1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/etherdevice.h>
34 #include <linux/crc32.h>
35 #include <linux/vmalloc.h>
36 #include <linux/qed/qed_iov_if.h>
40 #include "qed_init_ops.h"
43 #include "qed_reg_addr.h"
45 #include "qed_sriov.h"
49 static int qed_sp_vf_start(struct qed_hwfn
*p_hwfn
, struct qed_vf_info
*p_vf
)
51 struct vf_start_ramrod_data
*p_ramrod
= NULL
;
52 struct qed_spq_entry
*p_ent
= NULL
;
53 struct qed_sp_init_data init_data
;
58 memset(&init_data
, 0, sizeof(init_data
));
59 init_data
.cid
= qed_spq_get_cid(p_hwfn
);
60 init_data
.opaque_fid
= p_vf
->opaque_fid
;
61 init_data
.comp_mode
= QED_SPQ_MODE_EBLOCK
;
63 rc
= qed_sp_init_request(p_hwfn
, &p_ent
,
64 COMMON_RAMROD_VF_START
,
65 PROTOCOLID_COMMON
, &init_data
);
69 p_ramrod
= &p_ent
->ramrod
.vf_start
;
71 p_ramrod
->vf_id
= GET_FIELD(p_vf
->concrete_fid
, PXP_CONCRETE_FID_VFID
);
72 p_ramrod
->opaque_fid
= cpu_to_le16(p_vf
->opaque_fid
);
74 switch (p_hwfn
->hw_info
.personality
) {
76 p_ramrod
->personality
= PERSONALITY_ETH
;
78 case QED_PCI_ETH_ROCE
:
79 p_ramrod
->personality
= PERSONALITY_RDMA_AND_ETH
;
82 DP_NOTICE(p_hwfn
, "Unknown VF personality %d\n",
83 p_hwfn
->hw_info
.personality
);
87 fp_minor
= p_vf
->acquire
.vfdev_info
.eth_fp_hsi_minor
;
88 if (fp_minor
> ETH_HSI_VER_MINOR
&&
89 fp_minor
!= ETH_HSI_VER_NO_PKT_LEN_TUNN
) {
92 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
95 fp_minor
, ETH_HSI_VER_MAJOR
, ETH_HSI_VER_MINOR
);
96 fp_minor
= ETH_HSI_VER_MINOR
;
99 p_ramrod
->hsi_fp_ver
.major_ver_arr
[ETH_VER_KEY
] = ETH_HSI_VER_MAJOR
;
100 p_ramrod
->hsi_fp_ver
.minor_ver_arr
[ETH_VER_KEY
] = fp_minor
;
102 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
103 "VF[%d] - Starting using HSI %02x.%02x\n",
104 p_vf
->abs_vf_id
, ETH_HSI_VER_MAJOR
, fp_minor
);
106 return qed_spq_post(p_hwfn
, p_ent
, NULL
);
109 static int qed_sp_vf_stop(struct qed_hwfn
*p_hwfn
,
110 u32 concrete_vfid
, u16 opaque_vfid
)
112 struct vf_stop_ramrod_data
*p_ramrod
= NULL
;
113 struct qed_spq_entry
*p_ent
= NULL
;
114 struct qed_sp_init_data init_data
;
118 memset(&init_data
, 0, sizeof(init_data
));
119 init_data
.cid
= qed_spq_get_cid(p_hwfn
);
120 init_data
.opaque_fid
= opaque_vfid
;
121 init_data
.comp_mode
= QED_SPQ_MODE_EBLOCK
;
123 rc
= qed_sp_init_request(p_hwfn
, &p_ent
,
124 COMMON_RAMROD_VF_STOP
,
125 PROTOCOLID_COMMON
, &init_data
);
129 p_ramrod
= &p_ent
->ramrod
.vf_stop
;
131 p_ramrod
->vf_id
= GET_FIELD(concrete_vfid
, PXP_CONCRETE_FID_VFID
);
133 return qed_spq_post(p_hwfn
, p_ent
, NULL
);
136 static bool qed_iov_is_valid_vfid(struct qed_hwfn
*p_hwfn
,
138 bool b_enabled_only
, bool b_non_malicious
)
140 if (!p_hwfn
->pf_iov_info
) {
141 DP_NOTICE(p_hwfn
->cdev
, "No iov info\n");
145 if ((rel_vf_id
>= p_hwfn
->cdev
->p_iov_info
->total_vfs
) ||
149 if ((!p_hwfn
->pf_iov_info
->vfs_array
[rel_vf_id
].b_init
) &&
153 if ((p_hwfn
->pf_iov_info
->vfs_array
[rel_vf_id
].b_malicious
) &&
160 static struct qed_vf_info
*qed_iov_get_vf_info(struct qed_hwfn
*p_hwfn
,
164 struct qed_vf_info
*vf
= NULL
;
166 if (!p_hwfn
->pf_iov_info
) {
167 DP_NOTICE(p_hwfn
->cdev
, "No iov info\n");
171 if (qed_iov_is_valid_vfid(p_hwfn
, relative_vf_id
,
172 b_enabled_only
, false))
173 vf
= &p_hwfn
->pf_iov_info
->vfs_array
[relative_vf_id
];
175 DP_ERR(p_hwfn
, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
181 static bool qed_iov_validate_rxq(struct qed_hwfn
*p_hwfn
,
182 struct qed_vf_info
*p_vf
, u16 rx_qid
)
184 if (rx_qid
>= p_vf
->num_rxqs
)
187 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
188 p_vf
->abs_vf_id
, rx_qid
, p_vf
->num_rxqs
);
189 return rx_qid
< p_vf
->num_rxqs
;
192 static bool qed_iov_validate_txq(struct qed_hwfn
*p_hwfn
,
193 struct qed_vf_info
*p_vf
, u16 tx_qid
)
195 if (tx_qid
>= p_vf
->num_txqs
)
198 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
199 p_vf
->abs_vf_id
, tx_qid
, p_vf
->num_txqs
);
200 return tx_qid
< p_vf
->num_txqs
;
203 static bool qed_iov_validate_sb(struct qed_hwfn
*p_hwfn
,
204 struct qed_vf_info
*p_vf
, u16 sb_idx
)
208 for (i
= 0; i
< p_vf
->num_sbs
; i
++)
209 if (p_vf
->igu_sbs
[i
] == sb_idx
)
214 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
215 p_vf
->abs_vf_id
, sb_idx
, p_vf
->num_sbs
);
220 static int qed_iov_post_vf_bulletin(struct qed_hwfn
*p_hwfn
,
221 int vfid
, struct qed_ptt
*p_ptt
)
223 struct qed_bulletin_content
*p_bulletin
;
224 int crc_size
= sizeof(p_bulletin
->crc
);
225 struct qed_dmae_params params
;
226 struct qed_vf_info
*p_vf
;
228 p_vf
= qed_iov_get_vf_info(p_hwfn
, (u16
) vfid
, true);
232 if (!p_vf
->vf_bulletin
)
235 p_bulletin
= p_vf
->bulletin
.p_virt
;
237 /* Increment bulletin board version and compute crc */
238 p_bulletin
->version
++;
239 p_bulletin
->crc
= crc32(0, (u8
*)p_bulletin
+ crc_size
,
240 p_vf
->bulletin
.size
- crc_size
);
242 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
243 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
244 p_bulletin
->version
, p_vf
->relative_vf_id
, p_bulletin
->crc
);
246 /* propagate bulletin board via dmae to vm memory */
247 memset(¶ms
, 0, sizeof(params
));
248 params
.flags
= QED_DMAE_FLAG_VF_DST
;
249 params
.dst_vfid
= p_vf
->abs_vf_id
;
250 return qed_dmae_host2host(p_hwfn
, p_ptt
, p_vf
->bulletin
.phys
,
251 p_vf
->vf_bulletin
, p_vf
->bulletin
.size
/ 4,
255 static int qed_iov_pci_cfg_info(struct qed_dev
*cdev
)
257 struct qed_hw_sriov_info
*iov
= cdev
->p_iov_info
;
260 DP_VERBOSE(cdev
, QED_MSG_IOV
, "sriov ext pos %d\n", pos
);
261 pci_read_config_word(cdev
->pdev
, pos
+ PCI_SRIOV_CTRL
, &iov
->ctrl
);
263 pci_read_config_word(cdev
->pdev
,
264 pos
+ PCI_SRIOV_TOTAL_VF
, &iov
->total_vfs
);
265 pci_read_config_word(cdev
->pdev
,
266 pos
+ PCI_SRIOV_INITIAL_VF
, &iov
->initial_vfs
);
268 pci_read_config_word(cdev
->pdev
, pos
+ PCI_SRIOV_NUM_VF
, &iov
->num_vfs
);
272 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
276 pci_read_config_word(cdev
->pdev
,
277 pos
+ PCI_SRIOV_VF_OFFSET
, &iov
->offset
);
279 pci_read_config_word(cdev
->pdev
,
280 pos
+ PCI_SRIOV_VF_STRIDE
, &iov
->stride
);
282 pci_read_config_word(cdev
->pdev
,
283 pos
+ PCI_SRIOV_VF_DID
, &iov
->vf_device_id
);
285 pci_read_config_dword(cdev
->pdev
,
286 pos
+ PCI_SRIOV_SUP_PGSIZE
, &iov
->pgsz
);
288 pci_read_config_dword(cdev
->pdev
, pos
+ PCI_SRIOV_CAP
, &iov
->cap
);
290 pci_read_config_byte(cdev
->pdev
, pos
+ PCI_SRIOV_FUNC_LINK
, &iov
->link
);
294 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
300 iov
->nr_virtfn
, iov
->offset
, iov
->stride
, iov
->pgsz
);
302 /* Some sanity checks */
303 if (iov
->num_vfs
> NUM_OF_VFS(cdev
) ||
304 iov
->total_vfs
> NUM_OF_VFS(cdev
)) {
305 /* This can happen only due to a bug. In this case we set
306 * num_vfs to zero to avoid memory corruption in the code that
307 * assumes max number of vfs
310 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
320 static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn
*p_hwfn
,
321 struct qed_ptt
*p_ptt
)
323 struct qed_igu_block
*p_sb
;
327 if (!p_hwfn
->hw_info
.p_igu_info
) {
329 "qed_iov_clear_vf_igu_blocks IGU Info not initialized\n");
333 for (sb_id
= 0; sb_id
< QED_MAPPING_MEMORY_SIZE(p_hwfn
->cdev
);
335 p_sb
= &p_hwfn
->hw_info
.p_igu_info
->igu_map
.igu_blocks
[sb_id
];
336 if ((p_sb
->status
& QED_IGU_STATUS_FREE
) &&
337 !(p_sb
->status
& QED_IGU_STATUS_PF
)) {
338 val
= qed_rd(p_hwfn
, p_ptt
,
339 IGU_REG_MAPPING_MEMORY
+ sb_id
* 4);
340 SET_FIELD(val
, IGU_MAPPING_LINE_VALID
, 0);
341 qed_wr(p_hwfn
, p_ptt
,
342 IGU_REG_MAPPING_MEMORY
+ 4 * sb_id
, val
);
347 static void qed_iov_setup_vfdb(struct qed_hwfn
*p_hwfn
)
349 struct qed_hw_sriov_info
*p_iov
= p_hwfn
->cdev
->p_iov_info
;
350 struct qed_pf_iov
*p_iov_info
= p_hwfn
->pf_iov_info
;
351 struct qed_bulletin_content
*p_bulletin_virt
;
352 dma_addr_t req_p
, rply_p
, bulletin_p
;
353 union pfvf_tlvs
*p_reply_virt_addr
;
354 union vfpf_tlvs
*p_req_virt_addr
;
357 memset(p_iov_info
->vfs_array
, 0, sizeof(p_iov_info
->vfs_array
));
359 p_req_virt_addr
= p_iov_info
->mbx_msg_virt_addr
;
360 req_p
= p_iov_info
->mbx_msg_phys_addr
;
361 p_reply_virt_addr
= p_iov_info
->mbx_reply_virt_addr
;
362 rply_p
= p_iov_info
->mbx_reply_phys_addr
;
363 p_bulletin_virt
= p_iov_info
->p_bulletins
;
364 bulletin_p
= p_iov_info
->bulletins_phys
;
365 if (!p_req_virt_addr
|| !p_reply_virt_addr
|| !p_bulletin_virt
) {
367 "qed_iov_setup_vfdb called without allocating mem first\n");
371 for (idx
= 0; idx
< p_iov
->total_vfs
; idx
++) {
372 struct qed_vf_info
*vf
= &p_iov_info
->vfs_array
[idx
];
375 vf
->vf_mbx
.req_virt
= p_req_virt_addr
+ idx
;
376 vf
->vf_mbx
.req_phys
= req_p
+ idx
* sizeof(union vfpf_tlvs
);
377 vf
->vf_mbx
.reply_virt
= p_reply_virt_addr
+ idx
;
378 vf
->vf_mbx
.reply_phys
= rply_p
+ idx
* sizeof(union pfvf_tlvs
);
380 vf
->state
= VF_STOPPED
;
383 vf
->bulletin
.phys
= idx
*
384 sizeof(struct qed_bulletin_content
) +
386 vf
->bulletin
.p_virt
= p_bulletin_virt
+ idx
;
387 vf
->bulletin
.size
= sizeof(struct qed_bulletin_content
);
389 vf
->relative_vf_id
= idx
;
390 vf
->abs_vf_id
= idx
+ p_iov
->first_vf_in_pf
;
391 concrete
= qed_vfid_to_concrete(p_hwfn
, vf
->abs_vf_id
);
392 vf
->concrete_fid
= concrete
;
393 vf
->opaque_fid
= (p_hwfn
->hw_info
.opaque_fid
& 0xff) |
394 (vf
->abs_vf_id
<< 8);
395 vf
->vport_id
= idx
+ 1;
397 vf
->num_mac_filters
= QED_ETH_VF_NUM_MAC_FILTERS
;
398 vf
->num_vlan_filters
= QED_ETH_VF_NUM_VLAN_FILTERS
;
402 static int qed_iov_allocate_vfdb(struct qed_hwfn
*p_hwfn
)
404 struct qed_pf_iov
*p_iov_info
= p_hwfn
->pf_iov_info
;
408 num_vfs
= p_hwfn
->cdev
->p_iov_info
->total_vfs
;
410 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
411 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs
);
413 /* Allocate PF Mailbox buffer (per-VF) */
414 p_iov_info
->mbx_msg_size
= sizeof(union vfpf_tlvs
) * num_vfs
;
415 p_v_addr
= &p_iov_info
->mbx_msg_virt_addr
;
416 *p_v_addr
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
417 p_iov_info
->mbx_msg_size
,
418 &p_iov_info
->mbx_msg_phys_addr
,
423 /* Allocate PF Mailbox Reply buffer (per-VF) */
424 p_iov_info
->mbx_reply_size
= sizeof(union pfvf_tlvs
) * num_vfs
;
425 p_v_addr
= &p_iov_info
->mbx_reply_virt_addr
;
426 *p_v_addr
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
427 p_iov_info
->mbx_reply_size
,
428 &p_iov_info
->mbx_reply_phys_addr
,
433 p_iov_info
->bulletins_size
= sizeof(struct qed_bulletin_content
) *
435 p_v_addr
= &p_iov_info
->p_bulletins
;
436 *p_v_addr
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
437 p_iov_info
->bulletins_size
,
438 &p_iov_info
->bulletins_phys
,
445 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
446 p_iov_info
->mbx_msg_virt_addr
,
447 (u64
) p_iov_info
->mbx_msg_phys_addr
,
448 p_iov_info
->mbx_reply_virt_addr
,
449 (u64
) p_iov_info
->mbx_reply_phys_addr
,
450 p_iov_info
->p_bulletins
, (u64
) p_iov_info
->bulletins_phys
);
455 static void qed_iov_free_vfdb(struct qed_hwfn
*p_hwfn
)
457 struct qed_pf_iov
*p_iov_info
= p_hwfn
->pf_iov_info
;
459 if (p_hwfn
->pf_iov_info
->mbx_msg_virt_addr
)
460 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
,
461 p_iov_info
->mbx_msg_size
,
462 p_iov_info
->mbx_msg_virt_addr
,
463 p_iov_info
->mbx_msg_phys_addr
);
465 if (p_hwfn
->pf_iov_info
->mbx_reply_virt_addr
)
466 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
,
467 p_iov_info
->mbx_reply_size
,
468 p_iov_info
->mbx_reply_virt_addr
,
469 p_iov_info
->mbx_reply_phys_addr
);
471 if (p_iov_info
->p_bulletins
)
472 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
,
473 p_iov_info
->bulletins_size
,
474 p_iov_info
->p_bulletins
,
475 p_iov_info
->bulletins_phys
);
478 int qed_iov_alloc(struct qed_hwfn
*p_hwfn
)
480 struct qed_pf_iov
*p_sriov
;
482 if (!IS_PF_SRIOV(p_hwfn
)) {
483 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
484 "No SR-IOV - no need for IOV db\n");
488 p_sriov
= kzalloc(sizeof(*p_sriov
), GFP_KERNEL
);
492 p_hwfn
->pf_iov_info
= p_sriov
;
494 return qed_iov_allocate_vfdb(p_hwfn
);
497 void qed_iov_setup(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
)
499 if (!IS_PF_SRIOV(p_hwfn
) || !IS_PF_SRIOV_ALLOC(p_hwfn
))
502 qed_iov_setup_vfdb(p_hwfn
);
503 qed_iov_clear_vf_igu_blocks(p_hwfn
, p_ptt
);
506 void qed_iov_free(struct qed_hwfn
*p_hwfn
)
508 if (IS_PF_SRIOV_ALLOC(p_hwfn
)) {
509 qed_iov_free_vfdb(p_hwfn
);
510 kfree(p_hwfn
->pf_iov_info
);
514 void qed_iov_free_hw_info(struct qed_dev
*cdev
)
516 kfree(cdev
->p_iov_info
);
517 cdev
->p_iov_info
= NULL
;
520 int qed_iov_hw_info(struct qed_hwfn
*p_hwfn
)
522 struct qed_dev
*cdev
= p_hwfn
->cdev
;
526 if (IS_VF(p_hwfn
->cdev
))
529 /* Learn the PCI configuration */
530 pos
= pci_find_ext_capability(p_hwfn
->cdev
->pdev
,
531 PCI_EXT_CAP_ID_SRIOV
);
533 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
, "No PCIe IOV support\n");
537 /* Allocate a new struct for IOV information */
538 cdev
->p_iov_info
= kzalloc(sizeof(*cdev
->p_iov_info
), GFP_KERNEL
);
539 if (!cdev
->p_iov_info
)
542 cdev
->p_iov_info
->pos
= pos
;
544 rc
= qed_iov_pci_cfg_info(cdev
);
548 /* We want PF IOV to be synonemous with the existance of p_iov_info;
549 * In case the capability is published but there are no VFs, simply
550 * de-allocate the struct.
552 if (!cdev
->p_iov_info
->total_vfs
) {
553 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
554 "IOV capabilities, but no VFs are published\n");
555 kfree(cdev
->p_iov_info
);
556 cdev
->p_iov_info
= NULL
;
560 /* Calculate the first VF index - this is a bit tricky; Basically,
561 * VFs start at offset 16 relative to PF0, and 2nd engine VFs begin
562 * after the first engine's VFs.
564 cdev
->p_iov_info
->first_vf_in_pf
= p_hwfn
->cdev
->p_iov_info
->offset
+
565 p_hwfn
->abs_pf_id
- 16;
566 if (QED_PATH_ID(p_hwfn
))
567 cdev
->p_iov_info
->first_vf_in_pf
-= MAX_NUM_VFS_BB
;
569 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
570 "First VF in hwfn 0x%08x\n",
571 cdev
->p_iov_info
->first_vf_in_pf
);
576 bool _qed_iov_pf_sanity_check(struct qed_hwfn
*p_hwfn
,
577 int vfid
, bool b_fail_malicious
)
579 /* Check PF supports sriov */
580 if (IS_VF(p_hwfn
->cdev
) || !IS_QED_SRIOV(p_hwfn
->cdev
) ||
581 !IS_PF_SRIOV_ALLOC(p_hwfn
))
584 /* Check VF validity */
585 if (!qed_iov_is_valid_vfid(p_hwfn
, vfid
, true, b_fail_malicious
))
591 bool qed_iov_pf_sanity_check(struct qed_hwfn
*p_hwfn
, int vfid
)
593 return _qed_iov_pf_sanity_check(p_hwfn
, vfid
, true);
596 static void qed_iov_set_vf_to_disable(struct qed_dev
*cdev
,
597 u16 rel_vf_id
, u8 to_disable
)
599 struct qed_vf_info
*vf
;
602 for_each_hwfn(cdev
, i
) {
603 struct qed_hwfn
*p_hwfn
= &cdev
->hwfns
[i
];
605 vf
= qed_iov_get_vf_info(p_hwfn
, rel_vf_id
, false);
609 vf
->to_disable
= to_disable
;
613 static void qed_iov_set_vfs_to_disable(struct qed_dev
*cdev
, u8 to_disable
)
617 if (!IS_QED_SRIOV(cdev
))
620 for (i
= 0; i
< cdev
->p_iov_info
->total_vfs
; i
++)
621 qed_iov_set_vf_to_disable(cdev
, i
, to_disable
);
624 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn
*p_hwfn
,
625 struct qed_ptt
*p_ptt
, u8 abs_vfid
)
627 qed_wr(p_hwfn
, p_ptt
,
628 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR
+ (abs_vfid
>> 5) * 4,
629 1 << (abs_vfid
& 0x1f));
632 static void qed_iov_vf_igu_reset(struct qed_hwfn
*p_hwfn
,
633 struct qed_ptt
*p_ptt
, struct qed_vf_info
*vf
)
637 /* Set VF masks and configuration - pretend */
638 qed_fid_pretend(p_hwfn
, p_ptt
, (u16
) vf
->concrete_fid
);
640 qed_wr(p_hwfn
, p_ptt
, IGU_REG_STATISTIC_NUM_VF_MSG_SENT
, 0);
643 qed_fid_pretend(p_hwfn
, p_ptt
, (u16
) p_hwfn
->hw_info
.concrete_fid
);
645 /* iterate over all queues, clear sb consumer */
646 for (i
= 0; i
< vf
->num_sbs
; i
++)
647 qed_int_igu_init_pure_rt_single(p_hwfn
, p_ptt
,
649 vf
->opaque_fid
, true);
652 static void qed_iov_vf_igu_set_int(struct qed_hwfn
*p_hwfn
,
653 struct qed_ptt
*p_ptt
,
654 struct qed_vf_info
*vf
, bool enable
)
658 qed_fid_pretend(p_hwfn
, p_ptt
, (u16
) vf
->concrete_fid
);
660 igu_vf_conf
= qed_rd(p_hwfn
, p_ptt
, IGU_REG_VF_CONFIGURATION
);
663 igu_vf_conf
|= IGU_VF_CONF_MSI_MSIX_EN
;
665 igu_vf_conf
&= ~IGU_VF_CONF_MSI_MSIX_EN
;
667 qed_wr(p_hwfn
, p_ptt
, IGU_REG_VF_CONFIGURATION
, igu_vf_conf
);
670 qed_fid_pretend(p_hwfn
, p_ptt
, (u16
) p_hwfn
->hw_info
.concrete_fid
);
673 static int qed_iov_enable_vf_access(struct qed_hwfn
*p_hwfn
,
674 struct qed_ptt
*p_ptt
,
675 struct qed_vf_info
*vf
)
677 u32 igu_vf_conf
= IGU_VF_CONF_FUNC_EN
;
685 "Enable internal access for vf %x [abs %x]\n",
686 vf
->abs_vf_id
, QED_VF_ABS_ID(p_hwfn
, vf
));
688 qed_iov_vf_pglue_clear_err(p_hwfn
, p_ptt
, QED_VF_ABS_ID(p_hwfn
, vf
));
690 qed_iov_vf_igu_reset(p_hwfn
, p_ptt
, vf
);
692 /* It's possible VF was previously considered malicious */
693 vf
->b_malicious
= false;
695 rc
= qed_mcp_config_vf_msix(p_hwfn
, p_ptt
, vf
->abs_vf_id
, vf
->num_sbs
);
699 qed_fid_pretend(p_hwfn
, p_ptt
, (u16
) vf
->concrete_fid
);
701 SET_FIELD(igu_vf_conf
, IGU_VF_CONF_PARENT
, p_hwfn
->rel_pf_id
);
702 STORE_RT_REG(p_hwfn
, IGU_REG_VF_CONFIGURATION_RT_OFFSET
, igu_vf_conf
);
704 qed_init_run(p_hwfn
, p_ptt
, PHASE_VF
, vf
->abs_vf_id
,
705 p_hwfn
->hw_info
.hw_mode
);
708 qed_fid_pretend(p_hwfn
, p_ptt
, (u16
) p_hwfn
->hw_info
.concrete_fid
);
716 * @brief qed_iov_config_perm_table - configure the permission
718 * In E4, queue zone permission table size is 320x9. There
719 * are 320 VF queues for single engine device (256 for dual
720 * engine device), and each entry has the following format:
727 static void qed_iov_config_perm_table(struct qed_hwfn
*p_hwfn
,
728 struct qed_ptt
*p_ptt
,
729 struct qed_vf_info
*vf
, u8 enable
)
735 for (qid
= 0; qid
< vf
->num_rxqs
; qid
++) {
736 qed_fw_l2_queue(p_hwfn
, vf
->vf_queues
[qid
].fw_rx_qid
,
739 reg_addr
= PSWHST_REG_ZONE_PERMISSION_TABLE
+ qzone_id
* 4;
740 val
= enable
? (vf
->abs_vf_id
| BIT(8)) : 0;
741 qed_wr(p_hwfn
, p_ptt
, reg_addr
, val
);
745 static void qed_iov_enable_vf_traffic(struct qed_hwfn
*p_hwfn
,
746 struct qed_ptt
*p_ptt
,
747 struct qed_vf_info
*vf
)
749 /* Reset vf in IGU - interrupts are still disabled */
750 qed_iov_vf_igu_reset(p_hwfn
, p_ptt
, vf
);
752 qed_iov_vf_igu_set_int(p_hwfn
, p_ptt
, vf
, 1);
754 /* Permission Table */
755 qed_iov_config_perm_table(p_hwfn
, p_ptt
, vf
, true);
758 static u8
qed_iov_alloc_vf_igu_sbs(struct qed_hwfn
*p_hwfn
,
759 struct qed_ptt
*p_ptt
,
760 struct qed_vf_info
*vf
, u16 num_rx_queues
)
762 struct qed_igu_block
*igu_blocks
;
763 int qid
= 0, igu_id
= 0;
766 igu_blocks
= p_hwfn
->hw_info
.p_igu_info
->igu_map
.igu_blocks
;
768 if (num_rx_queues
> p_hwfn
->hw_info
.p_igu_info
->free_blks
)
769 num_rx_queues
= p_hwfn
->hw_info
.p_igu_info
->free_blks
;
770 p_hwfn
->hw_info
.p_igu_info
->free_blks
-= num_rx_queues
;
772 SET_FIELD(val
, IGU_MAPPING_LINE_FUNCTION_NUMBER
, vf
->abs_vf_id
);
773 SET_FIELD(val
, IGU_MAPPING_LINE_VALID
, 1);
774 SET_FIELD(val
, IGU_MAPPING_LINE_PF_VALID
, 0);
776 while ((qid
< num_rx_queues
) &&
777 (igu_id
< QED_MAPPING_MEMORY_SIZE(p_hwfn
->cdev
))) {
778 if (igu_blocks
[igu_id
].status
& QED_IGU_STATUS_FREE
) {
779 struct cau_sb_entry sb_entry
;
781 vf
->igu_sbs
[qid
] = (u16
)igu_id
;
782 igu_blocks
[igu_id
].status
&= ~QED_IGU_STATUS_FREE
;
784 SET_FIELD(val
, IGU_MAPPING_LINE_VECTOR_NUMBER
, qid
);
786 qed_wr(p_hwfn
, p_ptt
,
787 IGU_REG_MAPPING_MEMORY
+ sizeof(u32
) * igu_id
,
790 /* Configure igu sb in CAU which were marked valid */
791 qed_init_cau_sb_entry(p_hwfn
, &sb_entry
,
794 qed_dmae_host2grc(p_hwfn
, p_ptt
,
795 (u64
)(uintptr_t)&sb_entry
,
796 CAU_REG_SB_VAR_MEMORY
+
797 igu_id
* sizeof(u64
), 2, 0);
803 vf
->num_sbs
= (u8
) num_rx_queues
;
808 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn
*p_hwfn
,
809 struct qed_ptt
*p_ptt
,
810 struct qed_vf_info
*vf
)
812 struct qed_igu_info
*p_info
= p_hwfn
->hw_info
.p_igu_info
;
816 /* Invalidate igu CAM lines and mark them as free */
817 for (idx
= 0; idx
< vf
->num_sbs
; idx
++) {
818 igu_id
= vf
->igu_sbs
[idx
];
819 addr
= IGU_REG_MAPPING_MEMORY
+ sizeof(u32
) * igu_id
;
821 val
= qed_rd(p_hwfn
, p_ptt
, addr
);
822 SET_FIELD(val
, IGU_MAPPING_LINE_VALID
, 0);
823 qed_wr(p_hwfn
, p_ptt
, addr
, val
);
825 p_info
->igu_map
.igu_blocks
[igu_id
].status
|=
828 p_hwfn
->hw_info
.p_igu_info
->free_blks
++;
834 static void qed_iov_set_link(struct qed_hwfn
*p_hwfn
,
836 struct qed_mcp_link_params
*params
,
837 struct qed_mcp_link_state
*link
,
838 struct qed_mcp_link_capabilities
*p_caps
)
840 struct qed_vf_info
*p_vf
= qed_iov_get_vf_info(p_hwfn
,
843 struct qed_bulletin_content
*p_bulletin
;
848 p_bulletin
= p_vf
->bulletin
.p_virt
;
849 p_bulletin
->req_autoneg
= params
->speed
.autoneg
;
850 p_bulletin
->req_adv_speed
= params
->speed
.advertised_speeds
;
851 p_bulletin
->req_forced_speed
= params
->speed
.forced_speed
;
852 p_bulletin
->req_autoneg_pause
= params
->pause
.autoneg
;
853 p_bulletin
->req_forced_rx
= params
->pause
.forced_rx
;
854 p_bulletin
->req_forced_tx
= params
->pause
.forced_tx
;
855 p_bulletin
->req_loopback
= params
->loopback_mode
;
857 p_bulletin
->link_up
= link
->link_up
;
858 p_bulletin
->speed
= link
->speed
;
859 p_bulletin
->full_duplex
= link
->full_duplex
;
860 p_bulletin
->autoneg
= link
->an
;
861 p_bulletin
->autoneg_complete
= link
->an_complete
;
862 p_bulletin
->parallel_detection
= link
->parallel_detection
;
863 p_bulletin
->pfc_enabled
= link
->pfc_enabled
;
864 p_bulletin
->partner_adv_speed
= link
->partner_adv_speed
;
865 p_bulletin
->partner_tx_flow_ctrl_en
= link
->partner_tx_flow_ctrl_en
;
866 p_bulletin
->partner_rx_flow_ctrl_en
= link
->partner_rx_flow_ctrl_en
;
867 p_bulletin
->partner_adv_pause
= link
->partner_adv_pause
;
868 p_bulletin
->sfp_tx_fault
= link
->sfp_tx_fault
;
870 p_bulletin
->capability_speed
= p_caps
->speed_capabilities
;
873 static int qed_iov_init_hw_for_vf(struct qed_hwfn
*p_hwfn
,
874 struct qed_ptt
*p_ptt
,
875 struct qed_iov_vf_init_params
*p_params
)
877 struct qed_mcp_link_capabilities link_caps
;
878 struct qed_mcp_link_params link_params
;
879 struct qed_mcp_link_state link_state
;
880 u8 num_of_vf_avaiable_chains
= 0;
881 struct qed_vf_info
*vf
= NULL
;
887 vf
= qed_iov_get_vf_info(p_hwfn
, p_params
->rel_vf_id
, false);
889 DP_ERR(p_hwfn
, "qed_iov_init_hw_for_vf : vf is NULL\n");
894 DP_NOTICE(p_hwfn
, "VF[%d] is already active.\n",
895 p_params
->rel_vf_id
);
899 /* Perform sanity checking on the requested queue_id */
900 for (i
= 0; i
< p_params
->num_queues
; i
++) {
901 u16 min_vf_qzone
= FEAT_NUM(p_hwfn
, QED_PF_L2_QUE
);
902 u16 max_vf_qzone
= min_vf_qzone
+
903 FEAT_NUM(p_hwfn
, QED_VF_L2_QUE
) - 1;
905 qid
= p_params
->req_rx_queue
[i
];
906 if (qid
< min_vf_qzone
|| qid
> max_vf_qzone
) {
908 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
911 min_vf_qzone
, max_vf_qzone
);
915 qid
= p_params
->req_tx_queue
[i
];
916 if (qid
> max_vf_qzone
) {
918 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
919 qid
, p_params
->rel_vf_id
, max_vf_qzone
);
923 /* If client *really* wants, Tx qid can be shared with PF */
924 if (qid
< min_vf_qzone
)
927 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
928 p_params
->rel_vf_id
, qid
, i
);
931 /* Limit number of queues according to number of CIDs */
932 qed_cxt_get_proto_cid_count(p_hwfn
, PROTOCOLID_ETH
, &cids
);
935 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
936 vf
->relative_vf_id
, p_params
->num_queues
, (u16
)cids
);
937 num_irqs
= min_t(u16
, p_params
->num_queues
, ((u16
)cids
));
939 num_of_vf_avaiable_chains
= qed_iov_alloc_vf_igu_sbs(p_hwfn
,
942 if (!num_of_vf_avaiable_chains
) {
943 DP_ERR(p_hwfn
, "no available igu sbs\n");
947 /* Choose queue number and index ranges */
948 vf
->num_rxqs
= num_of_vf_avaiable_chains
;
949 vf
->num_txqs
= num_of_vf_avaiable_chains
;
951 for (i
= 0; i
< vf
->num_rxqs
; i
++) {
952 struct qed_vf_q_info
*p_queue
= &vf
->vf_queues
[i
];
954 p_queue
->fw_rx_qid
= p_params
->req_rx_queue
[i
];
955 p_queue
->fw_tx_qid
= p_params
->req_tx_queue
[i
];
957 /* CIDs are per-VF, so no problem having them 0-based. */
960 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
961 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x] CID %04x\n",
965 p_queue
->fw_tx_qid
, p_queue
->fw_cid
);
968 /* Update the link configuration in bulletin */
969 memcpy(&link_params
, qed_mcp_get_link_params(p_hwfn
),
970 sizeof(link_params
));
971 memcpy(&link_state
, qed_mcp_get_link_state(p_hwfn
), sizeof(link_state
));
972 memcpy(&link_caps
, qed_mcp_get_link_capabilities(p_hwfn
),
974 qed_iov_set_link(p_hwfn
, p_params
->rel_vf_id
,
975 &link_params
, &link_state
, &link_caps
);
977 rc
= qed_iov_enable_vf_access(p_hwfn
, p_ptt
, vf
);
981 if (IS_LEAD_HWFN(p_hwfn
))
982 p_hwfn
->cdev
->p_iov_info
->num_vfs
++;
988 static int qed_iov_release_hw_for_vf(struct qed_hwfn
*p_hwfn
,
989 struct qed_ptt
*p_ptt
, u16 rel_vf_id
)
991 struct qed_mcp_link_capabilities caps
;
992 struct qed_mcp_link_params params
;
993 struct qed_mcp_link_state link
;
994 struct qed_vf_info
*vf
= NULL
;
996 vf
= qed_iov_get_vf_info(p_hwfn
, rel_vf_id
, true);
998 DP_ERR(p_hwfn
, "qed_iov_release_hw_for_vf : vf is NULL\n");
1002 if (vf
->bulletin
.p_virt
)
1003 memset(vf
->bulletin
.p_virt
, 0, sizeof(*vf
->bulletin
.p_virt
));
1005 memset(&vf
->p_vf_info
, 0, sizeof(vf
->p_vf_info
));
1007 /* Get the link configuration back in bulletin so
1008 * that when VFs are re-enabled they get the actual
1009 * link configuration.
1011 memcpy(¶ms
, qed_mcp_get_link_params(p_hwfn
), sizeof(params
));
1012 memcpy(&link
, qed_mcp_get_link_state(p_hwfn
), sizeof(link
));
1013 memcpy(&caps
, qed_mcp_get_link_capabilities(p_hwfn
), sizeof(caps
));
1014 qed_iov_set_link(p_hwfn
, rel_vf_id
, ¶ms
, &link
, &caps
);
1016 /* Forget the VF's acquisition message */
1017 memset(&vf
->acquire
, 0, sizeof(vf
->acquire
));
1019 /* disablng interrupts and resetting permission table was done during
1020 * vf-close, however, we could get here without going through vf_close
1022 /* Disable Interrupts for VF */
1023 qed_iov_vf_igu_set_int(p_hwfn
, p_ptt
, vf
, 0);
1025 /* Reset Permission table */
1026 qed_iov_config_perm_table(p_hwfn
, p_ptt
, vf
, 0);
1030 qed_iov_free_vf_igu_sbs(p_hwfn
, p_ptt
, vf
);
1035 if (IS_LEAD_HWFN(p_hwfn
))
1036 p_hwfn
->cdev
->p_iov_info
->num_vfs
--;
1042 static bool qed_iov_tlv_supported(u16 tlvtype
)
1044 return CHANNEL_TLV_NONE
< tlvtype
&& tlvtype
< CHANNEL_TLV_MAX
;
1047 /* place a given tlv on the tlv buffer, continuing current tlv list */
1048 void *qed_add_tlv(struct qed_hwfn
*p_hwfn
, u8
**offset
, u16 type
, u16 length
)
1050 struct channel_tlv
*tl
= (struct channel_tlv
*)*offset
;
1053 tl
->length
= length
;
1055 /* Offset should keep pointing to next TLV (the end of the last) */
1058 /* Return a pointer to the start of the added tlv */
1059 return *offset
- length
;
1062 /* list the types and lengths of the tlvs on the buffer */
1063 void qed_dp_tlv_list(struct qed_hwfn
*p_hwfn
, void *tlvs_list
)
1065 u16 i
= 1, total_length
= 0;
1066 struct channel_tlv
*tlv
;
1069 tlv
= (struct channel_tlv
*)((u8
*)tlvs_list
+ total_length
);
1072 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
1073 "TLV number %d: type %d, length %d\n",
1074 i
, tlv
->type
, tlv
->length
);
1076 if (tlv
->type
== CHANNEL_TLV_LIST_END
)
1079 /* Validate entry - protect against malicious VFs */
1081 DP_NOTICE(p_hwfn
, "TLV of length 0 found\n");
1085 total_length
+= tlv
->length
;
1087 if (total_length
>= sizeof(struct tlv_buffer_size
)) {
1088 DP_NOTICE(p_hwfn
, "TLV ==> Buffer overflow\n");
1096 static void qed_iov_send_response(struct qed_hwfn
*p_hwfn
,
1097 struct qed_ptt
*p_ptt
,
1098 struct qed_vf_info
*p_vf
,
1099 u16 length
, u8 status
)
1101 struct qed_iov_vf_mbx
*mbx
= &p_vf
->vf_mbx
;
1102 struct qed_dmae_params params
;
1105 mbx
->reply_virt
->default_resp
.hdr
.status
= status
;
1107 qed_dp_tlv_list(p_hwfn
, mbx
->reply_virt
);
1109 eng_vf_id
= p_vf
->abs_vf_id
;
1111 memset(¶ms
, 0, sizeof(struct qed_dmae_params
));
1112 params
.flags
= QED_DMAE_FLAG_VF_DST
;
1113 params
.dst_vfid
= eng_vf_id
;
1115 qed_dmae_host2host(p_hwfn
, p_ptt
, mbx
->reply_phys
+ sizeof(u64
),
1116 mbx
->req_virt
->first_tlv
.reply_address
+
1118 (sizeof(union pfvf_tlvs
) - sizeof(u64
)) / 4,
1121 qed_dmae_host2host(p_hwfn
, p_ptt
, mbx
->reply_phys
,
1122 mbx
->req_virt
->first_tlv
.reply_address
,
1123 sizeof(u64
) / 4, ¶ms
);
1126 GTT_BAR0_MAP_REG_USDM_RAM
+
1127 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id
), 1);
1130 static u16
qed_iov_vport_to_tlv(struct qed_hwfn
*p_hwfn
,
1131 enum qed_iov_vport_update_flag flag
)
1134 case QED_IOV_VP_UPDATE_ACTIVATE
:
1135 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE
;
1136 case QED_IOV_VP_UPDATE_VLAN_STRIP
:
1137 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP
;
1138 case QED_IOV_VP_UPDATE_TX_SWITCH
:
1139 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH
;
1140 case QED_IOV_VP_UPDATE_MCAST
:
1141 return CHANNEL_TLV_VPORT_UPDATE_MCAST
;
1142 case QED_IOV_VP_UPDATE_ACCEPT_PARAM
:
1143 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM
;
1144 case QED_IOV_VP_UPDATE_RSS
:
1145 return CHANNEL_TLV_VPORT_UPDATE_RSS
;
1146 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN
:
1147 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN
;
1148 case QED_IOV_VP_UPDATE_SGE_TPA
:
1149 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA
;
1155 static u16
qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn
*p_hwfn
,
1156 struct qed_vf_info
*p_vf
,
1157 struct qed_iov_vf_mbx
*p_mbx
,
1159 u16 tlvs_mask
, u16 tlvs_accepted
)
1161 struct pfvf_def_resp_tlv
*resp
;
1162 u16 size
, total_len
, i
;
1164 memset(p_mbx
->reply_virt
, 0, sizeof(union pfvf_tlvs
));
1165 p_mbx
->offset
= (u8
*)p_mbx
->reply_virt
;
1166 size
= sizeof(struct pfvf_def_resp_tlv
);
1169 qed_add_tlv(p_hwfn
, &p_mbx
->offset
, CHANNEL_TLV_VPORT_UPDATE
, size
);
1171 /* Prepare response for all extended tlvs if they are found by PF */
1172 for (i
= 0; i
< QED_IOV_VP_UPDATE_MAX
; i
++) {
1173 if (!(tlvs_mask
& BIT(i
)))
1176 resp
= qed_add_tlv(p_hwfn
, &p_mbx
->offset
,
1177 qed_iov_vport_to_tlv(p_hwfn
, i
), size
);
1179 if (tlvs_accepted
& BIT(i
))
1180 resp
->hdr
.status
= status
;
1182 resp
->hdr
.status
= PFVF_STATUS_NOT_SUPPORTED
;
1186 "VF[%d] - vport_update response: TLV %d, status %02x\n",
1187 p_vf
->relative_vf_id
,
1188 qed_iov_vport_to_tlv(p_hwfn
, i
), resp
->hdr
.status
);
1193 qed_add_tlv(p_hwfn
, &p_mbx
->offset
, CHANNEL_TLV_LIST_END
,
1194 sizeof(struct channel_list_end_tlv
));
1199 static void qed_iov_prepare_resp(struct qed_hwfn
*p_hwfn
,
1200 struct qed_ptt
*p_ptt
,
1201 struct qed_vf_info
*vf_info
,
1202 u16 type
, u16 length
, u8 status
)
1204 struct qed_iov_vf_mbx
*mbx
= &vf_info
->vf_mbx
;
1206 mbx
->offset
= (u8
*)mbx
->reply_virt
;
1208 qed_add_tlv(p_hwfn
, &mbx
->offset
, type
, length
);
1209 qed_add_tlv(p_hwfn
, &mbx
->offset
, CHANNEL_TLV_LIST_END
,
1210 sizeof(struct channel_list_end_tlv
));
1212 qed_iov_send_response(p_hwfn
, p_ptt
, vf_info
, length
, status
);
1216 qed_public_vf_info
*qed_iov_get_public_vf_info(struct qed_hwfn
*p_hwfn
,
1218 bool b_enabled_only
)
1220 struct qed_vf_info
*vf
= NULL
;
1222 vf
= qed_iov_get_vf_info(p_hwfn
, relative_vf_id
, b_enabled_only
);
1226 return &vf
->p_vf_info
;
1229 static void qed_iov_clean_vf(struct qed_hwfn
*p_hwfn
, u8 vfid
)
1231 struct qed_public_vf_info
*vf_info
;
1233 vf_info
= qed_iov_get_public_vf_info(p_hwfn
, vfid
, false);
1238 /* Clear the VF mac */
1239 eth_zero_addr(vf_info
->mac
);
1241 vf_info
->rx_accept_mode
= 0;
1242 vf_info
->tx_accept_mode
= 0;
1245 static void qed_iov_vf_cleanup(struct qed_hwfn
*p_hwfn
,
1246 struct qed_vf_info
*p_vf
)
1250 p_vf
->vf_bulletin
= 0;
1251 p_vf
->vport_instance
= 0;
1252 p_vf
->configured_features
= 0;
1254 /* If VF previously requested less resources, go back to default */
1255 p_vf
->num_rxqs
= p_vf
->num_sbs
;
1256 p_vf
->num_txqs
= p_vf
->num_sbs
;
1258 p_vf
->num_active_rxqs
= 0;
1260 for (i
= 0; i
< QED_MAX_VF_CHAINS_PER_PF
; i
++) {
1261 struct qed_vf_q_info
*p_queue
= &p_vf
->vf_queues
[i
];
1263 if (p_queue
->p_rx_cid
) {
1264 qed_eth_queue_cid_release(p_hwfn
, p_queue
->p_rx_cid
);
1265 p_queue
->p_rx_cid
= NULL
;
1268 if (p_queue
->p_tx_cid
) {
1269 qed_eth_queue_cid_release(p_hwfn
, p_queue
->p_tx_cid
);
1270 p_queue
->p_tx_cid
= NULL
;
1274 memset(&p_vf
->shadow_config
, 0, sizeof(p_vf
->shadow_config
));
1275 memset(&p_vf
->acquire
, 0, sizeof(p_vf
->acquire
));
1276 qed_iov_clean_vf(p_hwfn
, p_vf
->relative_vf_id
);
1279 static u8
qed_iov_vf_mbx_acquire_resc(struct qed_hwfn
*p_hwfn
,
1280 struct qed_ptt
*p_ptt
,
1281 struct qed_vf_info
*p_vf
,
1282 struct vf_pf_resc_request
*p_req
,
1283 struct pf_vf_resc
*p_resp
)
1287 /* Queue related information */
1288 p_resp
->num_rxqs
= p_vf
->num_rxqs
;
1289 p_resp
->num_txqs
= p_vf
->num_txqs
;
1290 p_resp
->num_sbs
= p_vf
->num_sbs
;
1292 for (i
= 0; i
< p_resp
->num_sbs
; i
++) {
1293 p_resp
->hw_sbs
[i
].hw_sb_id
= p_vf
->igu_sbs
[i
];
1294 p_resp
->hw_sbs
[i
].sb_qid
= 0;
1297 /* These fields are filled for backward compatibility.
1298 * Unused by modern vfs.
1300 for (i
= 0; i
< p_resp
->num_rxqs
; i
++) {
1301 qed_fw_l2_queue(p_hwfn
, p_vf
->vf_queues
[i
].fw_rx_qid
,
1302 (u16
*)&p_resp
->hw_qid
[i
]);
1303 p_resp
->cid
[i
] = p_vf
->vf_queues
[i
].fw_cid
;
1306 /* Filter related information */
1307 p_resp
->num_mac_filters
= min_t(u8
, p_vf
->num_mac_filters
,
1308 p_req
->num_mac_filters
);
1309 p_resp
->num_vlan_filters
= min_t(u8
, p_vf
->num_vlan_filters
,
1310 p_req
->num_vlan_filters
);
1312 /* This isn't really needed/enforced, but some legacy VFs might depend
1313 * on the correct filling of this field.
1315 p_resp
->num_mc_filters
= QED_MAX_MC_ADDRS
;
1317 /* Validate sufficient resources for VF */
1318 if (p_resp
->num_rxqs
< p_req
->num_rxqs
||
1319 p_resp
->num_txqs
< p_req
->num_txqs
||
1320 p_resp
->num_sbs
< p_req
->num_sbs
||
1321 p_resp
->num_mac_filters
< p_req
->num_mac_filters
||
1322 p_resp
->num_vlan_filters
< p_req
->num_vlan_filters
||
1323 p_resp
->num_mc_filters
< p_req
->num_mc_filters
) {
1326 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x]\n",
1334 p_req
->num_mac_filters
,
1335 p_resp
->num_mac_filters
,
1336 p_req
->num_vlan_filters
,
1337 p_resp
->num_vlan_filters
,
1338 p_req
->num_mc_filters
, p_resp
->num_mc_filters
);
1340 /* Some legacy OSes are incapable of correctly handling this
1343 if ((p_vf
->acquire
.vfdev_info
.eth_fp_hsi_minor
==
1344 ETH_HSI_VER_NO_PKT_LEN_TUNN
) &&
1345 (p_vf
->acquire
.vfdev_info
.os_type
==
1346 VFPF_ACQUIRE_OS_WINDOWS
))
1347 return PFVF_STATUS_SUCCESS
;
1349 return PFVF_STATUS_NO_RESOURCE
;
1352 return PFVF_STATUS_SUCCESS
;
1355 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn
*p_hwfn
,
1356 struct pfvf_stats_info
*p_stats
)
1358 p_stats
->mstats
.address
= PXP_VF_BAR0_START_MSDM_ZONE_B
+
1359 offsetof(struct mstorm_vf_zone
,
1360 non_trigger
.eth_queue_stat
);
1361 p_stats
->mstats
.len
= sizeof(struct eth_mstorm_per_queue_stat
);
1362 p_stats
->ustats
.address
= PXP_VF_BAR0_START_USDM_ZONE_B
+
1363 offsetof(struct ustorm_vf_zone
,
1364 non_trigger
.eth_queue_stat
);
1365 p_stats
->ustats
.len
= sizeof(struct eth_ustorm_per_queue_stat
);
1366 p_stats
->pstats
.address
= PXP_VF_BAR0_START_PSDM_ZONE_B
+
1367 offsetof(struct pstorm_vf_zone
,
1368 non_trigger
.eth_queue_stat
);
1369 p_stats
->pstats
.len
= sizeof(struct eth_pstorm_per_queue_stat
);
1370 p_stats
->tstats
.address
= 0;
1371 p_stats
->tstats
.len
= 0;
1374 static void qed_iov_vf_mbx_acquire(struct qed_hwfn
*p_hwfn
,
1375 struct qed_ptt
*p_ptt
,
1376 struct qed_vf_info
*vf
)
1378 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
1379 struct pfvf_acquire_resp_tlv
*resp
= &mbx
->reply_virt
->acquire_resp
;
1380 struct pf_vf_pfdev_info
*pfdev_info
= &resp
->pfdev_info
;
1381 struct vfpf_acquire_tlv
*req
= &mbx
->req_virt
->acquire
;
1382 u8 vfpf_status
= PFVF_STATUS_NOT_SUPPORTED
;
1383 struct pf_vf_resc
*resc
= &resp
->resc
;
1386 memset(resp
, 0, sizeof(*resp
));
1388 /* Write the PF version so that VF would know which version
1389 * is supported - might be later overriden. This guarantees that
1390 * VF could recognize legacy PF based on lack of versions in reply.
1392 pfdev_info
->major_fp_hsi
= ETH_HSI_VER_MAJOR
;
1393 pfdev_info
->minor_fp_hsi
= ETH_HSI_VER_MINOR
;
1395 if (vf
->state
!= VF_FREE
&& vf
->state
!= VF_STOPPED
) {
1398 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1399 vf
->abs_vf_id
, vf
->state
);
1403 /* Validate FW compatibility */
1404 if (req
->vfdev_info
.eth_fp_hsi_major
!= ETH_HSI_VER_MAJOR
) {
1405 if (req
->vfdev_info
.capabilities
&
1406 VFPF_ACQUIRE_CAP_PRE_FP_HSI
) {
1407 struct vf_pf_vfdev_info
*p_vfdev
= &req
->vfdev_info
;
1409 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
1410 "VF[%d] is pre-fastpath HSI\n",
1412 p_vfdev
->eth_fp_hsi_major
= ETH_HSI_VER_MAJOR
;
1413 p_vfdev
->eth_fp_hsi_minor
= ETH_HSI_VER_NO_PKT_LEN_TUNN
;
1416 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
1418 req
->vfdev_info
.eth_fp_hsi_major
,
1419 req
->vfdev_info
.eth_fp_hsi_minor
,
1420 ETH_HSI_VER_MAJOR
, ETH_HSI_VER_MINOR
);
1426 /* On 100g PFs, prevent old VFs from loading */
1427 if ((p_hwfn
->cdev
->num_hwfns
> 1) &&
1428 !(req
->vfdev_info
.capabilities
& VFPF_ACQUIRE_CAP_100G
)) {
1430 "VF[%d] is running an old driver that doesn't support 100g\n",
1435 /* Store the acquire message */
1436 memcpy(&vf
->acquire
, req
, sizeof(vf
->acquire
));
1438 vf
->opaque_fid
= req
->vfdev_info
.opaque_fid
;
1440 vf
->vf_bulletin
= req
->bulletin_addr
;
1441 vf
->bulletin
.size
= (vf
->bulletin
.size
< req
->bulletin_size
) ?
1442 vf
->bulletin
.size
: req
->bulletin_size
;
1444 /* fill in pfdev info */
1445 pfdev_info
->chip_num
= p_hwfn
->cdev
->chip_num
;
1446 pfdev_info
->db_size
= 0;
1447 pfdev_info
->indices_per_sb
= PIS_PER_SB
;
1449 pfdev_info
->capabilities
= PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED
|
1450 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE
;
1451 if (p_hwfn
->cdev
->num_hwfns
> 1)
1452 pfdev_info
->capabilities
|= PFVF_ACQUIRE_CAP_100G
;
1454 qed_iov_vf_mbx_acquire_stats(p_hwfn
, &pfdev_info
->stats_info
);
1456 memcpy(pfdev_info
->port_mac
, p_hwfn
->hw_info
.hw_mac_addr
, ETH_ALEN
);
1458 pfdev_info
->fw_major
= FW_MAJOR_VERSION
;
1459 pfdev_info
->fw_minor
= FW_MINOR_VERSION
;
1460 pfdev_info
->fw_rev
= FW_REVISION_VERSION
;
1461 pfdev_info
->fw_eng
= FW_ENGINEERING_VERSION
;
1463 /* Incorrect when legacy, but doesn't matter as legacy isn't reading
1466 pfdev_info
->minor_fp_hsi
= min_t(u8
, ETH_HSI_VER_MINOR
,
1467 req
->vfdev_info
.eth_fp_hsi_minor
);
1468 pfdev_info
->os_type
= VFPF_ACQUIRE_OS_LINUX
;
1469 qed_mcp_get_mfw_ver(p_hwfn
, p_ptt
, &pfdev_info
->mfw_ver
, NULL
);
1471 pfdev_info
->dev_type
= p_hwfn
->cdev
->type
;
1472 pfdev_info
->chip_rev
= p_hwfn
->cdev
->chip_rev
;
1474 /* Fill resources available to VF; Make sure there are enough to
1475 * satisfy the VF's request.
1477 vfpf_status
= qed_iov_vf_mbx_acquire_resc(p_hwfn
, p_ptt
, vf
,
1478 &req
->resc_request
, resc
);
1479 if (vfpf_status
!= PFVF_STATUS_SUCCESS
)
1482 /* Start the VF in FW */
1483 rc
= qed_sp_vf_start(p_hwfn
, vf
);
1485 DP_NOTICE(p_hwfn
, "Failed to start VF[%02x]\n", vf
->abs_vf_id
);
1486 vfpf_status
= PFVF_STATUS_FAILURE
;
1490 /* Fill agreed size of bulletin board in response */
1491 resp
->bulletin_size
= vf
->bulletin
.size
;
1492 qed_iov_post_vf_bulletin(p_hwfn
, vf
->relative_vf_id
, p_ptt
);
1496 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1497 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1499 resp
->pfdev_info
.chip_num
,
1500 resp
->pfdev_info
.db_size
,
1501 resp
->pfdev_info
.indices_per_sb
,
1502 resp
->pfdev_info
.capabilities
,
1506 resc
->num_mac_filters
,
1507 resc
->num_vlan_filters
);
1508 vf
->state
= VF_ACQUIRED
;
1510 /* Prepare Response */
1512 qed_iov_prepare_resp(p_hwfn
, p_ptt
, vf
, CHANNEL_TLV_ACQUIRE
,
1513 sizeof(struct pfvf_acquire_resp_tlv
), vfpf_status
);
1516 static int __qed_iov_spoofchk_set(struct qed_hwfn
*p_hwfn
,
1517 struct qed_vf_info
*p_vf
, bool val
)
1519 struct qed_sp_vport_update_params params
;
1522 if (val
== p_vf
->spoof_chk
) {
1523 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
1524 "Spoofchk value[%d] is already configured\n", val
);
1528 memset(¶ms
, 0, sizeof(struct qed_sp_vport_update_params
));
1529 params
.opaque_fid
= p_vf
->opaque_fid
;
1530 params
.vport_id
= p_vf
->vport_id
;
1531 params
.update_anti_spoofing_en_flg
= 1;
1532 params
.anti_spoofing_en
= val
;
1534 rc
= qed_sp_vport_update(p_hwfn
, ¶ms
, QED_SPQ_MODE_EBLOCK
, NULL
);
1536 p_vf
->spoof_chk
= val
;
1537 p_vf
->req_spoofchk_val
= p_vf
->spoof_chk
;
1538 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
1539 "Spoofchk val[%d] configured\n", val
);
1541 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
1542 "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1543 val
, p_vf
->relative_vf_id
);
1549 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn
*p_hwfn
,
1550 struct qed_vf_info
*p_vf
)
1552 struct qed_filter_ucast filter
;
1556 memset(&filter
, 0, sizeof(filter
));
1557 filter
.is_rx_filter
= 1;
1558 filter
.is_tx_filter
= 1;
1559 filter
.vport_to_add_to
= p_vf
->vport_id
;
1560 filter
.opcode
= QED_FILTER_ADD
;
1562 /* Reconfigure vlans */
1563 for (i
= 0; i
< QED_ETH_VF_NUM_VLAN_FILTERS
+ 1; i
++) {
1564 if (!p_vf
->shadow_config
.vlans
[i
].used
)
1567 filter
.type
= QED_FILTER_VLAN
;
1568 filter
.vlan
= p_vf
->shadow_config
.vlans
[i
].vid
;
1569 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
1570 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1571 filter
.vlan
, p_vf
->relative_vf_id
);
1572 rc
= qed_sp_eth_filter_ucast(p_hwfn
, p_vf
->opaque_fid
,
1573 &filter
, QED_SPQ_MODE_CB
, NULL
);
1576 "Failed to configure VLAN [%04x] to VF [%04x]\n",
1577 filter
.vlan
, p_vf
->relative_vf_id
);
1586 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn
*p_hwfn
,
1587 struct qed_vf_info
*p_vf
, u64 events
)
1591 if ((events
& BIT(VLAN_ADDR_FORCED
)) &&
1592 !(p_vf
->configured_features
& (1 << VLAN_ADDR_FORCED
)))
1593 rc
= qed_iov_reconfigure_unicast_vlan(p_hwfn
, p_vf
);
1598 static int qed_iov_configure_vport_forced(struct qed_hwfn
*p_hwfn
,
1599 struct qed_vf_info
*p_vf
, u64 events
)
1602 struct qed_filter_ucast filter
;
1604 if (!p_vf
->vport_instance
)
1607 if (events
& BIT(MAC_ADDR_FORCED
)) {
1608 /* Since there's no way [currently] of removing the MAC,
1609 * we can always assume this means we need to force it.
1611 memset(&filter
, 0, sizeof(filter
));
1612 filter
.type
= QED_FILTER_MAC
;
1613 filter
.opcode
= QED_FILTER_REPLACE
;
1614 filter
.is_rx_filter
= 1;
1615 filter
.is_tx_filter
= 1;
1616 filter
.vport_to_add_to
= p_vf
->vport_id
;
1617 ether_addr_copy(filter
.mac
, p_vf
->bulletin
.p_virt
->mac
);
1619 rc
= qed_sp_eth_filter_ucast(p_hwfn
, p_vf
->opaque_fid
,
1620 &filter
, QED_SPQ_MODE_CB
, NULL
);
1623 "PF failed to configure MAC for VF\n");
1627 p_vf
->configured_features
|= 1 << MAC_ADDR_FORCED
;
1630 if (events
& BIT(VLAN_ADDR_FORCED
)) {
1631 struct qed_sp_vport_update_params vport_update
;
1635 memset(&filter
, 0, sizeof(filter
));
1636 filter
.type
= QED_FILTER_VLAN
;
1637 filter
.is_rx_filter
= 1;
1638 filter
.is_tx_filter
= 1;
1639 filter
.vport_to_add_to
= p_vf
->vport_id
;
1640 filter
.vlan
= p_vf
->bulletin
.p_virt
->pvid
;
1641 filter
.opcode
= filter
.vlan
? QED_FILTER_REPLACE
:
1644 /* Send the ramrod */
1645 rc
= qed_sp_eth_filter_ucast(p_hwfn
, p_vf
->opaque_fid
,
1646 &filter
, QED_SPQ_MODE_CB
, NULL
);
1649 "PF failed to configure VLAN for VF\n");
1653 /* Update the default-vlan & silent vlan stripping */
1654 memset(&vport_update
, 0, sizeof(vport_update
));
1655 vport_update
.opaque_fid
= p_vf
->opaque_fid
;
1656 vport_update
.vport_id
= p_vf
->vport_id
;
1657 vport_update
.update_default_vlan_enable_flg
= 1;
1658 vport_update
.default_vlan_enable_flg
= filter
.vlan
? 1 : 0;
1659 vport_update
.update_default_vlan_flg
= 1;
1660 vport_update
.default_vlan
= filter
.vlan
;
1662 vport_update
.update_inner_vlan_removal_flg
= 1;
1663 removal
= filter
.vlan
? 1
1664 : p_vf
->shadow_config
.inner_vlan_removal
;
1665 vport_update
.inner_vlan_removal_flg
= removal
;
1666 vport_update
.silent_vlan_removal_flg
= filter
.vlan
? 1 : 0;
1667 rc
= qed_sp_vport_update(p_hwfn
,
1669 QED_SPQ_MODE_EBLOCK
, NULL
);
1672 "PF failed to configure VF vport for vlan\n");
1676 /* Update all the Rx queues */
1677 for (i
= 0; i
< QED_MAX_VF_CHAINS_PER_PF
; i
++) {
1678 struct qed_queue_cid
*p_cid
;
1680 p_cid
= p_vf
->vf_queues
[i
].p_rx_cid
;
1684 rc
= qed_sp_eth_rx_queues_update(p_hwfn
,
1687 QED_SPQ_MODE_EBLOCK
,
1691 "Failed to send Rx update fo queue[0x%04x]\n",
1692 p_cid
->rel
.queue_id
);
1698 p_vf
->configured_features
|= 1 << VLAN_ADDR_FORCED
;
1700 p_vf
->configured_features
&= ~BIT(VLAN_ADDR_FORCED
);
1703 /* If forced features are terminated, we need to configure the shadow
1704 * configuration back again.
1707 qed_iov_reconfigure_unicast_shadow(p_hwfn
, p_vf
, events
);
1712 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn
*p_hwfn
,
1713 struct qed_ptt
*p_ptt
,
1714 struct qed_vf_info
*vf
)
1716 struct qed_sp_vport_start_params params
= { 0 };
1717 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
1718 struct vfpf_vport_start_tlv
*start
;
1719 u8 status
= PFVF_STATUS_SUCCESS
;
1720 struct qed_vf_info
*vf_info
;
1725 vf_info
= qed_iov_get_vf_info(p_hwfn
, (u16
) vf
->relative_vf_id
, true);
1727 DP_NOTICE(p_hwfn
->cdev
,
1728 "Failed to get VF info, invalid vfid [%d]\n",
1729 vf
->relative_vf_id
);
1733 vf
->state
= VF_ENABLED
;
1734 start
= &mbx
->req_virt
->start_vport
;
1736 /* Initialize Status block in CAU */
1737 for (sb_id
= 0; sb_id
< vf
->num_sbs
; sb_id
++) {
1738 if (!start
->sb_addr
[sb_id
]) {
1739 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
1740 "VF[%d] did not fill the address of SB %d\n",
1741 vf
->relative_vf_id
, sb_id
);
1745 qed_int_cau_conf_sb(p_hwfn
, p_ptt
,
1746 start
->sb_addr
[sb_id
],
1747 vf
->igu_sbs
[sb_id
], vf
->abs_vf_id
, 1);
1749 qed_iov_enable_vf_traffic(p_hwfn
, p_ptt
, vf
);
1751 vf
->mtu
= start
->mtu
;
1752 vf
->shadow_config
.inner_vlan_removal
= start
->inner_vlan_removal
;
1754 /* Take into consideration configuration forced by hypervisor;
1755 * If none is configured, use the supplied VF values [for old
1756 * vfs that would still be fine, since they passed '0' as padding].
1758 p_bitmap
= &vf_info
->bulletin
.p_virt
->valid_bitmap
;
1759 if (!(*p_bitmap
& BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED
))) {
1760 u8 vf_req
= start
->only_untagged
;
1762 vf_info
->bulletin
.p_virt
->default_only_untagged
= vf_req
;
1763 *p_bitmap
|= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT
;
1766 params
.tpa_mode
= start
->tpa_mode
;
1767 params
.remove_inner_vlan
= start
->inner_vlan_removal
;
1768 params
.tx_switching
= true;
1770 params
.only_untagged
= vf_info
->bulletin
.p_virt
->default_only_untagged
;
1771 params
.drop_ttl0
= false;
1772 params
.concrete_fid
= vf
->concrete_fid
;
1773 params
.opaque_fid
= vf
->opaque_fid
;
1774 params
.vport_id
= vf
->vport_id
;
1775 params
.max_buffers_per_cqe
= start
->max_buffers_per_cqe
;
1776 params
.mtu
= vf
->mtu
;
1777 params
.check_mac
= true;
1779 rc
= qed_sp_eth_vport_start(p_hwfn
, ¶ms
);
1782 "qed_iov_vf_mbx_start_vport returned error %d\n", rc
);
1783 status
= PFVF_STATUS_FAILURE
;
1785 vf
->vport_instance
++;
1787 /* Force configuration if needed on the newly opened vport */
1788 qed_iov_configure_vport_forced(p_hwfn
, vf
, *p_bitmap
);
1790 __qed_iov_spoofchk_set(p_hwfn
, vf
, vf
->req_spoofchk_val
);
1792 qed_iov_prepare_resp(p_hwfn
, p_ptt
, vf
, CHANNEL_TLV_VPORT_START
,
1793 sizeof(struct pfvf_def_resp_tlv
), status
);
1796 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn
*p_hwfn
,
1797 struct qed_ptt
*p_ptt
,
1798 struct qed_vf_info
*vf
)
1800 u8 status
= PFVF_STATUS_SUCCESS
;
1803 vf
->vport_instance
--;
1804 vf
->spoof_chk
= false;
1806 rc
= qed_sp_vport_stop(p_hwfn
, vf
->opaque_fid
, vf
->vport_id
);
1808 DP_ERR(p_hwfn
, "qed_iov_vf_mbx_stop_vport returned error %d\n",
1810 status
= PFVF_STATUS_FAILURE
;
1813 /* Forget the configuration on the vport */
1814 vf
->configured_features
= 0;
1815 memset(&vf
->shadow_config
, 0, sizeof(vf
->shadow_config
));
1817 qed_iov_prepare_resp(p_hwfn
, p_ptt
, vf
, CHANNEL_TLV_VPORT_TEARDOWN
,
1818 sizeof(struct pfvf_def_resp_tlv
), status
);
1821 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn
*p_hwfn
,
1822 struct qed_ptt
*p_ptt
,
1823 struct qed_vf_info
*vf
,
1824 u8 status
, bool b_legacy
)
1826 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
1827 struct pfvf_start_queue_resp_tlv
*p_tlv
;
1828 struct vfpf_start_rxq_tlv
*req
;
1831 mbx
->offset
= (u8
*)mbx
->reply_virt
;
1833 /* Taking a bigger struct instead of adding a TLV to list was a
1834 * mistake, but one which we're now stuck with, as some older
1835 * clients assume the size of the previous response.
1838 length
= sizeof(*p_tlv
);
1840 length
= sizeof(struct pfvf_def_resp_tlv
);
1842 p_tlv
= qed_add_tlv(p_hwfn
, &mbx
->offset
, CHANNEL_TLV_START_RXQ
,
1844 qed_add_tlv(p_hwfn
, &mbx
->offset
, CHANNEL_TLV_LIST_END
,
1845 sizeof(struct channel_list_end_tlv
));
1847 /* Update the TLV with the response */
1848 if ((status
== PFVF_STATUS_SUCCESS
) && !b_legacy
) {
1849 req
= &mbx
->req_virt
->start_rxq
;
1850 p_tlv
->offset
= PXP_VF_BAR0_START_MSDM_ZONE_B
+
1851 offsetof(struct mstorm_vf_zone
,
1852 non_trigger
.eth_rx_queue_producers
) +
1853 sizeof(struct eth_rx_prod_data
) * req
->rx_qid
;
1856 qed_iov_send_response(p_hwfn
, p_ptt
, vf
, length
, status
);
1859 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn
*p_hwfn
,
1860 struct qed_ptt
*p_ptt
,
1861 struct qed_vf_info
*vf
)
1863 struct qed_queue_start_common_params params
;
1864 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
1865 u8 status
= PFVF_STATUS_NO_RESOURCE
;
1866 struct qed_vf_q_info
*p_queue
;
1867 struct vfpf_start_rxq_tlv
*req
;
1868 bool b_legacy_vf
= false;
1871 req
= &mbx
->req_virt
->start_rxq
;
1873 if (!qed_iov_validate_rxq(p_hwfn
, vf
, req
->rx_qid
) ||
1874 !qed_iov_validate_sb(p_hwfn
, vf
, req
->hw_sb
))
1877 /* Acquire a new queue-cid */
1878 p_queue
= &vf
->vf_queues
[req
->rx_qid
];
1880 memset(¶ms
, 0, sizeof(params
));
1881 params
.queue_id
= p_queue
->fw_rx_qid
;
1882 params
.vport_id
= vf
->vport_id
;
1883 params
.stats_id
= vf
->abs_vf_id
+ 0x10;
1884 params
.sb
= req
->hw_sb
;
1885 params
.sb_idx
= req
->sb_index
;
1887 p_queue
->p_rx_cid
= _qed_eth_queue_to_cid(p_hwfn
,
1890 req
->rx_qid
, ¶ms
);
1891 if (!p_queue
->p_rx_cid
)
1894 /* Legacy VFs have their Producers in a different location, which they
1895 * calculate on their own and clean the producer prior to this.
1897 if (vf
->acquire
.vfdev_info
.eth_fp_hsi_minor
==
1898 ETH_HSI_VER_NO_PKT_LEN_TUNN
) {
1902 GTT_BAR0_MAP_REG_MSDM_RAM
+
1903 MSTORM_ETH_VF_PRODS_OFFSET(vf
->abs_vf_id
, req
->rx_qid
),
1906 p_queue
->p_rx_cid
->b_legacy_vf
= b_legacy_vf
;
1908 rc
= qed_eth_rxq_start_ramrod(p_hwfn
,
1912 req
->cqe_pbl_addr
, req
->cqe_pbl_size
);
1914 status
= PFVF_STATUS_FAILURE
;
1915 qed_eth_queue_cid_release(p_hwfn
, p_queue
->p_rx_cid
);
1916 p_queue
->p_rx_cid
= NULL
;
1918 status
= PFVF_STATUS_SUCCESS
;
1919 vf
->num_active_rxqs
++;
1923 qed_iov_vf_mbx_start_rxq_resp(p_hwfn
, p_ptt
, vf
, status
, b_legacy_vf
);
1926 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn
*p_hwfn
,
1927 struct qed_ptt
*p_ptt
,
1928 struct qed_vf_info
*p_vf
, u8 status
)
1930 struct qed_iov_vf_mbx
*mbx
= &p_vf
->vf_mbx
;
1931 struct pfvf_start_queue_resp_tlv
*p_tlv
;
1932 bool b_legacy
= false;
1935 mbx
->offset
= (u8
*)mbx
->reply_virt
;
1937 /* Taking a bigger struct instead of adding a TLV to list was a
1938 * mistake, but one which we're now stuck with, as some older
1939 * clients assume the size of the previous response.
1941 if (p_vf
->acquire
.vfdev_info
.eth_fp_hsi_minor
==
1942 ETH_HSI_VER_NO_PKT_LEN_TUNN
)
1946 length
= sizeof(*p_tlv
);
1948 length
= sizeof(struct pfvf_def_resp_tlv
);
1950 p_tlv
= qed_add_tlv(p_hwfn
, &mbx
->offset
, CHANNEL_TLV_START_TXQ
,
1952 qed_add_tlv(p_hwfn
, &mbx
->offset
, CHANNEL_TLV_LIST_END
,
1953 sizeof(struct channel_list_end_tlv
));
1955 /* Update the TLV with the response */
1956 if ((status
== PFVF_STATUS_SUCCESS
) && !b_legacy
) {
1957 u16 qid
= mbx
->req_virt
->start_txq
.tx_qid
;
1959 p_tlv
->offset
= qed_db_addr_vf(p_vf
->vf_queues
[qid
].fw_cid
,
1963 qed_iov_send_response(p_hwfn
, p_ptt
, p_vf
, length
, status
);
1966 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn
*p_hwfn
,
1967 struct qed_ptt
*p_ptt
,
1968 struct qed_vf_info
*vf
)
1970 struct qed_queue_start_common_params params
;
1971 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
1972 u8 status
= PFVF_STATUS_NO_RESOURCE
;
1973 union qed_qm_pq_params pq_params
;
1974 struct vfpf_start_txq_tlv
*req
;
1975 struct qed_vf_q_info
*p_queue
;
1979 /* Prepare the parameters which would choose the right PQ */
1980 memset(&pq_params
, 0, sizeof(pq_params
));
1981 pq_params
.eth
.is_vf
= 1;
1982 pq_params
.eth
.vf_id
= vf
->relative_vf_id
;
1984 memset(¶ms
, 0, sizeof(params
));
1985 req
= &mbx
->req_virt
->start_txq
;
1987 if (!qed_iov_validate_txq(p_hwfn
, vf
, req
->tx_qid
) ||
1988 !qed_iov_validate_sb(p_hwfn
, vf
, req
->hw_sb
))
1991 /* Acquire a new queue-cid */
1992 p_queue
= &vf
->vf_queues
[req
->tx_qid
];
1994 params
.queue_id
= p_queue
->fw_tx_qid
;
1995 params
.vport_id
= vf
->vport_id
;
1996 params
.stats_id
= vf
->abs_vf_id
+ 0x10;
1997 params
.sb
= req
->hw_sb
;
1998 params
.sb_idx
= req
->sb_index
;
2000 p_queue
->p_tx_cid
= _qed_eth_queue_to_cid(p_hwfn
,
2003 req
->tx_qid
, ¶ms
);
2004 if (!p_queue
->p_tx_cid
)
2007 pq
= qed_get_qm_pq(p_hwfn
, PROTOCOLID_ETH
, &pq_params
);
2008 rc
= qed_eth_txq_start_ramrod(p_hwfn
, p_queue
->p_tx_cid
,
2009 req
->pbl_addr
, req
->pbl_size
, pq
);
2011 status
= PFVF_STATUS_FAILURE
;
2012 qed_eth_queue_cid_release(p_hwfn
, p_queue
->p_tx_cid
);
2013 p_queue
->p_tx_cid
= NULL
;
2015 status
= PFVF_STATUS_SUCCESS
;
2019 qed_iov_vf_mbx_start_txq_resp(p_hwfn
, p_ptt
, vf
, status
);
2022 static int qed_iov_vf_stop_rxqs(struct qed_hwfn
*p_hwfn
,
2023 struct qed_vf_info
*vf
,
2024 u16 rxq_id
, u8 num_rxqs
, bool cqe_completion
)
2026 struct qed_vf_q_info
*p_queue
;
2030 if (rxq_id
+ num_rxqs
> ARRAY_SIZE(vf
->vf_queues
))
2033 for (qid
= rxq_id
; qid
< rxq_id
+ num_rxqs
; qid
++) {
2034 p_queue
= &vf
->vf_queues
[qid
];
2036 if (!p_queue
->p_rx_cid
)
2039 rc
= qed_eth_rx_queue_stop(p_hwfn
,
2041 false, cqe_completion
);
2045 vf
->vf_queues
[qid
].p_rx_cid
= NULL
;
2046 vf
->num_active_rxqs
--;
2052 static int qed_iov_vf_stop_txqs(struct qed_hwfn
*p_hwfn
,
2053 struct qed_vf_info
*vf
, u16 txq_id
, u8 num_txqs
)
2056 struct qed_vf_q_info
*p_queue
;
2059 if (txq_id
+ num_txqs
> ARRAY_SIZE(vf
->vf_queues
))
2062 for (qid
= txq_id
; qid
< txq_id
+ num_txqs
; qid
++) {
2063 p_queue
= &vf
->vf_queues
[qid
];
2064 if (!p_queue
->p_tx_cid
)
2067 rc
= qed_eth_tx_queue_stop(p_hwfn
, p_queue
->p_tx_cid
);
2071 p_queue
->p_tx_cid
= NULL
;
2077 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn
*p_hwfn
,
2078 struct qed_ptt
*p_ptt
,
2079 struct qed_vf_info
*vf
)
2081 u16 length
= sizeof(struct pfvf_def_resp_tlv
);
2082 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
2083 u8 status
= PFVF_STATUS_SUCCESS
;
2084 struct vfpf_stop_rxqs_tlv
*req
;
2087 /* We give the option of starting from qid != 0, in this case we
2088 * need to make sure that qid + num_qs doesn't exceed the actual
2089 * amount of queues that exist.
2091 req
= &mbx
->req_virt
->stop_rxqs
;
2092 rc
= qed_iov_vf_stop_rxqs(p_hwfn
, vf
, req
->rx_qid
,
2093 req
->num_rxqs
, req
->cqe_completion
);
2095 status
= PFVF_STATUS_FAILURE
;
2097 qed_iov_prepare_resp(p_hwfn
, p_ptt
, vf
, CHANNEL_TLV_STOP_RXQS
,
2101 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn
*p_hwfn
,
2102 struct qed_ptt
*p_ptt
,
2103 struct qed_vf_info
*vf
)
2105 u16 length
= sizeof(struct pfvf_def_resp_tlv
);
2106 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
2107 u8 status
= PFVF_STATUS_SUCCESS
;
2108 struct vfpf_stop_txqs_tlv
*req
;
2111 /* We give the option of starting from qid != 0, in this case we
2112 * need to make sure that qid + num_qs doesn't exceed the actual
2113 * amount of queues that exist.
2115 req
= &mbx
->req_virt
->stop_txqs
;
2116 rc
= qed_iov_vf_stop_txqs(p_hwfn
, vf
, req
->tx_qid
, req
->num_txqs
);
2118 status
= PFVF_STATUS_FAILURE
;
2120 qed_iov_prepare_resp(p_hwfn
, p_ptt
, vf
, CHANNEL_TLV_STOP_TXQS
,
2124 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn
*p_hwfn
,
2125 struct qed_ptt
*p_ptt
,
2126 struct qed_vf_info
*vf
)
2128 struct qed_queue_cid
*handlers
[QED_MAX_VF_CHAINS_PER_PF
];
2129 u16 length
= sizeof(struct pfvf_def_resp_tlv
);
2130 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
2131 struct vfpf_update_rxq_tlv
*req
;
2132 u8 status
= PFVF_STATUS_FAILURE
;
2133 u8 complete_event_flg
;
2134 u8 complete_cqe_flg
;
2139 req
= &mbx
->req_virt
->update_rxq
;
2140 complete_cqe_flg
= !!(req
->flags
& VFPF_RXQ_UPD_COMPLETE_CQE_FLAG
);
2141 complete_event_flg
= !!(req
->flags
& VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG
);
2143 /* Validate inputs */
2144 if (req
->num_rxqs
+ req
->rx_qid
> QED_MAX_VF_CHAINS_PER_PF
||
2145 !qed_iov_validate_rxq(p_hwfn
, vf
, req
->rx_qid
)) {
2146 DP_INFO(p_hwfn
, "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2147 vf
->relative_vf_id
, req
->rx_qid
, req
->num_rxqs
);
2151 for (i
= 0; i
< req
->num_rxqs
; i
++) {
2152 qid
= req
->rx_qid
+ i
;
2153 if (!vf
->vf_queues
[qid
].p_rx_cid
) {
2155 "VF[%d] rx_qid = %d isn`t active!\n",
2156 vf
->relative_vf_id
, qid
);
2160 handlers
[i
] = vf
->vf_queues
[qid
].p_rx_cid
;
2163 rc
= qed_sp_eth_rx_queues_update(p_hwfn
, (void **)&handlers
,
2167 QED_SPQ_MODE_EBLOCK
, NULL
);
2171 status
= PFVF_STATUS_SUCCESS
;
2173 qed_iov_prepare_resp(p_hwfn
, p_ptt
, vf
, CHANNEL_TLV_UPDATE_RXQ
,
2177 void *qed_iov_search_list_tlvs(struct qed_hwfn
*p_hwfn
,
2178 void *p_tlvs_list
, u16 req_type
)
2180 struct channel_tlv
*p_tlv
= (struct channel_tlv
*)p_tlvs_list
;
2184 if (!p_tlv
->length
) {
2185 DP_NOTICE(p_hwfn
, "Zero length TLV found\n");
2189 if (p_tlv
->type
== req_type
) {
2190 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
2191 "Extended tlv type %d, length %d found\n",
2192 p_tlv
->type
, p_tlv
->length
);
2196 len
+= p_tlv
->length
;
2197 p_tlv
= (struct channel_tlv
*)((u8
*)p_tlv
+ p_tlv
->length
);
2199 if ((len
+ p_tlv
->length
) > TLV_BUFFER_SIZE
) {
2200 DP_NOTICE(p_hwfn
, "TLVs has overrun the buffer size\n");
2203 } while (p_tlv
->type
!= CHANNEL_TLV_LIST_END
);
2209 qed_iov_vp_update_act_param(struct qed_hwfn
*p_hwfn
,
2210 struct qed_sp_vport_update_params
*p_data
,
2211 struct qed_iov_vf_mbx
*p_mbx
, u16
*tlvs_mask
)
2213 struct vfpf_vport_update_activate_tlv
*p_act_tlv
;
2214 u16 tlv
= CHANNEL_TLV_VPORT_UPDATE_ACTIVATE
;
2216 p_act_tlv
= (struct vfpf_vport_update_activate_tlv
*)
2217 qed_iov_search_list_tlvs(p_hwfn
, p_mbx
->req_virt
, tlv
);
2221 p_data
->update_vport_active_rx_flg
= p_act_tlv
->update_rx
;
2222 p_data
->vport_active_rx_flg
= p_act_tlv
->active_rx
;
2223 p_data
->update_vport_active_tx_flg
= p_act_tlv
->update_tx
;
2224 p_data
->vport_active_tx_flg
= p_act_tlv
->active_tx
;
2225 *tlvs_mask
|= 1 << QED_IOV_VP_UPDATE_ACTIVATE
;
2229 qed_iov_vp_update_vlan_param(struct qed_hwfn
*p_hwfn
,
2230 struct qed_sp_vport_update_params
*p_data
,
2231 struct qed_vf_info
*p_vf
,
2232 struct qed_iov_vf_mbx
*p_mbx
, u16
*tlvs_mask
)
2234 struct vfpf_vport_update_vlan_strip_tlv
*p_vlan_tlv
;
2235 u16 tlv
= CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP
;
2237 p_vlan_tlv
= (struct vfpf_vport_update_vlan_strip_tlv
*)
2238 qed_iov_search_list_tlvs(p_hwfn
, p_mbx
->req_virt
, tlv
);
2242 p_vf
->shadow_config
.inner_vlan_removal
= p_vlan_tlv
->remove_vlan
;
2244 /* Ignore the VF request if we're forcing a vlan */
2245 if (!(p_vf
->configured_features
& BIT(VLAN_ADDR_FORCED
))) {
2246 p_data
->update_inner_vlan_removal_flg
= 1;
2247 p_data
->inner_vlan_removal_flg
= p_vlan_tlv
->remove_vlan
;
2250 *tlvs_mask
|= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP
;
2254 qed_iov_vp_update_tx_switch(struct qed_hwfn
*p_hwfn
,
2255 struct qed_sp_vport_update_params
*p_data
,
2256 struct qed_iov_vf_mbx
*p_mbx
, u16
*tlvs_mask
)
2258 struct vfpf_vport_update_tx_switch_tlv
*p_tx_switch_tlv
;
2259 u16 tlv
= CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH
;
2261 p_tx_switch_tlv
= (struct vfpf_vport_update_tx_switch_tlv
*)
2262 qed_iov_search_list_tlvs(p_hwfn
, p_mbx
->req_virt
,
2264 if (!p_tx_switch_tlv
)
2267 p_data
->update_tx_switching_flg
= 1;
2268 p_data
->tx_switching_flg
= p_tx_switch_tlv
->tx_switching
;
2269 *tlvs_mask
|= 1 << QED_IOV_VP_UPDATE_TX_SWITCH
;
2273 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn
*p_hwfn
,
2274 struct qed_sp_vport_update_params
*p_data
,
2275 struct qed_iov_vf_mbx
*p_mbx
, u16
*tlvs_mask
)
2277 struct vfpf_vport_update_mcast_bin_tlv
*p_mcast_tlv
;
2278 u16 tlv
= CHANNEL_TLV_VPORT_UPDATE_MCAST
;
2280 p_mcast_tlv
= (struct vfpf_vport_update_mcast_bin_tlv
*)
2281 qed_iov_search_list_tlvs(p_hwfn
, p_mbx
->req_virt
, tlv
);
2285 p_data
->update_approx_mcast_flg
= 1;
2286 memcpy(p_data
->bins
, p_mcast_tlv
->bins
,
2287 sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS
);
2288 *tlvs_mask
|= 1 << QED_IOV_VP_UPDATE_MCAST
;
2292 qed_iov_vp_update_accept_flag(struct qed_hwfn
*p_hwfn
,
2293 struct qed_sp_vport_update_params
*p_data
,
2294 struct qed_iov_vf_mbx
*p_mbx
, u16
*tlvs_mask
)
2296 struct qed_filter_accept_flags
*p_flags
= &p_data
->accept_flags
;
2297 struct vfpf_vport_update_accept_param_tlv
*p_accept_tlv
;
2298 u16 tlv
= CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM
;
2300 p_accept_tlv
= (struct vfpf_vport_update_accept_param_tlv
*)
2301 qed_iov_search_list_tlvs(p_hwfn
, p_mbx
->req_virt
, tlv
);
2305 p_flags
->update_rx_mode_config
= p_accept_tlv
->update_rx_mode
;
2306 p_flags
->rx_accept_filter
= p_accept_tlv
->rx_accept_filter
;
2307 p_flags
->update_tx_mode_config
= p_accept_tlv
->update_tx_mode
;
2308 p_flags
->tx_accept_filter
= p_accept_tlv
->tx_accept_filter
;
2309 *tlvs_mask
|= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM
;
2313 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn
*p_hwfn
,
2314 struct qed_sp_vport_update_params
*p_data
,
2315 struct qed_iov_vf_mbx
*p_mbx
, u16
*tlvs_mask
)
2317 struct vfpf_vport_update_accept_any_vlan_tlv
*p_accept_any_vlan
;
2318 u16 tlv
= CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN
;
2320 p_accept_any_vlan
= (struct vfpf_vport_update_accept_any_vlan_tlv
*)
2321 qed_iov_search_list_tlvs(p_hwfn
, p_mbx
->req_virt
,
2323 if (!p_accept_any_vlan
)
2326 p_data
->accept_any_vlan
= p_accept_any_vlan
->accept_any_vlan
;
2327 p_data
->update_accept_any_vlan_flg
=
2328 p_accept_any_vlan
->update_accept_any_vlan_flg
;
2329 *tlvs_mask
|= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN
;
2333 qed_iov_vp_update_rss_param(struct qed_hwfn
*p_hwfn
,
2334 struct qed_vf_info
*vf
,
2335 struct qed_sp_vport_update_params
*p_data
,
2336 struct qed_rss_params
*p_rss
,
2337 struct qed_iov_vf_mbx
*p_mbx
,
2338 u16
*tlvs_mask
, u16
*tlvs_accepted
)
2340 struct vfpf_vport_update_rss_tlv
*p_rss_tlv
;
2341 u16 tlv
= CHANNEL_TLV_VPORT_UPDATE_RSS
;
2342 bool b_reject
= false;
2346 p_rss_tlv
= (struct vfpf_vport_update_rss_tlv
*)
2347 qed_iov_search_list_tlvs(p_hwfn
, p_mbx
->req_virt
, tlv
);
2349 p_data
->rss_params
= NULL
;
2353 memset(p_rss
, 0, sizeof(struct qed_rss_params
));
2355 p_rss
->update_rss_config
= !!(p_rss_tlv
->update_rss_flags
&
2356 VFPF_UPDATE_RSS_CONFIG_FLAG
);
2357 p_rss
->update_rss_capabilities
= !!(p_rss_tlv
->update_rss_flags
&
2358 VFPF_UPDATE_RSS_CAPS_FLAG
);
2359 p_rss
->update_rss_ind_table
= !!(p_rss_tlv
->update_rss_flags
&
2360 VFPF_UPDATE_RSS_IND_TABLE_FLAG
);
2361 p_rss
->update_rss_key
= !!(p_rss_tlv
->update_rss_flags
&
2362 VFPF_UPDATE_RSS_KEY_FLAG
);
2364 p_rss
->rss_enable
= p_rss_tlv
->rss_enable
;
2365 p_rss
->rss_eng_id
= vf
->relative_vf_id
+ 1;
2366 p_rss
->rss_caps
= p_rss_tlv
->rss_caps
;
2367 p_rss
->rss_table_size_log
= p_rss_tlv
->rss_table_size_log
;
2368 memcpy(p_rss
->rss_key
, p_rss_tlv
->rss_key
, sizeof(p_rss
->rss_key
));
2370 table_size
= min_t(u16
, ARRAY_SIZE(p_rss
->rss_ind_table
),
2371 (1 << p_rss_tlv
->rss_table_size_log
));
2373 for (i
= 0; i
< table_size
; i
++) {
2374 q_idx
= p_rss_tlv
->rss_ind_table
[i
];
2375 if (!qed_iov_validate_rxq(p_hwfn
, vf
, q_idx
)) {
2378 "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2379 vf
->relative_vf_id
, q_idx
);
2384 if (!vf
->vf_queues
[q_idx
].p_rx_cid
) {
2387 "VF[%d]: Omitting RSS due to inactive queue %08x\n",
2388 vf
->relative_vf_id
, q_idx
);
2393 p_rss
->rss_ind_table
[i
] = vf
->vf_queues
[q_idx
].p_rx_cid
;
2396 p_data
->rss_params
= p_rss
;
2398 *tlvs_mask
|= 1 << QED_IOV_VP_UPDATE_RSS
;
2400 *tlvs_accepted
|= 1 << QED_IOV_VP_UPDATE_RSS
;
2404 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn
*p_hwfn
,
2405 struct qed_vf_info
*vf
,
2406 struct qed_sp_vport_update_params
*p_data
,
2407 struct qed_sge_tpa_params
*p_sge_tpa
,
2408 struct qed_iov_vf_mbx
*p_mbx
, u16
*tlvs_mask
)
2410 struct vfpf_vport_update_sge_tpa_tlv
*p_sge_tpa_tlv
;
2411 u16 tlv
= CHANNEL_TLV_VPORT_UPDATE_SGE_TPA
;
2413 p_sge_tpa_tlv
= (struct vfpf_vport_update_sge_tpa_tlv
*)
2414 qed_iov_search_list_tlvs(p_hwfn
, p_mbx
->req_virt
, tlv
);
2416 if (!p_sge_tpa_tlv
) {
2417 p_data
->sge_tpa_params
= NULL
;
2421 memset(p_sge_tpa
, 0, sizeof(struct qed_sge_tpa_params
));
2423 p_sge_tpa
->update_tpa_en_flg
=
2424 !!(p_sge_tpa_tlv
->update_sge_tpa_flags
& VFPF_UPDATE_TPA_EN_FLAG
);
2425 p_sge_tpa
->update_tpa_param_flg
=
2426 !!(p_sge_tpa_tlv
->update_sge_tpa_flags
&
2427 VFPF_UPDATE_TPA_PARAM_FLAG
);
2429 p_sge_tpa
->tpa_ipv4_en_flg
=
2430 !!(p_sge_tpa_tlv
->sge_tpa_flags
& VFPF_TPA_IPV4_EN_FLAG
);
2431 p_sge_tpa
->tpa_ipv6_en_flg
=
2432 !!(p_sge_tpa_tlv
->sge_tpa_flags
& VFPF_TPA_IPV6_EN_FLAG
);
2433 p_sge_tpa
->tpa_pkt_split_flg
=
2434 !!(p_sge_tpa_tlv
->sge_tpa_flags
& VFPF_TPA_PKT_SPLIT_FLAG
);
2435 p_sge_tpa
->tpa_hdr_data_split_flg
=
2436 !!(p_sge_tpa_tlv
->sge_tpa_flags
& VFPF_TPA_HDR_DATA_SPLIT_FLAG
);
2437 p_sge_tpa
->tpa_gro_consistent_flg
=
2438 !!(p_sge_tpa_tlv
->sge_tpa_flags
& VFPF_TPA_GRO_CONSIST_FLAG
);
2440 p_sge_tpa
->tpa_max_aggs_num
= p_sge_tpa_tlv
->tpa_max_aggs_num
;
2441 p_sge_tpa
->tpa_max_size
= p_sge_tpa_tlv
->tpa_max_size
;
2442 p_sge_tpa
->tpa_min_size_to_start
= p_sge_tpa_tlv
->tpa_min_size_to_start
;
2443 p_sge_tpa
->tpa_min_size_to_cont
= p_sge_tpa_tlv
->tpa_min_size_to_cont
;
2444 p_sge_tpa
->max_buffers_per_cqe
= p_sge_tpa_tlv
->max_buffers_per_cqe
;
2446 p_data
->sge_tpa_params
= p_sge_tpa
;
2448 *tlvs_mask
|= 1 << QED_IOV_VP_UPDATE_SGE_TPA
;
2451 static int qed_iov_pre_update_vport(struct qed_hwfn
*hwfn
,
2453 struct qed_sp_vport_update_params
*params
,
2456 u8 mask
= QED_ACCEPT_UCAST_UNMATCHED
| QED_ACCEPT_MCAST_UNMATCHED
;
2457 struct qed_filter_accept_flags
*flags
= ¶ms
->accept_flags
;
2458 struct qed_public_vf_info
*vf_info
;
2460 /* Untrusted VFs can't even be trusted to know that fact.
2461 * Simply indicate everything is configured fine, and trace
2462 * configuration 'behind their back'.
2464 if (!(*tlvs
& BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM
)))
2467 vf_info
= qed_iov_get_public_vf_info(hwfn
, vfid
, true);
2469 if (flags
->update_rx_mode_config
) {
2470 vf_info
->rx_accept_mode
= flags
->rx_accept_filter
;
2471 if (!vf_info
->is_trusted_configured
)
2472 flags
->rx_accept_filter
&= ~mask
;
2475 if (flags
->update_tx_mode_config
) {
2476 vf_info
->tx_accept_mode
= flags
->tx_accept_filter
;
2477 if (!vf_info
->is_trusted_configured
)
2478 flags
->tx_accept_filter
&= ~mask
;
2484 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn
*p_hwfn
,
2485 struct qed_ptt
*p_ptt
,
2486 struct qed_vf_info
*vf
)
2488 struct qed_rss_params
*p_rss_params
= NULL
;
2489 struct qed_sp_vport_update_params params
;
2490 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
2491 struct qed_sge_tpa_params sge_tpa_params
;
2492 u16 tlvs_mask
= 0, tlvs_accepted
= 0;
2493 u8 status
= PFVF_STATUS_SUCCESS
;
2497 /* Valiate PF can send such a request */
2498 if (!vf
->vport_instance
) {
2501 "No VPORT instance available for VF[%d], failing vport update\n",
2503 status
= PFVF_STATUS_FAILURE
;
2506 p_rss_params
= vzalloc(sizeof(*p_rss_params
));
2507 if (p_rss_params
== NULL
) {
2508 status
= PFVF_STATUS_FAILURE
;
2512 memset(¶ms
, 0, sizeof(params
));
2513 params
.opaque_fid
= vf
->opaque_fid
;
2514 params
.vport_id
= vf
->vport_id
;
2515 params
.rss_params
= NULL
;
2517 /* Search for extended tlvs list and update values
2518 * from VF in struct qed_sp_vport_update_params.
2520 qed_iov_vp_update_act_param(p_hwfn
, ¶ms
, mbx
, &tlvs_mask
);
2521 qed_iov_vp_update_vlan_param(p_hwfn
, ¶ms
, vf
, mbx
, &tlvs_mask
);
2522 qed_iov_vp_update_tx_switch(p_hwfn
, ¶ms
, mbx
, &tlvs_mask
);
2523 qed_iov_vp_update_mcast_bin_param(p_hwfn
, ¶ms
, mbx
, &tlvs_mask
);
2524 qed_iov_vp_update_accept_flag(p_hwfn
, ¶ms
, mbx
, &tlvs_mask
);
2525 qed_iov_vp_update_accept_any_vlan(p_hwfn
, ¶ms
, mbx
, &tlvs_mask
);
2526 qed_iov_vp_update_sge_tpa_param(p_hwfn
, vf
, ¶ms
,
2527 &sge_tpa_params
, mbx
, &tlvs_mask
);
2529 tlvs_accepted
= tlvs_mask
;
2531 /* Some of the extended TLVs need to be validated first; In that case,
2532 * they can update the mask without updating the accepted [so that
2533 * PF could communicate to VF it has rejected request].
2535 qed_iov_vp_update_rss_param(p_hwfn
, vf
, ¶ms
, p_rss_params
,
2536 mbx
, &tlvs_mask
, &tlvs_accepted
);
2538 if (qed_iov_pre_update_vport(p_hwfn
, vf
->relative_vf_id
,
2539 ¶ms
, &tlvs_accepted
)) {
2541 status
= PFVF_STATUS_NOT_SUPPORTED
;
2545 if (!tlvs_accepted
) {
2547 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
2548 "Upper-layer prevents VF vport configuration\n");
2550 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
2551 "No feature tlvs found for vport update\n");
2552 status
= PFVF_STATUS_NOT_SUPPORTED
;
2556 rc
= qed_sp_vport_update(p_hwfn
, ¶ms
, QED_SPQ_MODE_EBLOCK
, NULL
);
2559 status
= PFVF_STATUS_FAILURE
;
2562 vfree(p_rss_params
);
2563 length
= qed_iov_prep_vp_update_resp_tlvs(p_hwfn
, vf
, mbx
, status
,
2564 tlvs_mask
, tlvs_accepted
);
2565 qed_iov_send_response(p_hwfn
, p_ptt
, vf
, length
, status
);
2568 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn
*p_hwfn
,
2569 struct qed_vf_info
*p_vf
,
2570 struct qed_filter_ucast
*p_params
)
2574 /* First remove entries and then add new ones */
2575 if (p_params
->opcode
== QED_FILTER_REMOVE
) {
2576 for (i
= 0; i
< QED_ETH_VF_NUM_VLAN_FILTERS
+ 1; i
++)
2577 if (p_vf
->shadow_config
.vlans
[i
].used
&&
2578 p_vf
->shadow_config
.vlans
[i
].vid
==
2580 p_vf
->shadow_config
.vlans
[i
].used
= false;
2583 if (i
== QED_ETH_VF_NUM_VLAN_FILTERS
+ 1) {
2586 "VF [%d] - Tries to remove a non-existing vlan\n",
2587 p_vf
->relative_vf_id
);
2590 } else if (p_params
->opcode
== QED_FILTER_REPLACE
||
2591 p_params
->opcode
== QED_FILTER_FLUSH
) {
2592 for (i
= 0; i
< QED_ETH_VF_NUM_VLAN_FILTERS
+ 1; i
++)
2593 p_vf
->shadow_config
.vlans
[i
].used
= false;
2596 /* In forced mode, we're willing to remove entries - but we don't add
2599 if (p_vf
->bulletin
.p_virt
->valid_bitmap
& BIT(VLAN_ADDR_FORCED
))
2602 if (p_params
->opcode
== QED_FILTER_ADD
||
2603 p_params
->opcode
== QED_FILTER_REPLACE
) {
2604 for (i
= 0; i
< QED_ETH_VF_NUM_VLAN_FILTERS
+ 1; i
++) {
2605 if (p_vf
->shadow_config
.vlans
[i
].used
)
2608 p_vf
->shadow_config
.vlans
[i
].used
= true;
2609 p_vf
->shadow_config
.vlans
[i
].vid
= p_params
->vlan
;
2613 if (i
== QED_ETH_VF_NUM_VLAN_FILTERS
+ 1) {
2616 "VF [%d] - Tries to configure more than %d vlan filters\n",
2617 p_vf
->relative_vf_id
,
2618 QED_ETH_VF_NUM_VLAN_FILTERS
+ 1);
2626 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn
*p_hwfn
,
2627 struct qed_vf_info
*p_vf
,
2628 struct qed_filter_ucast
*p_params
)
2632 /* If we're in forced-mode, we don't allow any change */
2633 if (p_vf
->bulletin
.p_virt
->valid_bitmap
& BIT(MAC_ADDR_FORCED
))
2636 /* First remove entries and then add new ones */
2637 if (p_params
->opcode
== QED_FILTER_REMOVE
) {
2638 for (i
= 0; i
< QED_ETH_VF_NUM_MAC_FILTERS
; i
++) {
2639 if (ether_addr_equal(p_vf
->shadow_config
.macs
[i
],
2641 eth_zero_addr(p_vf
->shadow_config
.macs
[i
]);
2646 if (i
== QED_ETH_VF_NUM_MAC_FILTERS
) {
2647 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
2648 "MAC isn't configured\n");
2651 } else if (p_params
->opcode
== QED_FILTER_REPLACE
||
2652 p_params
->opcode
== QED_FILTER_FLUSH
) {
2653 for (i
= 0; i
< QED_ETH_VF_NUM_MAC_FILTERS
; i
++)
2654 eth_zero_addr(p_vf
->shadow_config
.macs
[i
]);
2657 /* List the new MAC address */
2658 if (p_params
->opcode
!= QED_FILTER_ADD
&&
2659 p_params
->opcode
!= QED_FILTER_REPLACE
)
2662 for (i
= 0; i
< QED_ETH_VF_NUM_MAC_FILTERS
; i
++) {
2663 if (is_zero_ether_addr(p_vf
->shadow_config
.macs
[i
])) {
2664 ether_addr_copy(p_vf
->shadow_config
.macs
[i
],
2666 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
2667 "Added MAC at %d entry in shadow\n", i
);
2672 if (i
== QED_ETH_VF_NUM_MAC_FILTERS
) {
2673 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
, "No available place for MAC\n");
2681 qed_iov_vf_update_unicast_shadow(struct qed_hwfn
*p_hwfn
,
2682 struct qed_vf_info
*p_vf
,
2683 struct qed_filter_ucast
*p_params
)
2687 if (p_params
->type
== QED_FILTER_MAC
) {
2688 rc
= qed_iov_vf_update_mac_shadow(p_hwfn
, p_vf
, p_params
);
2693 if (p_params
->type
== QED_FILTER_VLAN
)
2694 rc
= qed_iov_vf_update_vlan_shadow(p_hwfn
, p_vf
, p_params
);
2699 static int qed_iov_chk_ucast(struct qed_hwfn
*hwfn
,
2700 int vfid
, struct qed_filter_ucast
*params
)
2702 struct qed_public_vf_info
*vf
;
2704 vf
= qed_iov_get_public_vf_info(hwfn
, vfid
, true);
2708 /* No real decision to make; Store the configured MAC */
2709 if (params
->type
== QED_FILTER_MAC
||
2710 params
->type
== QED_FILTER_MAC_VLAN
)
2711 ether_addr_copy(vf
->mac
, params
->mac
);
2716 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn
*p_hwfn
,
2717 struct qed_ptt
*p_ptt
,
2718 struct qed_vf_info
*vf
)
2720 struct qed_bulletin_content
*p_bulletin
= vf
->bulletin
.p_virt
;
2721 struct qed_iov_vf_mbx
*mbx
= &vf
->vf_mbx
;
2722 struct vfpf_ucast_filter_tlv
*req
;
2723 u8 status
= PFVF_STATUS_SUCCESS
;
2724 struct qed_filter_ucast params
;
2727 /* Prepare the unicast filter params */
2728 memset(¶ms
, 0, sizeof(struct qed_filter_ucast
));
2729 req
= &mbx
->req_virt
->ucast_filter
;
2730 params
.opcode
= (enum qed_filter_opcode
)req
->opcode
;
2731 params
.type
= (enum qed_filter_ucast_type
)req
->type
;
2733 params
.is_rx_filter
= 1;
2734 params
.is_tx_filter
= 1;
2735 params
.vport_to_remove_from
= vf
->vport_id
;
2736 params
.vport_to_add_to
= vf
->vport_id
;
2737 memcpy(params
.mac
, req
->mac
, ETH_ALEN
);
2738 params
.vlan
= req
->vlan
;
2742 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
2743 vf
->abs_vf_id
, params
.opcode
, params
.type
,
2744 params
.is_rx_filter
? "RX" : "",
2745 params
.is_tx_filter
? "TX" : "",
2746 params
.vport_to_add_to
,
2747 params
.mac
[0], params
.mac
[1],
2748 params
.mac
[2], params
.mac
[3],
2749 params
.mac
[4], params
.mac
[5], params
.vlan
);
2751 if (!vf
->vport_instance
) {
2754 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
2756 status
= PFVF_STATUS_FAILURE
;
2760 /* Update shadow copy of the VF configuration */
2761 if (qed_iov_vf_update_unicast_shadow(p_hwfn
, vf
, ¶ms
)) {
2762 status
= PFVF_STATUS_FAILURE
;
2766 /* Determine if the unicast filtering is acceptible by PF */
2767 if ((p_bulletin
->valid_bitmap
& BIT(VLAN_ADDR_FORCED
)) &&
2768 (params
.type
== QED_FILTER_VLAN
||
2769 params
.type
== QED_FILTER_MAC_VLAN
)) {
2770 /* Once VLAN is forced or PVID is set, do not allow
2771 * to add/replace any further VLANs.
2773 if (params
.opcode
== QED_FILTER_ADD
||
2774 params
.opcode
== QED_FILTER_REPLACE
)
2775 status
= PFVF_STATUS_FORCED
;
2779 if ((p_bulletin
->valid_bitmap
& BIT(MAC_ADDR_FORCED
)) &&
2780 (params
.type
== QED_FILTER_MAC
||
2781 params
.type
== QED_FILTER_MAC_VLAN
)) {
2782 if (!ether_addr_equal(p_bulletin
->mac
, params
.mac
) ||
2783 (params
.opcode
!= QED_FILTER_ADD
&&
2784 params
.opcode
!= QED_FILTER_REPLACE
))
2785 status
= PFVF_STATUS_FORCED
;
2789 rc
= qed_iov_chk_ucast(p_hwfn
, vf
->relative_vf_id
, ¶ms
);
2791 status
= PFVF_STATUS_FAILURE
;
2795 rc
= qed_sp_eth_filter_ucast(p_hwfn
, vf
->opaque_fid
, ¶ms
,
2796 QED_SPQ_MODE_CB
, NULL
);
2798 status
= PFVF_STATUS_FAILURE
;
2801 qed_iov_prepare_resp(p_hwfn
, p_ptt
, vf
, CHANNEL_TLV_UCAST_FILTER
,
2802 sizeof(struct pfvf_def_resp_tlv
), status
);
2805 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn
*p_hwfn
,
2806 struct qed_ptt
*p_ptt
,
2807 struct qed_vf_info
*vf
)
2812 for (i
= 0; i
< vf
->num_sbs
; i
++)
2813 qed_int_igu_init_pure_rt_single(p_hwfn
, p_ptt
,
2815 vf
->opaque_fid
, false);
2817 qed_iov_prepare_resp(p_hwfn
, p_ptt
, vf
, CHANNEL_TLV_INT_CLEANUP
,
2818 sizeof(struct pfvf_def_resp_tlv
),
2819 PFVF_STATUS_SUCCESS
);
2822 static void qed_iov_vf_mbx_close(struct qed_hwfn
*p_hwfn
,
2823 struct qed_ptt
*p_ptt
, struct qed_vf_info
*vf
)
2825 u16 length
= sizeof(struct pfvf_def_resp_tlv
);
2826 u8 status
= PFVF_STATUS_SUCCESS
;
2828 /* Disable Interrupts for VF */
2829 qed_iov_vf_igu_set_int(p_hwfn
, p_ptt
, vf
, 0);
2831 /* Reset Permission table */
2832 qed_iov_config_perm_table(p_hwfn
, p_ptt
, vf
, 0);
2834 qed_iov_prepare_resp(p_hwfn
, p_ptt
, vf
, CHANNEL_TLV_CLOSE
,
2838 static void qed_iov_vf_mbx_release(struct qed_hwfn
*p_hwfn
,
2839 struct qed_ptt
*p_ptt
,
2840 struct qed_vf_info
*p_vf
)
2842 u16 length
= sizeof(struct pfvf_def_resp_tlv
);
2843 u8 status
= PFVF_STATUS_SUCCESS
;
2846 qed_iov_vf_cleanup(p_hwfn
, p_vf
);
2848 if (p_vf
->state
!= VF_STOPPED
&& p_vf
->state
!= VF_FREE
) {
2849 /* Stopping the VF */
2850 rc
= qed_sp_vf_stop(p_hwfn
, p_vf
->concrete_fid
,
2854 DP_ERR(p_hwfn
, "qed_sp_vf_stop returned error %d\n",
2856 status
= PFVF_STATUS_FAILURE
;
2859 p_vf
->state
= VF_STOPPED
;
2862 qed_iov_prepare_resp(p_hwfn
, p_ptt
, p_vf
, CHANNEL_TLV_RELEASE
,
2867 qed_iov_vf_flr_poll_dorq(struct qed_hwfn
*p_hwfn
,
2868 struct qed_vf_info
*p_vf
, struct qed_ptt
*p_ptt
)
2873 qed_fid_pretend(p_hwfn
, p_ptt
, (u16
) p_vf
->concrete_fid
);
2875 for (cnt
= 0; cnt
< 50; cnt
++) {
2876 val
= qed_rd(p_hwfn
, p_ptt
, DORQ_REG_VF_USAGE_CNT
);
2881 qed_fid_pretend(p_hwfn
, p_ptt
, (u16
) p_hwfn
->hw_info
.concrete_fid
);
2885 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
2886 p_vf
->abs_vf_id
, val
);
2894 qed_iov_vf_flr_poll_pbf(struct qed_hwfn
*p_hwfn
,
2895 struct qed_vf_info
*p_vf
, struct qed_ptt
*p_ptt
)
2897 u32 cons
[MAX_NUM_VOQS
], distance
[MAX_NUM_VOQS
];
2900 /* Read initial consumers & producers */
2901 for (i
= 0; i
< MAX_NUM_VOQS
; i
++) {
2904 cons
[i
] = qed_rd(p_hwfn
, p_ptt
,
2905 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0
+
2907 prod
= qed_rd(p_hwfn
, p_ptt
,
2908 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0
+
2910 distance
[i
] = prod
- cons
[i
];
2913 /* Wait for consumers to pass the producers */
2915 for (cnt
= 0; cnt
< 50; cnt
++) {
2916 for (; i
< MAX_NUM_VOQS
; i
++) {
2919 tmp
= qed_rd(p_hwfn
, p_ptt
,
2920 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0
+
2922 if (distance
[i
] > tmp
- cons
[i
])
2926 if (i
== MAX_NUM_VOQS
)
2933 DP_ERR(p_hwfn
, "VF[%d] - pbf polling failed on VOQ %d\n",
2934 p_vf
->abs_vf_id
, i
);
2941 static int qed_iov_vf_flr_poll(struct qed_hwfn
*p_hwfn
,
2942 struct qed_vf_info
*p_vf
, struct qed_ptt
*p_ptt
)
2946 rc
= qed_iov_vf_flr_poll_dorq(p_hwfn
, p_vf
, p_ptt
);
2950 rc
= qed_iov_vf_flr_poll_pbf(p_hwfn
, p_vf
, p_ptt
);
2958 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn
*p_hwfn
,
2959 struct qed_ptt
*p_ptt
,
2960 u16 rel_vf_id
, u32
*ack_vfs
)
2962 struct qed_vf_info
*p_vf
;
2965 p_vf
= qed_iov_get_vf_info(p_hwfn
, rel_vf_id
, false);
2969 if (p_hwfn
->pf_iov_info
->pending_flr
[rel_vf_id
/ 64] &
2970 (1ULL << (rel_vf_id
% 64))) {
2971 u16 vfid
= p_vf
->abs_vf_id
;
2973 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
2974 "VF[%d] - Handling FLR\n", vfid
);
2976 qed_iov_vf_cleanup(p_hwfn
, p_vf
);
2978 /* If VF isn't active, no need for anything but SW */
2982 rc
= qed_iov_vf_flr_poll(p_hwfn
, p_vf
, p_ptt
);
2986 rc
= qed_final_cleanup(p_hwfn
, p_ptt
, vfid
, true);
2988 DP_ERR(p_hwfn
, "Failed handle FLR of VF[%d]\n", vfid
);
2992 /* Workaround to make VF-PF channel ready, as FW
2993 * doesn't do that as a part of FLR.
2996 GTT_BAR0_MAP_REG_USDM_RAM
+
2997 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid
), 1);
2999 /* VF_STOPPED has to be set only after final cleanup
3000 * but prior to re-enabling the VF.
3002 p_vf
->state
= VF_STOPPED
;
3004 rc
= qed_iov_enable_vf_access(p_hwfn
, p_ptt
, p_vf
);
3006 DP_ERR(p_hwfn
, "Failed to re-enable VF[%d] acces\n",
3011 /* Mark VF for ack and clean pending state */
3012 if (p_vf
->state
== VF_RESET
)
3013 p_vf
->state
= VF_STOPPED
;
3014 ack_vfs
[vfid
/ 32] |= BIT((vfid
% 32));
3015 p_hwfn
->pf_iov_info
->pending_flr
[rel_vf_id
/ 64] &=
3016 ~(1ULL << (rel_vf_id
% 64));
3017 p_vf
->vf_mbx
.b_pending_msg
= false;
3024 qed_iov_vf_flr_cleanup(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
)
3026 u32 ack_vfs
[VF_MAX_STATIC
/ 32];
3030 memset(ack_vfs
, 0, sizeof(u32
) * (VF_MAX_STATIC
/ 32));
3032 /* Since BRB <-> PRS interface can't be tested as part of the flr
3033 * polling due to HW limitations, simply sleep a bit. And since
3034 * there's no need to wait per-vf, do it before looping.
3038 for (i
= 0; i
< p_hwfn
->cdev
->p_iov_info
->total_vfs
; i
++)
3039 qed_iov_execute_vf_flr_cleanup(p_hwfn
, p_ptt
, i
, ack_vfs
);
3041 rc
= qed_mcp_ack_vf_flr(p_hwfn
, p_ptt
, ack_vfs
);
3045 int qed_iov_mark_vf_flr(struct qed_hwfn
*p_hwfn
, u32
*p_disabled_vfs
)
3049 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
, "Marking FLR-ed VFs\n");
3050 for (i
= 0; i
< (VF_MAX_STATIC
/ 32); i
++)
3051 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
3052 "[%08x,...,%08x]: %08x\n",
3053 i
* 32, (i
+ 1) * 32 - 1, p_disabled_vfs
[i
]);
3055 if (!p_hwfn
->cdev
->p_iov_info
) {
3056 DP_NOTICE(p_hwfn
, "VF flr but no IOV\n");
3061 for (i
= 0; i
< p_hwfn
->cdev
->p_iov_info
->total_vfs
; i
++) {
3062 struct qed_vf_info
*p_vf
;
3065 p_vf
= qed_iov_get_vf_info(p_hwfn
, i
, false);
3069 vfid
= p_vf
->abs_vf_id
;
3070 if (BIT((vfid
% 32)) & p_disabled_vfs
[vfid
/ 32]) {
3071 u64
*p_flr
= p_hwfn
->pf_iov_info
->pending_flr
;
3072 u16 rel_vf_id
= p_vf
->relative_vf_id
;
3074 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
3075 "VF[%d] [rel %d] got FLR-ed\n",
3078 p_vf
->state
= VF_RESET
;
3080 /* No need to lock here, since pending_flr should
3081 * only change here and before ACKing MFw. Since
3082 * MFW will not trigger an additional attention for
3083 * VF flr until ACKs, we're safe.
3085 p_flr
[rel_vf_id
/ 64] |= 1ULL << (rel_vf_id
% 64);
3093 static void qed_iov_get_link(struct qed_hwfn
*p_hwfn
,
3095 struct qed_mcp_link_params
*p_params
,
3096 struct qed_mcp_link_state
*p_link
,
3097 struct qed_mcp_link_capabilities
*p_caps
)
3099 struct qed_vf_info
*p_vf
= qed_iov_get_vf_info(p_hwfn
,
3102 struct qed_bulletin_content
*p_bulletin
;
3107 p_bulletin
= p_vf
->bulletin
.p_virt
;
3110 __qed_vf_get_link_params(p_hwfn
, p_params
, p_bulletin
);
3112 __qed_vf_get_link_state(p_hwfn
, p_link
, p_bulletin
);
3114 __qed_vf_get_link_caps(p_hwfn
, p_caps
, p_bulletin
);
3117 static void qed_iov_process_mbx_req(struct qed_hwfn
*p_hwfn
,
3118 struct qed_ptt
*p_ptt
, int vfid
)
3120 struct qed_iov_vf_mbx
*mbx
;
3121 struct qed_vf_info
*p_vf
;
3123 p_vf
= qed_iov_get_vf_info(p_hwfn
, (u16
) vfid
, true);
3127 mbx
= &p_vf
->vf_mbx
;
3129 /* qed_iov_process_mbx_request */
3130 if (!mbx
->b_pending_msg
) {
3132 "VF[%02x]: Trying to process mailbox message when none is pending\n",
3136 mbx
->b_pending_msg
= false;
3138 mbx
->first_tlv
= mbx
->req_virt
->first_tlv
;
3140 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
3141 "VF[%02x]: Processing mailbox message [type %04x]\n",
3142 p_vf
->abs_vf_id
, mbx
->first_tlv
.tl
.type
);
3144 /* check if tlv type is known */
3145 if (qed_iov_tlv_supported(mbx
->first_tlv
.tl
.type
) &&
3146 !p_vf
->b_malicious
) {
3147 switch (mbx
->first_tlv
.tl
.type
) {
3148 case CHANNEL_TLV_ACQUIRE
:
3149 qed_iov_vf_mbx_acquire(p_hwfn
, p_ptt
, p_vf
);
3151 case CHANNEL_TLV_VPORT_START
:
3152 qed_iov_vf_mbx_start_vport(p_hwfn
, p_ptt
, p_vf
);
3154 case CHANNEL_TLV_VPORT_TEARDOWN
:
3155 qed_iov_vf_mbx_stop_vport(p_hwfn
, p_ptt
, p_vf
);
3157 case CHANNEL_TLV_START_RXQ
:
3158 qed_iov_vf_mbx_start_rxq(p_hwfn
, p_ptt
, p_vf
);
3160 case CHANNEL_TLV_START_TXQ
:
3161 qed_iov_vf_mbx_start_txq(p_hwfn
, p_ptt
, p_vf
);
3163 case CHANNEL_TLV_STOP_RXQS
:
3164 qed_iov_vf_mbx_stop_rxqs(p_hwfn
, p_ptt
, p_vf
);
3166 case CHANNEL_TLV_STOP_TXQS
:
3167 qed_iov_vf_mbx_stop_txqs(p_hwfn
, p_ptt
, p_vf
);
3169 case CHANNEL_TLV_UPDATE_RXQ
:
3170 qed_iov_vf_mbx_update_rxqs(p_hwfn
, p_ptt
, p_vf
);
3172 case CHANNEL_TLV_VPORT_UPDATE
:
3173 qed_iov_vf_mbx_vport_update(p_hwfn
, p_ptt
, p_vf
);
3175 case CHANNEL_TLV_UCAST_FILTER
:
3176 qed_iov_vf_mbx_ucast_filter(p_hwfn
, p_ptt
, p_vf
);
3178 case CHANNEL_TLV_CLOSE
:
3179 qed_iov_vf_mbx_close(p_hwfn
, p_ptt
, p_vf
);
3181 case CHANNEL_TLV_INT_CLEANUP
:
3182 qed_iov_vf_mbx_int_cleanup(p_hwfn
, p_ptt
, p_vf
);
3184 case CHANNEL_TLV_RELEASE
:
3185 qed_iov_vf_mbx_release(p_hwfn
, p_ptt
, p_vf
);
3188 } else if (qed_iov_tlv_supported(mbx
->first_tlv
.tl
.type
)) {
3189 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
3190 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3191 p_vf
->abs_vf_id
, mbx
->first_tlv
.tl
.type
);
3193 qed_iov_prepare_resp(p_hwfn
, p_ptt
, p_vf
,
3194 mbx
->first_tlv
.tl
.type
,
3195 sizeof(struct pfvf_def_resp_tlv
),
3196 PFVF_STATUS_MALICIOUS
);
3198 /* unknown TLV - this may belong to a VF driver from the future
3199 * - a version written after this PF driver was written, which
3200 * supports features unknown as of yet. Too bad since we don't
3201 * support them. Or this may be because someone wrote a crappy
3202 * VF driver and is sending garbage over the channel.
3205 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3207 mbx
->first_tlv
.tl
.type
,
3208 mbx
->first_tlv
.tl
.length
,
3209 mbx
->first_tlv
.padding
, mbx
->first_tlv
.reply_address
);
3211 /* Try replying in case reply address matches the acquisition's
3214 if (p_vf
->acquire
.first_tlv
.reply_address
&&
3215 (mbx
->first_tlv
.reply_address
==
3216 p_vf
->acquire
.first_tlv
.reply_address
)) {
3217 qed_iov_prepare_resp(p_hwfn
, p_ptt
, p_vf
,
3218 mbx
->first_tlv
.tl
.type
,
3219 sizeof(struct pfvf_def_resp_tlv
),
3220 PFVF_STATUS_NOT_SUPPORTED
);
3224 "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3230 void qed_iov_pf_get_pending_events(struct qed_hwfn
*p_hwfn
, u64
*events
)
3234 memset(events
, 0, sizeof(u64
) * QED_VF_ARRAY_LENGTH
);
3236 qed_for_each_vf(p_hwfn
, i
) {
3237 struct qed_vf_info
*p_vf
;
3239 p_vf
= &p_hwfn
->pf_iov_info
->vfs_array
[i
];
3240 if (p_vf
->vf_mbx
.b_pending_msg
)
3241 events
[i
/ 64] |= 1ULL << (i
% 64);
3245 static struct qed_vf_info
*qed_sriov_get_vf_from_absid(struct qed_hwfn
*p_hwfn
,
3248 u8 min
= (u8
) p_hwfn
->cdev
->p_iov_info
->first_vf_in_pf
;
3250 if (!_qed_iov_pf_sanity_check(p_hwfn
, (int)abs_vfid
- min
, false)) {
3253 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
3258 return &p_hwfn
->pf_iov_info
->vfs_array
[(u8
) abs_vfid
- min
];
3261 static int qed_sriov_vfpf_msg(struct qed_hwfn
*p_hwfn
,
3262 u16 abs_vfid
, struct regpair
*vf_msg
)
3264 struct qed_vf_info
*p_vf
= qed_sriov_get_vf_from_absid(p_hwfn
,
3270 /* List the physical address of the request so that handler
3271 * could later on copy the message from it.
3273 p_vf
->vf_mbx
.pending_req
= (((u64
)vf_msg
->hi
) << 32) | vf_msg
->lo
;
3275 /* Mark the event and schedule the workqueue */
3276 p_vf
->vf_mbx
.b_pending_msg
= true;
3277 qed_schedule_iov(p_hwfn
, QED_IOV_WQ_MSG_FLAG
);
3282 static void qed_sriov_vfpf_malicious(struct qed_hwfn
*p_hwfn
,
3283 struct malicious_vf_eqe_data
*p_data
)
3285 struct qed_vf_info
*p_vf
;
3287 p_vf
= qed_sriov_get_vf_from_absid(p_hwfn
, p_data
->vf_id
);
3293 "VF [%d] - Malicious behavior [%02x]\n",
3294 p_vf
->abs_vf_id
, p_data
->err_id
);
3296 p_vf
->b_malicious
= true;
3299 int qed_sriov_eqe_event(struct qed_hwfn
*p_hwfn
,
3300 u8 opcode
, __le16 echo
, union event_ring_data
*data
)
3303 case COMMON_EVENT_VF_PF_CHANNEL
:
3304 return qed_sriov_vfpf_msg(p_hwfn
, le16_to_cpu(echo
),
3305 &data
->vf_pf_channel
.msg_addr
);
3306 case COMMON_EVENT_MALICIOUS_VF
:
3307 qed_sriov_vfpf_malicious(p_hwfn
, &data
->malicious_vf
);
3310 DP_INFO(p_hwfn
->cdev
, "Unknown sriov eqe event 0x%02x\n",
3316 u16
qed_iov_get_next_active_vf(struct qed_hwfn
*p_hwfn
, u16 rel_vf_id
)
3318 struct qed_hw_sriov_info
*p_iov
= p_hwfn
->cdev
->p_iov_info
;
3324 for (i
= rel_vf_id
; i
< p_iov
->total_vfs
; i
++)
3325 if (qed_iov_is_valid_vfid(p_hwfn
, rel_vf_id
, true, false))
3332 static int qed_iov_copy_vf_msg(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*ptt
,
3335 struct qed_dmae_params params
;
3336 struct qed_vf_info
*vf_info
;
3338 vf_info
= qed_iov_get_vf_info(p_hwfn
, (u16
) vfid
, true);
3342 memset(¶ms
, 0, sizeof(struct qed_dmae_params
));
3343 params
.flags
= QED_DMAE_FLAG_VF_SRC
| QED_DMAE_FLAG_COMPLETION_DST
;
3344 params
.src_vfid
= vf_info
->abs_vf_id
;
3346 if (qed_dmae_host2host(p_hwfn
, ptt
,
3347 vf_info
->vf_mbx
.pending_req
,
3348 vf_info
->vf_mbx
.req_phys
,
3349 sizeof(union vfpf_tlvs
) / 4, ¶ms
)) {
3350 DP_VERBOSE(p_hwfn
, QED_MSG_IOV
,
3351 "Failed to copy message from VF 0x%02x\n", vfid
);
3359 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn
*p_hwfn
,
3362 struct qed_vf_info
*vf_info
;
3365 vf_info
= qed_iov_get_vf_info(p_hwfn
, (u16
)vfid
, true);
3367 DP_NOTICE(p_hwfn
->cdev
,
3368 "Can not set forced MAC, invalid vfid [%d]\n", vfid
);
3372 if (vf_info
->b_malicious
) {
3373 DP_NOTICE(p_hwfn
->cdev
,
3374 "Can't set forced MAC to malicious VF [%d]\n", vfid
);
3378 feature
= 1 << MAC_ADDR_FORCED
;
3379 memcpy(vf_info
->bulletin
.p_virt
->mac
, mac
, ETH_ALEN
);
3381 vf_info
->bulletin
.p_virt
->valid_bitmap
|= feature
;
3382 /* Forced MAC will disable MAC_ADDR */
3383 vf_info
->bulletin
.p_virt
->valid_bitmap
&= ~BIT(VFPF_BULLETIN_MAC_ADDR
);
3385 qed_iov_configure_vport_forced(p_hwfn
, vf_info
, feature
);
3388 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn
*p_hwfn
,
3391 struct qed_vf_info
*vf_info
;
3394 vf_info
= qed_iov_get_vf_info(p_hwfn
, (u16
) vfid
, true);
3396 DP_NOTICE(p_hwfn
->cdev
,
3397 "Can not set forced MAC, invalid vfid [%d]\n", vfid
);
3401 if (vf_info
->b_malicious
) {
3402 DP_NOTICE(p_hwfn
->cdev
,
3403 "Can't set forced vlan to malicious VF [%d]\n", vfid
);
3407 feature
= 1 << VLAN_ADDR_FORCED
;
3408 vf_info
->bulletin
.p_virt
->pvid
= pvid
;
3410 vf_info
->bulletin
.p_virt
->valid_bitmap
|= feature
;
3412 vf_info
->bulletin
.p_virt
->valid_bitmap
&= ~feature
;
3414 qed_iov_configure_vport_forced(p_hwfn
, vf_info
, feature
);
3417 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn
*p_hwfn
, int vfid
)
3419 struct qed_vf_info
*p_vf_info
;
3421 p_vf_info
= qed_iov_get_vf_info(p_hwfn
, (u16
) vfid
, true);
3425 return !!p_vf_info
->vport_instance
;
3428 static bool qed_iov_is_vf_stopped(struct qed_hwfn
*p_hwfn
, int vfid
)
3430 struct qed_vf_info
*p_vf_info
;
3432 p_vf_info
= qed_iov_get_vf_info(p_hwfn
, (u16
) vfid
, true);
3436 return p_vf_info
->state
== VF_STOPPED
;
3439 static bool qed_iov_spoofchk_get(struct qed_hwfn
*p_hwfn
, int vfid
)
3441 struct qed_vf_info
*vf_info
;
3443 vf_info
= qed_iov_get_vf_info(p_hwfn
, (u16
) vfid
, true);
3447 return vf_info
->spoof_chk
;
3450 static int qed_iov_spoofchk_set(struct qed_hwfn
*p_hwfn
, int vfid
, bool val
)
3452 struct qed_vf_info
*vf
;
3455 if (!qed_iov_pf_sanity_check(p_hwfn
, vfid
)) {
3457 "SR-IOV sanity check failed, can't set spoofchk\n");
3461 vf
= qed_iov_get_vf_info(p_hwfn
, (u16
) vfid
, true);
3465 if (!qed_iov_vf_has_vport_instance(p_hwfn
, vfid
)) {
3466 /* After VF VPORT start PF will configure spoof check */
3467 vf
->req_spoofchk_val
= val
;
3472 rc
= __qed_iov_spoofchk_set(p_hwfn
, vf
, val
);
3478 static u8
*qed_iov_bulletin_get_forced_mac(struct qed_hwfn
*p_hwfn
,
3481 struct qed_vf_info
*p_vf
;
3483 p_vf
= qed_iov_get_vf_info(p_hwfn
, rel_vf_id
, true);
3484 if (!p_vf
|| !p_vf
->bulletin
.p_virt
)
3487 if (!(p_vf
->bulletin
.p_virt
->valid_bitmap
& BIT(MAC_ADDR_FORCED
)))
3490 return p_vf
->bulletin
.p_virt
->mac
;
3494 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn
*p_hwfn
, u16 rel_vf_id
)
3496 struct qed_vf_info
*p_vf
;
3498 p_vf
= qed_iov_get_vf_info(p_hwfn
, rel_vf_id
, true);
3499 if (!p_vf
|| !p_vf
->bulletin
.p_virt
)
3502 if (!(p_vf
->bulletin
.p_virt
->valid_bitmap
& BIT(VLAN_ADDR_FORCED
)))
3505 return p_vf
->bulletin
.p_virt
->pvid
;
3508 static int qed_iov_configure_tx_rate(struct qed_hwfn
*p_hwfn
,
3509 struct qed_ptt
*p_ptt
, int vfid
, int val
)
3511 struct qed_vf_info
*vf
;
3515 vf
= qed_iov_get_vf_info(p_hwfn
, (u16
)vfid
, true);
3519 rc
= qed_fw_vport(p_hwfn
, vf
->vport_id
, &abs_vp_id
);
3523 return qed_init_vport_rl(p_hwfn
, p_ptt
, abs_vp_id
, (u32
)val
);
3527 qed_iov_configure_min_tx_rate(struct qed_dev
*cdev
, int vfid
, u32 rate
)
3529 struct qed_vf_info
*vf
;
3533 for_each_hwfn(cdev
, i
) {
3534 struct qed_hwfn
*p_hwfn
= &cdev
->hwfns
[i
];
3536 if (!qed_iov_pf_sanity_check(p_hwfn
, vfid
)) {
3538 "SR-IOV sanity check failed, can't set min rate\n");
3543 vf
= qed_iov_get_vf_info(QED_LEADING_HWFN(cdev
), (u16
)vfid
, true);
3544 vport_id
= vf
->vport_id
;
3546 return qed_configure_vport_wfq(cdev
, vport_id
, rate
);
3549 static int qed_iov_get_vf_min_rate(struct qed_hwfn
*p_hwfn
, int vfid
)
3551 struct qed_wfq_data
*vf_vp_wfq
;
3552 struct qed_vf_info
*vf_info
;
3554 vf_info
= qed_iov_get_vf_info(p_hwfn
, (u16
) vfid
, true);
3558 vf_vp_wfq
= &p_hwfn
->qm_info
.wfq_data
[vf_info
->vport_id
];
3560 if (vf_vp_wfq
->configured
)
3561 return vf_vp_wfq
->min_speed
;
3567 * qed_schedule_iov - schedules IOV task for VF and PF
3568 * @hwfn: hardware function pointer
3569 * @flag: IOV flag for VF/PF
3571 void qed_schedule_iov(struct qed_hwfn
*hwfn
, enum qed_iov_wq_flag flag
)
3573 smp_mb__before_atomic();
3574 set_bit(flag
, &hwfn
->iov_task_flags
);
3575 smp_mb__after_atomic();
3576 DP_VERBOSE(hwfn
, QED_MSG_IOV
, "Scheduling iov task [Flag: %d]\n", flag
);
3577 queue_delayed_work(hwfn
->iov_wq
, &hwfn
->iov_task
, 0);
3580 void qed_vf_start_iov_wq(struct qed_dev
*cdev
)
3584 for_each_hwfn(cdev
, i
)
3585 queue_delayed_work(cdev
->hwfns
[i
].iov_wq
,
3586 &cdev
->hwfns
[i
].iov_task
, 0);
3589 int qed_sriov_disable(struct qed_dev
*cdev
, bool pci_enabled
)
3593 for_each_hwfn(cdev
, i
)
3594 if (cdev
->hwfns
[i
].iov_wq
)
3595 flush_workqueue(cdev
->hwfns
[i
].iov_wq
);
3597 /* Mark VFs for disablement */
3598 qed_iov_set_vfs_to_disable(cdev
, true);
3600 if (cdev
->p_iov_info
&& cdev
->p_iov_info
->num_vfs
&& pci_enabled
)
3601 pci_disable_sriov(cdev
->pdev
);
3603 for_each_hwfn(cdev
, i
) {
3604 struct qed_hwfn
*hwfn
= &cdev
->hwfns
[i
];
3605 struct qed_ptt
*ptt
= qed_ptt_acquire(hwfn
);
3607 /* Failure to acquire the ptt in 100g creates an odd error
3608 * where the first engine has already relased IOV.
3611 DP_ERR(hwfn
, "Failed to acquire ptt\n");
3615 /* Clean WFQ db and configure equal weight for all vports */
3616 qed_clean_wfq_db(hwfn
, ptt
);
3618 qed_for_each_vf(hwfn
, j
) {
3621 if (!qed_iov_is_valid_vfid(hwfn
, j
, true, false))
3624 /* Wait until VF is disabled before releasing */
3625 for (k
= 0; k
< 100; k
++) {
3626 if (!qed_iov_is_vf_stopped(hwfn
, j
))
3633 qed_iov_release_hw_for_vf(&cdev
->hwfns
[i
],
3637 "Timeout waiting for VF's FLR to end\n");
3640 qed_ptt_release(hwfn
, ptt
);
3643 qed_iov_set_vfs_to_disable(cdev
, false);
3648 static void qed_sriov_enable_qid_config(struct qed_hwfn
*hwfn
,
3650 struct qed_iov_vf_init_params
*params
)
3654 /* Since we have an equal resource distribution per-VF, and we assume
3655 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
3656 * sequentially from there.
3658 base
= FEAT_NUM(hwfn
, QED_PF_L2_QUE
) + vfid
* params
->num_queues
;
3660 params
->rel_vf_id
= vfid
;
3661 for (i
= 0; i
< params
->num_queues
; i
++) {
3662 params
->req_rx_queue
[i
] = base
+ i
;
3663 params
->req_tx_queue
[i
] = base
+ i
;
3667 static int qed_sriov_enable(struct qed_dev
*cdev
, int num
)
3669 struct qed_iov_vf_init_params params
;
3672 if (num
>= RESC_NUM(&cdev
->hwfns
[0], QED_VPORT
)) {
3673 DP_NOTICE(cdev
, "Can start at most %d VFs\n",
3674 RESC_NUM(&cdev
->hwfns
[0], QED_VPORT
) - 1);
3678 memset(¶ms
, 0, sizeof(params
));
3680 /* Initialize HW for VF access */
3681 for_each_hwfn(cdev
, j
) {
3682 struct qed_hwfn
*hwfn
= &cdev
->hwfns
[j
];
3683 struct qed_ptt
*ptt
= qed_ptt_acquire(hwfn
);
3685 /* Make sure not to use more than 16 queues per VF */
3686 params
.num_queues
= min_t(int,
3687 FEAT_NUM(hwfn
, QED_VF_L2_QUE
) / num
,
3691 DP_ERR(hwfn
, "Failed to acquire ptt\n");
3696 for (i
= 0; i
< num
; i
++) {
3697 if (!qed_iov_is_valid_vfid(hwfn
, i
, false, true))
3700 qed_sriov_enable_qid_config(hwfn
, i
, ¶ms
);
3701 rc
= qed_iov_init_hw_for_vf(hwfn
, ptt
, ¶ms
);
3703 DP_ERR(cdev
, "Failed to enable VF[%d]\n", i
);
3704 qed_ptt_release(hwfn
, ptt
);
3709 qed_ptt_release(hwfn
, ptt
);
3712 /* Enable SRIOV PCIe functions */
3713 rc
= pci_enable_sriov(cdev
->pdev
, num
);
3715 DP_ERR(cdev
, "Failed to enable sriov [%d]\n", rc
);
3722 qed_sriov_disable(cdev
, false);
3726 static int qed_sriov_configure(struct qed_dev
*cdev
, int num_vfs_param
)
3728 if (!IS_QED_SRIOV(cdev
)) {
3729 DP_VERBOSE(cdev
, QED_MSG_IOV
, "SR-IOV is not supported\n");
3734 return qed_sriov_enable(cdev
, num_vfs_param
);
3736 return qed_sriov_disable(cdev
, true);
3739 static int qed_sriov_pf_set_mac(struct qed_dev
*cdev
, u8
*mac
, int vfid
)
3743 if (!IS_QED_SRIOV(cdev
) || !IS_PF_SRIOV_ALLOC(&cdev
->hwfns
[0])) {
3744 DP_VERBOSE(cdev
, QED_MSG_IOV
,
3745 "Cannot set a VF MAC; Sriov is not enabled\n");
3749 if (!qed_iov_is_valid_vfid(&cdev
->hwfns
[0], vfid
, true, true)) {
3750 DP_VERBOSE(cdev
, QED_MSG_IOV
,
3751 "Cannot set VF[%d] MAC (VF is not active)\n", vfid
);
3755 for_each_hwfn(cdev
, i
) {
3756 struct qed_hwfn
*hwfn
= &cdev
->hwfns
[i
];
3757 struct qed_public_vf_info
*vf_info
;
3759 vf_info
= qed_iov_get_public_vf_info(hwfn
, vfid
, true);
3763 /* Set the forced MAC, and schedule the IOV task */
3764 ether_addr_copy(vf_info
->forced_mac
, mac
);
3765 qed_schedule_iov(hwfn
, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG
);
3771 static int qed_sriov_pf_set_vlan(struct qed_dev
*cdev
, u16 vid
, int vfid
)
3775 if (!IS_QED_SRIOV(cdev
) || !IS_PF_SRIOV_ALLOC(&cdev
->hwfns
[0])) {
3776 DP_VERBOSE(cdev
, QED_MSG_IOV
,
3777 "Cannot set a VF MAC; Sriov is not enabled\n");
3781 if (!qed_iov_is_valid_vfid(&cdev
->hwfns
[0], vfid
, true, true)) {
3782 DP_VERBOSE(cdev
, QED_MSG_IOV
,
3783 "Cannot set VF[%d] MAC (VF is not active)\n", vfid
);
3787 for_each_hwfn(cdev
, i
) {
3788 struct qed_hwfn
*hwfn
= &cdev
->hwfns
[i
];
3789 struct qed_public_vf_info
*vf_info
;
3791 vf_info
= qed_iov_get_public_vf_info(hwfn
, vfid
, true);
3795 /* Set the forced vlan, and schedule the IOV task */
3796 vf_info
->forced_vlan
= vid
;
3797 qed_schedule_iov(hwfn
, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG
);
3803 static int qed_get_vf_config(struct qed_dev
*cdev
,
3804 int vf_id
, struct ifla_vf_info
*ivi
)
3806 struct qed_hwfn
*hwfn
= QED_LEADING_HWFN(cdev
);
3807 struct qed_public_vf_info
*vf_info
;
3808 struct qed_mcp_link_state link
;
3811 /* Sanitize request */
3815 if (!qed_iov_is_valid_vfid(&cdev
->hwfns
[0], vf_id
, true, false)) {
3816 DP_VERBOSE(cdev
, QED_MSG_IOV
,
3817 "VF index [%d] isn't active\n", vf_id
);
3821 vf_info
= qed_iov_get_public_vf_info(hwfn
, vf_id
, true);
3823 qed_iov_get_link(hwfn
, vf_id
, NULL
, &link
, NULL
);
3825 /* Fill information about VF */
3828 if (is_valid_ether_addr(vf_info
->forced_mac
))
3829 ether_addr_copy(ivi
->mac
, vf_info
->forced_mac
);
3831 ether_addr_copy(ivi
->mac
, vf_info
->mac
);
3833 ivi
->vlan
= vf_info
->forced_vlan
;
3834 ivi
->spoofchk
= qed_iov_spoofchk_get(hwfn
, vf_id
);
3835 ivi
->linkstate
= vf_info
->link_state
;
3836 tx_rate
= vf_info
->tx_rate
;
3837 ivi
->max_tx_rate
= tx_rate
? tx_rate
: link
.speed
;
3838 ivi
->min_tx_rate
= qed_iov_get_vf_min_rate(hwfn
, vf_id
);
3843 void qed_inform_vf_link_state(struct qed_hwfn
*hwfn
)
3845 struct qed_mcp_link_capabilities caps
;
3846 struct qed_mcp_link_params params
;
3847 struct qed_mcp_link_state link
;
3850 if (!hwfn
->pf_iov_info
)
3853 /* Update bulletin of all future possible VFs with link configuration */
3854 for (i
= 0; i
< hwfn
->cdev
->p_iov_info
->total_vfs
; i
++) {
3855 struct qed_public_vf_info
*vf_info
;
3857 vf_info
= qed_iov_get_public_vf_info(hwfn
, i
, false);
3861 memcpy(¶ms
, qed_mcp_get_link_params(hwfn
), sizeof(params
));
3862 memcpy(&link
, qed_mcp_get_link_state(hwfn
), sizeof(link
));
3863 memcpy(&caps
, qed_mcp_get_link_capabilities(hwfn
),
3866 /* Modify link according to the VF's configured link state */
3867 switch (vf_info
->link_state
) {
3868 case IFLA_VF_LINK_STATE_DISABLE
:
3869 link
.link_up
= false;
3871 case IFLA_VF_LINK_STATE_ENABLE
:
3872 link
.link_up
= true;
3873 /* Set speed according to maximum supported by HW.
3874 * that is 40G for regular devices and 100G for CMT
3877 link
.speed
= (hwfn
->cdev
->num_hwfns
> 1) ?
3880 /* In auto mode pass PF link image to VF */
3884 if (link
.link_up
&& vf_info
->tx_rate
) {
3885 struct qed_ptt
*ptt
;
3888 rate
= min_t(int, vf_info
->tx_rate
, link
.speed
);
3890 ptt
= qed_ptt_acquire(hwfn
);
3892 DP_NOTICE(hwfn
, "Failed to acquire PTT\n");
3896 if (!qed_iov_configure_tx_rate(hwfn
, ptt
, i
, rate
)) {
3897 vf_info
->tx_rate
= rate
;
3901 qed_ptt_release(hwfn
, ptt
);
3904 qed_iov_set_link(hwfn
, i
, ¶ms
, &link
, &caps
);
3907 qed_schedule_iov(hwfn
, QED_IOV_WQ_BULLETIN_UPDATE_FLAG
);
3910 static int qed_set_vf_link_state(struct qed_dev
*cdev
,
3911 int vf_id
, int link_state
)
3915 /* Sanitize request */
3919 if (!qed_iov_is_valid_vfid(&cdev
->hwfns
[0], vf_id
, true, true)) {
3920 DP_VERBOSE(cdev
, QED_MSG_IOV
,
3921 "VF index [%d] isn't active\n", vf_id
);
3925 /* Handle configuration of link state */
3926 for_each_hwfn(cdev
, i
) {
3927 struct qed_hwfn
*hwfn
= &cdev
->hwfns
[i
];
3928 struct qed_public_vf_info
*vf
;
3930 vf
= qed_iov_get_public_vf_info(hwfn
, vf_id
, true);
3934 if (vf
->link_state
== link_state
)
3937 vf
->link_state
= link_state
;
3938 qed_inform_vf_link_state(&cdev
->hwfns
[i
]);
3944 static int qed_spoof_configure(struct qed_dev
*cdev
, int vfid
, bool val
)
3946 int i
, rc
= -EINVAL
;
3948 for_each_hwfn(cdev
, i
) {
3949 struct qed_hwfn
*p_hwfn
= &cdev
->hwfns
[i
];
3951 rc
= qed_iov_spoofchk_set(p_hwfn
, vfid
, val
);
3959 static int qed_configure_max_vf_rate(struct qed_dev
*cdev
, int vfid
, int rate
)
3963 for_each_hwfn(cdev
, i
) {
3964 struct qed_hwfn
*p_hwfn
= &cdev
->hwfns
[i
];
3965 struct qed_public_vf_info
*vf
;
3967 if (!qed_iov_pf_sanity_check(p_hwfn
, vfid
)) {
3969 "SR-IOV sanity check failed, can't set tx rate\n");
3973 vf
= qed_iov_get_public_vf_info(p_hwfn
, vfid
, true);
3977 qed_inform_vf_link_state(p_hwfn
);
3983 static int qed_set_vf_rate(struct qed_dev
*cdev
,
3984 int vfid
, u32 min_rate
, u32 max_rate
)
3986 int rc_min
= 0, rc_max
= 0;
3989 rc_max
= qed_configure_max_vf_rate(cdev
, vfid
, max_rate
);
3992 rc_min
= qed_iov_configure_min_tx_rate(cdev
, vfid
, min_rate
);
3994 if (rc_max
| rc_min
)
4000 static int qed_set_vf_trust(struct qed_dev
*cdev
, int vfid
, bool trust
)
4004 for_each_hwfn(cdev
, i
) {
4005 struct qed_hwfn
*hwfn
= &cdev
->hwfns
[i
];
4006 struct qed_public_vf_info
*vf
;
4008 if (!qed_iov_pf_sanity_check(hwfn
, vfid
)) {
4010 "SR-IOV sanity check failed, can't set trust\n");
4014 vf
= qed_iov_get_public_vf_info(hwfn
, vfid
, true);
4016 if (vf
->is_trusted_request
== trust
)
4018 vf
->is_trusted_request
= trust
;
4020 qed_schedule_iov(hwfn
, QED_IOV_WQ_TRUST_FLAG
);
4026 static void qed_handle_vf_msg(struct qed_hwfn
*hwfn
)
4028 u64 events
[QED_VF_ARRAY_LENGTH
];
4029 struct qed_ptt
*ptt
;
4032 ptt
= qed_ptt_acquire(hwfn
);
4034 DP_VERBOSE(hwfn
, QED_MSG_IOV
,
4035 "Can't acquire PTT; re-scheduling\n");
4036 qed_schedule_iov(hwfn
, QED_IOV_WQ_MSG_FLAG
);
4040 qed_iov_pf_get_pending_events(hwfn
, events
);
4042 DP_VERBOSE(hwfn
, QED_MSG_IOV
,
4043 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4044 events
[0], events
[1], events
[2]);
4046 qed_for_each_vf(hwfn
, i
) {
4047 /* Skip VFs with no pending messages */
4048 if (!(events
[i
/ 64] & (1ULL << (i
% 64))))
4051 DP_VERBOSE(hwfn
, QED_MSG_IOV
,
4052 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4053 i
, hwfn
->cdev
->p_iov_info
->first_vf_in_pf
+ i
);
4055 /* Copy VF's message to PF's request buffer for that VF */
4056 if (qed_iov_copy_vf_msg(hwfn
, ptt
, i
))
4059 qed_iov_process_mbx_req(hwfn
, ptt
, i
);
4062 qed_ptt_release(hwfn
, ptt
);
4065 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn
*hwfn
)
4069 qed_for_each_vf(hwfn
, i
) {
4070 struct qed_public_vf_info
*info
;
4071 bool update
= false;
4074 info
= qed_iov_get_public_vf_info(hwfn
, i
, true);
4078 /* Update data on bulletin board */
4079 mac
= qed_iov_bulletin_get_forced_mac(hwfn
, i
);
4080 if (is_valid_ether_addr(info
->forced_mac
) &&
4081 (!mac
|| !ether_addr_equal(mac
, info
->forced_mac
))) {
4084 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4086 hwfn
->cdev
->p_iov_info
->first_vf_in_pf
+ i
);
4088 /* Update bulletin board with forced MAC */
4089 qed_iov_bulletin_set_forced_mac(hwfn
,
4090 info
->forced_mac
, i
);
4094 if (qed_iov_bulletin_get_forced_vlan(hwfn
, i
) ^
4095 info
->forced_vlan
) {
4098 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
4101 hwfn
->cdev
->p_iov_info
->first_vf_in_pf
+ i
);
4102 qed_iov_bulletin_set_forced_vlan(hwfn
,
4103 info
->forced_vlan
, i
);
4108 qed_schedule_iov(hwfn
, QED_IOV_WQ_BULLETIN_UPDATE_FLAG
);
4112 static void qed_handle_bulletin_post(struct qed_hwfn
*hwfn
)
4114 struct qed_ptt
*ptt
;
4117 ptt
= qed_ptt_acquire(hwfn
);
4119 DP_NOTICE(hwfn
, "Failed allocating a ptt entry\n");
4120 qed_schedule_iov(hwfn
, QED_IOV_WQ_BULLETIN_UPDATE_FLAG
);
4124 qed_for_each_vf(hwfn
, i
)
4125 qed_iov_post_vf_bulletin(hwfn
, i
, ptt
);
4127 qed_ptt_release(hwfn
, ptt
);
4130 static void qed_iov_handle_trust_change(struct qed_hwfn
*hwfn
)
4132 struct qed_sp_vport_update_params params
;
4133 struct qed_filter_accept_flags
*flags
;
4134 struct qed_public_vf_info
*vf_info
;
4135 struct qed_vf_info
*vf
;
4139 mask
= QED_ACCEPT_UCAST_UNMATCHED
| QED_ACCEPT_MCAST_UNMATCHED
;
4140 flags
= ¶ms
.accept_flags
;
4142 qed_for_each_vf(hwfn
, i
) {
4143 /* Need to make sure current requested configuration didn't
4144 * flip so that we'll end up configuring something that's not
4147 vf_info
= qed_iov_get_public_vf_info(hwfn
, i
, true);
4148 if (vf_info
->is_trusted_configured
==
4149 vf_info
->is_trusted_request
)
4151 vf_info
->is_trusted_configured
= vf_info
->is_trusted_request
;
4153 /* Validate that the VF has a configured vport */
4154 vf
= qed_iov_get_vf_info(hwfn
, i
, true);
4155 if (!vf
->vport_instance
)
4158 memset(¶ms
, 0, sizeof(params
));
4159 params
.opaque_fid
= vf
->opaque_fid
;
4160 params
.vport_id
= vf
->vport_id
;
4162 if (vf_info
->rx_accept_mode
& mask
) {
4163 flags
->update_rx_mode_config
= 1;
4164 flags
->rx_accept_filter
= vf_info
->rx_accept_mode
;
4167 if (vf_info
->tx_accept_mode
& mask
) {
4168 flags
->update_tx_mode_config
= 1;
4169 flags
->tx_accept_filter
= vf_info
->tx_accept_mode
;
4172 /* Remove if needed; Otherwise this would set the mask */
4173 if (!vf_info
->is_trusted_configured
) {
4174 flags
->rx_accept_filter
&= ~mask
;
4175 flags
->tx_accept_filter
&= ~mask
;
4178 if (flags
->update_rx_mode_config
||
4179 flags
->update_tx_mode_config
)
4180 qed_sp_vport_update(hwfn
, ¶ms
,
4181 QED_SPQ_MODE_EBLOCK
, NULL
);
4185 static void qed_iov_pf_task(struct work_struct
*work
)
4188 struct qed_hwfn
*hwfn
= container_of(work
, struct qed_hwfn
,
4192 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG
, &hwfn
->iov_task_flags
))
4195 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG
, &hwfn
->iov_task_flags
)) {
4196 struct qed_ptt
*ptt
= qed_ptt_acquire(hwfn
);
4199 qed_schedule_iov(hwfn
, QED_IOV_WQ_FLR_FLAG
);
4203 rc
= qed_iov_vf_flr_cleanup(hwfn
, ptt
);
4205 qed_schedule_iov(hwfn
, QED_IOV_WQ_FLR_FLAG
);
4207 qed_ptt_release(hwfn
, ptt
);
4210 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG
, &hwfn
->iov_task_flags
))
4211 qed_handle_vf_msg(hwfn
);
4213 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG
,
4214 &hwfn
->iov_task_flags
))
4215 qed_handle_pf_set_vf_unicast(hwfn
);
4217 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG
,
4218 &hwfn
->iov_task_flags
))
4219 qed_handle_bulletin_post(hwfn
);
4221 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG
, &hwfn
->iov_task_flags
))
4222 qed_iov_handle_trust_change(hwfn
);
4225 void qed_iov_wq_stop(struct qed_dev
*cdev
, bool schedule_first
)
4229 for_each_hwfn(cdev
, i
) {
4230 if (!cdev
->hwfns
[i
].iov_wq
)
4233 if (schedule_first
) {
4234 qed_schedule_iov(&cdev
->hwfns
[i
],
4235 QED_IOV_WQ_STOP_WQ_FLAG
);
4236 cancel_delayed_work_sync(&cdev
->hwfns
[i
].iov_task
);
4239 flush_workqueue(cdev
->hwfns
[i
].iov_wq
);
4240 destroy_workqueue(cdev
->hwfns
[i
].iov_wq
);
4244 int qed_iov_wq_start(struct qed_dev
*cdev
)
4246 char name
[NAME_SIZE
];
4249 for_each_hwfn(cdev
, i
) {
4250 struct qed_hwfn
*p_hwfn
= &cdev
->hwfns
[i
];
4252 /* PFs needs a dedicated workqueue only if they support IOV.
4253 * VFs always require one.
4255 if (IS_PF(p_hwfn
->cdev
) && !IS_PF_SRIOV(p_hwfn
))
4258 snprintf(name
, NAME_SIZE
, "iov-%02x:%02x.%02x",
4259 cdev
->pdev
->bus
->number
,
4260 PCI_SLOT(cdev
->pdev
->devfn
), p_hwfn
->abs_pf_id
);
4262 p_hwfn
->iov_wq
= create_singlethread_workqueue(name
);
4263 if (!p_hwfn
->iov_wq
) {
4264 DP_NOTICE(p_hwfn
, "Cannot create iov workqueue\n");
4269 INIT_DELAYED_WORK(&p_hwfn
->iov_task
, qed_iov_pf_task
);
4271 INIT_DELAYED_WORK(&p_hwfn
->iov_task
, qed_iov_vf_task
);
4277 const struct qed_iov_hv_ops qed_iov_ops_pass
= {
4278 .configure
= &qed_sriov_configure
,
4279 .set_mac
= &qed_sriov_pf_set_mac
,
4280 .set_vlan
= &qed_sriov_pf_set_vlan
,
4281 .get_config
= &qed_get_vf_config
,
4282 .set_link_state
= &qed_set_vf_link_state
,
4283 .set_spoof
= &qed_spoof_configure
,
4284 .set_rate
= &qed_set_vf_rate
,
4285 .set_trust
= &qed_set_vf_trust
,