1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/types.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
55 #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1))
58 struct list_head list_entry
;
60 struct pxp_ptt_entry pxp
;
64 struct list_head free_list
;
65 spinlock_t lock
; /* ptt synchronized access */
66 struct qed_ptt ptts
[PXP_EXTERNAL_BAR_PF_WINDOW_NUM
];
69 int qed_ptt_pool_alloc(struct qed_hwfn
*p_hwfn
)
71 struct qed_ptt_pool
*p_pool
= kmalloc(sizeof(*p_pool
), GFP_KERNEL
);
77 INIT_LIST_HEAD(&p_pool
->free_list
);
78 for (i
= 0; i
< PXP_EXTERNAL_BAR_PF_WINDOW_NUM
; i
++) {
79 p_pool
->ptts
[i
].idx
= i
;
80 p_pool
->ptts
[i
].pxp
.offset
= QED_BAR_INVALID_OFFSET
;
81 p_pool
->ptts
[i
].pxp
.pretend
.control
= 0;
82 if (i
>= RESERVED_PTT_MAX
)
83 list_add(&p_pool
->ptts
[i
].list_entry
,
87 p_hwfn
->p_ptt_pool
= p_pool
;
88 spin_lock_init(&p_pool
->lock
);
93 void qed_ptt_invalidate(struct qed_hwfn
*p_hwfn
)
95 struct qed_ptt
*p_ptt
;
98 for (i
= 0; i
< PXP_EXTERNAL_BAR_PF_WINDOW_NUM
; i
++) {
99 p_ptt
= &p_hwfn
->p_ptt_pool
->ptts
[i
];
100 p_ptt
->pxp
.offset
= QED_BAR_INVALID_OFFSET
;
104 void qed_ptt_pool_free(struct qed_hwfn
*p_hwfn
)
106 kfree(p_hwfn
->p_ptt_pool
);
107 p_hwfn
->p_ptt_pool
= NULL
;
110 struct qed_ptt
*qed_ptt_acquire(struct qed_hwfn
*p_hwfn
)
112 struct qed_ptt
*p_ptt
;
115 /* Take the free PTT from the list */
116 for (i
= 0; i
< QED_BAR_ACQUIRE_TIMEOUT
; i
++) {
117 spin_lock_bh(&p_hwfn
->p_ptt_pool
->lock
);
119 if (!list_empty(&p_hwfn
->p_ptt_pool
->free_list
)) {
120 p_ptt
= list_first_entry(&p_hwfn
->p_ptt_pool
->free_list
,
121 struct qed_ptt
, list_entry
);
122 list_del(&p_ptt
->list_entry
);
124 spin_unlock_bh(&p_hwfn
->p_ptt_pool
->lock
);
126 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
127 "allocated ptt %d\n", p_ptt
->idx
);
131 spin_unlock_bh(&p_hwfn
->p_ptt_pool
->lock
);
132 usleep_range(1000, 2000);
135 DP_NOTICE(p_hwfn
, "PTT acquire timeout - failed to allocate PTT\n");
139 void qed_ptt_release(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
)
141 spin_lock_bh(&p_hwfn
->p_ptt_pool
->lock
);
142 list_add(&p_ptt
->list_entry
, &p_hwfn
->p_ptt_pool
->free_list
);
143 spin_unlock_bh(&p_hwfn
->p_ptt_pool
->lock
);
146 u32
qed_ptt_get_hw_addr(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
)
148 /* The HW is using DWORDS and we need to translate it to Bytes */
149 return le32_to_cpu(p_ptt
->pxp
.offset
) << 2;
152 static u32
qed_ptt_config_addr(struct qed_ptt
*p_ptt
)
154 return PXP_PF_WINDOW_ADMIN_PER_PF_START
+
155 p_ptt
->idx
* sizeof(struct pxp_ptt_entry
);
158 u32
qed_ptt_get_bar_addr(struct qed_ptt
*p_ptt
)
160 return PXP_EXTERNAL_BAR_PF_WINDOW_START
+
161 p_ptt
->idx
* PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE
;
164 void qed_ptt_set_win(struct qed_hwfn
*p_hwfn
,
165 struct qed_ptt
*p_ptt
, u32 new_hw_addr
)
169 prev_hw_addr
= qed_ptt_get_hw_addr(p_hwfn
, p_ptt
);
171 if (new_hw_addr
== prev_hw_addr
)
174 /* Update PTT entery in admin window */
175 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
176 "Updating PTT entry %d to offset 0x%x\n",
177 p_ptt
->idx
, new_hw_addr
);
179 /* The HW is using DWORDS and the address is in Bytes */
180 p_ptt
->pxp
.offset
= cpu_to_le32(new_hw_addr
>> 2);
183 qed_ptt_config_addr(p_ptt
) +
184 offsetof(struct pxp_ptt_entry
, offset
),
185 le32_to_cpu(p_ptt
->pxp
.offset
));
188 static u32
qed_set_ptt(struct qed_hwfn
*p_hwfn
,
189 struct qed_ptt
*p_ptt
, u32 hw_addr
)
191 u32 win_hw_addr
= qed_ptt_get_hw_addr(p_hwfn
, p_ptt
);
194 offset
= hw_addr
- win_hw_addr
;
196 /* Verify the address is within the window */
197 if (hw_addr
< win_hw_addr
||
198 offset
>= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE
) {
199 qed_ptt_set_win(p_hwfn
, p_ptt
, hw_addr
);
203 return qed_ptt_get_bar_addr(p_ptt
) + offset
;
206 struct qed_ptt
*qed_get_reserved_ptt(struct qed_hwfn
*p_hwfn
,
207 enum reserved_ptts ptt_idx
)
209 if (ptt_idx
>= RESERVED_PTT_MAX
) {
211 "Requested PTT %d is out of range\n", ptt_idx
);
215 return &p_hwfn
->p_ptt_pool
->ptts
[ptt_idx
];
218 void qed_wr(struct qed_hwfn
*p_hwfn
,
219 struct qed_ptt
*p_ptt
,
220 u32 hw_addr
, u32 val
)
222 u32 bar_addr
= qed_set_ptt(p_hwfn
, p_ptt
, hw_addr
);
224 REG_WR(p_hwfn
, bar_addr
, val
);
225 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
226 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
227 bar_addr
, hw_addr
, val
);
230 u32
qed_rd(struct qed_hwfn
*p_hwfn
,
231 struct qed_ptt
*p_ptt
,
234 u32 bar_addr
= qed_set_ptt(p_hwfn
, p_ptt
, hw_addr
);
235 u32 val
= REG_RD(p_hwfn
, bar_addr
);
237 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
238 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
239 bar_addr
, hw_addr
, val
);
244 static void qed_memcpy_hw(struct qed_hwfn
*p_hwfn
,
245 struct qed_ptt
*p_ptt
,
246 void *addr
, u32 hw_addr
, size_t n
, bool to_device
)
248 u32 dw_count
, *host_addr
, hw_offset
;
249 size_t quota
, done
= 0;
250 u32 __iomem
*reg_addr
;
253 quota
= min_t(size_t, n
- done
,
254 PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE
);
256 if (IS_PF(p_hwfn
->cdev
)) {
257 qed_ptt_set_win(p_hwfn
, p_ptt
, hw_addr
+ done
);
258 hw_offset
= qed_ptt_get_bar_addr(p_ptt
);
260 hw_offset
= hw_addr
+ done
;
263 dw_count
= quota
/ 4;
264 host_addr
= (u32
*)((u8
*)addr
+ done
);
265 reg_addr
= (u32 __iomem
*)REG_ADDR(p_hwfn
, hw_offset
);
268 DIRECT_REG_WR(reg_addr
++, *host_addr
++);
271 *host_addr
++ = DIRECT_REG_RD(reg_addr
++);
277 void qed_memcpy_from(struct qed_hwfn
*p_hwfn
,
278 struct qed_ptt
*p_ptt
, void *dest
, u32 hw_addr
, size_t n
)
280 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
281 "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
282 hw_addr
, dest
, hw_addr
, (unsigned long)n
);
284 qed_memcpy_hw(p_hwfn
, p_ptt
, dest
, hw_addr
, n
, false);
287 void qed_memcpy_to(struct qed_hwfn
*p_hwfn
,
288 struct qed_ptt
*p_ptt
, u32 hw_addr
, void *src
, size_t n
)
290 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
291 "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
292 hw_addr
, hw_addr
, src
, (unsigned long)n
);
294 qed_memcpy_hw(p_hwfn
, p_ptt
, src
, hw_addr
, n
, true);
297 void qed_fid_pretend(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
, u16 fid
)
301 SET_FIELD(control
, PXP_PRETEND_CMD_IS_CONCRETE
, 1);
302 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_FUNCTION
, 1);
304 /* Every pretend undos previous pretends, including
305 * previous port pretend.
307 SET_FIELD(control
, PXP_PRETEND_CMD_PORT
, 0);
308 SET_FIELD(control
, PXP_PRETEND_CMD_USE_PORT
, 0);
309 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_PORT
, 1);
311 if (!GET_FIELD(fid
, PXP_CONCRETE_FID_VFVALID
))
312 fid
= GET_FIELD(fid
, PXP_CONCRETE_FID_PFID
);
314 p_ptt
->pxp
.pretend
.control
= cpu_to_le16(control
);
315 p_ptt
->pxp
.pretend
.fid
.concrete_fid
.fid
= cpu_to_le16(fid
);
318 qed_ptt_config_addr(p_ptt
) +
319 offsetof(struct pxp_ptt_entry
, pretend
),
320 *(u32
*)&p_ptt
->pxp
.pretend
);
323 void qed_port_pretend(struct qed_hwfn
*p_hwfn
,
324 struct qed_ptt
*p_ptt
, u8 port_id
)
328 SET_FIELD(control
, PXP_PRETEND_CMD_PORT
, port_id
);
329 SET_FIELD(control
, PXP_PRETEND_CMD_USE_PORT
, 1);
330 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_PORT
, 1);
332 p_ptt
->pxp
.pretend
.control
= cpu_to_le16(control
);
335 qed_ptt_config_addr(p_ptt
) +
336 offsetof(struct pxp_ptt_entry
, pretend
),
337 *(u32
*)&p_ptt
->pxp
.pretend
);
340 void qed_port_unpretend(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
)
344 SET_FIELD(control
, PXP_PRETEND_CMD_PORT
, 0);
345 SET_FIELD(control
, PXP_PRETEND_CMD_USE_PORT
, 0);
346 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_PORT
, 1);
348 p_ptt
->pxp
.pretend
.control
= cpu_to_le16(control
);
351 qed_ptt_config_addr(p_ptt
) +
352 offsetof(struct pxp_ptt_entry
, pretend
),
353 *(u32
*)&p_ptt
->pxp
.pretend
);
356 u32
qed_vfid_to_concrete(struct qed_hwfn
*p_hwfn
, u8 vfid
)
358 u32 concrete_fid
= 0;
360 SET_FIELD(concrete_fid
, PXP_CONCRETE_FID_PFID
, p_hwfn
->rel_pf_id
);
361 SET_FIELD(concrete_fid
, PXP_CONCRETE_FID_VFID
, vfid
);
362 SET_FIELD(concrete_fid
, PXP_CONCRETE_FID_VFVALID
, 1);
368 static void qed_dmae_opcode(struct qed_hwfn
*p_hwfn
,
369 const u8 is_src_type_grc
,
370 const u8 is_dst_type_grc
,
371 struct qed_dmae_params
*p_params
)
376 /* Whether the source is the PCIe or the GRC.
377 * 0- The source is the PCIe
378 * 1- The source is the GRC.
380 opcode
|= (is_src_type_grc
? DMAE_CMD_SRC_MASK_GRC
381 : DMAE_CMD_SRC_MASK_PCIE
) <<
383 opcode
|= ((p_hwfn
->rel_pf_id
& DMAE_CMD_SRC_PF_ID_MASK
) <<
384 DMAE_CMD_SRC_PF_ID_SHIFT
);
386 /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
387 opcode
|= (is_dst_type_grc
? DMAE_CMD_DST_MASK_GRC
388 : DMAE_CMD_DST_MASK_PCIE
) <<
390 opcode
|= ((p_hwfn
->rel_pf_id
& DMAE_CMD_DST_PF_ID_MASK
) <<
391 DMAE_CMD_DST_PF_ID_SHIFT
);
393 /* Whether to write a completion word to the completion destination:
394 * 0-Do not write a completion word
395 * 1-Write the completion word
397 opcode
|= (DMAE_CMD_COMP_WORD_EN_MASK
<< DMAE_CMD_COMP_WORD_EN_SHIFT
);
398 opcode
|= (DMAE_CMD_SRC_ADDR_RESET_MASK
<<
399 DMAE_CMD_SRC_ADDR_RESET_SHIFT
);
401 if (p_params
->flags
& QED_DMAE_FLAG_COMPLETION_DST
)
402 opcode
|= (1 << DMAE_CMD_COMP_FUNC_SHIFT
);
404 opcode
|= (DMAE_CMD_ENDIANITY
<< DMAE_CMD_ENDIANITY_MODE_SHIFT
);
406 opcode
|= ((p_hwfn
->port_id
) << DMAE_CMD_PORT_ID_SHIFT
);
408 /* reset source address in next go */
409 opcode
|= (DMAE_CMD_SRC_ADDR_RESET_MASK
<<
410 DMAE_CMD_SRC_ADDR_RESET_SHIFT
);
412 /* reset dest address in next go */
413 opcode
|= (DMAE_CMD_DST_ADDR_RESET_MASK
<<
414 DMAE_CMD_DST_ADDR_RESET_SHIFT
);
416 /* SRC/DST VFID: all 1's - pf, otherwise VF id */
417 if (p_params
->flags
& QED_DMAE_FLAG_VF_SRC
) {
418 opcode
|= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT
;
419 opcode_b
|= p_params
->src_vfid
<< DMAE_CMD_SRC_VF_ID_SHIFT
;
421 opcode_b
|= DMAE_CMD_SRC_VF_ID_MASK
<<
422 DMAE_CMD_SRC_VF_ID_SHIFT
;
425 if (p_params
->flags
& QED_DMAE_FLAG_VF_DST
) {
426 opcode
|= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT
;
427 opcode_b
|= p_params
->dst_vfid
<< DMAE_CMD_DST_VF_ID_SHIFT
;
429 opcode_b
|= DMAE_CMD_DST_VF_ID_MASK
<< DMAE_CMD_DST_VF_ID_SHIFT
;
432 p_hwfn
->dmae_info
.p_dmae_cmd
->opcode
= cpu_to_le32(opcode
);
433 p_hwfn
->dmae_info
.p_dmae_cmd
->opcode_b
= cpu_to_le16(opcode_b
);
436 u32
qed_dmae_idx_to_go_cmd(u8 idx
)
438 /* All the DMAE 'go' registers form an array in internal memory */
439 return DMAE_REG_GO_C0
+ (idx
<< 2);
442 static int qed_dmae_post_command(struct qed_hwfn
*p_hwfn
,
443 struct qed_ptt
*p_ptt
)
445 struct dmae_cmd
*p_command
= p_hwfn
->dmae_info
.p_dmae_cmd
;
446 u8 idx_cmd
= p_hwfn
->dmae_info
.channel
, i
;
449 /* verify address is not NULL */
450 if ((((!p_command
->dst_addr_lo
) && (!p_command
->dst_addr_hi
)) ||
451 ((!p_command
->src_addr_lo
) && (!p_command
->src_addr_hi
)))) {
453 "source or destination address 0 idx_cmd=%d\n"
454 "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
456 le32_to_cpu(p_command
->opcode
),
457 le16_to_cpu(p_command
->opcode_b
),
458 le16_to_cpu(p_command
->length_dw
),
459 le32_to_cpu(p_command
->src_addr_hi
),
460 le32_to_cpu(p_command
->src_addr_lo
),
461 le32_to_cpu(p_command
->dst_addr_hi
),
462 le32_to_cpu(p_command
->dst_addr_lo
));
469 "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
471 le32_to_cpu(p_command
->opcode
),
472 le16_to_cpu(p_command
->opcode_b
),
473 le16_to_cpu(p_command
->length_dw
),
474 le32_to_cpu(p_command
->src_addr_hi
),
475 le32_to_cpu(p_command
->src_addr_lo
),
476 le32_to_cpu(p_command
->dst_addr_hi
),
477 le32_to_cpu(p_command
->dst_addr_lo
));
479 /* Copy the command to DMAE - need to do it before every call
480 * for source/dest address no reset.
481 * The first 9 DWs are the command registers, the 10 DW is the
482 * GO register, and the rest are result registers
483 * (which are read only by the client).
485 for (i
= 0; i
< DMAE_CMD_SIZE
; i
++) {
486 u32 data
= (i
< DMAE_CMD_SIZE_TO_FILL
) ?
487 *(((u32
*)p_command
) + i
) : 0;
489 qed_wr(p_hwfn
, p_ptt
,
491 (idx_cmd
* DMAE_CMD_SIZE
* sizeof(u32
)) +
492 (i
* sizeof(u32
)), data
);
495 qed_wr(p_hwfn
, p_ptt
, qed_dmae_idx_to_go_cmd(idx_cmd
), DMAE_GO_VALUE
);
500 int qed_dmae_info_alloc(struct qed_hwfn
*p_hwfn
)
502 dma_addr_t
*p_addr
= &p_hwfn
->dmae_info
.completion_word_phys_addr
;
503 struct dmae_cmd
**p_cmd
= &p_hwfn
->dmae_info
.p_dmae_cmd
;
504 u32
**p_buff
= &p_hwfn
->dmae_info
.p_intermediate_buffer
;
505 u32
**p_comp
= &p_hwfn
->dmae_info
.p_completion_word
;
507 *p_comp
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
508 sizeof(u32
), p_addr
, GFP_KERNEL
);
512 p_addr
= &p_hwfn
->dmae_info
.dmae_cmd_phys_addr
;
513 *p_cmd
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
514 sizeof(struct dmae_cmd
),
519 p_addr
= &p_hwfn
->dmae_info
.intermediate_buffer_phys_addr
;
520 *p_buff
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
521 sizeof(u32
) * DMAE_MAX_RW_SIZE
,
526 p_hwfn
->dmae_info
.channel
= p_hwfn
->rel_pf_id
;
530 qed_dmae_info_free(p_hwfn
);
534 void qed_dmae_info_free(struct qed_hwfn
*p_hwfn
)
538 /* Just make sure no one is in the middle */
539 mutex_lock(&p_hwfn
->dmae_info
.mutex
);
541 if (p_hwfn
->dmae_info
.p_completion_word
) {
542 p_phys
= p_hwfn
->dmae_info
.completion_word_phys_addr
;
543 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
,
545 p_hwfn
->dmae_info
.p_completion_word
, p_phys
);
546 p_hwfn
->dmae_info
.p_completion_word
= NULL
;
549 if (p_hwfn
->dmae_info
.p_dmae_cmd
) {
550 p_phys
= p_hwfn
->dmae_info
.dmae_cmd_phys_addr
;
551 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
,
552 sizeof(struct dmae_cmd
),
553 p_hwfn
->dmae_info
.p_dmae_cmd
, p_phys
);
554 p_hwfn
->dmae_info
.p_dmae_cmd
= NULL
;
557 if (p_hwfn
->dmae_info
.p_intermediate_buffer
) {
558 p_phys
= p_hwfn
->dmae_info
.intermediate_buffer_phys_addr
;
559 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
,
560 sizeof(u32
) * DMAE_MAX_RW_SIZE
,
561 p_hwfn
->dmae_info
.p_intermediate_buffer
,
563 p_hwfn
->dmae_info
.p_intermediate_buffer
= NULL
;
566 mutex_unlock(&p_hwfn
->dmae_info
.mutex
);
569 static int qed_dmae_operation_wait(struct qed_hwfn
*p_hwfn
)
571 u32 wait_cnt_limit
= 10000, wait_cnt
= 0;
575 while (*p_hwfn
->dmae_info
.p_completion_word
!= DMAE_COMPLETION_VAL
) {
576 udelay(DMAE_MIN_WAIT_TIME
);
577 if (++wait_cnt
> wait_cnt_limit
) {
578 DP_NOTICE(p_hwfn
->cdev
,
579 "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
580 *p_hwfn
->dmae_info
.p_completion_word
,
581 DMAE_COMPLETION_VAL
);
586 /* to sync the completion_word since we are not
587 * using the volatile keyword for p_completion_word
593 *p_hwfn
->dmae_info
.p_completion_word
= 0;
598 static int qed_dmae_execute_sub_operation(struct qed_hwfn
*p_hwfn
,
599 struct qed_ptt
*p_ptt
,
606 dma_addr_t phys
= p_hwfn
->dmae_info
.intermediate_buffer_phys_addr
;
607 struct dmae_cmd
*cmd
= p_hwfn
->dmae_info
.p_dmae_cmd
;
611 case QED_DMAE_ADDRESS_GRC
:
612 case QED_DMAE_ADDRESS_HOST_PHYS
:
613 cmd
->src_addr_hi
= cpu_to_le32(upper_32_bits(src_addr
));
614 cmd
->src_addr_lo
= cpu_to_le32(lower_32_bits(src_addr
));
616 /* for virtual source addresses we use the intermediate buffer. */
617 case QED_DMAE_ADDRESS_HOST_VIRT
:
618 cmd
->src_addr_hi
= cpu_to_le32(upper_32_bits(phys
));
619 cmd
->src_addr_lo
= cpu_to_le32(lower_32_bits(phys
));
620 memcpy(&p_hwfn
->dmae_info
.p_intermediate_buffer
[0],
621 (void *)(uintptr_t)src_addr
,
622 length_dw
* sizeof(u32
));
629 case QED_DMAE_ADDRESS_GRC
:
630 case QED_DMAE_ADDRESS_HOST_PHYS
:
631 cmd
->dst_addr_hi
= cpu_to_le32(upper_32_bits(dst_addr
));
632 cmd
->dst_addr_lo
= cpu_to_le32(lower_32_bits(dst_addr
));
634 /* for virtual source addresses we use the intermediate buffer. */
635 case QED_DMAE_ADDRESS_HOST_VIRT
:
636 cmd
->dst_addr_hi
= cpu_to_le32(upper_32_bits(phys
));
637 cmd
->dst_addr_lo
= cpu_to_le32(lower_32_bits(phys
));
643 cmd
->length_dw
= cpu_to_le16((u16
)length_dw
);
645 qed_dmae_post_command(p_hwfn
, p_ptt
);
647 qed_status
= qed_dmae_operation_wait(p_hwfn
);
651 "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
652 src_addr
, dst_addr
, length_dw
);
656 if (dst_type
== QED_DMAE_ADDRESS_HOST_VIRT
)
657 memcpy((void *)(uintptr_t)(dst_addr
),
658 &p_hwfn
->dmae_info
.p_intermediate_buffer
[0],
659 length_dw
* sizeof(u32
));
664 static int qed_dmae_execute_command(struct qed_hwfn
*p_hwfn
,
665 struct qed_ptt
*p_ptt
,
666 u64 src_addr
, u64 dst_addr
,
667 u8 src_type
, u8 dst_type
,
669 struct qed_dmae_params
*p_params
)
671 dma_addr_t phys
= p_hwfn
->dmae_info
.completion_word_phys_addr
;
672 u16 length_cur
= 0, i
= 0, cnt_split
= 0, length_mod
= 0;
673 struct dmae_cmd
*cmd
= p_hwfn
->dmae_info
.p_dmae_cmd
;
674 u64 src_addr_split
= 0, dst_addr_split
= 0;
675 u16 length_limit
= DMAE_MAX_RW_SIZE
;
679 qed_dmae_opcode(p_hwfn
,
680 (src_type
== QED_DMAE_ADDRESS_GRC
),
681 (dst_type
== QED_DMAE_ADDRESS_GRC
),
684 cmd
->comp_addr_lo
= cpu_to_le32(lower_32_bits(phys
));
685 cmd
->comp_addr_hi
= cpu_to_le32(upper_32_bits(phys
));
686 cmd
->comp_val
= cpu_to_le32(DMAE_COMPLETION_VAL
);
688 /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
689 cnt_split
= size_in_dwords
/ length_limit
;
690 length_mod
= size_in_dwords
% length_limit
;
692 src_addr_split
= src_addr
;
693 dst_addr_split
= dst_addr
;
695 for (i
= 0; i
<= cnt_split
; i
++) {
696 offset
= length_limit
* i
;
698 if (!(p_params
->flags
& QED_DMAE_FLAG_RW_REPL_SRC
)) {
699 if (src_type
== QED_DMAE_ADDRESS_GRC
)
700 src_addr_split
= src_addr
+ offset
;
702 src_addr_split
= src_addr
+ (offset
* 4);
705 if (dst_type
== QED_DMAE_ADDRESS_GRC
)
706 dst_addr_split
= dst_addr
+ offset
;
708 dst_addr_split
= dst_addr
+ (offset
* 4);
710 length_cur
= (cnt_split
== i
) ? length_mod
: length_limit
;
712 /* might be zero on last iteration */
716 qed_status
= qed_dmae_execute_sub_operation(p_hwfn
,
725 "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
726 qed_status
, src_addr
, dst_addr
, length_cur
);
734 int qed_dmae_host2grc(struct qed_hwfn
*p_hwfn
,
735 struct qed_ptt
*p_ptt
,
736 u64 source_addr
, u32 grc_addr
, u32 size_in_dwords
, u32 flags
)
738 u32 grc_addr_in_dw
= grc_addr
/ sizeof(u32
);
739 struct qed_dmae_params params
;
742 memset(¶ms
, 0, sizeof(struct qed_dmae_params
));
743 params
.flags
= flags
;
745 mutex_lock(&p_hwfn
->dmae_info
.mutex
);
747 rc
= qed_dmae_execute_command(p_hwfn
, p_ptt
, source_addr
,
749 QED_DMAE_ADDRESS_HOST_VIRT
,
750 QED_DMAE_ADDRESS_GRC
,
751 size_in_dwords
, ¶ms
);
753 mutex_unlock(&p_hwfn
->dmae_info
.mutex
);
758 int qed_dmae_grc2host(struct qed_hwfn
*p_hwfn
,
759 struct qed_ptt
*p_ptt
,
761 dma_addr_t dest_addr
, u32 size_in_dwords
, u32 flags
)
763 u32 grc_addr_in_dw
= grc_addr
/ sizeof(u32
);
764 struct qed_dmae_params params
;
767 memset(¶ms
, 0, sizeof(struct qed_dmae_params
));
768 params
.flags
= flags
;
770 mutex_lock(&p_hwfn
->dmae_info
.mutex
);
772 rc
= qed_dmae_execute_command(p_hwfn
, p_ptt
, grc_addr_in_dw
,
773 dest_addr
, QED_DMAE_ADDRESS_GRC
,
774 QED_DMAE_ADDRESS_HOST_VIRT
,
775 size_in_dwords
, ¶ms
);
777 mutex_unlock(&p_hwfn
->dmae_info
.mutex
);
782 int qed_dmae_host2host(struct qed_hwfn
*p_hwfn
,
783 struct qed_ptt
*p_ptt
,
784 dma_addr_t source_addr
,
785 dma_addr_t dest_addr
,
786 u32 size_in_dwords
, struct qed_dmae_params
*p_params
)
790 mutex_lock(&(p_hwfn
->dmae_info
.mutex
));
792 rc
= qed_dmae_execute_command(p_hwfn
, p_ptt
, source_addr
,
794 QED_DMAE_ADDRESS_HOST_PHYS
,
795 QED_DMAE_ADDRESS_HOST_PHYS
,
796 size_in_dwords
, p_params
);
798 mutex_unlock(&(p_hwfn
->dmae_info
.mutex
));
803 u16
qed_get_qm_pq(struct qed_hwfn
*p_hwfn
,
804 enum protocol_type proto
, union qed_qm_pq_params
*p_params
)
808 if ((proto
== PROTOCOLID_CORE
||
809 proto
== PROTOCOLID_ETH
||
810 proto
== PROTOCOLID_ISCSI
||
811 proto
== PROTOCOLID_ROCE
) && !p_params
) {
813 "Protocol %d received NULL PQ params\n", proto
);
818 case PROTOCOLID_CORE
:
819 if (p_params
->core
.tc
== LB_TC
)
820 pq_id
= p_hwfn
->qm_info
.pure_lb_pq
;
821 else if (p_params
->core
.tc
== OOO_LB_TC
)
822 pq_id
= p_hwfn
->qm_info
.ooo_pq
;
824 pq_id
= p_hwfn
->qm_info
.offload_pq
;
827 pq_id
= p_params
->eth
.tc
;
828 if (p_params
->eth
.is_vf
)
829 pq_id
+= p_hwfn
->qm_info
.vf_queues_offset
+
832 case PROTOCOLID_ISCSI
:
833 if (p_params
->iscsi
.q_idx
== 1)
834 pq_id
= p_hwfn
->qm_info
.pure_ack_pq
;
836 case PROTOCOLID_ROCE
:
837 if (p_params
->roce
.dcqcn
)
838 pq_id
= p_params
->roce
.qpid
;
840 pq_id
= p_hwfn
->qm_info
.offload_pq
;
841 if (pq_id
> p_hwfn
->qm_info
.num_pf_rls
)
842 pq_id
= p_hwfn
->qm_info
.offload_pq
;
844 case PROTOCOLID_FCOE
:
845 pq_id
= p_hwfn
->qm_info
.offload_pq
;
851 pq_id
= CM_TX_PQ_BASE
+ pq_id
+ RESC_START(p_hwfn
, QED_PQ
);