1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
15 #include <linux/spinlock.h>
17 /**************************************************************************
21 **************************************************************************
23 * Notes on locking strategy for the Falcon architecture:
25 * Many CSRs are very wide and cannot be read or written atomically.
26 * Writes from the host are buffered by the Bus Interface Unit (BIU)
27 * up to 128 bits. Whenever the host writes part of such a register,
28 * the BIU collects the written value and does not write to the
29 * underlying register until all 4 dwords have been written. A
30 * similar buffering scheme applies to host access to the NIC's 64-bit
33 * Writes to different CSRs and 64-bit SRAM words must be serialised,
34 * since interleaved access can result in lost writes. We use
35 * ef4_nic::biu_lock for this.
37 * We also serialise reads from 128-bit CSRs and SRAM with the same
38 * spinlock. This may not be necessary, but it doesn't really matter
39 * as there are no such reads on the fast path.
41 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
42 * 128-bit but are special-cased in the BIU to avoid the need for
43 * locking in the host:
45 * - They are write-only.
46 * - The semantics of writing to these registers are such that
47 * replacing the low 96 bits with zero does not affect functionality.
48 * - If the host writes to the last dword address of such a register
49 * (i.e. the high 32 bits) the underlying register will always be
50 * written. If the collector and the current write together do not
51 * provide values for all 128 bits of the register, the low 96 bits
52 * will be written as zero.
53 * - If the host writes to the address of any other part of such a
54 * register while the collector already holds values for some other
55 * register, the write is discarded and the collector maintains its
58 * The EF10 architecture exposes very few registers to the host and
59 * most of them are only 32 bits wide. The only exceptions are the MC
60 * doorbell register pair, which has its own latching, and
61 * TX_DESC_UPD, which works in a similar way to the Falcon
65 #if BITS_PER_LONG == 64
66 #define EF4_USE_QWORD_IO 1
69 #ifdef EF4_USE_QWORD_IO
70 static inline void _ef4_writeq(struct ef4_nic
*efx
, __le64 value
,
73 __raw_writeq((__force u64
)value
, efx
->membase
+ reg
);
75 static inline __le64
_ef4_readq(struct ef4_nic
*efx
, unsigned int reg
)
77 return (__force __le64
)__raw_readq(efx
->membase
+ reg
);
81 static inline void _ef4_writed(struct ef4_nic
*efx
, __le32 value
,
84 __raw_writel((__force u32
)value
, efx
->membase
+ reg
);
86 static inline __le32
_ef4_readd(struct ef4_nic
*efx
, unsigned int reg
)
88 return (__force __le32
)__raw_readl(efx
->membase
+ reg
);
91 /* Write a normal 128-bit CSR, locking as appropriate. */
92 static inline void ef4_writeo(struct ef4_nic
*efx
, const ef4_oword_t
*value
,
95 unsigned long flags
__attribute__ ((unused
));
97 netif_vdbg(efx
, hw
, efx
->net_dev
,
98 "writing register %x with " EF4_OWORD_FMT
"\n", reg
,
99 EF4_OWORD_VAL(*value
));
101 spin_lock_irqsave(&efx
->biu_lock
, flags
);
102 #ifdef EF4_USE_QWORD_IO
103 _ef4_writeq(efx
, value
->u64
[0], reg
+ 0);
104 _ef4_writeq(efx
, value
->u64
[1], reg
+ 8);
106 _ef4_writed(efx
, value
->u32
[0], reg
+ 0);
107 _ef4_writed(efx
, value
->u32
[1], reg
+ 4);
108 _ef4_writed(efx
, value
->u32
[2], reg
+ 8);
109 _ef4_writed(efx
, value
->u32
[3], reg
+ 12);
112 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
115 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
116 static inline void ef4_sram_writeq(struct ef4_nic
*efx
, void __iomem
*membase
,
117 const ef4_qword_t
*value
, unsigned int index
)
119 unsigned int addr
= index
* sizeof(*value
);
120 unsigned long flags
__attribute__ ((unused
));
122 netif_vdbg(efx
, hw
, efx
->net_dev
,
123 "writing SRAM address %x with " EF4_QWORD_FMT
"\n",
124 addr
, EF4_QWORD_VAL(*value
));
126 spin_lock_irqsave(&efx
->biu_lock
, flags
);
127 #ifdef EF4_USE_QWORD_IO
128 __raw_writeq((__force u64
)value
->u64
[0], membase
+ addr
);
130 __raw_writel((__force u32
)value
->u32
[0], membase
+ addr
);
131 __raw_writel((__force u32
)value
->u32
[1], membase
+ addr
+ 4);
134 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
137 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
138 static inline void ef4_writed(struct ef4_nic
*efx
, const ef4_dword_t
*value
,
141 netif_vdbg(efx
, hw
, efx
->net_dev
,
142 "writing register %x with "EF4_DWORD_FMT
"\n",
143 reg
, EF4_DWORD_VAL(*value
));
145 /* No lock required */
146 _ef4_writed(efx
, value
->u32
[0], reg
);
149 /* Read a 128-bit CSR, locking as appropriate. */
150 static inline void ef4_reado(struct ef4_nic
*efx
, ef4_oword_t
*value
,
153 unsigned long flags
__attribute__ ((unused
));
155 spin_lock_irqsave(&efx
->biu_lock
, flags
);
156 value
->u32
[0] = _ef4_readd(efx
, reg
+ 0);
157 value
->u32
[1] = _ef4_readd(efx
, reg
+ 4);
158 value
->u32
[2] = _ef4_readd(efx
, reg
+ 8);
159 value
->u32
[3] = _ef4_readd(efx
, reg
+ 12);
160 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
162 netif_vdbg(efx
, hw
, efx
->net_dev
,
163 "read from register %x, got " EF4_OWORD_FMT
"\n", reg
,
164 EF4_OWORD_VAL(*value
));
167 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
168 static inline void ef4_sram_readq(struct ef4_nic
*efx
, void __iomem
*membase
,
169 ef4_qword_t
*value
, unsigned int index
)
171 unsigned int addr
= index
* sizeof(*value
);
172 unsigned long flags
__attribute__ ((unused
));
174 spin_lock_irqsave(&efx
->biu_lock
, flags
);
175 #ifdef EF4_USE_QWORD_IO
176 value
->u64
[0] = (__force __le64
)__raw_readq(membase
+ addr
);
178 value
->u32
[0] = (__force __le32
)__raw_readl(membase
+ addr
);
179 value
->u32
[1] = (__force __le32
)__raw_readl(membase
+ addr
+ 4);
181 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
183 netif_vdbg(efx
, hw
, efx
->net_dev
,
184 "read from SRAM address %x, got "EF4_QWORD_FMT
"\n",
185 addr
, EF4_QWORD_VAL(*value
));
188 /* Read a 32-bit CSR or SRAM */
189 static inline void ef4_readd(struct ef4_nic
*efx
, ef4_dword_t
*value
,
192 value
->u32
[0] = _ef4_readd(efx
, reg
);
193 netif_vdbg(efx
, hw
, efx
->net_dev
,
194 "read from register %x, got "EF4_DWORD_FMT
"\n",
195 reg
, EF4_DWORD_VAL(*value
));
198 /* Write a 128-bit CSR forming part of a table */
200 ef4_writeo_table(struct ef4_nic
*efx
, const ef4_oword_t
*value
,
201 unsigned int reg
, unsigned int index
)
203 ef4_writeo(efx
, value
, reg
+ index
* sizeof(ef4_oword_t
));
206 /* Read a 128-bit CSR forming part of a table */
207 static inline void ef4_reado_table(struct ef4_nic
*efx
, ef4_oword_t
*value
,
208 unsigned int reg
, unsigned int index
)
210 ef4_reado(efx
, value
, reg
+ index
* sizeof(ef4_oword_t
));
213 /* Page size used as step between per-VI registers */
214 #define EF4_VI_PAGE_SIZE 0x2000
216 /* Calculate offset to page-mapped register */
217 #define EF4_PAGED_REG(page, reg) \
218 ((page) * EF4_VI_PAGE_SIZE + (reg))
220 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
221 static inline void _ef4_writeo_page(struct ef4_nic
*efx
, ef4_oword_t
*value
,
222 unsigned int reg
, unsigned int page
)
224 reg
= EF4_PAGED_REG(page
, reg
);
226 netif_vdbg(efx
, hw
, efx
->net_dev
,
227 "writing register %x with " EF4_OWORD_FMT
"\n", reg
,
228 EF4_OWORD_VAL(*value
));
230 #ifdef EF4_USE_QWORD_IO
231 _ef4_writeq(efx
, value
->u64
[0], reg
+ 0);
232 _ef4_writeq(efx
, value
->u64
[1], reg
+ 8);
234 _ef4_writed(efx
, value
->u32
[0], reg
+ 0);
235 _ef4_writed(efx
, value
->u32
[1], reg
+ 4);
236 _ef4_writed(efx
, value
->u32
[2], reg
+ 8);
237 _ef4_writed(efx
, value
->u32
[3], reg
+ 12);
240 #define ef4_writeo_page(efx, value, reg, page) \
241 _ef4_writeo_page(efx, value, \
243 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
246 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
247 * high bits of RX_DESC_UPD or TX_DESC_UPD)
250 _ef4_writed_page(struct ef4_nic
*efx
, const ef4_dword_t
*value
,
251 unsigned int reg
, unsigned int page
)
253 ef4_writed(efx
, value
, EF4_PAGED_REG(page
, reg
));
255 #define ef4_writed_page(efx, value, reg, page) \
256 _ef4_writed_page(efx, value, \
258 BUILD_BUG_ON_ZERO((reg) != 0x400 && \
266 /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
267 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
268 * collector register.
270 static inline void _ef4_writed_page_locked(struct ef4_nic
*efx
,
271 const ef4_dword_t
*value
,
275 unsigned long flags
__attribute__ ((unused
));
278 spin_lock_irqsave(&efx
->biu_lock
, flags
);
279 ef4_writed(efx
, value
, EF4_PAGED_REG(page
, reg
));
280 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
282 ef4_writed(efx
, value
, EF4_PAGED_REG(page
, reg
));
285 #define ef4_writed_page_locked(efx, value, reg, page) \
286 _ef4_writed_page_locked(efx, value, \
287 reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
290 #endif /* EF4_IO_H */