ks);
1518 ndev->if_port = IF_PORT_100BASET;
1519 ndev->netdev_ops = &ks8851_netdev_ops;
1520 ndev->irq = spi->irq;
1522 /* issue a global soft reset to reset the device. */
1523 ks8851_soft_reset(ks, GRR_GSR);
1525 /* simple check for a valid chip being connected to the bus */
1526 cider = ks8851_rdreg16(ks, KS_CIDER);
1527 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1528 dev_err(&spi->dev, "failed to read device ID\n");
1529 ret = -ENODEV;
1530 goto err_id;
1533 /* cache the contents of the CCR register for EEPROM, etc. */
1534 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1536 ks8851_read_selftest(ks);
1537 ks8851_init_mac(ks);
1539 ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1540 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1541 ndev->name, ks);
1542 if (ret < 0) {
1543 dev_err(&spi->dev, "failed to get irq\n");
1544 goto err_irq;
1547 ret = register_netdev(ndev);
1548 if (ret) {
1549 dev_err(&spi->dev, "failed to register network device\n");
1550 goto err_netdev;
1553 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1554 CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1555 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1557 return 0;
1560 err_netdev:
1561 free_irq(ndev->irq, ks);
1563 err_irq:
1564 if (gpio_is_valid(gpio))
1565 gpio_set_value(gpio, 0);
1566 err_id:
1567 regulator_disable(ks->vdd_reg);
1568 err_reg:
1569 regulator_disable(ks->vdd_io);
1570 err_reg_io:
1571 err_gpio:
1572 free_netdev(ndev);
1573 return ret;
1576 static int ks8851_remove(struct spi_device *spi)
1578 struct ks8851_net *priv = spi_get_drvdata(spi);
1580 if (netif_msg_drv(priv))
1581 dev_info(&spi->dev, "remove\n");
1583 unregister_netdev(priv->netdev);
1584 free_irq(spi->irq, priv);
1585 if (gpio_is_valid(priv->gpio))
1586 gpio_set_value(priv->gpio, 0);
1587 regulator_disable(priv->vdd_reg);
1588 regulator_disable(priv->vdd_io);
1589 free_netdev(priv->netdev);
1591 return 0;
1594 static const struct of_device_id ks8851_match_table[] = {
1595 { .compatible = "micrel,ks8851" },
1598 MODULE_DEVICE_TABLE(of, ks8851_match_table);
1600 static struct spi_driver ks8851_driver = {
1601 .driver = {
1602 .name = "ks8851",
1603 .of_match_table = ks8851_match_table,
1604 .pm = &ks8851_pm_ops,
1606 .probe = ks8851_probe,
1607 .remove = ks8851_remove,
1609 module_spi_driver(ks8851_driver);
1611 MODULE_DESCRIPTION("KS8851 Network driver");
1612 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1613 MODULE_LICENSE("GPL");
1615 module_param_named(message, msg_enable, int, 0);
1616 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1617 MODULE_ALIAS("spi:ks8851");