1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
15 #include <linux/spinlock.h>
17 /**************************************************************************
21 **************************************************************************
23 * Notes on locking strategy for the Falcon architecture:
25 * Many CSRs are very wide and cannot be read or written atomically.
26 * Writes from the host are buffered by the Bus Interface Unit (BIU)
27 * up to 128 bits. Whenever the host writes part of such a register,
28 * the BIU collects the written value and does not write to the
29 * underlying register until all 4 dwords have been written. A
30 * similar buffering scheme applies to host access to the NIC's 64-bit
33 * Writes to different CSRs and 64-bit SRAM words must be serialised,
34 * since interleaved access can result in lost writes. We use
35 * efx_nic::biu_lock for this.
37 * We also serialise reads from 128-bit CSRs and SRAM with the same
38 * spinlock. This may not be necessary, but it doesn't really matter
39 * as there are no such reads on the fast path.
41 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
42 * 128-bit but are special-cased in the BIU to avoid the need for
43 * locking in the host:
45 * - They are write-only.
46 * - The semantics of writing to these registers are such that
47 * replacing the low 96 bits with zero does not affect functionality.
48 * - If the host writes to the last dword address of such a register
49 * (i.e. the high 32 bits) the underlying register will always be
50 * written. If the collector and the current write together do not
51 * provide values for all 128 bits of the register, the low 96 bits
52 * will be written as zero.
53 * - If the host writes to the address of any other part of such a
54 * register while the collector already holds values for some other
55 * register, the write is discarded and the collector maintains its
58 * The EF10 architecture exposes very few registers to the host and
59 * most of them are only 32 bits wide. The only exceptions are the MC
60 * doorbell register pair, which has its own latching, and
61 * TX_DESC_UPD, which works in a similar way to the Falcon
65 #if BITS_PER_LONG == 64
66 #define EFX_USE_QWORD_IO 1
69 /* Hardware issue requires that only 64-bit naturally aligned writes
70 * are seen by hardware. Its not strictly necessary to restrict to
71 * x86_64 arch, but done for safety since unusual write combining behaviour
75 /* PIO is a win only if write-combining is possible */
76 #ifdef ARCH_HAS_IOREMAP_WC
81 #ifdef EFX_USE_QWORD_IO
82 static inline void _efx_writeq(struct efx_nic
*efx
, __le64 value
,
85 __raw_writeq((__force u64
)value
, efx
->membase
+ reg
);
87 static inline __le64
_efx_readq(struct efx_nic
*efx
, unsigned int reg
)
89 return (__force __le64
)__raw_readq(efx
->membase
+ reg
);
93 static inline void _efx_writed(struct efx_nic
*efx
, __le32 value
,
96 __raw_writel((__force u32
)value
, efx
->membase
+ reg
);
98 static inline __le32
_efx_readd(struct efx_nic
*efx
, unsigned int reg
)
100 return (__force __le32
)__raw_readl(efx
->membase
+ reg
);
103 /* Write a normal 128-bit CSR, locking as appropriate. */
104 static inline void efx_writeo(struct efx_nic
*efx
, const efx_oword_t
*value
,
107 unsigned long flags
__attribute__ ((unused
));
109 netif_vdbg(efx
, hw
, efx
->net_dev
,
110 "writing register %x with " EFX_OWORD_FMT
"\n", reg
,
111 EFX_OWORD_VAL(*value
));
113 spin_lock_irqsave(&efx
->biu_lock
, flags
);
114 #ifdef EFX_USE_QWORD_IO
115 _efx_writeq(efx
, value
->u64
[0], reg
+ 0);
116 _efx_writeq(efx
, value
->u64
[1], reg
+ 8);
118 _efx_writed(efx
, value
->u32
[0], reg
+ 0);
119 _efx_writed(efx
, value
->u32
[1], reg
+ 4);
120 _efx_writed(efx
, value
->u32
[2], reg
+ 8);
121 _efx_writed(efx
, value
->u32
[3], reg
+ 12);
124 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
127 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
128 static inline void efx_sram_writeq(struct efx_nic
*efx
, void __iomem
*membase
,
129 const efx_qword_t
*value
, unsigned int index
)
131 unsigned int addr
= index
* sizeof(*value
);
132 unsigned long flags
__attribute__ ((unused
));
134 netif_vdbg(efx
, hw
, efx
->net_dev
,
135 "writing SRAM address %x with " EFX_QWORD_FMT
"\n",
136 addr
, EFX_QWORD_VAL(*value
));
138 spin_lock_irqsave(&efx
->biu_lock
, flags
);
139 #ifdef EFX_USE_QWORD_IO
140 __raw_writeq((__force u64
)value
->u64
[0], membase
+ addr
);
142 __raw_writel((__force u32
)value
->u32
[0], membase
+ addr
);
143 __raw_writel((__force u32
)value
->u32
[1], membase
+ addr
+ 4);
146 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
149 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
150 static inline void efx_writed(struct efx_nic
*efx
, const efx_dword_t
*value
,
153 netif_vdbg(efx
, hw
, efx
->net_dev
,
154 "writing register %x with "EFX_DWORD_FMT
"\n",
155 reg
, EFX_DWORD_VAL(*value
));
157 /* No lock required */
158 _efx_writed(efx
, value
->u32
[0], reg
);
161 /* Read a 128-bit CSR, locking as appropriate. */
162 static inline void efx_reado(struct efx_nic
*efx
, efx_oword_t
*value
,
165 unsigned long flags
__attribute__ ((unused
));
167 spin_lock_irqsave(&efx
->biu_lock
, flags
);
168 value
->u32
[0] = _efx_readd(efx
, reg
+ 0);
169 value
->u32
[1] = _efx_readd(efx
, reg
+ 4);
170 value
->u32
[2] = _efx_readd(efx
, reg
+ 8);
171 value
->u32
[3] = _efx_readd(efx
, reg
+ 12);
172 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
174 netif_vdbg(efx
, hw
, efx
->net_dev
,
175 "read from register %x, got " EFX_OWORD_FMT
"\n", reg
,
176 EFX_OWORD_VAL(*value
));
179 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
180 static inline void efx_sram_readq(struct efx_nic
*efx
, void __iomem
*membase
,
181 efx_qword_t
*value
, unsigned int index
)
183 unsigned int addr
= index
* sizeof(*value
);
184 unsigned long flags
__attribute__ ((unused
));
186 spin_lock_irqsave(&efx
->biu_lock
, flags
);
187 #ifdef EFX_USE_QWORD_IO
188 value
->u64
[0] = (__force __le64
)__raw_readq(membase
+ addr
);
190 value
->u32
[0] = (__force __le32
)__raw_readl(membase
+ addr
);
191 value
->u32
[1] = (__force __le32
)__raw_readl(membase
+ addr
+ 4);
193 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
195 netif_vdbg(efx
, hw
, efx
->net_dev
,
196 "read from SRAM address %x, got "EFX_QWORD_FMT
"\n",
197 addr
, EFX_QWORD_VAL(*value
));
200 /* Read a 32-bit CSR or SRAM */
201 static inline void efx_readd(struct efx_nic
*efx
, efx_dword_t
*value
,
204 value
->u32
[0] = _efx_readd(efx
, reg
);
205 netif_vdbg(efx
, hw
, efx
->net_dev
,
206 "read from register %x, got "EFX_DWORD_FMT
"\n",
207 reg
, EFX_DWORD_VAL(*value
));
210 /* Write a 128-bit CSR forming part of a table */
212 efx_writeo_table(struct efx_nic
*efx
, const efx_oword_t
*value
,
213 unsigned int reg
, unsigned int index
)
215 efx_writeo(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
218 /* Read a 128-bit CSR forming part of a table */
219 static inline void efx_reado_table(struct efx_nic
*efx
, efx_oword_t
*value
,
220 unsigned int reg
, unsigned int index
)
222 efx_reado(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
225 /* Page size used as step between per-VI registers */
226 #define EFX_VI_PAGE_SIZE 0x2000
228 /* Calculate offset to page-mapped register */
229 #define EFX_PAGED_REG(page, reg) \
230 ((page) * EFX_VI_PAGE_SIZE + (reg))
232 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
233 static inline void _efx_writeo_page(struct efx_nic
*efx
, efx_oword_t
*value
,
234 unsigned int reg
, unsigned int page
)
236 reg
= EFX_PAGED_REG(page
, reg
);
238 netif_vdbg(efx
, hw
, efx
->net_dev
,
239 "writing register %x with " EFX_OWORD_FMT
"\n", reg
,
240 EFX_OWORD_VAL(*value
));
242 #ifdef EFX_USE_QWORD_IO
243 _efx_writeq(efx
, value
->u64
[0], reg
+ 0);
244 _efx_writeq(efx
, value
->u64
[1], reg
+ 8);
246 _efx_writed(efx
, value
->u32
[0], reg
+ 0);
247 _efx_writed(efx
, value
->u32
[1], reg
+ 4);
248 _efx_writed(efx
, value
->u32
[2], reg
+ 8);
249 _efx_writed(efx
, value
->u32
[3], reg
+ 12);
252 #define efx_writeo_page(efx, value, reg, page) \
253 _efx_writeo_page(efx, value, \
255 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
258 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
259 * high bits of RX_DESC_UPD or TX_DESC_UPD)
262 _efx_writed_page(struct efx_nic
*efx
, const efx_dword_t
*value
,
263 unsigned int reg
, unsigned int page
)
265 efx_writed(efx
, value
, EFX_PAGED_REG(page
, reg
));
267 #define efx_writed_page(efx, value, reg, page) \
268 _efx_writed_page(efx, value, \
270 BUILD_BUG_ON_ZERO((reg) != 0x400 && \
278 /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
279 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
280 * collector register.
282 static inline void _efx_writed_page_locked(struct efx_nic
*efx
,
283 const efx_dword_t
*value
,
287 unsigned long flags
__attribute__ ((unused
));
290 spin_lock_irqsave(&efx
->biu_lock
, flags
);
291 efx_writed(efx
, value
, EFX_PAGED_REG(page
, reg
));
292 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
294 efx_writed(efx
, value
, EFX_PAGED_REG(page
, reg
));
297 #define efx_writed_page_locked(efx, value, reg, page) \
298 _efx_writed_page_locked(efx, value, \
299 reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
302 #endif /* EFX_IO_H */